Upgrade V8 to 5.1.281.57  DO NOT MERGE

FPIIM-449

Change-Id: Id981b686b4d587ac31697662eb98bb34be42ad90
(cherry picked from commit 3b9bc31999c9787eb726ecdbfd5796bfdec32a18)
diff --git a/src/utils.h b/src/utils.h
index d779979..44865ed 100644
--- a/src/utils.h
+++ b/src/utils.h
@@ -210,6 +210,30 @@
   return std::floor(x);
 }
 
+inline double Pow(double x, double y) {
+#if (defined(__MINGW64_VERSION_MAJOR) &&                              \
+     (!defined(__MINGW64_VERSION_RC) || __MINGW64_VERSION_RC < 1)) || \
+    defined(V8_OS_AIX)
+  // MinGW64 and AIX have a custom implementation for pow.  This handles certain
+  // special cases that are different.
+  if ((x == 0.0 || std::isinf(x)) && y != 0.0 && std::isfinite(y)) {
+    double f;
+    double result = ((x == 0.0) ^ (y > 0)) ? V8_INFINITY : 0;
+    /* retain sign if odd integer exponent */
+    return ((std::modf(y, &f) == 0.0) && (static_cast<int64_t>(y) & 1))
+               ? copysign(result, x)
+               : result;
+  }
+
+  if (x == 2.0) {
+    int y_int = static_cast<int>(y);
+    if (y == y_int) {
+      return std::ldexp(1.0, y_int);
+    }
+  }
+#endif
+  return std::pow(x, y);
+}
 
 // TODO(svenpanne) Clean up the whole power-of-2 mess.
 inline int32_t WhichPowerOf2Abs(int32_t x) {
@@ -548,240 +572,6 @@
   T buffer_[kSize];
 };
 
-
-/*
- * A class that collects values into a backing store.
- * Specialized versions of the class can allow access to the backing store
- * in different ways.
- * There is no guarantee that the backing store is contiguous (and, as a
- * consequence, no guarantees that consecutively added elements are adjacent
- * in memory). The collector may move elements unless it has guaranteed not
- * to.
- */
-template <typename T, int growth_factor = 2, int max_growth = 1 * MB>
-class Collector {
- public:
-  explicit Collector(int initial_capacity = kMinCapacity)
-      : index_(0), size_(0) {
-    current_chunk_ = Vector<T>::New(initial_capacity);
-  }
-
-  virtual ~Collector() {
-    // Free backing store (in reverse allocation order).
-    current_chunk_.Dispose();
-    for (int i = chunks_.length() - 1; i >= 0; i--) {
-      chunks_.at(i).Dispose();
-    }
-  }
-
-  // Add a single element.
-  inline void Add(T value) {
-    if (index_ >= current_chunk_.length()) {
-      Grow(1);
-    }
-    current_chunk_[index_] = value;
-    index_++;
-    size_++;
-  }
-
-  // Add a block of contiguous elements and return a Vector backed by the
-  // memory area.
-  // A basic Collector will keep this vector valid as long as the Collector
-  // is alive.
-  inline Vector<T> AddBlock(int size, T initial_value) {
-    DCHECK(size > 0);
-    if (size > current_chunk_.length() - index_) {
-      Grow(size);
-    }
-    T* position = current_chunk_.start() + index_;
-    index_ += size;
-    size_ += size;
-    for (int i = 0; i < size; i++) {
-      position[i] = initial_value;
-    }
-    return Vector<T>(position, size);
-  }
-
-
-  // Add a contiguous block of elements and return a vector backed
-  // by the added block.
-  // A basic Collector will keep this vector valid as long as the Collector
-  // is alive.
-  inline Vector<T> AddBlock(Vector<const T> source) {
-    if (source.length() > current_chunk_.length() - index_) {
-      Grow(source.length());
-    }
-    T* position = current_chunk_.start() + index_;
-    index_ += source.length();
-    size_ += source.length();
-    for (int i = 0; i < source.length(); i++) {
-      position[i] = source[i];
-    }
-    return Vector<T>(position, source.length());
-  }
-
-
-  // Write the contents of the collector into the provided vector.
-  void WriteTo(Vector<T> destination) {
-    DCHECK(size_ <= destination.length());
-    int position = 0;
-    for (int i = 0; i < chunks_.length(); i++) {
-      Vector<T> chunk = chunks_.at(i);
-      for (int j = 0; j < chunk.length(); j++) {
-        destination[position] = chunk[j];
-        position++;
-      }
-    }
-    for (int i = 0; i < index_; i++) {
-      destination[position] = current_chunk_[i];
-      position++;
-    }
-  }
-
-  // Allocate a single contiguous vector, copy all the collected
-  // elements to the vector, and return it.
-  // The caller is responsible for freeing the memory of the returned
-  // vector (e.g., using Vector::Dispose).
-  Vector<T> ToVector() {
-    Vector<T> new_store = Vector<T>::New(size_);
-    WriteTo(new_store);
-    return new_store;
-  }
-
-  // Resets the collector to be empty.
-  virtual void Reset() {
-    for (int i = chunks_.length() - 1; i >= 0; i--) {
-      chunks_.at(i).Dispose();
-    }
-    chunks_.Rewind(0);
-    index_ = 0;
-    size_ = 0;
-  }
-
-  // Total number of elements added to collector so far.
-  inline int size() { return size_; }
-
- protected:
-  static const int kMinCapacity = 16;
-  List<Vector<T> > chunks_;
-  Vector<T> current_chunk_;  // Block of memory currently being written into.
-  int index_;  // Current index in current chunk.
-  int size_;  // Total number of elements in collector.
-
-  // Creates a new current chunk, and stores the old chunk in the chunks_ list.
-  void Grow(int min_capacity) {
-    DCHECK(growth_factor > 1);
-    int new_capacity;
-    int current_length = current_chunk_.length();
-    if (current_length < kMinCapacity) {
-      // The collector started out as empty.
-      new_capacity = min_capacity * growth_factor;
-      if (new_capacity < kMinCapacity) new_capacity = kMinCapacity;
-    } else {
-      int growth = current_length * (growth_factor - 1);
-      if (growth > max_growth) {
-        growth = max_growth;
-      }
-      new_capacity = current_length + growth;
-      if (new_capacity < min_capacity) {
-        new_capacity = min_capacity + growth;
-      }
-    }
-    NewChunk(new_capacity);
-    DCHECK(index_ + min_capacity <= current_chunk_.length());
-  }
-
-  // Before replacing the current chunk, give a subclass the option to move
-  // some of the current data into the new chunk. The function may update
-  // the current index_ value to represent data no longer in the current chunk.
-  // Returns the initial index of the new chunk (after copied data).
-  virtual void NewChunk(int new_capacity)  {
-    Vector<T> new_chunk = Vector<T>::New(new_capacity);
-    if (index_ > 0) {
-      chunks_.Add(current_chunk_.SubVector(0, index_));
-    } else {
-      current_chunk_.Dispose();
-    }
-    current_chunk_ = new_chunk;
-    index_ = 0;
-  }
-};
-
-
-/*
- * A collector that allows sequences of values to be guaranteed to
- * stay consecutive.
- * If the backing store grows while a sequence is active, the current
- * sequence might be moved, but after the sequence is ended, it will
- * not move again.
- * NOTICE: Blocks allocated using Collector::AddBlock(int) can move
- * as well, if inside an active sequence where another element is added.
- */
-template <typename T, int growth_factor = 2, int max_growth = 1 * MB>
-class SequenceCollector : public Collector<T, growth_factor, max_growth> {
- public:
-  explicit SequenceCollector(int initial_capacity)
-      : Collector<T, growth_factor, max_growth>(initial_capacity),
-        sequence_start_(kNoSequence) { }
-
-  virtual ~SequenceCollector() {}
-
-  void StartSequence() {
-    DCHECK(sequence_start_ == kNoSequence);
-    sequence_start_ = this->index_;
-  }
-
-  Vector<T> EndSequence() {
-    DCHECK(sequence_start_ != kNoSequence);
-    int sequence_start = sequence_start_;
-    sequence_start_ = kNoSequence;
-    if (sequence_start == this->index_) return Vector<T>();
-    return this->current_chunk_.SubVector(sequence_start, this->index_);
-  }
-
-  // Drops the currently added sequence, and all collected elements in it.
-  void DropSequence() {
-    DCHECK(sequence_start_ != kNoSequence);
-    int sequence_length = this->index_ - sequence_start_;
-    this->index_ = sequence_start_;
-    this->size_ -= sequence_length;
-    sequence_start_ = kNoSequence;
-  }
-
-  virtual void Reset() {
-    sequence_start_ = kNoSequence;
-    this->Collector<T, growth_factor, max_growth>::Reset();
-  }
-
- private:
-  static const int kNoSequence = -1;
-  int sequence_start_;
-
-  // Move the currently active sequence to the new chunk.
-  virtual void NewChunk(int new_capacity) {
-    if (sequence_start_ == kNoSequence) {
-      // Fall back on default behavior if no sequence has been started.
-      this->Collector<T, growth_factor, max_growth>::NewChunk(new_capacity);
-      return;
-    }
-    int sequence_length = this->index_ - sequence_start_;
-    Vector<T> new_chunk = Vector<T>::New(sequence_length + new_capacity);
-    DCHECK(sequence_length < new_chunk.length());
-    for (int i = 0; i < sequence_length; i++) {
-      new_chunk[i] = this->current_chunk_[sequence_start_ + i];
-    }
-    if (sequence_start_ > 0) {
-      this->chunks_.Add(this->current_chunk_.SubVector(0, sequence_start_));
-    } else {
-      this->current_chunk_.Dispose();
-    }
-    this->current_chunk_ = new_chunk;
-    this->index_ = sequence_length;
-    sequence_start_ = 0;
-  }
-};
-
-
 // Compare 8bit/16bit chars to 8bit/16bit chars.
 template <typename lchar, typename rchar>
 inline int CompareCharsUnsigned(const lchar* lhs, const rchar* rhs,
@@ -1378,7 +1168,7 @@
 INLINE(void CopyCharsUnsigned(uint8_t* dest, const uint8_t* src, size_t chars));
 INLINE(void CopyCharsUnsigned(uint16_t* dest, const uint16_t* src,
                               size_t chars));
-#elif defined(V8_HOST_ARCH_PPC)
+#elif defined(V8_HOST_ARCH_PPC) || defined(V8_HOST_ARCH_S390)
 INLINE(void CopyCharsUnsigned(uint8_t* dest, const uint8_t* src, size_t chars));
 INLINE(void CopyCharsUnsigned(uint16_t* dest, const uint16_t* src,
                               size_t chars));
@@ -1541,7 +1331,7 @@
     MemCopy(dest, src, chars * sizeof(*dest));
   }
 }
-#elif defined(V8_HOST_ARCH_PPC)
+#elif defined(V8_HOST_ARCH_PPC) || defined(V8_HOST_ARCH_S390)
 #define CASE(n)           \
   case n:                 \
     memcpy(dest, src, n); \
@@ -1752,21 +1542,22 @@
   return ReadUnalignedValue<double>(p);
 }
 
-
 static inline void WriteDoubleValue(void* p, double value) {
   WriteUnalignedValue(p, value);
 }
 
-
 static inline uint16_t ReadUnalignedUInt16(const void* p) {
   return ReadUnalignedValue<uint16_t>(p);
 }
 
-
 static inline void WriteUnalignedUInt16(void* p, uint16_t value) {
   WriteUnalignedValue(p, value);
 }
 
+static inline uint32_t ReadUnalignedUInt32(const void* p) {
+  return ReadUnalignedValue<uint32_t>(p);
+}
+
 static inline void WriteUnalignedUInt32(void* p, uint32_t value) {
   WriteUnalignedValue(p, value);
 }