blob: e420cfe053ab4eb616020747c54d23f592715424 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_AST_SCOPES_H_
#define V8_AST_SCOPES_H_
#include "src/ast/ast.h"
#include "src/base/hashmap.h"
#include "src/pending-compilation-error-handler.h"
#include "src/zone.h"
namespace v8 {
namespace internal {
class ParseInfo;
// A hash map to support fast variable declaration and lookup.
class VariableMap: public ZoneHashMap {
public:
explicit VariableMap(Zone* zone);
virtual ~VariableMap();
Variable* Declare(Scope* scope, const AstRawString* name, VariableMode mode,
Variable::Kind kind, InitializationFlag initialization_flag,
MaybeAssignedFlag maybe_assigned_flag = kNotAssigned);
Variable* Lookup(const AstRawString* name);
Zone* zone() const { return zone_; }
private:
Zone* zone_;
};
// The dynamic scope part holds hash maps for the variables that will
// be looked up dynamically from within eval and with scopes. The objects
// are allocated on-demand from Scope::NonLocal to avoid wasting memory
// and setup time for scopes that don't need them.
class DynamicScopePart : public ZoneObject {
public:
explicit DynamicScopePart(Zone* zone) {
for (int i = 0; i < 3; i++)
maps_[i] = new(zone->New(sizeof(VariableMap))) VariableMap(zone);
}
VariableMap* GetMap(VariableMode mode) {
int index = mode - DYNAMIC;
DCHECK(index >= 0 && index < 3);
return maps_[index];
}
private:
VariableMap *maps_[3];
};
// Sloppy block-scoped function declarations to var-bind
class SloppyBlockFunctionMap : public ZoneHashMap {
public:
explicit SloppyBlockFunctionMap(Zone* zone);
virtual ~SloppyBlockFunctionMap();
void Declare(const AstRawString* name,
SloppyBlockFunctionStatement* statement);
typedef ZoneVector<SloppyBlockFunctionStatement*> Vector;
private:
Zone* zone_;
};
// Global invariants after AST construction: Each reference (i.e. identifier)
// to a JavaScript variable (including global properties) is represented by a
// VariableProxy node. Immediately after AST construction and before variable
// allocation, most VariableProxy nodes are "unresolved", i.e. not bound to a
// corresponding variable (though some are bound during parse time). Variable
// allocation binds each unresolved VariableProxy to one Variable and assigns
// a location. Note that many VariableProxy nodes may refer to the same Java-
// Script variable.
class Scope: public ZoneObject {
public:
// ---------------------------------------------------------------------------
// Construction
Scope(Zone* zone, Scope* outer_scope, ScopeType scope_type,
AstValueFactory* value_factory,
FunctionKind function_kind = kNormalFunction);
// Compute top scope and allocate variables. For lazy compilation the top
// scope only contains the single lazily compiled function, so this
// doesn't re-allocate variables repeatedly.
static bool Analyze(ParseInfo* info);
static Scope* DeserializeScopeChain(Isolate* isolate, Zone* zone,
Context* context, Scope* script_scope);
// The scope name is only used for printing/debugging.
void SetScopeName(const AstRawString* scope_name) {
scope_name_ = scope_name;
}
void Initialize();
// Checks if the block scope is redundant, i.e. it does not contain any
// block scoped declarations. In that case it is removed from the scope
// tree and its children are reparented.
Scope* FinalizeBlockScope();
// Inserts outer_scope into this scope's scope chain (and removes this
// from the current outer_scope_'s inner_scopes_).
// Assumes outer_scope_ is non-null.
void ReplaceOuterScope(Scope* outer_scope);
// Propagates any eagerly-gathered scope usage flags (such as calls_eval())
// to the passed-in scope.
void PropagateUsageFlagsToScope(Scope* other);
Zone* zone() const { return zone_; }
// ---------------------------------------------------------------------------
// Declarations
// Lookup a variable in this scope. Returns the variable or NULL if not found.
Variable* LookupLocal(const AstRawString* name);
// This lookup corresponds to a lookup in the "intermediate" scope sitting
// between this scope and the outer scope. (ECMA-262, 3rd., requires that
// the name of named function literal is kept in an intermediate scope
// in between this scope and the next outer scope.)
Variable* LookupFunctionVar(const AstRawString* name,
AstNodeFactory* factory);
// Lookup a variable in this scope or outer scopes.
// Returns the variable or NULL if not found.
Variable* Lookup(const AstRawString* name);
// Declare the function variable for a function literal. This variable
// is in an intermediate scope between this function scope and the the
// outer scope. Only possible for function scopes; at most one variable.
void DeclareFunctionVar(VariableDeclaration* declaration) {
DCHECK(is_function_scope());
// Handle implicit declaration of the function name in named function
// expressions before other declarations.
decls_.InsertAt(0, declaration, zone());
function_ = declaration;
}
// Declare a parameter in this scope. When there are duplicated
// parameters the rightmost one 'wins'. However, the implementation
// expects all parameters to be declared and from left to right.
Variable* DeclareParameter(
const AstRawString* name, VariableMode mode,
bool is_optional, bool is_rest, bool* is_duplicate);
// Declare a local variable in this scope. If the variable has been
// declared before, the previously declared variable is returned.
Variable* DeclareLocal(const AstRawString* name, VariableMode mode,
InitializationFlag init_flag, Variable::Kind kind,
MaybeAssignedFlag maybe_assigned_flag = kNotAssigned);
// Declare an implicit global variable in this scope which must be a
// script scope. The variable was introduced (possibly from an inner
// scope) by a reference to an unresolved variable with no intervening
// with statements or eval calls.
Variable* DeclareDynamicGlobal(const AstRawString* name);
// Create a new unresolved variable.
VariableProxy* NewUnresolved(AstNodeFactory* factory,
const AstRawString* name,
Variable::Kind kind = Variable::NORMAL,
int start_position = RelocInfo::kNoPosition,
int end_position = RelocInfo::kNoPosition) {
// Note that we must not share the unresolved variables with
// the same name because they may be removed selectively via
// RemoveUnresolved().
DCHECK(!already_resolved());
VariableProxy* proxy =
factory->NewVariableProxy(name, kind, start_position, end_position);
unresolved_.Add(proxy, zone_);
return proxy;
}
void AddUnresolved(VariableProxy* proxy) {
DCHECK(!already_resolved());
DCHECK(!proxy->is_resolved());
unresolved_.Add(proxy, zone_);
}
// Remove a unresolved variable. During parsing, an unresolved variable
// may have been added optimistically, but then only the variable name
// was used (typically for labels). If the variable was not declared, the
// addition introduced a new unresolved variable which may end up being
// allocated globally as a "ghost" variable. RemoveUnresolved removes
// such a variable again if it was added; otherwise this is a no-op.
bool RemoveUnresolved(VariableProxy* var);
// Creates a new temporary variable in this scope's TemporaryScope. The
// name is only used for printing and cannot be used to find the variable.
// In particular, the only way to get hold of the temporary is by keeping the
// Variable* around. The name should not clash with a legitimate variable
// names.
Variable* NewTemporary(const AstRawString* name);
// Remove a temporary variable. This is for adjusting the scope of
// temporaries used when desugaring parameter initializers.
// Returns the index at which it was found in this scope, or -1 if
// it was not found.
int RemoveTemporary(Variable* var);
// Adds a temporary variable in this scope's TemporaryScope. This is for
// adjusting the scope of temporaries used when desugaring parameter
// initializers.
void AddTemporary(Variable* var) {
// Temporaries are only placed in ClosureScopes.
DCHECK_EQ(ClosureScope(), this);
temps_.Add(var, zone());
}
// Adds the specific declaration node to the list of declarations in
// this scope. The declarations are processed as part of entering
// the scope; see codegen.cc:ProcessDeclarations.
void AddDeclaration(Declaration* declaration);
// ---------------------------------------------------------------------------
// Illegal redeclaration support.
// Check if the scope has conflicting var
// declarations, i.e. a var declaration that has been hoisted from a nested
// scope over a let binding of the same name.
Declaration* CheckConflictingVarDeclarations();
// ---------------------------------------------------------------------------
// Scope-specific info.
// Inform the scope that the corresponding code contains an eval call.
void RecordEvalCall() { scope_calls_eval_ = true; }
// Inform the scope that the corresponding code uses "arguments".
void RecordArgumentsUsage() { scope_uses_arguments_ = true; }
// Inform the scope that the corresponding code uses "super".
void RecordSuperPropertyUsage() { scope_uses_super_property_ = true; }
// Set the language mode flag (unless disabled by a global flag).
void SetLanguageMode(LanguageMode language_mode) {
DCHECK(!is_module_scope() || is_strict(language_mode));
language_mode_ = language_mode;
}
// Set the ASM module flag.
void SetAsmModule() { asm_module_ = true; }
// Inform the scope that the scope may execute declarations nonlinearly.
// Currently, the only nonlinear scope is a switch statement. The name is
// more general in case something else comes up with similar control flow,
// for example the ability to break out of something which does not have
// its own lexical scope.
// The bit does not need to be stored on the ScopeInfo because none of
// the three compilers will perform hole check elimination on a variable
// located in VariableLocation::CONTEXT. So, direct eval and closures
// will not expose holes.
void SetNonlinear() { scope_nonlinear_ = true; }
// Position in the source where this scope begins and ends.
//
// * For the scope of a with statement
// with (obj) stmt
// start position: start position of first token of 'stmt'
// end position: end position of last token of 'stmt'
// * For the scope of a block
// { stmts }
// start position: start position of '{'
// end position: end position of '}'
// * For the scope of a function literal or decalaration
// function fun(a,b) { stmts }
// start position: start position of '('
// end position: end position of '}'
// * For the scope of a catch block
// try { stms } catch(e) { stmts }
// start position: start position of '('
// end position: end position of ')'
// * For the scope of a for-statement
// for (let x ...) stmt
// start position: start position of '('
// end position: end position of last token of 'stmt'
// * For the scope of a switch statement
// switch (tag) { cases }
// start position: start position of '{'
// end position: end position of '}'
int start_position() const { return start_position_; }
void set_start_position(int statement_pos) {
start_position_ = statement_pos;
}
int end_position() const { return end_position_; }
void set_end_position(int statement_pos) {
end_position_ = statement_pos;
}
// Scopes created for desugaring are hidden. I.e. not visible to the debugger.
bool is_hidden() const { return is_hidden_; }
void set_is_hidden() { is_hidden_ = true; }
// In some cases we want to force context allocation for a whole scope.
void ForceContextAllocation() {
DCHECK(!already_resolved());
force_context_allocation_ = true;
}
bool has_forced_context_allocation() const {
return force_context_allocation_;
}
// ---------------------------------------------------------------------------
// Predicates.
// Specific scope types.
bool is_eval_scope() const { return scope_type_ == EVAL_SCOPE; }
bool is_function_scope() const { return scope_type_ == FUNCTION_SCOPE; }
bool is_module_scope() const { return scope_type_ == MODULE_SCOPE; }
bool is_script_scope() const { return scope_type_ == SCRIPT_SCOPE; }
bool is_catch_scope() const { return scope_type_ == CATCH_SCOPE; }
bool is_block_scope() const { return scope_type_ == BLOCK_SCOPE; }
bool is_with_scope() const { return scope_type_ == WITH_SCOPE; }
bool is_arrow_scope() const {
return is_function_scope() && IsArrowFunction(function_kind_);
}
bool is_declaration_scope() const { return is_declaration_scope_; }
void set_is_declaration_scope() { is_declaration_scope_ = true; }
// Information about which scopes calls eval.
bool calls_eval() const { return scope_calls_eval_; }
bool calls_sloppy_eval() const {
return scope_calls_eval_ && is_sloppy(language_mode_);
}
bool outer_scope_calls_sloppy_eval() const {
return outer_scope_calls_sloppy_eval_;
}
bool asm_module() const { return asm_module_; }
bool asm_function() const { return asm_function_; }
// Is this scope inside a with statement.
bool inside_with() const { return scope_inside_with_; }
// Does this scope access "arguments".
bool uses_arguments() const { return scope_uses_arguments_; }
// Does this scope access "super" property (super.foo).
bool uses_super_property() const { return scope_uses_super_property_; }
// Does this scope have the potential to execute declarations non-linearly?
bool is_nonlinear() const { return scope_nonlinear_; }
// Whether this needs to be represented by a runtime context.
bool NeedsContext() const {
// Catch and module scopes always have heap slots.
DCHECK(!is_catch_scope() || num_heap_slots() > 0);
DCHECK(!is_module_scope() || num_heap_slots() > 0);
return is_with_scope() || num_heap_slots() > 0;
}
bool NeedsHomeObject() const {
return scope_uses_super_property_ ||
((scope_calls_eval_ || inner_scope_calls_eval_) &&
(IsConciseMethod(function_kind()) ||
IsAccessorFunction(function_kind()) ||
IsClassConstructor(function_kind())));
}
// ---------------------------------------------------------------------------
// Accessors.
// The type of this scope.
ScopeType scope_type() const { return scope_type_; }
FunctionKind function_kind() const { return function_kind_; }
// The language mode of this scope.
LanguageMode language_mode() const { return language_mode_; }
// The variable corresponding to the 'this' value.
Variable* receiver() {
DCHECK(has_this_declaration());
DCHECK_NOT_NULL(receiver_);
return receiver_;
}
// TODO(wingo): Add a GLOBAL_SCOPE scope type which will lexically allocate
// "this" (and no other variable) on the native context. Script scopes then
// will not have a "this" declaration.
bool has_this_declaration() const {
return (is_function_scope() && !is_arrow_scope()) || is_module_scope();
}
// The variable corresponding to the 'new.target' value.
Variable* new_target_var() { return new_target_; }
// The variable holding the function literal for named function
// literals, or NULL. Only valid for function scopes.
VariableDeclaration* function() const {
DCHECK(is_function_scope());
return function_;
}
// Parameters. The left-most parameter has index 0.
// Only valid for function scopes.
Variable* parameter(int index) const {
DCHECK(is_function_scope());
return params_[index];
}
// Returns the default function arity excluding default or rest parameters.
int default_function_length() const { return arity_; }
// Returns the number of formal parameters, up to but not including the
// rest parameter index (if the function has rest parameters), i.e. it
// says 2 for
//
// function foo(a, b) { ... }
//
// and
//
// function foo(a, b, ...c) { ... }
//
// but for
//
// function foo(a, b, c = 1) { ... }
//
// we return 3 here.
int num_parameters() const {
return has_rest_parameter() ? params_.length() - 1 : params_.length();
}
// A function can have at most one rest parameter. Returns Variable* or NULL.
Variable* rest_parameter(int* index) const {
*index = rest_index_;
if (rest_index_ < 0) return NULL;
return rest_parameter_;
}
bool has_rest_parameter() const { return rest_index_ >= 0; }
bool has_simple_parameters() const {
return has_simple_parameters_;
}
// TODO(caitp): manage this state in a better way. PreParser must be able to
// communicate that the scope is non-simple, without allocating any parameters
// as the Parser does. This is necessary to ensure that TC39's proposed early
// error can be reported consistently regardless of whether lazily parsed or
// not.
void SetHasNonSimpleParameters() {
DCHECK(is_function_scope());
has_simple_parameters_ = false;
}
// Retrieve `IsSimpleParameterList` of current or outer function.
bool HasSimpleParameters() {
Scope* scope = ClosureScope();
return !scope->is_function_scope() || scope->has_simple_parameters();
}
// The local variable 'arguments' if we need to allocate it; NULL otherwise.
Variable* arguments() const {
DCHECK(!is_arrow_scope() || arguments_ == nullptr);
return arguments_;
}
Variable* this_function_var() const {
// This is only used in derived constructors atm.
DCHECK(this_function_ == nullptr ||
(is_function_scope() && (IsClassConstructor(function_kind()) ||
IsConciseMethod(function_kind()) ||
IsAccessorFunction(function_kind()))));
return this_function_;
}
// Declarations list.
ZoneList<Declaration*>* declarations() { return &decls_; }
// Inner scope list.
ZoneList<Scope*>* inner_scopes() { return &inner_scopes_; }
// The scope immediately surrounding this scope, or NULL.
Scope* outer_scope() const { return outer_scope_; }
// The ModuleDescriptor for this scope; only for module scopes.
ModuleDescriptor* module() const { return module_descriptor_; }
// ---------------------------------------------------------------------------
// Variable allocation.
// Collect stack and context allocated local variables in this scope. Note
// that the function variable - if present - is not collected and should be
// handled separately.
void CollectStackAndContextLocals(ZoneList<Variable*>* stack_locals,
ZoneList<Variable*>* context_locals,
ZoneList<Variable*>* context_globals);
// Current number of var or const locals.
int num_var_or_const() { return num_var_or_const_; }
// Result of variable allocation.
int num_stack_slots() const { return num_stack_slots_; }
int num_heap_slots() const { return num_heap_slots_; }
int num_global_slots() const { return num_global_slots_; }
int StackLocalCount() const;
int ContextLocalCount() const;
int ContextGlobalCount() const;
// Make sure this scope and all outer scopes are eagerly compiled.
void ForceEagerCompilation() { force_eager_compilation_ = true; }
// Determine if we can parse a function literal in this scope lazily.
bool AllowsLazyParsing() const;
// Determine if we can use lazy compilation for this scope.
bool AllowsLazyCompilation() const;
// Determine if we can use lazy compilation for this scope without a context.
bool AllowsLazyCompilationWithoutContext() const;
// True if the outer context of this scope is always the native context.
bool HasTrivialOuterContext() const;
// The number of contexts between this and scope; zero if this == scope.
int ContextChainLength(Scope* scope);
// The maximum number of nested contexts required for this scope and any inner
// scopes.
int MaxNestedContextChainLength();
// Find the first function, script, eval or (declaration) block scope. This is
// the scope where var declarations will be hoisted to in the implementation.
Scope* DeclarationScope();
// Find the first non-block declaration scope. This should be either a script,
// function, or eval scope. Same as DeclarationScope(), but skips
// declaration "block" scopes. Used for differentiating associated
// function objects (i.e., the scope for which a function prologue allocates
// a context) or declaring temporaries.
Scope* ClosureScope();
// Find the first (non-arrow) function or script scope. This is where
// 'this' is bound, and what determines the function kind.
Scope* ReceiverScope();
Handle<ScopeInfo> GetScopeInfo(Isolate* isolate);
Handle<StringSet> CollectNonLocals(Handle<StringSet> non_locals);
// ---------------------------------------------------------------------------
// Strict mode support.
bool IsDeclared(const AstRawString* name) {
// During formal parameter list parsing the scope only contains
// two variables inserted at initialization: "this" and "arguments".
// "this" is an invalid parameter name and "arguments" is invalid parameter
// name in strict mode. Therefore looking up with the map which includes
// "this" and "arguments" in addition to all formal parameters is safe.
return variables_.Lookup(name) != NULL;
}
bool IsDeclaredParameter(const AstRawString* name) {
// If IsSimpleParameterList is false, duplicate parameters are not allowed,
// however `arguments` may be allowed if function is not strict code. Thus,
// the assumptions explained above do not hold.
return params_.Contains(variables_.Lookup(name));
}
SloppyBlockFunctionMap* sloppy_block_function_map() {
return &sloppy_block_function_map_;
}
// ---------------------------------------------------------------------------
// Debugging.
#ifdef DEBUG
void Print(int n = 0); // n = indentation; n < 0 => don't print recursively
// Check that the scope has positions assigned.
void CheckScopePositions();
#endif
// ---------------------------------------------------------------------------
// Implementation.
private:
// Scope tree.
Scope* outer_scope_; // the immediately enclosing outer scope, or NULL
ZoneList<Scope*> inner_scopes_; // the immediately enclosed inner scopes
// The scope type.
ScopeType scope_type_;
// If the scope is a function scope, this is the function kind.
FunctionKind function_kind_;
// Debugging support.
const AstRawString* scope_name_;
// The variables declared in this scope:
//
// All user-declared variables (incl. parameters). For script scopes
// variables may be implicitly 'declared' by being used (possibly in
// an inner scope) with no intervening with statements or eval calls.
VariableMap variables_;
// Compiler-allocated (user-invisible) temporaries. Due to the implementation
// of RemoveTemporary(), may contain nulls, which must be skipped-over during
// allocation and printing.
ZoneList<Variable*> temps_;
// Parameter list in source order.
ZoneList<Variable*> params_;
// Variables that must be looked up dynamically.
DynamicScopePart* dynamics_;
// Unresolved variables referred to from this scope.
ZoneList<VariableProxy*> unresolved_;
// Declarations.
ZoneList<Declaration*> decls_;
// Convenience variable.
Variable* receiver_;
// Function variable, if any; function scopes only.
VariableDeclaration* function_;
// new.target variable, function scopes only.
Variable* new_target_;
// Convenience variable; function scopes only.
Variable* arguments_;
// Convenience variable; Subclass constructor only
Variable* this_function_;
// Module descriptor; module scopes only.
ModuleDescriptor* module_descriptor_;
// Map of function names to lists of functions defined in sloppy blocks
SloppyBlockFunctionMap sloppy_block_function_map_;
// Scope-specific information computed during parsing.
//
// This scope is inside a 'with' of some outer scope.
bool scope_inside_with_;
// This scope or a nested catch scope or with scope contain an 'eval' call. At
// the 'eval' call site this scope is the declaration scope.
bool scope_calls_eval_;
// This scope uses "arguments".
bool scope_uses_arguments_;
// This scope uses "super" property ('super.foo').
bool scope_uses_super_property_;
// This scope contains an "use asm" annotation.
bool asm_module_;
// This scope's outer context is an asm module.
bool asm_function_;
// This scope's declarations might not be executed in order (e.g., switch).
bool scope_nonlinear_;
// The language mode of this scope.
LanguageMode language_mode_;
// Source positions.
int start_position_;
int end_position_;
bool is_hidden_;
// Computed via PropagateScopeInfo.
bool outer_scope_calls_sloppy_eval_;
bool inner_scope_calls_eval_;
bool force_eager_compilation_;
bool force_context_allocation_;
// True if it doesn't need scope resolution (e.g., if the scope was
// constructed based on a serialized scope info or a catch context).
bool already_resolved_;
// True if it holds 'var' declarations.
bool is_declaration_scope_;
// Computed as variables are declared.
int num_var_or_const_;
// Computed via AllocateVariables; function, block and catch scopes only.
int num_stack_slots_;
int num_heap_slots_;
int num_global_slots_;
// Info about the parameter list of a function.
int arity_;
bool has_simple_parameters_;
Variable* rest_parameter_;
int rest_index_;
// Serialized scope info support.
Handle<ScopeInfo> scope_info_;
bool already_resolved() { return already_resolved_; }
// Create a non-local variable with a given name.
// These variables are looked up dynamically at runtime.
Variable* NonLocal(const AstRawString* name, VariableMode mode);
// Variable resolution.
// Possible results of a recursive variable lookup telling if and how a
// variable is bound. These are returned in the output parameter *binding_kind
// of the LookupRecursive function.
enum BindingKind {
// The variable reference could be statically resolved to a variable binding
// which is returned. There is no 'with' statement between the reference and
// the binding and no scope between the reference scope (inclusive) and
// binding scope (exclusive) makes a sloppy 'eval' call.
BOUND,
// The variable reference could be statically resolved to a variable binding
// which is returned. There is no 'with' statement between the reference and
// the binding, but some scope between the reference scope (inclusive) and
// binding scope (exclusive) makes a sloppy 'eval' call, that might
// possibly introduce variable bindings shadowing the found one. Thus the
// found variable binding is just a guess.
BOUND_EVAL_SHADOWED,
// The variable reference could not be statically resolved to any binding
// and thus should be considered referencing a global variable. NULL is
// returned. The variable reference is not inside any 'with' statement and
// no scope between the reference scope (inclusive) and script scope
// (exclusive) makes a sloppy 'eval' call.
UNBOUND,
// The variable reference could not be statically resolved to any binding
// NULL is returned. The variable reference is not inside any 'with'
// statement, but some scope between the reference scope (inclusive) and
// script scope (exclusive) makes a sloppy 'eval' call, that might
// possibly introduce a variable binding. Thus the reference should be
// considered referencing a global variable unless it is shadowed by an
// 'eval' introduced binding.
UNBOUND_EVAL_SHADOWED,
// The variable could not be statically resolved and needs to be looked up
// dynamically. NULL is returned. There are two possible reasons:
// * A 'with' statement has been encountered and there is no variable
// binding for the name between the variable reference and the 'with'.
// The variable potentially references a property of the 'with' object.
// * The code is being executed as part of a call to 'eval' and the calling
// context chain contains either a variable binding for the name or it
// contains a 'with' context.
DYNAMIC_LOOKUP
};
// Lookup a variable reference given by name recursively starting with this
// scope. If the code is executed because of a call to 'eval', the context
// parameter should be set to the calling context of 'eval'.
Variable* LookupRecursive(VariableProxy* proxy, BindingKind* binding_kind,
AstNodeFactory* factory);
MUST_USE_RESULT
bool ResolveVariable(ParseInfo* info, VariableProxy* proxy,
AstNodeFactory* factory);
MUST_USE_RESULT
bool ResolveVariablesRecursively(ParseInfo* info, AstNodeFactory* factory);
// Scope analysis.
void PropagateScopeInfo(bool outer_scope_calls_sloppy_eval);
bool HasTrivialContext() const;
// Predicates.
bool MustAllocate(Variable* var);
bool MustAllocateInContext(Variable* var);
bool HasArgumentsParameter(Isolate* isolate);
// Variable allocation.
void AllocateStackSlot(Variable* var);
void AllocateHeapSlot(Variable* var);
void AllocateParameterLocals(Isolate* isolate);
void AllocateNonParameterLocal(Isolate* isolate, Variable* var);
void AllocateDeclaredGlobal(Isolate* isolate, Variable* var);
void AllocateNonParameterLocalsAndDeclaredGlobals(Isolate* isolate);
void AllocateVariablesRecursively(Isolate* isolate);
void AllocateParameter(Variable* var, int index);
void AllocateReceiver();
// Resolve and fill in the allocation information for all variables
// in this scopes. Must be called *after* all scopes have been
// processed (parsed) to ensure that unresolved variables can be
// resolved properly.
//
// In the case of code compiled and run using 'eval', the context
// parameter is the context in which eval was called. In all other
// cases the context parameter is an empty handle.
MUST_USE_RESULT
bool AllocateVariables(ParseInfo* info, AstNodeFactory* factory);
// Construct a scope based on the scope info.
Scope(Zone* zone, Scope* inner_scope, ScopeType type,
Handle<ScopeInfo> scope_info, AstValueFactory* value_factory);
// Construct a catch scope with a binding for the name.
Scope(Zone* zone, Scope* inner_scope, const AstRawString* catch_variable_name,
AstValueFactory* value_factory);
void AddInnerScope(Scope* inner_scope) {
if (inner_scope != NULL) {
inner_scopes_.Add(inner_scope, zone_);
inner_scope->outer_scope_ = this;
}
}
void RemoveInnerScope(Scope* inner_scope) {
DCHECK_NOT_NULL(inner_scope);
for (int i = 0; i < inner_scopes_.length(); i++) {
if (inner_scopes_[i] == inner_scope) {
inner_scopes_.Remove(i);
break;
}
}
}
void SetDefaults(ScopeType type, Scope* outer_scope,
Handle<ScopeInfo> scope_info,
FunctionKind function_kind = kNormalFunction);
AstValueFactory* ast_value_factory_;
Zone* zone_;
PendingCompilationErrorHandler pending_error_handler_;
};
} // namespace internal
} // namespace v8
#endif // V8_AST_SCOPES_H_