blob: b2860e00eb7f53eefe8f251d88d6d4debc1e07d1 [file] [log] [blame]
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/operation-typer.h"
#include "src/factory.h"
#include "src/isolate.h"
#include "src/type-cache.h"
#include "src/types.h"
#include "src/objects-inl.h"
namespace v8 {
namespace internal {
namespace compiler {
OperationTyper::OperationTyper(Isolate* isolate, Zone* zone)
: zone_(zone), cache_(TypeCache::Get()) {
Factory* factory = isolate->factory();
singleton_false_ = Type::Constant(factory->false_value(), zone);
singleton_true_ = Type::Constant(factory->true_value(), zone);
singleton_the_hole_ = Type::Constant(factory->the_hole_value(), zone);
}
Type* OperationTyper::Merge(Type* left, Type* right) {
return Type::Union(left, right, zone());
}
Type* OperationTyper::WeakenRange(Type* previous_range, Type* current_range) {
static const double kWeakenMinLimits[] = {0.0,
-1073741824.0,
-2147483648.0,
-4294967296.0,
-8589934592.0,
-17179869184.0,
-34359738368.0,
-68719476736.0,
-137438953472.0,
-274877906944.0,
-549755813888.0,
-1099511627776.0,
-2199023255552.0,
-4398046511104.0,
-8796093022208.0,
-17592186044416.0,
-35184372088832.0,
-70368744177664.0,
-140737488355328.0,
-281474976710656.0,
-562949953421312.0};
static const double kWeakenMaxLimits[] = {0.0,
1073741823.0,
2147483647.0,
4294967295.0,
8589934591.0,
17179869183.0,
34359738367.0,
68719476735.0,
137438953471.0,
274877906943.0,
549755813887.0,
1099511627775.0,
2199023255551.0,
4398046511103.0,
8796093022207.0,
17592186044415.0,
35184372088831.0,
70368744177663.0,
140737488355327.0,
281474976710655.0,
562949953421311.0};
STATIC_ASSERT(arraysize(kWeakenMinLimits) == arraysize(kWeakenMaxLimits));
double current_min = current_range->Min();
double new_min = current_min;
// Find the closest lower entry in the list of allowed
// minima (or negative infinity if there is no such entry).
if (current_min != previous_range->Min()) {
new_min = -V8_INFINITY;
for (double const min : kWeakenMinLimits) {
if (min <= current_min) {
new_min = min;
break;
}
}
}
double current_max = current_range->Max();
double new_max = current_max;
// Find the closest greater entry in the list of allowed
// maxima (or infinity if there is no such entry).
if (current_max != previous_range->Max()) {
new_max = V8_INFINITY;
for (double const max : kWeakenMaxLimits) {
if (max >= current_max) {
new_max = max;
break;
}
}
}
return Type::Range(new_min, new_max, zone());
}
Type* OperationTyper::Rangify(Type* type) {
if (type->IsRange()) return type; // Shortcut.
if (!type->Is(cache_.kInteger)) {
return type; // Give up on non-integer types.
}
double min = type->Min();
double max = type->Max();
// Handle the degenerate case of empty bitset types (such as
// OtherUnsigned31 and OtherSigned32 on 64-bit architectures).
if (std::isnan(min)) {
DCHECK(std::isnan(max));
return type;
}
return Type::Range(min, max, zone());
}
namespace {
// Returns the array's least element, ignoring NaN.
// There must be at least one non-NaN element.
// Any -0 is converted to 0.
double array_min(double a[], size_t n) {
DCHECK(n != 0);
double x = +V8_INFINITY;
for (size_t i = 0; i < n; ++i) {
if (!std::isnan(a[i])) {
x = std::min(a[i], x);
}
}
DCHECK(!std::isnan(x));
return x == 0 ? 0 : x; // -0 -> 0
}
// Returns the array's greatest element, ignoring NaN.
// There must be at least one non-NaN element.
// Any -0 is converted to 0.
double array_max(double a[], size_t n) {
DCHECK(n != 0);
double x = -V8_INFINITY;
for (size_t i = 0; i < n; ++i) {
if (!std::isnan(a[i])) {
x = std::max(a[i], x);
}
}
DCHECK(!std::isnan(x));
return x == 0 ? 0 : x; // -0 -> 0
}
} // namespace
Type* OperationTyper::AddRanger(double lhs_min, double lhs_max, double rhs_min,
double rhs_max) {
double results[4];
results[0] = lhs_min + rhs_min;
results[1] = lhs_min + rhs_max;
results[2] = lhs_max + rhs_min;
results[3] = lhs_max + rhs_max;
// Since none of the inputs can be -0, the result cannot be -0 either.
// However, it can be nan (the sum of two infinities of opposite sign).
// On the other hand, if none of the "results" above is nan, then the actual
// result cannot be nan either.
int nans = 0;
for (int i = 0; i < 4; ++i) {
if (std::isnan(results[i])) ++nans;
}
if (nans == 4) return Type::NaN(); // [-inf..-inf] + [inf..inf] or vice versa
Type* range =
Type::Range(array_min(results, 4), array_max(results, 4), zone());
return nans == 0 ? range : Type::Union(range, Type::NaN(), zone());
// Examples:
// [-inf, -inf] + [+inf, +inf] = NaN
// [-inf, -inf] + [n, +inf] = [-inf, -inf] \/ NaN
// [-inf, +inf] + [n, +inf] = [-inf, +inf] \/ NaN
// [-inf, m] + [n, +inf] = [-inf, +inf] \/ NaN
}
Type* OperationTyper::SubtractRanger(RangeType* lhs, RangeType* rhs) {
double results[4];
results[0] = lhs->Min() - rhs->Min();
results[1] = lhs->Min() - rhs->Max();
results[2] = lhs->Max() - rhs->Min();
results[3] = lhs->Max() - rhs->Max();
// Since none of the inputs can be -0, the result cannot be -0.
// However, it can be nan (the subtraction of two infinities of same sign).
// On the other hand, if none of the "results" above is nan, then the actual
// result cannot be nan either.
int nans = 0;
for (int i = 0; i < 4; ++i) {
if (std::isnan(results[i])) ++nans;
}
if (nans == 4) return Type::NaN(); // [inf..inf] - [inf..inf] (all same sign)
Type* range =
Type::Range(array_min(results, 4), array_max(results, 4), zone());
return nans == 0 ? range : Type::Union(range, Type::NaN(), zone());
// Examples:
// [-inf, +inf] - [-inf, +inf] = [-inf, +inf] \/ NaN
// [-inf, -inf] - [-inf, -inf] = NaN
// [-inf, -inf] - [n, +inf] = [-inf, -inf] \/ NaN
// [m, +inf] - [-inf, n] = [-inf, +inf] \/ NaN
}
Type* OperationTyper::ModulusRanger(RangeType* lhs, RangeType* rhs) {
double lmin = lhs->Min();
double lmax = lhs->Max();
double rmin = rhs->Min();
double rmax = rhs->Max();
double labs = std::max(std::abs(lmin), std::abs(lmax));
double rabs = std::max(std::abs(rmin), std::abs(rmax)) - 1;
double abs = std::min(labs, rabs);
bool maybe_minus_zero = false;
double omin = 0;
double omax = 0;
if (lmin >= 0) { // {lhs} positive.
omin = 0;
omax = abs;
} else if (lmax <= 0) { // {lhs} negative.
omin = 0 - abs;
omax = 0;
maybe_minus_zero = true;
} else {
omin = 0 - abs;
omax = abs;
maybe_minus_zero = true;
}
Type* result = Type::Range(omin, omax, zone());
if (maybe_minus_zero) result = Type::Union(result, Type::MinusZero(), zone());
return result;
}
Type* OperationTyper::MultiplyRanger(Type* lhs, Type* rhs) {
double results[4];
double lmin = lhs->AsRange()->Min();
double lmax = lhs->AsRange()->Max();
double rmin = rhs->AsRange()->Min();
double rmax = rhs->AsRange()->Max();
results[0] = lmin * rmin;
results[1] = lmin * rmax;
results[2] = lmax * rmin;
results[3] = lmax * rmax;
// If the result may be nan, we give up on calculating a precise type,
// because
// the discontinuity makes it too complicated. Note that even if none of
// the
// "results" above is nan, the actual result may still be, so we have to do
// a
// different check:
bool maybe_nan = (lhs->Maybe(cache_.kSingletonZero) &&
(rmin == -V8_INFINITY || rmax == +V8_INFINITY)) ||
(rhs->Maybe(cache_.kSingletonZero) &&
(lmin == -V8_INFINITY || lmax == +V8_INFINITY));
if (maybe_nan) return cache_.kIntegerOrMinusZeroOrNaN; // Giving up.
bool maybe_minuszero = (lhs->Maybe(cache_.kSingletonZero) && rmin < 0) ||
(rhs->Maybe(cache_.kSingletonZero) && lmin < 0);
Type* range =
Type::Range(array_min(results, 4), array_max(results, 4), zone());
return maybe_minuszero ? Type::Union(range, Type::MinusZero(), zone())
: range;
}
Type* OperationTyper::ToNumber(Type* type) {
if (type->Is(Type::Number())) return type;
if (type->Is(Type::NullOrUndefined())) {
if (type->Is(Type::Null())) return cache_.kSingletonZero;
if (type->Is(Type::Undefined())) return Type::NaN();
return Type::Union(Type::NaN(), cache_.kSingletonZero, zone());
}
if (type->Is(Type::NumberOrUndefined())) {
return Type::Union(Type::Intersect(type, Type::Number(), zone()),
Type::NaN(), zone());
}
if (type->Is(singleton_false_)) return cache_.kSingletonZero;
if (type->Is(singleton_true_)) return cache_.kSingletonOne;
if (type->Is(Type::Boolean())) return cache_.kZeroOrOne;
if (type->Is(Type::BooleanOrNumber())) {
return Type::Union(Type::Intersect(type, Type::Number(), zone()),
cache_.kZeroOrOne, zone());
}
return Type::Number();
}
Type* OperationTyper::NumericAdd(Type* lhs, Type* rhs) {
DCHECK(lhs->Is(Type::Number()));
DCHECK(rhs->Is(Type::Number()));
// We can give more precise types for integers.
if (!lhs->Is(cache_.kIntegerOrMinusZeroOrNaN) ||
!rhs->Is(cache_.kIntegerOrMinusZeroOrNaN)) {
return Type::Number();
}
Type* int_lhs = Type::Intersect(lhs, cache_.kInteger, zone());
Type* int_rhs = Type::Intersect(rhs, cache_.kInteger, zone());
Type* result =
AddRanger(int_lhs->Min(), int_lhs->Max(), int_rhs->Min(), int_rhs->Max());
if (lhs->Maybe(Type::NaN()) || rhs->Maybe(Type::NaN())) {
result = Type::Union(result, Type::NaN(), zone());
}
if (lhs->Maybe(Type::MinusZero()) && rhs->Maybe(Type::MinusZero())) {
result = Type::Union(result, Type::MinusZero(), zone());
}
return result;
}
Type* OperationTyper::NumericSubtract(Type* lhs, Type* rhs) {
DCHECK(lhs->Is(Type::Number()));
DCHECK(rhs->Is(Type::Number()));
lhs = Rangify(lhs);
rhs = Rangify(rhs);
if (lhs->Is(Type::NaN()) || rhs->Is(Type::NaN())) return Type::NaN();
if (lhs->IsRange() && rhs->IsRange()) {
return SubtractRanger(lhs->AsRange(), rhs->AsRange());
}
// TODO(neis): Deal with numeric bitsets here and elsewhere.
return Type::Number();
}
Type* OperationTyper::NumericMultiply(Type* lhs, Type* rhs) {
DCHECK(lhs->Is(Type::Number()));
DCHECK(rhs->Is(Type::Number()));
lhs = Rangify(lhs);
rhs = Rangify(rhs);
if (lhs->Is(Type::NaN()) || rhs->Is(Type::NaN())) return Type::NaN();
if (lhs->IsRange() && rhs->IsRange()) {
return MultiplyRanger(lhs, rhs);
}
return Type::Number();
}
Type* OperationTyper::NumericDivide(Type* lhs, Type* rhs) {
DCHECK(lhs->Is(Type::Number()));
DCHECK(rhs->Is(Type::Number()));
if (lhs->Is(Type::NaN()) || rhs->Is(Type::NaN())) return Type::NaN();
// Division is tricky, so all we do is try ruling out nan.
bool maybe_nan =
lhs->Maybe(Type::NaN()) || rhs->Maybe(cache_.kZeroish) ||
((lhs->Min() == -V8_INFINITY || lhs->Max() == +V8_INFINITY) &&
(rhs->Min() == -V8_INFINITY || rhs->Max() == +V8_INFINITY));
return maybe_nan ? Type::Number() : Type::OrderedNumber();
}
Type* OperationTyper::NumericModulus(Type* lhs, Type* rhs) {
DCHECK(lhs->Is(Type::Number()));
DCHECK(rhs->Is(Type::Number()));
if (lhs->Is(Type::NaN()) || rhs->Is(Type::NaN())) return Type::NaN();
if (lhs->Maybe(Type::NaN()) || rhs->Maybe(cache_.kZeroish) ||
lhs->Min() == -V8_INFINITY || lhs->Max() == +V8_INFINITY) {
// Result maybe NaN.
return Type::Number();
}
lhs = Rangify(lhs);
rhs = Rangify(rhs);
if (lhs->IsRange() && rhs->IsRange()) {
return ModulusRanger(lhs->AsRange(), rhs->AsRange());
}
return Type::OrderedNumber();
}
Type* OperationTyper::ToPrimitive(Type* type) {
if (type->Is(Type::Primitive()) && !type->Maybe(Type::Receiver())) {
return type;
}
return Type::Primitive();
}
Type* OperationTyper::Invert(Type* type) {
DCHECK(type->Is(Type::Boolean()));
DCHECK(type->IsInhabited());
if (type->Is(singleton_false())) return singleton_true();
if (type->Is(singleton_true())) return singleton_false();
return type;
}
OperationTyper::ComparisonOutcome OperationTyper::Invert(
ComparisonOutcome outcome) {
ComparisonOutcome result(0);
if ((outcome & kComparisonUndefined) != 0) result |= kComparisonUndefined;
if ((outcome & kComparisonTrue) != 0) result |= kComparisonFalse;
if ((outcome & kComparisonFalse) != 0) result |= kComparisonTrue;
return result;
}
Type* OperationTyper::FalsifyUndefined(ComparisonOutcome outcome) {
if ((outcome & kComparisonFalse) != 0 ||
(outcome & kComparisonUndefined) != 0) {
return (outcome & kComparisonTrue) != 0 ? Type::Boolean()
: singleton_false();
}
// Type should be non empty, so we know it should be true.
DCHECK((outcome & kComparisonTrue) != 0);
return singleton_true();
}
Type* OperationTyper::TypeJSAdd(Type* lhs, Type* rhs) {
lhs = ToPrimitive(lhs);
rhs = ToPrimitive(rhs);
if (lhs->Maybe(Type::String()) || rhs->Maybe(Type::String())) {
if (lhs->Is(Type::String()) || rhs->Is(Type::String())) {
return Type::String();
} else {
return Type::NumberOrString();
}
}
lhs = ToNumber(lhs);
rhs = ToNumber(rhs);
return NumericAdd(lhs, rhs);
}
Type* OperationTyper::TypeJSSubtract(Type* lhs, Type* rhs) {
return NumericSubtract(ToNumber(lhs), ToNumber(rhs));
}
} // namespace compiler
} // namespace internal
} // namespace v8