blob: 61e00a5a2d16a7dd62309d65b36d42daa5d83e6b [file] [log] [blame]
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <functional>
#include "src/codegen.h"
#include "src/compiler/js-operator.h"
#include "src/compiler/node-properties.h"
#include "src/compiler/operator-properties.h"
#include "test/cctest/types-fuzz.h"
#include "test/unittests/compiler/graph-unittest.h"
namespace v8 {
namespace internal {
namespace compiler {
// TODO(titzer): generate a large set of deterministic inputs for these tests.
class TyperTest : public TypedGraphTest {
public:
TyperTest()
: TypedGraphTest(3),
types_(zone(), isolate(), random_number_generator()),
javascript_(zone()) {
context_node_ = graph()->NewNode(common()->Parameter(2), graph()->start());
rng_ = random_number_generator();
integers.push_back(0);
integers.push_back(0);
integers.push_back(-1);
integers.push_back(+1);
integers.push_back(-V8_INFINITY);
integers.push_back(+V8_INFINITY);
for (int i = 0; i < 5; ++i) {
double x = rng_->NextInt();
integers.push_back(x);
x *= rng_->NextInt();
if (!IsMinusZero(x)) integers.push_back(x);
}
int32s.push_back(0);
int32s.push_back(0);
int32s.push_back(-1);
int32s.push_back(+1);
int32s.push_back(kMinInt);
int32s.push_back(kMaxInt);
for (int i = 0; i < 10; ++i) {
int32s.push_back(rng_->NextInt());
}
}
Types types_;
JSOperatorBuilder javascript_;
BinaryOperationHints const hints_ = BinaryOperationHints::Any();
Node* context_node_;
v8::base::RandomNumberGenerator* rng_;
std::vector<double> integers;
std::vector<double> int32s;
Type* TypeBinaryOp(const Operator* op, Type* lhs, Type* rhs) {
Node* p0 = Parameter(0);
Node* p1 = Parameter(1);
NodeProperties::SetType(p0, lhs);
NodeProperties::SetType(p1, rhs);
std::vector<Node*> inputs;
inputs.push_back(p0);
inputs.push_back(p1);
if (OperatorProperties::HasContextInput(op)) {
inputs.push_back(context_node_);
}
for (int i = 0; i < OperatorProperties::GetFrameStateInputCount(op); i++) {
inputs.push_back(EmptyFrameState());
}
for (int i = 0; i < op->EffectInputCount(); i++) {
inputs.push_back(graph()->start());
}
for (int i = 0; i < op->ControlInputCount(); i++) {
inputs.push_back(graph()->start());
}
Node* n = graph()->NewNode(op, static_cast<int>(inputs.size()),
&(inputs.front()));
return NodeProperties::GetType(n);
}
Type* RandomRange(bool int32 = false) {
std::vector<double>& numbers = int32 ? int32s : integers;
double i = numbers[rng_->NextInt(static_cast<int>(numbers.size()))];
double j = numbers[rng_->NextInt(static_cast<int>(numbers.size()))];
return NewRange(i, j);
}
Type* NewRange(double i, double j) {
if (i > j) std::swap(i, j);
return Type::Range(i, j, zone());
}
double RandomInt(double min, double max) {
switch (rng_->NextInt(4)) {
case 0:
return min;
case 1:
return max;
default:
break;
}
if (min == +V8_INFINITY) return +V8_INFINITY;
if (max == -V8_INFINITY) return -V8_INFINITY;
if (min == -V8_INFINITY && max == +V8_INFINITY) {
return rng_->NextInt() * static_cast<double>(rng_->NextInt());
}
double result = nearbyint(min + (max - min) * rng_->NextDouble());
if (IsMinusZero(result)) return 0;
if (std::isnan(result)) return rng_->NextInt(2) ? min : max;
DCHECK(min <= result && result <= max);
return result;
}
double RandomInt(RangeType* range) {
return RandomInt(range->Min(), range->Max());
}
// Careful, this function runs O(max_width^5) trials.
template <class BinaryFunction>
void TestBinaryArithOpCloseToZero(const Operator* op, BinaryFunction opfun,
int max_width) {
const int min_min = -2 - max_width / 2;
const int max_min = 2 + max_width / 2;
for (int width = 0; width < max_width; width++) {
for (int lmin = min_min; lmin <= max_min; lmin++) {
for (int rmin = min_min; rmin <= max_min; rmin++) {
Type* r1 = NewRange(lmin, lmin + width);
Type* r2 = NewRange(rmin, rmin + width);
Type* expected_type = TypeBinaryOp(op, r1, r2);
for (int x1 = lmin; x1 < lmin + width; x1++) {
for (int x2 = rmin; x2 < rmin + width; x2++) {
double result_value = opfun(x1, x2);
Type* result_type = Type::Constant(
isolate()->factory()->NewNumber(result_value), zone());
EXPECT_TRUE(result_type->Is(expected_type));
}
}
}
}
}
}
template <class BinaryFunction>
void TestBinaryArithOp(const Operator* op, BinaryFunction opfun) {
TestBinaryArithOpCloseToZero(op, opfun, 8);
for (int i = 0; i < 100; ++i) {
Type* r1 = RandomRange();
Type* r2 = RandomRange();
Type* expected_type = TypeBinaryOp(op, r1, r2);
for (int i = 0; i < 10; i++) {
double x1 = RandomInt(r1->AsRange());
double x2 = RandomInt(r2->AsRange());
double result_value = opfun(x1, x2);
Type* result_type = Type::Constant(
isolate()->factory()->NewNumber(result_value), zone());
EXPECT_TRUE(result_type->Is(expected_type));
}
}
}
template <class BinaryFunction>
void TestBinaryCompareOp(const Operator* op, BinaryFunction opfun) {
for (int i = 0; i < 100; ++i) {
Type* r1 = RandomRange();
Type* r2 = RandomRange();
Type* expected_type = TypeBinaryOp(op, r1, r2);
for (int i = 0; i < 10; i++) {
double x1 = RandomInt(r1->AsRange());
double x2 = RandomInt(r2->AsRange());
bool result_value = opfun(x1, x2);
Type* result_type =
Type::Constant(result_value ? isolate()->factory()->true_value()
: isolate()->factory()->false_value(),
zone());
EXPECT_TRUE(result_type->Is(expected_type));
}
}
}
template <class BinaryFunction>
void TestBinaryBitOp(const Operator* op, BinaryFunction opfun) {
for (int i = 0; i < 100; ++i) {
Type* r1 = RandomRange(true);
Type* r2 = RandomRange(true);
Type* expected_type = TypeBinaryOp(op, r1, r2);
for (int i = 0; i < 10; i++) {
int32_t x1 = static_cast<int32_t>(RandomInt(r1->AsRange()));
int32_t x2 = static_cast<int32_t>(RandomInt(r2->AsRange()));
double result_value = opfun(x1, x2);
Type* result_type = Type::Constant(
isolate()->factory()->NewNumber(result_value), zone());
EXPECT_TRUE(result_type->Is(expected_type));
}
}
}
Type* RandomSubtype(Type* type) {
Type* subtype;
do {
subtype = types_.Fuzz();
} while (!subtype->Is(type));
return subtype;
}
void TestBinaryMonotonicity(const Operator* op) {
for (int i = 0; i < 50; ++i) {
Type* type1 = types_.Fuzz();
Type* type2 = types_.Fuzz();
Type* type = TypeBinaryOp(op, type1, type2);
Type* subtype1 = RandomSubtype(type1);
Type* subtype2 = RandomSubtype(type2);
Type* subtype = TypeBinaryOp(op, subtype1, subtype2);
EXPECT_TRUE(subtype->Is(type));
}
}
};
namespace {
int32_t shift_left(int32_t x, int32_t y) { return x << y; }
int32_t shift_right(int32_t x, int32_t y) { return x >> y; }
int32_t bit_or(int32_t x, int32_t y) { return x | y; }
int32_t bit_and(int32_t x, int32_t y) { return x & y; }
int32_t bit_xor(int32_t x, int32_t y) { return x ^ y; }
} // namespace
//------------------------------------------------------------------------------
// Soundness
// For simplicity, we currently only test soundness on expression operators
// that have a direct equivalent in C++. Also, testing is currently limited
// to ranges as input types.
TEST_F(TyperTest, TypeJSAdd) {
TestBinaryArithOp(javascript_.Add(hints_), std::plus<double>());
}
TEST_F(TyperTest, TypeJSSubtract) {
TestBinaryArithOp(javascript_.Subtract(hints_), std::minus<double>());
}
TEST_F(TyperTest, TypeJSMultiply) {
TestBinaryArithOp(javascript_.Multiply(hints_), std::multiplies<double>());
}
TEST_F(TyperTest, TypeJSDivide) {
TestBinaryArithOp(javascript_.Divide(hints_), std::divides<double>());
}
TEST_F(TyperTest, TypeJSModulus) {
TestBinaryArithOp(javascript_.Modulus(hints_), modulo);
}
TEST_F(TyperTest, TypeJSBitwiseOr) {
TestBinaryBitOp(javascript_.BitwiseOr(hints_), bit_or);
}
TEST_F(TyperTest, TypeJSBitwiseAnd) {
TestBinaryBitOp(javascript_.BitwiseAnd(hints_), bit_and);
}
TEST_F(TyperTest, TypeJSBitwiseXor) {
TestBinaryBitOp(javascript_.BitwiseXor(hints_), bit_xor);
}
TEST_F(TyperTest, TypeJSShiftLeft) {
TestBinaryBitOp(javascript_.ShiftLeft(hints_), shift_left);
}
TEST_F(TyperTest, TypeJSShiftRight) {
TestBinaryBitOp(javascript_.ShiftRight(hints_), shift_right);
}
TEST_F(TyperTest, TypeJSLessThan) {
TestBinaryCompareOp(javascript_.LessThan(CompareOperationHints::Any()),
std::less<double>());
}
TEST_F(TyperTest, TypeJSLessThanOrEqual) {
TestBinaryCompareOp(javascript_.LessThanOrEqual(CompareOperationHints::Any()),
std::less_equal<double>());
}
TEST_F(TyperTest, TypeJSGreaterThan) {
TestBinaryCompareOp(javascript_.GreaterThan(CompareOperationHints::Any()),
std::greater<double>());
}
TEST_F(TyperTest, TypeJSGreaterThanOrEqual) {
TestBinaryCompareOp(
javascript_.GreaterThanOrEqual(CompareOperationHints::Any()),
std::greater_equal<double>());
}
TEST_F(TyperTest, TypeJSEqual) {
TestBinaryCompareOp(javascript_.Equal(CompareOperationHints::Any()),
std::equal_to<double>());
}
TEST_F(TyperTest, TypeJSNotEqual) {
TestBinaryCompareOp(javascript_.NotEqual(CompareOperationHints::Any()),
std::not_equal_to<double>());
}
// For numbers there's no difference between strict and non-strict equality.
TEST_F(TyperTest, TypeJSStrictEqual) {
TestBinaryCompareOp(javascript_.StrictEqual(CompareOperationHints::Any()),
std::equal_to<double>());
}
TEST_F(TyperTest, TypeJSStrictNotEqual) {
TestBinaryCompareOp(javascript_.StrictNotEqual(CompareOperationHints::Any()),
std::not_equal_to<double>());
}
//------------------------------------------------------------------------------
// Monotonicity
#define TEST_BINARY_MONOTONICITY(name) \
TEST_F(TyperTest, Monotonicity_##name) { \
TestBinaryMonotonicity(javascript_.name(CompareOperationHints::Any())); \
}
TEST_BINARY_MONOTONICITY(Equal)
TEST_BINARY_MONOTONICITY(NotEqual)
TEST_BINARY_MONOTONICITY(StrictEqual)
TEST_BINARY_MONOTONICITY(StrictNotEqual)
TEST_BINARY_MONOTONICITY(LessThan)
TEST_BINARY_MONOTONICITY(GreaterThan)
TEST_BINARY_MONOTONICITY(LessThanOrEqual)
TEST_BINARY_MONOTONICITY(GreaterThanOrEqual)
#undef TEST_BINARY_MONOTONICITY
#define TEST_BINARY_MONOTONICITY(name) \
TEST_F(TyperTest, Monotonicity_##name) { \
TestBinaryMonotonicity(javascript_.name(BinaryOperationHints::Any())); \
}
TEST_BINARY_MONOTONICITY(BitwiseOr)
TEST_BINARY_MONOTONICITY(BitwiseXor)
TEST_BINARY_MONOTONICITY(BitwiseAnd)
TEST_BINARY_MONOTONICITY(ShiftLeft)
TEST_BINARY_MONOTONICITY(ShiftRight)
TEST_BINARY_MONOTONICITY(ShiftRightLogical)
TEST_BINARY_MONOTONICITY(Add)
TEST_BINARY_MONOTONICITY(Subtract)
TEST_BINARY_MONOTONICITY(Multiply)
TEST_BINARY_MONOTONICITY(Divide)
TEST_BINARY_MONOTONICITY(Modulus)
#undef TEST_BINARY_MONOTONICITY
//------------------------------------------------------------------------------
// Regression tests
TEST_F(TyperTest, TypeRegressInt32Constant) {
int values[] = {-5, 10};
for (auto i : values) {
Node* c = graph()->NewNode(common()->Int32Constant(i));
Type* type = NodeProperties::GetType(c);
EXPECT_TRUE(type->Is(NewRange(i, i)));
}
}
} // namespace compiler
} // namespace internal
} // namespace v8