blob: 43c3981bcabaa61309b71accc2c80d3880fe05a9 [file] [log] [blame]
// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/log.h"
#include <cstdarg>
#include <sstream>
#include "src/bailout-reason.h"
#include "src/base/platform/platform.h"
#include "src/bootstrapper.h"
#include "src/code-stubs.h"
#include "src/counters.h"
#include "src/deoptimizer.h"
#include "src/global-handles.h"
#include "src/interpreter/bytecodes.h"
#include "src/interpreter/interpreter.h"
#include "src/libsampler/v8-sampler.h"
#include "src/log-inl.h"
#include "src/log-utils.h"
#include "src/macro-assembler.h"
#include "src/perf-jit.h"
#include "src/profiler/cpu-profiler-inl.h"
#include "src/profiler/profiler-listener.h"
#include "src/runtime-profiler.h"
#include "src/string-stream.h"
#include "src/vm-state-inl.h"
namespace v8 {
namespace internal {
#define DECLARE_EVENT(ignore1, name) name,
static const char* kLogEventsNames[CodeEventListener::NUMBER_OF_LOG_EVENTS] = {
LOG_EVENTS_AND_TAGS_LIST(DECLARE_EVENT)};
#undef DECLARE_EVENT
static const char* ComputeMarker(SharedFunctionInfo* shared,
AbstractCode* code) {
switch (code->kind()) {
case AbstractCode::FUNCTION:
case AbstractCode::INTERPRETED_FUNCTION:
return shared->optimization_disabled() ? "" : "~";
case AbstractCode::OPTIMIZED_FUNCTION:
return "*";
default:
return "";
}
}
class CodeEventLogger::NameBuffer {
public:
NameBuffer() { Reset(); }
void Reset() {
utf8_pos_ = 0;
}
void Init(CodeEventListener::LogEventsAndTags tag) {
Reset();
AppendBytes(kLogEventsNames[tag]);
AppendByte(':');
}
void AppendName(Name* name) {
if (name->IsString()) {
AppendString(String::cast(name));
} else {
Symbol* symbol = Symbol::cast(name);
AppendBytes("symbol(");
if (!symbol->name()->IsUndefined(symbol->GetIsolate())) {
AppendBytes("\"");
AppendString(String::cast(symbol->name()));
AppendBytes("\" ");
}
AppendBytes("hash ");
AppendHex(symbol->Hash());
AppendByte(')');
}
}
void AppendString(String* str) {
if (str == NULL) return;
int uc16_length = Min(str->length(), kUtf16BufferSize);
String::WriteToFlat(str, utf16_buffer, 0, uc16_length);
int previous = unibrow::Utf16::kNoPreviousCharacter;
for (int i = 0; i < uc16_length && utf8_pos_ < kUtf8BufferSize; ++i) {
uc16 c = utf16_buffer[i];
if (c <= unibrow::Utf8::kMaxOneByteChar) {
utf8_buffer_[utf8_pos_++] = static_cast<char>(c);
} else {
int char_length = unibrow::Utf8::Length(c, previous);
if (utf8_pos_ + char_length > kUtf8BufferSize) break;
unibrow::Utf8::Encode(utf8_buffer_ + utf8_pos_, c, previous);
utf8_pos_ += char_length;
}
previous = c;
}
}
void AppendBytes(const char* bytes, int size) {
size = Min(size, kUtf8BufferSize - utf8_pos_);
MemCopy(utf8_buffer_ + utf8_pos_, bytes, size);
utf8_pos_ += size;
}
void AppendBytes(const char* bytes) {
AppendBytes(bytes, StrLength(bytes));
}
void AppendByte(char c) {
if (utf8_pos_ >= kUtf8BufferSize) return;
utf8_buffer_[utf8_pos_++] = c;
}
void AppendInt(int n) {
int space = kUtf8BufferSize - utf8_pos_;
if (space <= 0) return;
Vector<char> buffer(utf8_buffer_ + utf8_pos_, space);
int size = SNPrintF(buffer, "%d", n);
if (size > 0 && utf8_pos_ + size <= kUtf8BufferSize) {
utf8_pos_ += size;
}
}
void AppendHex(uint32_t n) {
int space = kUtf8BufferSize - utf8_pos_;
if (space <= 0) return;
Vector<char> buffer(utf8_buffer_ + utf8_pos_, space);
int size = SNPrintF(buffer, "%x", n);
if (size > 0 && utf8_pos_ + size <= kUtf8BufferSize) {
utf8_pos_ += size;
}
}
const char* get() { return utf8_buffer_; }
int size() const { return utf8_pos_; }
private:
static const int kUtf8BufferSize = 512;
static const int kUtf16BufferSize = kUtf8BufferSize;
int utf8_pos_;
char utf8_buffer_[kUtf8BufferSize];
uc16 utf16_buffer[kUtf16BufferSize];
};
CodeEventLogger::CodeEventLogger() : name_buffer_(new NameBuffer) { }
CodeEventLogger::~CodeEventLogger() { delete name_buffer_; }
void CodeEventLogger::CodeCreateEvent(CodeEventListener::LogEventsAndTags tag,
AbstractCode* code, const char* comment) {
name_buffer_->Init(tag);
name_buffer_->AppendBytes(comment);
LogRecordedBuffer(code, NULL, name_buffer_->get(), name_buffer_->size());
}
void CodeEventLogger::CodeCreateEvent(CodeEventListener::LogEventsAndTags tag,
AbstractCode* code, Name* name) {
name_buffer_->Init(tag);
name_buffer_->AppendName(name);
LogRecordedBuffer(code, NULL, name_buffer_->get(), name_buffer_->size());
}
void CodeEventLogger::CodeCreateEvent(CodeEventListener::LogEventsAndTags tag,
AbstractCode* code,
SharedFunctionInfo* shared, Name* name) {
name_buffer_->Init(tag);
name_buffer_->AppendBytes(ComputeMarker(shared, code));
name_buffer_->AppendName(name);
LogRecordedBuffer(code, shared, name_buffer_->get(), name_buffer_->size());
}
void CodeEventLogger::CodeCreateEvent(CodeEventListener::LogEventsAndTags tag,
AbstractCode* code,
SharedFunctionInfo* shared, Name* source,
int line, int column) {
name_buffer_->Init(tag);
name_buffer_->AppendBytes(ComputeMarker(shared, code));
name_buffer_->AppendString(shared->DebugName());
name_buffer_->AppendByte(' ');
if (source->IsString()) {
name_buffer_->AppendString(String::cast(source));
} else {
name_buffer_->AppendBytes("symbol(hash ");
name_buffer_->AppendHex(Name::cast(source)->Hash());
name_buffer_->AppendByte(')');
}
name_buffer_->AppendByte(':');
name_buffer_->AppendInt(line);
LogRecordedBuffer(code, shared, name_buffer_->get(), name_buffer_->size());
}
void CodeEventLogger::CodeCreateEvent(CodeEventListener::LogEventsAndTags tag,
AbstractCode* code, int args_count) {
name_buffer_->Init(tag);
name_buffer_->AppendInt(args_count);
LogRecordedBuffer(code, NULL, name_buffer_->get(), name_buffer_->size());
}
void CodeEventLogger::RegExpCodeCreateEvent(AbstractCode* code,
String* source) {
name_buffer_->Init(CodeEventListener::REG_EXP_TAG);
name_buffer_->AppendString(source);
LogRecordedBuffer(code, NULL, name_buffer_->get(), name_buffer_->size());
}
// Linux perf tool logging support
class PerfBasicLogger : public CodeEventLogger {
public:
PerfBasicLogger();
~PerfBasicLogger() override;
void CodeMoveEvent(AbstractCode* from, Address to) override {}
void CodeDisableOptEvent(AbstractCode* code,
SharedFunctionInfo* shared) override {}
private:
void LogRecordedBuffer(AbstractCode* code, SharedFunctionInfo* shared,
const char* name, int length) override;
// Extension added to V8 log file name to get the low-level log name.
static const char kFilenameFormatString[];
static const int kFilenameBufferPadding;
FILE* perf_output_handle_;
};
const char PerfBasicLogger::kFilenameFormatString[] = "/tmp/perf-%d.map";
// Extra space for the PID in the filename
const int PerfBasicLogger::kFilenameBufferPadding = 16;
PerfBasicLogger::PerfBasicLogger()
: perf_output_handle_(NULL) {
// Open the perf JIT dump file.
int bufferSize = sizeof(kFilenameFormatString) + kFilenameBufferPadding;
ScopedVector<char> perf_dump_name(bufferSize);
int size = SNPrintF(
perf_dump_name,
kFilenameFormatString,
base::OS::GetCurrentProcessId());
CHECK_NE(size, -1);
perf_output_handle_ =
base::OS::FOpen(perf_dump_name.start(), base::OS::LogFileOpenMode);
CHECK_NOT_NULL(perf_output_handle_);
setvbuf(perf_output_handle_, NULL, _IOLBF, 0);
}
PerfBasicLogger::~PerfBasicLogger() {
fclose(perf_output_handle_);
perf_output_handle_ = NULL;
}
void PerfBasicLogger::LogRecordedBuffer(AbstractCode* code, SharedFunctionInfo*,
const char* name, int length) {
if (FLAG_perf_basic_prof_only_functions &&
(code->kind() != AbstractCode::FUNCTION &&
code->kind() != AbstractCode::INTERPRETED_FUNCTION &&
code->kind() != AbstractCode::OPTIMIZED_FUNCTION)) {
return;
}
// Linux perf expects hex literals without a leading 0x, while some
// implementations of printf might prepend one when using the %p format
// for pointers, leading to wrongly formatted JIT symbols maps.
//
// Instead, we use V8PRIxPTR format string and cast pointer to uintpr_t,
// so that we have control over the exact output format.
base::OS::FPrint(perf_output_handle_, "%" V8PRIxPTR " %x %.*s\n",
reinterpret_cast<uintptr_t>(code->instruction_start()),
code->instruction_size(), length, name);
}
// Low-level logging support.
#define LL_LOG(Call) if (ll_logger_) ll_logger_->Call;
class LowLevelLogger : public CodeEventLogger {
public:
explicit LowLevelLogger(const char* file_name);
~LowLevelLogger() override;
void CodeMoveEvent(AbstractCode* from, Address to) override;
void CodeDisableOptEvent(AbstractCode* code,
SharedFunctionInfo* shared) override {}
void SnapshotPositionEvent(HeapObject* obj, int pos);
void CodeMovingGCEvent() override;
private:
void LogRecordedBuffer(AbstractCode* code, SharedFunctionInfo* shared,
const char* name, int length) override;
// Low-level profiling event structures.
struct CodeCreateStruct {
static const char kTag = 'C';
int32_t name_size;
Address code_address;
int32_t code_size;
};
struct CodeMoveStruct {
static const char kTag = 'M';
Address from_address;
Address to_address;
};
static const char kCodeMovingGCTag = 'G';
// Extension added to V8 log file name to get the low-level log name.
static const char kLogExt[];
void LogCodeInfo();
void LogWriteBytes(const char* bytes, int size);
template <typename T>
void LogWriteStruct(const T& s) {
char tag = T::kTag;
LogWriteBytes(reinterpret_cast<const char*>(&tag), sizeof(tag));
LogWriteBytes(reinterpret_cast<const char*>(&s), sizeof(s));
}
FILE* ll_output_handle_;
};
const char LowLevelLogger::kLogExt[] = ".ll";
LowLevelLogger::LowLevelLogger(const char* name)
: ll_output_handle_(NULL) {
// Open the low-level log file.
size_t len = strlen(name);
ScopedVector<char> ll_name(static_cast<int>(len + sizeof(kLogExt)));
MemCopy(ll_name.start(), name, len);
MemCopy(ll_name.start() + len, kLogExt, sizeof(kLogExt));
ll_output_handle_ =
base::OS::FOpen(ll_name.start(), base::OS::LogFileOpenMode);
setvbuf(ll_output_handle_, NULL, _IOLBF, 0);
LogCodeInfo();
}
LowLevelLogger::~LowLevelLogger() {
fclose(ll_output_handle_);
ll_output_handle_ = NULL;
}
void LowLevelLogger::LogCodeInfo() {
#if V8_TARGET_ARCH_IA32
const char arch[] = "ia32";
#elif V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_64_BIT
const char arch[] = "x64";
#elif V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT
const char arch[] = "x32";
#elif V8_TARGET_ARCH_ARM
const char arch[] = "arm";
#elif V8_TARGET_ARCH_PPC
const char arch[] = "ppc";
#elif V8_TARGET_ARCH_MIPS
const char arch[] = "mips";
#elif V8_TARGET_ARCH_X87
const char arch[] = "x87";
#elif V8_TARGET_ARCH_ARM64
const char arch[] = "arm64";
#elif V8_TARGET_ARCH_S390
const char arch[] = "s390";
#else
const char arch[] = "unknown";
#endif
LogWriteBytes(arch, sizeof(arch));
}
void LowLevelLogger::LogRecordedBuffer(AbstractCode* code, SharedFunctionInfo*,
const char* name, int length) {
CodeCreateStruct event;
event.name_size = length;
event.code_address = code->instruction_start();
event.code_size = code->instruction_size();
LogWriteStruct(event);
LogWriteBytes(name, length);
LogWriteBytes(
reinterpret_cast<const char*>(code->instruction_start()),
code->instruction_size());
}
void LowLevelLogger::CodeMoveEvent(AbstractCode* from, Address to) {
CodeMoveStruct event;
event.from_address = from->instruction_start();
size_t header_size = from->instruction_start() - from->address();
event.to_address = to + header_size;
LogWriteStruct(event);
}
void LowLevelLogger::LogWriteBytes(const char* bytes, int size) {
size_t rv = fwrite(bytes, 1, size, ll_output_handle_);
DCHECK(static_cast<size_t>(size) == rv);
USE(rv);
}
void LowLevelLogger::CodeMovingGCEvent() {
const char tag = kCodeMovingGCTag;
LogWriteBytes(&tag, sizeof(tag));
}
#define JIT_LOG(Call) if (jit_logger_) jit_logger_->Call;
class JitLogger : public CodeEventLogger {
public:
explicit JitLogger(JitCodeEventHandler code_event_handler);
void CodeMoveEvent(AbstractCode* from, Address to) override;
void CodeDisableOptEvent(AbstractCode* code,
SharedFunctionInfo* shared) override {}
void AddCodeLinePosInfoEvent(void* jit_handler_data, int pc_offset,
int position,
JitCodeEvent::PositionType position_type);
void* StartCodePosInfoEvent();
void EndCodePosInfoEvent(AbstractCode* code, void* jit_handler_data);
private:
void LogRecordedBuffer(AbstractCode* code, SharedFunctionInfo* shared,
const char* name, int length) override;
JitCodeEventHandler code_event_handler_;
base::Mutex logger_mutex_;
};
JitLogger::JitLogger(JitCodeEventHandler code_event_handler)
: code_event_handler_(code_event_handler) {
}
void JitLogger::LogRecordedBuffer(AbstractCode* code,
SharedFunctionInfo* shared, const char* name,
int length) {
JitCodeEvent event;
memset(&event, 0, sizeof(event));
event.type = JitCodeEvent::CODE_ADDED;
event.code_start = code->instruction_start();
event.code_len = code->instruction_size();
Handle<SharedFunctionInfo> shared_function_handle;
if (shared && shared->script()->IsScript()) {
shared_function_handle = Handle<SharedFunctionInfo>(shared);
}
event.script = ToApiHandle<v8::UnboundScript>(shared_function_handle);
event.name.str = name;
event.name.len = length;
code_event_handler_(&event);
}
void JitLogger::CodeMoveEvent(AbstractCode* from, Address to) {
base::LockGuard<base::Mutex> guard(&logger_mutex_);
JitCodeEvent event;
event.type = JitCodeEvent::CODE_MOVED;
event.code_start = from->instruction_start();
event.code_len = from->instruction_size();
// Calculate the header size.
const size_t header_size = from->instruction_start() - from->address();
// Calculate the new start address of the instructions.
event.new_code_start = to + header_size;
code_event_handler_(&event);
}
void JitLogger::AddCodeLinePosInfoEvent(
void* jit_handler_data,
int pc_offset,
int position,
JitCodeEvent::PositionType position_type) {
JitCodeEvent event;
memset(&event, 0, sizeof(event));
event.type = JitCodeEvent::CODE_ADD_LINE_POS_INFO;
event.user_data = jit_handler_data;
event.line_info.offset = pc_offset;
event.line_info.pos = position;
event.line_info.position_type = position_type;
code_event_handler_(&event);
}
void* JitLogger::StartCodePosInfoEvent() {
JitCodeEvent event;
memset(&event, 0, sizeof(event));
event.type = JitCodeEvent::CODE_START_LINE_INFO_RECORDING;
code_event_handler_(&event);
return event.user_data;
}
void JitLogger::EndCodePosInfoEvent(AbstractCode* code,
void* jit_handler_data) {
JitCodeEvent event;
memset(&event, 0, sizeof(event));
event.type = JitCodeEvent::CODE_END_LINE_INFO_RECORDING;
event.code_start = code->instruction_start();
event.user_data = jit_handler_data;
code_event_handler_(&event);
}
// TODO(lpy): Keeping sampling thread inside V8 is a workaround currently,
// the reason is to reduce code duplication during migration to sampler library,
// sampling thread, as well as the sampler, will be moved to D8 eventually.
class SamplingThread : public base::Thread {
public:
static const int kSamplingThreadStackSize = 64 * KB;
SamplingThread(sampler::Sampler* sampler, int interval)
: base::Thread(base::Thread::Options("SamplingThread",
kSamplingThreadStackSize)),
sampler_(sampler),
interval_(interval) {}
void Run() override {
while (sampler_->IsProfiling()) {
sampler_->DoSample();
base::OS::Sleep(base::TimeDelta::FromMilliseconds(interval_));
}
}
private:
sampler::Sampler* sampler_;
const int interval_;
};
// The Profiler samples pc and sp values for the main thread.
// Each sample is appended to a circular buffer.
// An independent thread removes data and writes it to the log.
// This design minimizes the time spent in the sampler.
//
class Profiler: public base::Thread {
public:
explicit Profiler(Isolate* isolate);
void Engage();
void Disengage();
// Inserts collected profiling data into buffer.
void Insert(TickSample* sample) {
if (paused_)
return;
if (Succ(head_) == static_cast<int>(base::NoBarrier_Load(&tail_))) {
overflow_ = true;
} else {
buffer_[head_] = *sample;
head_ = Succ(head_);
buffer_semaphore_.Signal(); // Tell we have an element.
}
}
virtual void Run();
// Pause and Resume TickSample data collection.
void pause() { paused_ = true; }
void resume() { paused_ = false; }
private:
// Waits for a signal and removes profiling data.
bool Remove(TickSample* sample) {
buffer_semaphore_.Wait(); // Wait for an element.
*sample = buffer_[base::NoBarrier_Load(&tail_)];
bool result = overflow_;
base::NoBarrier_Store(&tail_, static_cast<base::Atomic32>(
Succ(base::NoBarrier_Load(&tail_))));
overflow_ = false;
return result;
}
// Returns the next index in the cyclic buffer.
int Succ(int index) { return (index + 1) % kBufferSize; }
Isolate* isolate_;
// Cyclic buffer for communicating profiling samples
// between the signal handler and the worker thread.
static const int kBufferSize = 128;
TickSample buffer_[kBufferSize]; // Buffer storage.
int head_; // Index to the buffer head.
base::Atomic32 tail_; // Index to the buffer tail.
bool overflow_; // Tell whether a buffer overflow has occurred.
// Sempahore used for buffer synchronization.
base::Semaphore buffer_semaphore_;
// Tells whether profiler is engaged, that is, processing thread is stated.
bool engaged_;
// Tells whether worker thread should continue running.
base::Atomic32 running_;
// Tells whether we are currently recording tick samples.
bool paused_;
};
//
// Ticker used to provide ticks to the profiler and the sliding state
// window.
//
class Ticker: public sampler::Sampler {
public:
Ticker(Isolate* isolate, int interval):
sampler::Sampler(reinterpret_cast<v8::Isolate*>(isolate)),
profiler_(NULL),
sampling_thread_(new SamplingThread(this, interval)) {}
~Ticker() {
if (IsActive()) Stop();
delete sampling_thread_;
}
void SetProfiler(Profiler* profiler) {
DCHECK(profiler_ == NULL);
profiler_ = profiler;
IncreaseProfilingDepth();
if (!IsActive()) Start();
sampling_thread_->StartSynchronously();
}
void ClearProfiler() {
profiler_ = NULL;
if (IsActive()) Stop();
DecreaseProfilingDepth();
sampling_thread_->Join();
}
void SampleStack(const v8::RegisterState& state) override {
v8::Isolate* v8_isolate = isolate();
Isolate* isolate = reinterpret_cast<Isolate*>(v8_isolate);
#if defined(USE_SIMULATOR)
SimulatorHelper::FillRegisters(isolate,
const_cast<v8::RegisterState*>(&state));
#endif
TickSample* sample = isolate->cpu_profiler()->StartTickSample();
TickSample sample_obj;
if (sample == NULL) sample = &sample_obj;
sample->Init(isolate, state, TickSample::kIncludeCEntryFrame, true);
if (is_counting_samples_ && !sample->timestamp.IsNull()) {
if (sample->state == JS) ++js_sample_count_;
if (sample->state == EXTERNAL) ++external_sample_count_;
}
if (profiler_) profiler_->Insert(sample);
if (sample != &sample_obj) {
isolate->cpu_profiler()->FinishTickSample();
}
}
private:
Profiler* profiler_;
SamplingThread* sampling_thread_;
};
//
// Profiler implementation.
//
Profiler::Profiler(Isolate* isolate)
: base::Thread(Options("v8:Profiler")),
isolate_(isolate),
head_(0),
overflow_(false),
buffer_semaphore_(0),
engaged_(false),
paused_(false) {
base::NoBarrier_Store(&tail_, 0);
base::NoBarrier_Store(&running_, 0);
}
void Profiler::Engage() {
if (engaged_) return;
engaged_ = true;
std::vector<base::OS::SharedLibraryAddress> addresses =
base::OS::GetSharedLibraryAddresses();
for (size_t i = 0; i < addresses.size(); ++i) {
LOG(isolate_,
SharedLibraryEvent(addresses[i].library_path, addresses[i].start,
addresses[i].end, addresses[i].aslr_slide));
}
// Start thread processing the profiler buffer.
base::NoBarrier_Store(&running_, 1);
Start();
// Register to get ticks.
Logger* logger = isolate_->logger();
logger->ticker_->SetProfiler(this);
logger->ProfilerBeginEvent();
}
void Profiler::Disengage() {
if (!engaged_) return;
// Stop receiving ticks.
isolate_->logger()->ticker_->ClearProfiler();
// Terminate the worker thread by setting running_ to false,
// inserting a fake element in the queue and then wait for
// the thread to terminate.
base::NoBarrier_Store(&running_, 0);
TickSample sample;
// Reset 'paused_' flag, otherwise semaphore may not be signalled.
resume();
Insert(&sample);
Join();
LOG(isolate_, UncheckedStringEvent("profiler", "end"));
}
void Profiler::Run() {
TickSample sample;
bool overflow = Remove(&sample);
while (base::NoBarrier_Load(&running_)) {
LOG(isolate_, TickEvent(&sample, overflow));
overflow = Remove(&sample);
}
}
//
// Logger class implementation.
//
Logger::Logger(Isolate* isolate)
: isolate_(isolate),
ticker_(NULL),
profiler_(NULL),
log_events_(NULL),
is_logging_(false),
log_(new Log(this)),
perf_basic_logger_(NULL),
perf_jit_logger_(NULL),
ll_logger_(NULL),
jit_logger_(NULL),
listeners_(5),
is_initialized_(false) {}
Logger::~Logger() {
delete log_;
}
void Logger::addCodeEventListener(CodeEventListener* listener) {
bool result = isolate_->code_event_dispatcher()->AddListener(listener);
USE(result);
DCHECK(result);
}
void Logger::removeCodeEventListener(CodeEventListener* listener) {
isolate_->code_event_dispatcher()->RemoveListener(listener);
}
void Logger::ProfilerBeginEvent() {
if (!log_->IsEnabled()) return;
Log::MessageBuilder msg(log_);
msg.Append("profiler,\"begin\",%d", kSamplingIntervalMs);
msg.WriteToLogFile();
}
void Logger::StringEvent(const char* name, const char* value) {
if (FLAG_log) UncheckedStringEvent(name, value);
}
void Logger::UncheckedStringEvent(const char* name, const char* value) {
if (!log_->IsEnabled()) return;
Log::MessageBuilder msg(log_);
msg.Append("%s,\"%s\"", name, value);
msg.WriteToLogFile();
}
void Logger::IntEvent(const char* name, int value) {
if (FLAG_log) UncheckedIntEvent(name, value);
}
void Logger::IntPtrTEvent(const char* name, intptr_t value) {
if (FLAG_log) UncheckedIntPtrTEvent(name, value);
}
void Logger::UncheckedIntEvent(const char* name, int value) {
if (!log_->IsEnabled()) return;
Log::MessageBuilder msg(log_);
msg.Append("%s,%d", name, value);
msg.WriteToLogFile();
}
void Logger::UncheckedIntPtrTEvent(const char* name, intptr_t value) {
if (!log_->IsEnabled()) return;
Log::MessageBuilder msg(log_);
msg.Append("%s,%" V8PRIdPTR, name, value);
msg.WriteToLogFile();
}
void Logger::HandleEvent(const char* name, Object** location) {
if (!log_->IsEnabled() || !FLAG_log_handles) return;
Log::MessageBuilder msg(log_);
msg.Append("%s,%p", name, static_cast<void*>(location));
msg.WriteToLogFile();
}
// ApiEvent is private so all the calls come from the Logger class. It is the
// caller's responsibility to ensure that log is enabled and that
// FLAG_log_api is true.
void Logger::ApiEvent(const char* format, ...) {
DCHECK(log_->IsEnabled() && FLAG_log_api);
Log::MessageBuilder msg(log_);
va_list ap;
va_start(ap, format);
msg.AppendVA(format, ap);
va_end(ap);
msg.WriteToLogFile();
}
void Logger::ApiSecurityCheck() {
if (!log_->IsEnabled() || !FLAG_log_api) return;
ApiEvent("api,check-security");
}
void Logger::SharedLibraryEvent(const std::string& library_path,
uintptr_t start, uintptr_t end,
intptr_t aslr_slide) {
if (!log_->IsEnabled() || !FLAG_prof_cpp) return;
Log::MessageBuilder msg(log_);
msg.Append("shared-library,\"%s\",0x%08" V8PRIxPTR ",0x%08" V8PRIxPTR
",%" V8PRIdPTR,
library_path.c_str(), start, end, aslr_slide);
msg.WriteToLogFile();
}
void Logger::CodeDeoptEvent(Code* code, Address pc, int fp_to_sp_delta) {
if (!log_->IsEnabled() || !FLAG_log_internal_timer_events) return;
Log::MessageBuilder msg(log_);
int since_epoch = static_cast<int>(timer_.Elapsed().InMicroseconds());
msg.Append("code-deopt,%d,%d", since_epoch, code->CodeSize());
msg.WriteToLogFile();
}
void Logger::CurrentTimeEvent() {
if (!log_->IsEnabled()) return;
DCHECK(FLAG_log_timer_events || FLAG_prof_cpp);
Log::MessageBuilder msg(log_);
int since_epoch = static_cast<int>(timer_.Elapsed().InMicroseconds());
msg.Append("current-time,%d", since_epoch);
msg.WriteToLogFile();
}
void Logger::TimerEvent(Logger::StartEnd se, const char* name) {
if (!log_->IsEnabled()) return;
DCHECK(FLAG_log_internal_timer_events);
Log::MessageBuilder msg(log_);
int since_epoch = static_cast<int>(timer_.Elapsed().InMicroseconds());
const char* format = (se == START) ? "timer-event-start,\"%s\",%ld"
: "timer-event-end,\"%s\",%ld";
msg.Append(format, name, since_epoch);
msg.WriteToLogFile();
}
void Logger::EnterExternal(Isolate* isolate) {
LOG(isolate, TimerEvent(START, TimerEventExternal::name()));
DCHECK(isolate->current_vm_state() == JS);
isolate->set_current_vm_state(EXTERNAL);
}
void Logger::LeaveExternal(Isolate* isolate) {
LOG(isolate, TimerEvent(END, TimerEventExternal::name()));
DCHECK(isolate->current_vm_state() == EXTERNAL);
isolate->set_current_vm_state(JS);
}
template <class TimerEvent>
void TimerEventScope<TimerEvent>::LogTimerEvent(Logger::StartEnd se) {
Logger::CallEventLogger(isolate_, TimerEvent::name(), se,
TimerEvent::expose_to_api());
}
// Instantiate template methods.
#define V(TimerName, expose) \
template void TimerEventScope<TimerEvent##TimerName>::LogTimerEvent( \
Logger::StartEnd se);
TIMER_EVENTS_LIST(V)
#undef V
namespace {
// Emits the source code of a regexp. Used by regexp events.
void LogRegExpSource(Handle<JSRegExp> regexp, Isolate* isolate,
Log::MessageBuilder* msg) {
// Prints "/" + re.source + "/" +
// (re.global?"g":"") + (re.ignorecase?"i":"") + (re.multiline?"m":"")
Handle<Object> source =
JSReceiver::GetProperty(isolate, regexp, "source").ToHandleChecked();
if (!source->IsString()) {
msg->Append("no source");
return;
}
switch (regexp->TypeTag()) {
case JSRegExp::ATOM:
msg->Append('a');
break;
default:
break;
}
msg->Append('/');
msg->AppendDetailed(*Handle<String>::cast(source), false);
msg->Append('/');
// global flag
Handle<Object> global =
JSReceiver::GetProperty(isolate, regexp, "global").ToHandleChecked();
if (global->IsTrue(isolate)) {
msg->Append('g');
}
// ignorecase flag
Handle<Object> ignorecase =
JSReceiver::GetProperty(isolate, regexp, "ignoreCase").ToHandleChecked();
if (ignorecase->IsTrue(isolate)) {
msg->Append('i');
}
// multiline flag
Handle<Object> multiline =
JSReceiver::GetProperty(isolate, regexp, "multiline").ToHandleChecked();
if (multiline->IsTrue(isolate)) {
msg->Append('m');
}
}
} // namespace
void Logger::RegExpCompileEvent(Handle<JSRegExp> regexp, bool in_cache) {
if (!log_->IsEnabled() || !FLAG_log_regexp) return;
Log::MessageBuilder msg(log_);
msg.Append("regexp-compile,");
LogRegExpSource(regexp, isolate_, &msg);
msg.Append(in_cache ? ",hit" : ",miss");
msg.WriteToLogFile();
}
void Logger::ApiNamedPropertyAccess(const char* tag,
JSObject* holder,
Object* name) {
DCHECK(name->IsName());
if (!log_->IsEnabled() || !FLAG_log_api) return;
String* class_name_obj = holder->class_name();
base::SmartArrayPointer<char> class_name =
class_name_obj->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL);
if (name->IsString()) {
base::SmartArrayPointer<char> property_name =
String::cast(name)->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL);
ApiEvent("api,%s,\"%s\",\"%s\"", tag, class_name.get(),
property_name.get());
} else {
Symbol* symbol = Symbol::cast(name);
uint32_t hash = symbol->Hash();
if (symbol->name()->IsUndefined(symbol->GetIsolate())) {
ApiEvent("api,%s,\"%s\",symbol(hash %x)", tag, class_name.get(), hash);
} else {
base::SmartArrayPointer<char> str =
String::cast(symbol->name())
->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL);
ApiEvent("api,%s,\"%s\",symbol(\"%s\" hash %x)", tag, class_name.get(),
str.get(), hash);
}
}
}
void Logger::ApiIndexedPropertyAccess(const char* tag,
JSObject* holder,
uint32_t index) {
if (!log_->IsEnabled() || !FLAG_log_api) return;
String* class_name_obj = holder->class_name();
base::SmartArrayPointer<char> class_name =
class_name_obj->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL);
ApiEvent("api,%s,\"%s\",%u", tag, class_name.get(), index);
}
void Logger::ApiObjectAccess(const char* tag, JSObject* object) {
if (!log_->IsEnabled() || !FLAG_log_api) return;
String* class_name_obj = object->class_name();
base::SmartArrayPointer<char> class_name =
class_name_obj->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL);
ApiEvent("api,%s,\"%s\"", tag, class_name.get());
}
void Logger::ApiEntryCall(const char* name) {
if (!log_->IsEnabled() || !FLAG_log_api) return;
ApiEvent("api,%s", name);
}
void Logger::NewEvent(const char* name, void* object, size_t size) {
if (!log_->IsEnabled() || !FLAG_log) return;
Log::MessageBuilder msg(log_);
msg.Append("new,%s,%p,%u", name, object, static_cast<unsigned int>(size));
msg.WriteToLogFile();
}
void Logger::DeleteEvent(const char* name, void* object) {
if (!log_->IsEnabled() || !FLAG_log) return;
Log::MessageBuilder msg(log_);
msg.Append("delete,%s,%p", name, object);
msg.WriteToLogFile();
}
void Logger::CallbackEventInternal(const char* prefix, Name* name,
Address entry_point) {
if (!FLAG_log_code || !log_->IsEnabled()) return;
Log::MessageBuilder msg(log_);
msg.Append("%s,%s,-2,",
kLogEventsNames[CodeEventListener::CODE_CREATION_EVENT],
kLogEventsNames[CodeEventListener::CALLBACK_TAG]);
msg.AppendAddress(entry_point);
if (name->IsString()) {
base::SmartArrayPointer<char> str =
String::cast(name)->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL);
msg.Append(",1,\"%s%s\"", prefix, str.get());
} else {
Symbol* symbol = Symbol::cast(name);
if (symbol->name()->IsUndefined(symbol->GetIsolate())) {
msg.Append(",1,symbol(hash %x)", symbol->Hash());
} else {
base::SmartArrayPointer<char> str =
String::cast(symbol->name())
->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL);
msg.Append(",1,symbol(\"%s%s\" hash %x)", prefix, str.get(),
symbol->Hash());
}
}
msg.WriteToLogFile();
}
void Logger::CallbackEvent(Name* name, Address entry_point) {
CallbackEventInternal("", name, entry_point);
}
void Logger::GetterCallbackEvent(Name* name, Address entry_point) {
CallbackEventInternal("get ", name, entry_point);
}
void Logger::SetterCallbackEvent(Name* name, Address entry_point) {
CallbackEventInternal("set ", name, entry_point);
}
static void AppendCodeCreateHeader(Log::MessageBuilder* msg,
CodeEventListener::LogEventsAndTags tag,
AbstractCode* code) {
DCHECK(msg);
msg->Append("%s,%s,%d,",
kLogEventsNames[CodeEventListener::CODE_CREATION_EVENT],
kLogEventsNames[tag], code->kind());
msg->AppendAddress(code->address());
msg->Append(",%d,", code->ExecutableSize());
}
void Logger::CodeCreateEvent(CodeEventListener::LogEventsAndTags tag,
AbstractCode* code, const char* comment) {
if (!is_logging_code_events()) return;
if (!FLAG_log_code || !log_->IsEnabled()) return;
Log::MessageBuilder msg(log_);
AppendCodeCreateHeader(&msg, tag, code);
msg.AppendDoubleQuotedString(comment);
msg.WriteToLogFile();
}
void Logger::CodeCreateEvent(CodeEventListener::LogEventsAndTags tag,
AbstractCode* code, Name* name) {
if (!is_logging_code_events()) return;
if (!FLAG_log_code || !log_->IsEnabled()) return;
Log::MessageBuilder msg(log_);
AppendCodeCreateHeader(&msg, tag, code);
if (name->IsString()) {
msg.Append('"');
msg.AppendDetailed(String::cast(name), false);
msg.Append('"');
} else {
msg.AppendSymbolName(Symbol::cast(name));
}
msg.WriteToLogFile();
}
void Logger::CodeCreateEvent(CodeEventListener::LogEventsAndTags tag,
AbstractCode* code, SharedFunctionInfo* shared,
Name* name) {
if (!is_logging_code_events()) return;
if (!FLAG_log_code || !log_->IsEnabled()) return;
if (code == AbstractCode::cast(
isolate_->builtins()->builtin(Builtins::kCompileLazy))) {
return;
}
Log::MessageBuilder msg(log_);
AppendCodeCreateHeader(&msg, tag, code);
if (name->IsString()) {
base::SmartArrayPointer<char> str =
String::cast(name)->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL);
msg.Append("\"%s\"", str.get());
} else {
msg.AppendSymbolName(Symbol::cast(name));
}
msg.Append(',');
msg.AppendAddress(shared->address());
msg.Append(",%s", ComputeMarker(shared, code));
msg.WriteToLogFile();
}
// Although, it is possible to extract source and line from
// the SharedFunctionInfo object, we left it to caller
// to leave logging functions free from heap allocations.
void Logger::CodeCreateEvent(CodeEventListener::LogEventsAndTags tag,
AbstractCode* code, SharedFunctionInfo* shared,
Name* source, int line, int column) {
if (!is_logging_code_events()) return;
if (!FLAG_log_code || !log_->IsEnabled()) return;
Log::MessageBuilder msg(log_);
AppendCodeCreateHeader(&msg, tag, code);
base::SmartArrayPointer<char> name =
shared->DebugName()->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL);
msg.Append("\"%s ", name.get());
if (source->IsString()) {
base::SmartArrayPointer<char> sourcestr = String::cast(source)->ToCString(
DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL);
msg.Append("%s", sourcestr.get());
} else {
msg.AppendSymbolName(Symbol::cast(source));
}
msg.Append(":%d:%d\",", line, column);
msg.AppendAddress(shared->address());
msg.Append(",%s", ComputeMarker(shared, code));
msg.WriteToLogFile();
}
void Logger::CodeCreateEvent(CodeEventListener::LogEventsAndTags tag,
AbstractCode* code, int args_count) {
if (!is_logging_code_events()) return;
if (!FLAG_log_code || !log_->IsEnabled()) return;
Log::MessageBuilder msg(log_);
AppendCodeCreateHeader(&msg, tag, code);
msg.Append("\"args_count: %d\"", args_count);
msg.WriteToLogFile();
}
void Logger::CodeDisableOptEvent(AbstractCode* code,
SharedFunctionInfo* shared) {
if (!is_logging_code_events()) return;
if (!FLAG_log_code || !log_->IsEnabled()) return;
Log::MessageBuilder msg(log_);
msg.Append("%s,", kLogEventsNames[CodeEventListener::CODE_DISABLE_OPT_EVENT]);
base::SmartArrayPointer<char> name =
shared->DebugName()->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL);
msg.Append("\"%s\",", name.get());
msg.Append("\"%s\"", GetBailoutReason(shared->disable_optimization_reason()));
msg.WriteToLogFile();
}
void Logger::CodeMovingGCEvent() {
if (!is_logging_code_events()) return;
if (!log_->IsEnabled() || !FLAG_ll_prof) return;
base::OS::SignalCodeMovingGC();
}
void Logger::RegExpCodeCreateEvent(AbstractCode* code, String* source) {
if (!is_logging_code_events()) return;
if (!FLAG_log_code || !log_->IsEnabled()) return;
Log::MessageBuilder msg(log_);
AppendCodeCreateHeader(&msg, CodeEventListener::REG_EXP_TAG, code);
msg.Append('"');
msg.AppendDetailed(source, false);
msg.Append('"');
msg.WriteToLogFile();
}
void Logger::CodeMoveEvent(AbstractCode* from, Address to) {
if (!is_logging_code_events()) return;
MoveEventInternal(CodeEventListener::CODE_MOVE_EVENT, from->address(), to);
}
void Logger::CodeLinePosInfoAddPositionEvent(void* jit_handler_data,
int pc_offset, int position) {
JIT_LOG(AddCodeLinePosInfoEvent(jit_handler_data,
pc_offset,
position,
JitCodeEvent::POSITION));
}
void Logger::CodeLinePosInfoAddStatementPositionEvent(void* jit_handler_data,
int pc_offset,
int position) {
JIT_LOG(AddCodeLinePosInfoEvent(jit_handler_data,
pc_offset,
position,
JitCodeEvent::STATEMENT_POSITION));
}
void Logger::CodeStartLinePosInfoRecordEvent(PositionsRecorder* pos_recorder) {
if (jit_logger_ != NULL) {
pos_recorder->AttachJITHandlerData(jit_logger_->StartCodePosInfoEvent());
}
}
void Logger::CodeEndLinePosInfoRecordEvent(AbstractCode* code,
void* jit_handler_data) {
JIT_LOG(EndCodePosInfoEvent(code, jit_handler_data));
}
void Logger::CodeNameEvent(Address addr, int pos, const char* code_name) {
if (code_name == NULL) return; // Not a code object.
Log::MessageBuilder msg(log_);
msg.Append("%s,%d,",
kLogEventsNames[CodeEventListener::SNAPSHOT_CODE_NAME_EVENT], pos);
msg.AppendDoubleQuotedString(code_name);
msg.WriteToLogFile();
}
void Logger::SharedFunctionInfoMoveEvent(Address from, Address to) {
if (!is_logging_code_events()) return;
MoveEventInternal(CodeEventListener::SHARED_FUNC_MOVE_EVENT, from, to);
}
void Logger::MoveEventInternal(CodeEventListener::LogEventsAndTags event,
Address from, Address to) {
if (!FLAG_log_code || !log_->IsEnabled()) return;
Log::MessageBuilder msg(log_);
msg.Append("%s,", kLogEventsNames[event]);
msg.AppendAddress(from);
msg.Append(',');
msg.AppendAddress(to);
msg.WriteToLogFile();
}
void Logger::ResourceEvent(const char* name, const char* tag) {
if (!log_->IsEnabled() || !FLAG_log) return;
Log::MessageBuilder msg(log_);
msg.Append("%s,%s,", name, tag);
uint32_t sec, usec;
if (base::OS::GetUserTime(&sec, &usec) != -1) {
msg.Append("%d,%d,", sec, usec);
}
msg.Append("%.0f", base::OS::TimeCurrentMillis());
msg.WriteToLogFile();
}
void Logger::SuspectReadEvent(Name* name, Object* obj) {
if (!log_->IsEnabled() || !FLAG_log_suspect) return;
Log::MessageBuilder msg(log_);
String* class_name = obj->IsJSObject()
? JSObject::cast(obj)->class_name()
: isolate_->heap()->empty_string();
msg.Append("suspect-read,");
msg.Append(class_name);
msg.Append(',');
if (name->IsString()) {
msg.Append('"');
msg.Append(String::cast(name));
msg.Append('"');
} else {
msg.AppendSymbolName(Symbol::cast(name));
}
msg.WriteToLogFile();
}
void Logger::HeapSampleBeginEvent(const char* space, const char* kind) {
if (!log_->IsEnabled() || !FLAG_log_gc) return;
Log::MessageBuilder msg(log_);
// Using non-relative system time in order to be able to synchronize with
// external memory profiling events (e.g. DOM memory size).
msg.Append("heap-sample-begin,\"%s\",\"%s\",%.0f", space, kind,
base::OS::TimeCurrentMillis());
msg.WriteToLogFile();
}
void Logger::HeapSampleEndEvent(const char* space, const char* kind) {
if (!log_->IsEnabled() || !FLAG_log_gc) return;
Log::MessageBuilder msg(log_);
msg.Append("heap-sample-end,\"%s\",\"%s\"", space, kind);
msg.WriteToLogFile();
}
void Logger::HeapSampleItemEvent(const char* type, int number, int bytes) {
if (!log_->IsEnabled() || !FLAG_log_gc) return;
Log::MessageBuilder msg(log_);
msg.Append("heap-sample-item,%s,%d,%d", type, number, bytes);
msg.WriteToLogFile();
}
void Logger::DebugTag(const char* call_site_tag) {
if (!log_->IsEnabled() || !FLAG_log) return;
Log::MessageBuilder msg(log_);
msg.Append("debug-tag,%s", call_site_tag);
msg.WriteToLogFile();
}
void Logger::DebugEvent(const char* event_type, Vector<uint16_t> parameter) {
if (!log_->IsEnabled() || !FLAG_log) return;
StringBuilder s(parameter.length() + 1);
for (int i = 0; i < parameter.length(); ++i) {
s.AddCharacter(static_cast<char>(parameter[i]));
}
char* parameter_string = s.Finalize();
Log::MessageBuilder msg(log_);
msg.Append("debug-queue-event,%s,%15.3f,%s", event_type,
base::OS::TimeCurrentMillis(), parameter_string);
DeleteArray(parameter_string);
msg.WriteToLogFile();
}
void Logger::RuntimeCallTimerEvent() {
RuntimeCallStats* stats = isolate_->counters()->runtime_call_stats();
RuntimeCallTimer* timer = stats->current_timer();
if (timer == nullptr) return;
RuntimeCallCounter* counter = timer->counter();
if (counter == nullptr) return;
Log::MessageBuilder msg(log_);
msg.Append("active-runtime-timer,");
msg.AppendDoubleQuotedString(counter->name);
msg.WriteToLogFile();
}
void Logger::TickEvent(TickSample* sample, bool overflow) {
if (!log_->IsEnabled() || !FLAG_prof_cpp) return;
if (FLAG_runtime_call_stats) {
RuntimeCallTimerEvent();
}
Log::MessageBuilder msg(log_);
msg.Append("%s,", kLogEventsNames[CodeEventListener::TICK_EVENT]);
msg.AppendAddress(sample->pc);
msg.Append(",%d", static_cast<int>(timer_.Elapsed().InMicroseconds()));
if (sample->has_external_callback) {
msg.Append(",1,");
msg.AppendAddress(sample->external_callback_entry);
} else {
msg.Append(",0,");
msg.AppendAddress(sample->tos);
}
msg.Append(",%d", static_cast<int>(sample->state));
if (overflow) {
msg.Append(",overflow");
}
for (unsigned i = 0; i < sample->frames_count; ++i) {
msg.Append(',');
msg.AppendAddress(sample->stack[i]);
}
msg.WriteToLogFile();
}
void Logger::StopProfiler() {
if (!log_->IsEnabled()) return;
if (profiler_ != NULL) {
profiler_->pause();
is_logging_ = false;
removeCodeEventListener(this);
}
}
// This function can be called when Log's mutex is acquired,
// either from main or Profiler's thread.
void Logger::LogFailure() {
StopProfiler();
}
class EnumerateOptimizedFunctionsVisitor: public OptimizedFunctionVisitor {
public:
EnumerateOptimizedFunctionsVisitor(Handle<SharedFunctionInfo>* sfis,
Handle<AbstractCode>* code_objects,
int* count)
: sfis_(sfis), code_objects_(code_objects), count_(count) {}
virtual void EnterContext(Context* context) {}
virtual void LeaveContext(Context* context) {}
virtual void VisitFunction(JSFunction* function) {
SharedFunctionInfo* sfi = SharedFunctionInfo::cast(function->shared());
Object* maybe_script = sfi->script();
if (maybe_script->IsScript()
&& !Script::cast(maybe_script)->HasValidSource()) return;
if (sfis_ != NULL) {
sfis_[*count_] = Handle<SharedFunctionInfo>(sfi);
}
if (code_objects_ != NULL) {
DCHECK(function->abstract_code()->kind() ==
AbstractCode::OPTIMIZED_FUNCTION);
code_objects_[*count_] = Handle<AbstractCode>(function->abstract_code());
}
*count_ = *count_ + 1;
}
private:
Handle<SharedFunctionInfo>* sfis_;
Handle<AbstractCode>* code_objects_;
int* count_;
};
static int EnumerateCompiledFunctions(Heap* heap,
Handle<SharedFunctionInfo>* sfis,
Handle<AbstractCode>* code_objects) {
HeapIterator iterator(heap);
DisallowHeapAllocation no_gc;
int compiled_funcs_count = 0;
// Iterate the heap to find shared function info objects and record
// the unoptimized code for them.
for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) {
if (!obj->IsSharedFunctionInfo()) continue;
SharedFunctionInfo* sfi = SharedFunctionInfo::cast(obj);
if (sfi->is_compiled()
&& (!sfi->script()->IsScript()
|| Script::cast(sfi->script())->HasValidSource())) {
if (sfis != NULL) {
sfis[compiled_funcs_count] = Handle<SharedFunctionInfo>(sfi);
}
if (code_objects != NULL) {
code_objects[compiled_funcs_count] =
Handle<AbstractCode>(sfi->abstract_code());
}
++compiled_funcs_count;
}
}
// Iterate all optimized functions in all contexts.
EnumerateOptimizedFunctionsVisitor visitor(sfis,
code_objects,
&compiled_funcs_count);
Deoptimizer::VisitAllOptimizedFunctions(heap->isolate(), &visitor);
return compiled_funcs_count;
}
void Logger::LogCodeObject(Object* object) {
AbstractCode* code_object = AbstractCode::cast(object);
CodeEventListener::LogEventsAndTags tag = CodeEventListener::STUB_TAG;
const char* description = "Unknown code from the snapshot";
switch (code_object->kind()) {
case AbstractCode::FUNCTION:
case AbstractCode::INTERPRETED_FUNCTION:
case AbstractCode::OPTIMIZED_FUNCTION:
return; // We log this later using LogCompiledFunctions.
case AbstractCode::BYTECODE_HANDLER:
return; // We log it later by walking the dispatch table.
case AbstractCode::BINARY_OP_IC: // fall through
case AbstractCode::COMPARE_IC: // fall through
case AbstractCode::TO_BOOLEAN_IC: // fall through
case AbstractCode::STUB:
description =
CodeStub::MajorName(CodeStub::GetMajorKey(code_object->GetCode()));
if (description == NULL)
description = "A stub from the snapshot";
tag = CodeEventListener::STUB_TAG;
break;
case AbstractCode::REGEXP:
description = "Regular expression code";
tag = CodeEventListener::REG_EXP_TAG;
break;
case AbstractCode::BUILTIN:
description =
isolate_->builtins()->name(code_object->GetCode()->builtin_index());
tag = CodeEventListener::BUILTIN_TAG;
break;
case AbstractCode::HANDLER:
description = "An IC handler from the snapshot";
tag = CodeEventListener::HANDLER_TAG;
break;
case AbstractCode::KEYED_LOAD_IC:
description = "A keyed load IC from the snapshot";
tag = CodeEventListener::KEYED_LOAD_IC_TAG;
break;
case AbstractCode::LOAD_IC:
description = "A load IC from the snapshot";
tag = CodeEventListener::LOAD_IC_TAG;
break;
case AbstractCode::LOAD_GLOBAL_IC:
description = "A load global IC from the snapshot";
tag = Logger::LOAD_GLOBAL_IC_TAG;
break;
case AbstractCode::CALL_IC:
description = "A call IC from the snapshot";
tag = CodeEventListener::CALL_IC_TAG;
break;
case AbstractCode::STORE_IC:
description = "A store IC from the snapshot";
tag = CodeEventListener::STORE_IC_TAG;
break;
case AbstractCode::KEYED_STORE_IC:
description = "A keyed store IC from the snapshot";
tag = CodeEventListener::KEYED_STORE_IC_TAG;
break;
case AbstractCode::WASM_FUNCTION:
description = "A Wasm function";
tag = CodeEventListener::STUB_TAG;
break;
case AbstractCode::JS_TO_WASM_FUNCTION:
description = "A JavaScript to Wasm adapter";
tag = CodeEventListener::STUB_TAG;
break;
case AbstractCode::WASM_TO_JS_FUNCTION:
description = "A Wasm to JavaScript adapter";
tag = CodeEventListener::STUB_TAG;
break;
case AbstractCode::NUMBER_OF_KINDS:
UNIMPLEMENTED();
}
PROFILE(isolate_, CodeCreateEvent(tag, code_object, description));
}
void Logger::LogCodeObjects() {
Heap* heap = isolate_->heap();
heap->CollectAllGarbage(Heap::kMakeHeapIterableMask,
"Logger::LogCodeObjects");
HeapIterator iterator(heap);
DisallowHeapAllocation no_gc;
for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) {
if (obj->IsCode()) LogCodeObject(obj);
if (obj->IsBytecodeArray()) LogCodeObject(obj);
}
}
void Logger::LogBytecodeHandlers() {
if (!FLAG_ignition) return;
const interpreter::OperandScale kOperandScales[] = {
#define VALUE(Name, _) interpreter::OperandScale::k##Name,
OPERAND_SCALE_LIST(VALUE)
#undef VALUE
};
const int last_index = static_cast<int>(interpreter::Bytecode::kLast);
interpreter::Interpreter* interpreter = isolate_->interpreter();
for (auto operand_scale : kOperandScales) {
for (int index = 0; index <= last_index; ++index) {
interpreter::Bytecode bytecode = interpreter::Bytecodes::FromByte(index);
if (interpreter::Bytecodes::BytecodeHasHandler(bytecode, operand_scale)) {
Code* code = interpreter->GetBytecodeHandler(bytecode, operand_scale);
std::string bytecode_name =
interpreter::Bytecodes::ToString(bytecode, operand_scale);
PROFILE(isolate_, CodeCreateEvent(
CodeEventListener::BYTECODE_HANDLER_TAG,
AbstractCode::cast(code), bytecode_name.c_str()));
}
}
}
}
void Logger::LogExistingFunction(Handle<SharedFunctionInfo> shared,
Handle<AbstractCode> code) {
Handle<String> func_name(shared->DebugName());
if (shared->script()->IsScript()) {
Handle<Script> script(Script::cast(shared->script()));
int line_num = Script::GetLineNumber(script, shared->start_position()) + 1;
int column_num =
Script::GetColumnNumber(script, shared->start_position()) + 1;
if (script->name()->IsString()) {
Handle<String> script_name(String::cast(script->name()));
if (line_num > 0) {
PROFILE(isolate_,
CodeCreateEvent(
Logger::ToNativeByScript(
CodeEventListener::LAZY_COMPILE_TAG, *script),
*code, *shared, *script_name, line_num, column_num));
} else {
// Can't distinguish eval and script here, so always use Script.
PROFILE(isolate_,
CodeCreateEvent(Logger::ToNativeByScript(
CodeEventListener::SCRIPT_TAG, *script),
*code, *shared, *script_name));
}
} else {
PROFILE(isolate_,
CodeCreateEvent(Logger::ToNativeByScript(
CodeEventListener::LAZY_COMPILE_TAG, *script),
*code, *shared, isolate_->heap()->empty_string(),
line_num, column_num));
}
} else if (shared->IsApiFunction()) {
// API function.
FunctionTemplateInfo* fun_data = shared->get_api_func_data();
Object* raw_call_data = fun_data->call_code();
if (!raw_call_data->IsUndefined(isolate_)) {
CallHandlerInfo* call_data = CallHandlerInfo::cast(raw_call_data);
Object* callback_obj = call_data->callback();
Address entry_point = v8::ToCData<Address>(callback_obj);
#if USES_FUNCTION_DESCRIPTORS
entry_point = *FUNCTION_ENTRYPOINT_ADDRESS(entry_point);
#endif
PROFILE(isolate_, CallbackEvent(*func_name, entry_point));
}
} else {
PROFILE(isolate_, CodeCreateEvent(CodeEventListener::LAZY_COMPILE_TAG,
*code, *shared, *func_name));
}
}
void Logger::LogCompiledFunctions() {
Heap* heap = isolate_->heap();
heap->CollectAllGarbage(Heap::kMakeHeapIterableMask,
"Logger::LogCompiledFunctions");
HandleScope scope(isolate_);
const int compiled_funcs_count = EnumerateCompiledFunctions(heap, NULL, NULL);
ScopedVector< Handle<SharedFunctionInfo> > sfis(compiled_funcs_count);
ScopedVector<Handle<AbstractCode> > code_objects(compiled_funcs_count);
EnumerateCompiledFunctions(heap, sfis.start(), code_objects.start());
// During iteration, there can be heap allocation due to
// GetScriptLineNumber call.
for (int i = 0; i < compiled_funcs_count; ++i) {
if (code_objects[i].is_identical_to(isolate_->builtins()->CompileLazy()))
continue;
LogExistingFunction(sfis[i], code_objects[i]);
}
}
void Logger::LogAccessorCallbacks() {
Heap* heap = isolate_->heap();
heap->CollectAllGarbage(Heap::kMakeHeapIterableMask,
"Logger::LogAccessorCallbacks");
HeapIterator iterator(heap);
DisallowHeapAllocation no_gc;
for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) {
if (!obj->IsAccessorInfo()) continue;
AccessorInfo* ai = AccessorInfo::cast(obj);
if (!ai->name()->IsName()) continue;
Address getter_entry = v8::ToCData<Address>(ai->getter());
Name* name = Name::cast(ai->name());
if (getter_entry != 0) {
#if USES_FUNCTION_DESCRIPTORS
getter_entry = *FUNCTION_ENTRYPOINT_ADDRESS(getter_entry);
#endif
PROFILE(isolate_, GetterCallbackEvent(name, getter_entry));
}
Address setter_entry = v8::ToCData<Address>(ai->setter());
if (setter_entry != 0) {
#if USES_FUNCTION_DESCRIPTORS
setter_entry = *FUNCTION_ENTRYPOINT_ADDRESS(setter_entry);
#endif
PROFILE(isolate_, SetterCallbackEvent(name, setter_entry));
}
}
}
static void AddIsolateIdIfNeeded(std::ostream& os, // NOLINT
Isolate* isolate) {
if (FLAG_logfile_per_isolate) os << "isolate-" << isolate << "-";
}
static void PrepareLogFileName(std::ostream& os, // NOLINT
Isolate* isolate, const char* file_name) {
int dir_separator_count = 0;
for (const char* p = file_name; *p; p++) {
if (base::OS::isDirectorySeparator(*p)) dir_separator_count++;
}
for (const char* p = file_name; *p; p++) {
if (dir_separator_count == 0) {
AddIsolateIdIfNeeded(os, isolate);
dir_separator_count--;
}
if (*p == '%') {
p++;
switch (*p) {
case '\0':
// If there's a % at the end of the string we back up
// one character so we can escape the loop properly.
p--;
break;
case 'p':
os << base::OS::GetCurrentProcessId();
break;
case 't':
// %t expands to the current time in milliseconds.
os << static_cast<int64_t>(base::OS::TimeCurrentMillis());
break;
case '%':
// %% expands (contracts really) to %.
os << '%';
break;
default:
// All other %'s expand to themselves.
os << '%' << *p;
break;
}
} else {
if (base::OS::isDirectorySeparator(*p)) dir_separator_count--;
os << *p;
}
}
}
bool Logger::SetUp(Isolate* isolate) {
// Tests and EnsureInitialize() can call this twice in a row. It's harmless.
if (is_initialized_) return true;
is_initialized_ = true;
std::ostringstream log_file_name;
PrepareLogFileName(log_file_name, isolate, FLAG_logfile);
log_->Initialize(log_file_name.str().c_str());
if (FLAG_perf_basic_prof) {
perf_basic_logger_ = new PerfBasicLogger();
addCodeEventListener(perf_basic_logger_);
}
if (FLAG_perf_prof) {
perf_jit_logger_ = new PerfJitLogger();
addCodeEventListener(perf_jit_logger_);
}
if (FLAG_ll_prof) {
ll_logger_ = new LowLevelLogger(log_file_name.str().c_str());
addCodeEventListener(ll_logger_);
}
ticker_ = new Ticker(isolate, kSamplingIntervalMs);
if (Log::InitLogAtStart()) {
is_logging_ = true;
}
if (FLAG_log_internal_timer_events || FLAG_prof_cpp) timer_.Start();
if (FLAG_prof_cpp) {
profiler_ = new Profiler(isolate);
is_logging_ = true;
profiler_->Engage();
}
profiler_listener_.reset();
if (is_logging_) {
addCodeEventListener(this);
}
return true;
}
void Logger::SetCodeEventHandler(uint32_t options,
JitCodeEventHandler event_handler) {
if (jit_logger_) {
removeCodeEventListener(jit_logger_);
delete jit_logger_;
jit_logger_ = NULL;
}
if (event_handler) {
jit_logger_ = new JitLogger(event_handler);
addCodeEventListener(jit_logger_);
if (options & kJitCodeEventEnumExisting) {
HandleScope scope(isolate_);
LogCodeObjects();
LogCompiledFunctions();
}
}
}
void Logger::SetUpProfilerListener() {
if (!is_initialized_) return;
if (profiler_listener_.get() == nullptr) {
profiler_listener_.reset(new ProfilerListener(isolate_));
}
addCodeEventListener(profiler_listener_.get());
}
void Logger::TearDownProfilerListener() {
if (profiler_listener_->HasObservers()) return;
removeCodeEventListener(profiler_listener_.get());
}
sampler::Sampler* Logger::sampler() {
return ticker_;
}
FILE* Logger::TearDown() {
if (!is_initialized_) return NULL;
is_initialized_ = false;
// Stop the profiler before closing the file.
if (profiler_ != NULL) {
profiler_->Disengage();
delete profiler_;
profiler_ = NULL;
}
delete ticker_;
ticker_ = NULL;
if (perf_basic_logger_) {
removeCodeEventListener(perf_basic_logger_);
delete perf_basic_logger_;
perf_basic_logger_ = NULL;
}
if (perf_jit_logger_) {
removeCodeEventListener(perf_jit_logger_);
delete perf_jit_logger_;
perf_jit_logger_ = NULL;
}
if (ll_logger_) {
removeCodeEventListener(ll_logger_);
delete ll_logger_;
ll_logger_ = NULL;
}
if (jit_logger_) {
removeCodeEventListener(jit_logger_);
delete jit_logger_;
jit_logger_ = NULL;
}
if (profiler_listener_.get() != nullptr) {
removeCodeEventListener(profiler_listener_.get());
}
return log_->Close();
}
} // namespace internal
} // namespace v8