blob: cd6b90ce956d9c46de5d407655bfb07b292b5b06 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_X64
#include "src/base/bits.h"
#include "src/base/division-by-constant.h"
#include "src/bootstrapper.h"
#include "src/codegen.h"
#include "src/debug/debug.h"
#include "src/heap/heap.h"
#include "src/register-configuration.h"
#include "src/x64/assembler-x64.h"
#include "src/x64/macro-assembler-x64.h"
namespace v8 {
namespace internal {
MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size,
CodeObjectRequired create_code_object)
: Assembler(arg_isolate, buffer, size),
generating_stub_(false),
has_frame_(false),
root_array_available_(true) {
if (create_code_object == CodeObjectRequired::kYes) {
code_object_ =
Handle<Object>::New(isolate()->heap()->undefined_value(), isolate());
}
}
static const int64_t kInvalidRootRegisterDelta = -1;
int64_t MacroAssembler::RootRegisterDelta(ExternalReference other) {
if (predictable_code_size() &&
(other.address() < reinterpret_cast<Address>(isolate()) ||
other.address() >= reinterpret_cast<Address>(isolate() + 1))) {
return kInvalidRootRegisterDelta;
}
Address roots_register_value = kRootRegisterBias +
reinterpret_cast<Address>(isolate()->heap()->roots_array_start());
int64_t delta = kInvalidRootRegisterDelta; // Bogus initialization.
if (kPointerSize == kInt64Size) {
delta = other.address() - roots_register_value;
} else {
// For x32, zero extend the address to 64-bit and calculate the delta.
uint64_t o = static_cast<uint32_t>(
reinterpret_cast<intptr_t>(other.address()));
uint64_t r = static_cast<uint32_t>(
reinterpret_cast<intptr_t>(roots_register_value));
delta = o - r;
}
return delta;
}
Operand MacroAssembler::ExternalOperand(ExternalReference target,
Register scratch) {
if (root_array_available_ && !serializer_enabled()) {
int64_t delta = RootRegisterDelta(target);
if (delta != kInvalidRootRegisterDelta && is_int32(delta)) {
return Operand(kRootRegister, static_cast<int32_t>(delta));
}
}
Move(scratch, target);
return Operand(scratch, 0);
}
void MacroAssembler::Load(Register destination, ExternalReference source) {
if (root_array_available_ && !serializer_enabled()) {
int64_t delta = RootRegisterDelta(source);
if (delta != kInvalidRootRegisterDelta && is_int32(delta)) {
movp(destination, Operand(kRootRegister, static_cast<int32_t>(delta)));
return;
}
}
// Safe code.
if (destination.is(rax)) {
load_rax(source);
} else {
Move(kScratchRegister, source);
movp(destination, Operand(kScratchRegister, 0));
}
}
void MacroAssembler::Store(ExternalReference destination, Register source) {
if (root_array_available_ && !serializer_enabled()) {
int64_t delta = RootRegisterDelta(destination);
if (delta != kInvalidRootRegisterDelta && is_int32(delta)) {
movp(Operand(kRootRegister, static_cast<int32_t>(delta)), source);
return;
}
}
// Safe code.
if (source.is(rax)) {
store_rax(destination);
} else {
Move(kScratchRegister, destination);
movp(Operand(kScratchRegister, 0), source);
}
}
void MacroAssembler::LoadAddress(Register destination,
ExternalReference source) {
if (root_array_available_ && !serializer_enabled()) {
int64_t delta = RootRegisterDelta(source);
if (delta != kInvalidRootRegisterDelta && is_int32(delta)) {
leap(destination, Operand(kRootRegister, static_cast<int32_t>(delta)));
return;
}
}
// Safe code.
Move(destination, source);
}
int MacroAssembler::LoadAddressSize(ExternalReference source) {
if (root_array_available_ && !serializer_enabled()) {
// This calculation depends on the internals of LoadAddress.
// It's correctness is ensured by the asserts in the Call
// instruction below.
int64_t delta = RootRegisterDelta(source);
if (delta != kInvalidRootRegisterDelta && is_int32(delta)) {
// Operand is leap(scratch, Operand(kRootRegister, delta));
// Opcodes : REX.W 8D ModRM Disp8/Disp32 - 4 or 7.
int size = 4;
if (!is_int8(static_cast<int32_t>(delta))) {
size += 3; // Need full four-byte displacement in lea.
}
return size;
}
}
// Size of movp(destination, src);
return Assembler::kMoveAddressIntoScratchRegisterInstructionLength;
}
void MacroAssembler::PushAddress(ExternalReference source) {
int64_t address = reinterpret_cast<int64_t>(source.address());
if (is_int32(address) && !serializer_enabled()) {
if (emit_debug_code()) {
Move(kScratchRegister, kZapValue, Assembler::RelocInfoNone());
}
Push(Immediate(static_cast<int32_t>(address)));
return;
}
LoadAddress(kScratchRegister, source);
Push(kScratchRegister);
}
void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index) {
DCHECK(root_array_available_);
movp(destination, Operand(kRootRegister,
(index << kPointerSizeLog2) - kRootRegisterBias));
}
void MacroAssembler::LoadRootIndexed(Register destination,
Register variable_offset,
int fixed_offset) {
DCHECK(root_array_available_);
movp(destination,
Operand(kRootRegister,
variable_offset, times_pointer_size,
(fixed_offset << kPointerSizeLog2) - kRootRegisterBias));
}
void MacroAssembler::StoreRoot(Register source, Heap::RootListIndex index) {
DCHECK(Heap::RootCanBeWrittenAfterInitialization(index));
DCHECK(root_array_available_);
movp(Operand(kRootRegister, (index << kPointerSizeLog2) - kRootRegisterBias),
source);
}
void MacroAssembler::PushRoot(Heap::RootListIndex index) {
DCHECK(root_array_available_);
Push(Operand(kRootRegister, (index << kPointerSizeLog2) - kRootRegisterBias));
}
void MacroAssembler::CompareRoot(Register with, Heap::RootListIndex index) {
DCHECK(root_array_available_);
cmpp(with, Operand(kRootRegister,
(index << kPointerSizeLog2) - kRootRegisterBias));
}
void MacroAssembler::CompareRoot(const Operand& with,
Heap::RootListIndex index) {
DCHECK(root_array_available_);
DCHECK(!with.AddressUsesRegister(kScratchRegister));
LoadRoot(kScratchRegister, index);
cmpp(with, kScratchRegister);
}
void MacroAssembler::RememberedSetHelper(Register object, // For debug tests.
Register addr,
Register scratch,
SaveFPRegsMode save_fp,
RememberedSetFinalAction and_then) {
if (emit_debug_code()) {
Label ok;
JumpIfNotInNewSpace(object, scratch, &ok, Label::kNear);
int3();
bind(&ok);
}
// Load store buffer top.
ExternalReference store_buffer =
ExternalReference::store_buffer_top(isolate());
movp(scratch, ExternalOperand(store_buffer));
// Store pointer to buffer.
movp(Operand(scratch, 0), addr);
// Increment buffer top.
addp(scratch, Immediate(kPointerSize));
// Write back new top of buffer.
movp(ExternalOperand(store_buffer), scratch);
// Call stub on end of buffer.
Label done;
// Check for end of buffer.
testp(scratch, Immediate(StoreBuffer::kStoreBufferMask));
if (and_then == kReturnAtEnd) {
Label buffer_overflowed;
j(equal, &buffer_overflowed, Label::kNear);
ret(0);
bind(&buffer_overflowed);
} else {
DCHECK(and_then == kFallThroughAtEnd);
j(not_equal, &done, Label::kNear);
}
StoreBufferOverflowStub store_buffer_overflow(isolate(), save_fp);
CallStub(&store_buffer_overflow);
if (and_then == kReturnAtEnd) {
ret(0);
} else {
DCHECK(and_then == kFallThroughAtEnd);
bind(&done);
}
}
void MacroAssembler::InNewSpace(Register object,
Register scratch,
Condition cc,
Label* branch,
Label::Distance distance) {
const int mask =
(1 << MemoryChunk::IN_FROM_SPACE) | (1 << MemoryChunk::IN_TO_SPACE);
CheckPageFlag(object, scratch, mask, cc, branch, distance);
}
void MacroAssembler::RecordWriteField(
Register object,
int offset,
Register value,
Register dst,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action,
SmiCheck smi_check,
PointersToHereCheck pointers_to_here_check_for_value) {
// First, check if a write barrier is even needed. The tests below
// catch stores of Smis.
Label done;
// Skip barrier if writing a smi.
if (smi_check == INLINE_SMI_CHECK) {
JumpIfSmi(value, &done);
}
// Although the object register is tagged, the offset is relative to the start
// of the object, so so offset must be a multiple of kPointerSize.
DCHECK(IsAligned(offset, kPointerSize));
leap(dst, FieldOperand(object, offset));
if (emit_debug_code()) {
Label ok;
testb(dst, Immediate((1 << kPointerSizeLog2) - 1));
j(zero, &ok, Label::kNear);
int3();
bind(&ok);
}
RecordWrite(object, dst, value, save_fp, remembered_set_action,
OMIT_SMI_CHECK, pointers_to_here_check_for_value);
bind(&done);
// Clobber clobbered input registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
Move(value, kZapValue, Assembler::RelocInfoNone());
Move(dst, kZapValue, Assembler::RelocInfoNone());
}
}
void MacroAssembler::RecordWriteArray(
Register object,
Register value,
Register index,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action,
SmiCheck smi_check,
PointersToHereCheck pointers_to_here_check_for_value) {
// First, check if a write barrier is even needed. The tests below
// catch stores of Smis.
Label done;
// Skip barrier if writing a smi.
if (smi_check == INLINE_SMI_CHECK) {
JumpIfSmi(value, &done);
}
// Array access: calculate the destination address. Index is not a smi.
Register dst = index;
leap(dst, Operand(object, index, times_pointer_size,
FixedArray::kHeaderSize - kHeapObjectTag));
RecordWrite(object, dst, value, save_fp, remembered_set_action,
OMIT_SMI_CHECK, pointers_to_here_check_for_value);
bind(&done);
// Clobber clobbered input registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
Move(value, kZapValue, Assembler::RelocInfoNone());
Move(index, kZapValue, Assembler::RelocInfoNone());
}
}
void MacroAssembler::RecordWriteForMap(Register object,
Register map,
Register dst,
SaveFPRegsMode fp_mode) {
DCHECK(!object.is(kScratchRegister));
DCHECK(!object.is(map));
DCHECK(!object.is(dst));
DCHECK(!map.is(dst));
AssertNotSmi(object);
if (emit_debug_code()) {
Label ok;
if (map.is(kScratchRegister)) pushq(map);
CompareMap(map, isolate()->factory()->meta_map());
if (map.is(kScratchRegister)) popq(map);
j(equal, &ok, Label::kNear);
int3();
bind(&ok);
}
if (!FLAG_incremental_marking) {
return;
}
if (emit_debug_code()) {
Label ok;
if (map.is(kScratchRegister)) pushq(map);
cmpp(map, FieldOperand(object, HeapObject::kMapOffset));
if (map.is(kScratchRegister)) popq(map);
j(equal, &ok, Label::kNear);
int3();
bind(&ok);
}
// Compute the address.
leap(dst, FieldOperand(object, HeapObject::kMapOffset));
// First, check if a write barrier is even needed. The tests below
// catch stores of smis and stores into the young generation.
Label done;
// A single check of the map's pages interesting flag suffices, since it is
// only set during incremental collection, and then it's also guaranteed that
// the from object's page's interesting flag is also set. This optimization
// relies on the fact that maps can never be in new space.
CheckPageFlag(map,
map, // Used as scratch.
MemoryChunk::kPointersToHereAreInterestingMask,
zero,
&done,
Label::kNear);
RecordWriteStub stub(isolate(), object, map, dst, OMIT_REMEMBERED_SET,
fp_mode);
CallStub(&stub);
bind(&done);
// Count number of write barriers in generated code.
isolate()->counters()->write_barriers_static()->Increment();
IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1);
// Clobber clobbered registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
Move(dst, kZapValue, Assembler::RelocInfoNone());
Move(map, kZapValue, Assembler::RelocInfoNone());
}
}
void MacroAssembler::RecordWrite(
Register object,
Register address,
Register value,
SaveFPRegsMode fp_mode,
RememberedSetAction remembered_set_action,
SmiCheck smi_check,
PointersToHereCheck pointers_to_here_check_for_value) {
DCHECK(!object.is(value));
DCHECK(!object.is(address));
DCHECK(!value.is(address));
AssertNotSmi(object);
if (remembered_set_action == OMIT_REMEMBERED_SET &&
!FLAG_incremental_marking) {
return;
}
if (emit_debug_code()) {
Label ok;
cmpp(value, Operand(address, 0));
j(equal, &ok, Label::kNear);
int3();
bind(&ok);
}
// First, check if a write barrier is even needed. The tests below
// catch stores of smis and stores into the young generation.
Label done;
if (smi_check == INLINE_SMI_CHECK) {
// Skip barrier if writing a smi.
JumpIfSmi(value, &done);
}
if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) {
CheckPageFlag(value,
value, // Used as scratch.
MemoryChunk::kPointersToHereAreInterestingMask,
zero,
&done,
Label::kNear);
}
CheckPageFlag(object,
value, // Used as scratch.
MemoryChunk::kPointersFromHereAreInterestingMask,
zero,
&done,
Label::kNear);
RecordWriteStub stub(isolate(), object, value, address, remembered_set_action,
fp_mode);
CallStub(&stub);
bind(&done);
// Count number of write barriers in generated code.
isolate()->counters()->write_barriers_static()->Increment();
IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1);
// Clobber clobbered registers when running with the debug-code flag
// turned on to provoke errors.
if (emit_debug_code()) {
Move(address, kZapValue, Assembler::RelocInfoNone());
Move(value, kZapValue, Assembler::RelocInfoNone());
}
}
void MacroAssembler::RecordWriteCodeEntryField(Register js_function,
Register code_entry,
Register scratch) {
const int offset = JSFunction::kCodeEntryOffset;
// The input registers are fixed to make calling the C write barrier function
// easier.
DCHECK(js_function.is(rdi));
DCHECK(code_entry.is(rcx));
DCHECK(scratch.is(r15));
// Since a code entry (value) is always in old space, we don't need to update
// remembered set. If incremental marking is off, there is nothing for us to
// do.
if (!FLAG_incremental_marking) return;
AssertNotSmi(js_function);
if (emit_debug_code()) {
Label ok;
leap(scratch, FieldOperand(js_function, offset));
cmpp(code_entry, Operand(scratch, 0));
j(equal, &ok, Label::kNear);
int3();
bind(&ok);
}
// First, check if a write barrier is even needed. The tests below
// catch stores of Smis and stores into young gen.
Label done;
CheckPageFlag(code_entry, scratch,
MemoryChunk::kPointersToHereAreInterestingMask, zero, &done,
Label::kNear);
CheckPageFlag(js_function, scratch,
MemoryChunk::kPointersFromHereAreInterestingMask, zero, &done,
Label::kNear);
// Save input registers.
Push(js_function);
Push(code_entry);
const Register dst = scratch;
leap(dst, FieldOperand(js_function, offset));
// Save caller-saved registers.
PushCallerSaved(kDontSaveFPRegs, js_function, code_entry);
int argument_count = 3;
PrepareCallCFunction(argument_count);
// Load the argument registers.
if (arg_reg_1.is(rcx)) {
// Windows calling convention.
DCHECK(arg_reg_2.is(rdx) && arg_reg_3.is(r8));
movp(arg_reg_1, js_function); // rcx gets rdi.
movp(arg_reg_2, dst); // rdx gets r15.
} else {
// AMD64 calling convention.
DCHECK(arg_reg_1.is(rdi) && arg_reg_2.is(rsi) && arg_reg_3.is(rdx));
// rdi is already loaded with js_function.
movp(arg_reg_2, dst); // rsi gets r15.
}
Move(arg_reg_3, ExternalReference::isolate_address(isolate()));
{
AllowExternalCallThatCantCauseGC scope(this);
CallCFunction(
ExternalReference::incremental_marking_record_write_code_entry_function(
isolate()),
argument_count);
}
// Restore caller-saved registers.
PopCallerSaved(kDontSaveFPRegs, js_function, code_entry);
// Restore input registers.
Pop(code_entry);
Pop(js_function);
bind(&done);
}
void MacroAssembler::Assert(Condition cc, BailoutReason reason) {
if (emit_debug_code()) Check(cc, reason);
}
void MacroAssembler::AssertFastElements(Register elements) {
if (emit_debug_code()) {
Label ok;
CompareRoot(FieldOperand(elements, HeapObject::kMapOffset),
Heap::kFixedArrayMapRootIndex);
j(equal, &ok, Label::kNear);
CompareRoot(FieldOperand(elements, HeapObject::kMapOffset),
Heap::kFixedDoubleArrayMapRootIndex);
j(equal, &ok, Label::kNear);
CompareRoot(FieldOperand(elements, HeapObject::kMapOffset),
Heap::kFixedCOWArrayMapRootIndex);
j(equal, &ok, Label::kNear);
Abort(kJSObjectWithFastElementsMapHasSlowElements);
bind(&ok);
}
}
void MacroAssembler::Check(Condition cc, BailoutReason reason) {
Label L;
j(cc, &L, Label::kNear);
Abort(reason);
// Control will not return here.
bind(&L);
}
void MacroAssembler::CheckStackAlignment() {
int frame_alignment = base::OS::ActivationFrameAlignment();
int frame_alignment_mask = frame_alignment - 1;
if (frame_alignment > kPointerSize) {
DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
Label alignment_as_expected;
testp(rsp, Immediate(frame_alignment_mask));
j(zero, &alignment_as_expected, Label::kNear);
// Abort if stack is not aligned.
int3();
bind(&alignment_as_expected);
}
}
void MacroAssembler::NegativeZeroTest(Register result,
Register op,
Label* then_label) {
Label ok;
testl(result, result);
j(not_zero, &ok, Label::kNear);
testl(op, op);
j(sign, then_label);
bind(&ok);
}
void MacroAssembler::Abort(BailoutReason reason) {
#ifdef DEBUG
const char* msg = GetBailoutReason(reason);
if (msg != NULL) {
RecordComment("Abort message: ");
RecordComment(msg);
}
if (FLAG_trap_on_abort) {
int3();
return;
}
#endif
Move(kScratchRegister, Smi::FromInt(static_cast<int>(reason)),
Assembler::RelocInfoNone());
Push(kScratchRegister);
if (!has_frame_) {
// We don't actually want to generate a pile of code for this, so just
// claim there is a stack frame, without generating one.
FrameScope scope(this, StackFrame::NONE);
CallRuntime(Runtime::kAbort);
} else {
CallRuntime(Runtime::kAbort);
}
// Control will not return here.
int3();
}
void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id) {
DCHECK(AllowThisStubCall(stub)); // Calls are not allowed in some stubs
Call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id);
}
void MacroAssembler::TailCallStub(CodeStub* stub) {
Jump(stub->GetCode(), RelocInfo::CODE_TARGET);
}
void MacroAssembler::StubReturn(int argc) {
DCHECK(argc >= 1 && generating_stub());
ret((argc - 1) * kPointerSize);
}
bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
return has_frame_ || !stub->SometimesSetsUpAFrame();
}
void MacroAssembler::IndexFromHash(Register hash, Register index) {
// The assert checks that the constants for the maximum number of digits
// for an array index cached in the hash field and the number of bits
// reserved for it does not conflict.
DCHECK(TenToThe(String::kMaxCachedArrayIndexLength) <
(1 << String::kArrayIndexValueBits));
if (!hash.is(index)) {
movl(index, hash);
}
DecodeFieldToSmi<String::ArrayIndexValueBits>(index);
}
void MacroAssembler::CallRuntime(const Runtime::Function* f,
int num_arguments,
SaveFPRegsMode save_doubles) {
// If the expected number of arguments of the runtime function is
// constant, we check that the actual number of arguments match the
// expectation.
CHECK(f->nargs < 0 || f->nargs == num_arguments);
// TODO(1236192): Most runtime routines don't need the number of
// arguments passed in because it is constant. At some point we
// should remove this need and make the runtime routine entry code
// smarter.
Set(rax, num_arguments);
LoadAddress(rbx, ExternalReference(f, isolate()));
CEntryStub ces(isolate(), f->result_size, save_doubles);
CallStub(&ces);
}
void MacroAssembler::CallExternalReference(const ExternalReference& ext,
int num_arguments) {
Set(rax, num_arguments);
LoadAddress(rbx, ext);
CEntryStub stub(isolate(), 1);
CallStub(&stub);
}
void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) {
// ----------- S t a t e -------------
// -- rsp[0] : return address
// -- rsp[8] : argument num_arguments - 1
// ...
// -- rsp[8 * num_arguments] : argument 0 (receiver)
//
// For runtime functions with variable arguments:
// -- rax : number of arguments
// -----------------------------------
const Runtime::Function* function = Runtime::FunctionForId(fid);
DCHECK_EQ(1, function->result_size);
if (function->nargs >= 0) {
Set(rax, function->nargs);
}
JumpToExternalReference(ExternalReference(fid, isolate()));
}
void MacroAssembler::JumpToExternalReference(const ExternalReference& ext) {
// Set the entry point and jump to the C entry runtime stub.
LoadAddress(rbx, ext);
CEntryStub ces(isolate(), 1);
jmp(ces.GetCode(), RelocInfo::CODE_TARGET);
}
#define REG(Name) \
{ Register::kCode_##Name }
static const Register saved_regs[] = {
REG(rax), REG(rcx), REG(rdx), REG(rbx), REG(rbp), REG(rsi), REG(rdi), REG(r8),
REG(r9), REG(r10), REG(r11)
};
#undef REG
static const int kNumberOfSavedRegs = sizeof(saved_regs) / sizeof(Register);
void MacroAssembler::PushCallerSaved(SaveFPRegsMode fp_mode,
Register exclusion1,
Register exclusion2,
Register exclusion3) {
// We don't allow a GC during a store buffer overflow so there is no need to
// store the registers in any particular way, but we do have to store and
// restore them.
for (int i = 0; i < kNumberOfSavedRegs; i++) {
Register reg = saved_regs[i];
if (!reg.is(exclusion1) && !reg.is(exclusion2) && !reg.is(exclusion3)) {
pushq(reg);
}
}
// R12 to r15 are callee save on all platforms.
if (fp_mode == kSaveFPRegs) {
subp(rsp, Immediate(kDoubleSize * XMMRegister::kMaxNumRegisters));
for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
XMMRegister reg = XMMRegister::from_code(i);
Movsd(Operand(rsp, i * kDoubleSize), reg);
}
}
}
void MacroAssembler::PopCallerSaved(SaveFPRegsMode fp_mode,
Register exclusion1,
Register exclusion2,
Register exclusion3) {
if (fp_mode == kSaveFPRegs) {
for (int i = 0; i < XMMRegister::kMaxNumRegisters; i++) {
XMMRegister reg = XMMRegister::from_code(i);
Movsd(reg, Operand(rsp, i * kDoubleSize));
}
addp(rsp, Immediate(kDoubleSize * XMMRegister::kMaxNumRegisters));
}
for (int i = kNumberOfSavedRegs - 1; i >= 0; i--) {
Register reg = saved_regs[i];
if (!reg.is(exclusion1) && !reg.is(exclusion2) && !reg.is(exclusion3)) {
popq(reg);
}
}
}
void MacroAssembler::Cvtss2sd(XMMRegister dst, XMMRegister src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvtss2sd(dst, src, src);
} else {
cvtss2sd(dst, src);
}
}
void MacroAssembler::Cvtss2sd(XMMRegister dst, const Operand& src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvtss2sd(dst, dst, src);
} else {
cvtss2sd(dst, src);
}
}
void MacroAssembler::Cvtsd2ss(XMMRegister dst, XMMRegister src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvtsd2ss(dst, src, src);
} else {
cvtsd2ss(dst, src);
}
}
void MacroAssembler::Cvtsd2ss(XMMRegister dst, const Operand& src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvtsd2ss(dst, dst, src);
} else {
cvtsd2ss(dst, src);
}
}
void MacroAssembler::Cvtlsi2sd(XMMRegister dst, Register src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vxorpd(dst, dst, dst);
vcvtlsi2sd(dst, dst, src);
} else {
xorpd(dst, dst);
cvtlsi2sd(dst, src);
}
}
void MacroAssembler::Cvtlsi2sd(XMMRegister dst, const Operand& src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vxorpd(dst, dst, dst);
vcvtlsi2sd(dst, dst, src);
} else {
xorpd(dst, dst);
cvtlsi2sd(dst, src);
}
}
void MacroAssembler::Cvtlsi2ss(XMMRegister dst, Register src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vxorps(dst, dst, dst);
vcvtlsi2ss(dst, dst, src);
} else {
xorps(dst, dst);
cvtlsi2ss(dst, src);
}
}
void MacroAssembler::Cvtlsi2ss(XMMRegister dst, const Operand& src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vxorps(dst, dst, dst);
vcvtlsi2ss(dst, dst, src);
} else {
xorps(dst, dst);
cvtlsi2ss(dst, src);
}
}
void MacroAssembler::Cvtqsi2ss(XMMRegister dst, Register src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vxorps(dst, dst, dst);
vcvtqsi2ss(dst, dst, src);
} else {
xorps(dst, dst);
cvtqsi2ss(dst, src);
}
}
void MacroAssembler::Cvtqsi2ss(XMMRegister dst, const Operand& src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vxorps(dst, dst, dst);
vcvtqsi2ss(dst, dst, src);
} else {
xorps(dst, dst);
cvtqsi2ss(dst, src);
}
}
void MacroAssembler::Cvtqsi2sd(XMMRegister dst, Register src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vxorpd(dst, dst, dst);
vcvtqsi2sd(dst, dst, src);
} else {
xorpd(dst, dst);
cvtqsi2sd(dst, src);
}
}
void MacroAssembler::Cvtqsi2sd(XMMRegister dst, const Operand& src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vxorpd(dst, dst, dst);
vcvtqsi2sd(dst, dst, src);
} else {
xorpd(dst, dst);
cvtqsi2sd(dst, src);
}
}
void MacroAssembler::Cvtqui2ss(XMMRegister dst, Register src, Register tmp) {
Label msb_set_src;
Label jmp_return;
testq(src, src);
j(sign, &msb_set_src, Label::kNear);
Cvtqsi2ss(dst, src);
jmp(&jmp_return, Label::kNear);
bind(&msb_set_src);
movq(tmp, src);
shrq(src, Immediate(1));
// Recover the least significant bit to avoid rounding errors.
andq(tmp, Immediate(1));
orq(src, tmp);
Cvtqsi2ss(dst, src);
addss(dst, dst);
bind(&jmp_return);
}
void MacroAssembler::Cvtqui2sd(XMMRegister dst, Register src, Register tmp) {
Label msb_set_src;
Label jmp_return;
testq(src, src);
j(sign, &msb_set_src, Label::kNear);
Cvtqsi2sd(dst, src);
jmp(&jmp_return, Label::kNear);
bind(&msb_set_src);
movq(tmp, src);
shrq(src, Immediate(1));
andq(tmp, Immediate(1));
orq(src, tmp);
Cvtqsi2sd(dst, src);
addsd(dst, dst);
bind(&jmp_return);
}
void MacroAssembler::Cvtsd2si(Register dst, XMMRegister src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvtsd2si(dst, src);
} else {
cvtsd2si(dst, src);
}
}
void MacroAssembler::Cvttss2si(Register dst, XMMRegister src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvttss2si(dst, src);
} else {
cvttss2si(dst, src);
}
}
void MacroAssembler::Cvttss2si(Register dst, const Operand& src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvttss2si(dst, src);
} else {
cvttss2si(dst, src);
}
}
void MacroAssembler::Cvttsd2si(Register dst, XMMRegister src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvttsd2si(dst, src);
} else {
cvttsd2si(dst, src);
}
}
void MacroAssembler::Cvttsd2si(Register dst, const Operand& src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvttsd2si(dst, src);
} else {
cvttsd2si(dst, src);
}
}
void MacroAssembler::Cvttss2siq(Register dst, XMMRegister src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvttss2siq(dst, src);
} else {
cvttss2siq(dst, src);
}
}
void MacroAssembler::Cvttss2siq(Register dst, const Operand& src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvttss2siq(dst, src);
} else {
cvttss2siq(dst, src);
}
}
void MacroAssembler::Cvttsd2siq(Register dst, XMMRegister src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvttsd2siq(dst, src);
} else {
cvttsd2siq(dst, src);
}
}
void MacroAssembler::Cvttsd2siq(Register dst, const Operand& src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vcvttsd2siq(dst, src);
} else {
cvttsd2siq(dst, src);
}
}
void MacroAssembler::Load(Register dst, const Operand& src, Representation r) {
DCHECK(!r.IsDouble());
if (r.IsInteger8()) {
movsxbq(dst, src);
} else if (r.IsUInteger8()) {
movzxbl(dst, src);
} else if (r.IsInteger16()) {
movsxwq(dst, src);
} else if (r.IsUInteger16()) {
movzxwl(dst, src);
} else if (r.IsInteger32()) {
movl(dst, src);
} else {
movp(dst, src);
}
}
void MacroAssembler::Store(const Operand& dst, Register src, Representation r) {
DCHECK(!r.IsDouble());
if (r.IsInteger8() || r.IsUInteger8()) {
movb(dst, src);
} else if (r.IsInteger16() || r.IsUInteger16()) {
movw(dst, src);
} else if (r.IsInteger32()) {
movl(dst, src);
} else {
if (r.IsHeapObject()) {
AssertNotSmi(src);
} else if (r.IsSmi()) {
AssertSmi(src);
}
movp(dst, src);
}
}
void MacroAssembler::Set(Register dst, int64_t x) {
if (x == 0) {
xorl(dst, dst);
} else if (is_uint32(x)) {
movl(dst, Immediate(static_cast<uint32_t>(x)));
} else if (is_int32(x)) {
movq(dst, Immediate(static_cast<int32_t>(x)));
} else {
movq(dst, x);
}
}
void MacroAssembler::Set(const Operand& dst, intptr_t x) {
if (kPointerSize == kInt64Size) {
if (is_int32(x)) {
movp(dst, Immediate(static_cast<int32_t>(x)));
} else {
Set(kScratchRegister, x);
movp(dst, kScratchRegister);
}
} else {
movp(dst, Immediate(static_cast<int32_t>(x)));
}
}
// ----------------------------------------------------------------------------
// Smi tagging, untagging and tag detection.
bool MacroAssembler::IsUnsafeInt(const int32_t x) {
static const int kMaxBits = 17;
return !is_intn(x, kMaxBits);
}
void MacroAssembler::SafeMove(Register dst, Smi* src) {
DCHECK(!dst.is(kScratchRegister));
if (IsUnsafeInt(src->value()) && jit_cookie() != 0) {
if (SmiValuesAre32Bits()) {
// JIT cookie can be converted to Smi.
Move(dst, Smi::FromInt(src->value() ^ jit_cookie()));
Move(kScratchRegister, Smi::FromInt(jit_cookie()));
xorp(dst, kScratchRegister);
} else {
DCHECK(SmiValuesAre31Bits());
int32_t value = static_cast<int32_t>(reinterpret_cast<intptr_t>(src));
movp(dst, Immediate(value ^ jit_cookie()));
xorp(dst, Immediate(jit_cookie()));
}
} else {
Move(dst, src);
}
}
void MacroAssembler::SafePush(Smi* src) {
if (IsUnsafeInt(src->value()) && jit_cookie() != 0) {
if (SmiValuesAre32Bits()) {
// JIT cookie can be converted to Smi.
Push(Smi::FromInt(src->value() ^ jit_cookie()));
Move(kScratchRegister, Smi::FromInt(jit_cookie()));
xorp(Operand(rsp, 0), kScratchRegister);
} else {
DCHECK(SmiValuesAre31Bits());
int32_t value = static_cast<int32_t>(reinterpret_cast<intptr_t>(src));
Push(Immediate(value ^ jit_cookie()));
xorp(Operand(rsp, 0), Immediate(jit_cookie()));
}
} else {
Push(src);
}
}
Register MacroAssembler::GetSmiConstant(Smi* source) {
STATIC_ASSERT(kSmiTag == 0);
int value = source->value();
if (value == 0) {
xorl(kScratchRegister, kScratchRegister);
return kScratchRegister;
}
LoadSmiConstant(kScratchRegister, source);
return kScratchRegister;
}
void MacroAssembler::LoadSmiConstant(Register dst, Smi* source) {
STATIC_ASSERT(kSmiTag == 0);
int value = source->value();
if (value == 0) {
xorl(dst, dst);
} else {
Move(dst, source, Assembler::RelocInfoNone());
}
}
void MacroAssembler::Integer32ToSmi(Register dst, Register src) {
STATIC_ASSERT(kSmiTag == 0);
if (!dst.is(src)) {
movl(dst, src);
}
shlp(dst, Immediate(kSmiShift));
}
void MacroAssembler::Integer32ToSmiField(const Operand& dst, Register src) {
if (emit_debug_code()) {
testb(dst, Immediate(0x01));
Label ok;
j(zero, &ok, Label::kNear);
Abort(kInteger32ToSmiFieldWritingToNonSmiLocation);
bind(&ok);
}
if (SmiValuesAre32Bits()) {
DCHECK(kSmiShift % kBitsPerByte == 0);
movl(Operand(dst, kSmiShift / kBitsPerByte), src);
} else {
DCHECK(SmiValuesAre31Bits());
Integer32ToSmi(kScratchRegister, src);
movp(dst, kScratchRegister);
}
}
void MacroAssembler::Integer64PlusConstantToSmi(Register dst,
Register src,
int constant) {
if (dst.is(src)) {
addl(dst, Immediate(constant));
} else {
leal(dst, Operand(src, constant));
}
shlp(dst, Immediate(kSmiShift));
}
void MacroAssembler::SmiToInteger32(Register dst, Register src) {
STATIC_ASSERT(kSmiTag == 0);
if (!dst.is(src)) {
movp(dst, src);
}
if (SmiValuesAre32Bits()) {
shrp(dst, Immediate(kSmiShift));
} else {
DCHECK(SmiValuesAre31Bits());
sarl(dst, Immediate(kSmiShift));
}
}
void MacroAssembler::SmiToInteger32(Register dst, const Operand& src) {
if (SmiValuesAre32Bits()) {
movl(dst, Operand(src, kSmiShift / kBitsPerByte));
} else {
DCHECK(SmiValuesAre31Bits());
movl(dst, src);
sarl(dst, Immediate(kSmiShift));
}
}
void MacroAssembler::SmiToInteger64(Register dst, Register src) {
STATIC_ASSERT(kSmiTag == 0);
if (!dst.is(src)) {
movp(dst, src);
}
sarp(dst, Immediate(kSmiShift));
if (kPointerSize == kInt32Size) {
// Sign extend to 64-bit.
movsxlq(dst, dst);
}
}
void MacroAssembler::SmiToInteger64(Register dst, const Operand& src) {
if (SmiValuesAre32Bits()) {
movsxlq(dst, Operand(src, kSmiShift / kBitsPerByte));
} else {
DCHECK(SmiValuesAre31Bits());
movp(dst, src);
SmiToInteger64(dst, dst);
}
}
void MacroAssembler::SmiTest(Register src) {
AssertSmi(src);
testp(src, src);
}
void MacroAssembler::SmiCompare(Register smi1, Register smi2) {
AssertSmi(smi1);
AssertSmi(smi2);
cmpp(smi1, smi2);
}
void MacroAssembler::SmiCompare(Register dst, Smi* src) {
AssertSmi(dst);
Cmp(dst, src);
}
void MacroAssembler::Cmp(Register dst, Smi* src) {
DCHECK(!dst.is(kScratchRegister));
if (src->value() == 0) {
testp(dst, dst);
} else {
Register constant_reg = GetSmiConstant(src);
cmpp(dst, constant_reg);
}
}
void MacroAssembler::SmiCompare(Register dst, const Operand& src) {
AssertSmi(dst);
AssertSmi(src);
cmpp(dst, src);
}
void MacroAssembler::SmiCompare(const Operand& dst, Register src) {
AssertSmi(dst);
AssertSmi(src);
cmpp(dst, src);
}
void MacroAssembler::SmiCompare(const Operand& dst, Smi* src) {
AssertSmi(dst);
if (SmiValuesAre32Bits()) {
cmpl(Operand(dst, kSmiShift / kBitsPerByte), Immediate(src->value()));
} else {
DCHECK(SmiValuesAre31Bits());
cmpl(dst, Immediate(src));
}
}
void MacroAssembler::Cmp(const Operand& dst, Smi* src) {
// The Operand cannot use the smi register.
Register smi_reg = GetSmiConstant(src);
DCHECK(!dst.AddressUsesRegister(smi_reg));
cmpp(dst, smi_reg);
}
void MacroAssembler::SmiCompareInteger32(const Operand& dst, Register src) {
if (SmiValuesAre32Bits()) {
cmpl(Operand(dst, kSmiShift / kBitsPerByte), src);
} else {
DCHECK(SmiValuesAre31Bits());
SmiToInteger32(kScratchRegister, dst);
cmpl(kScratchRegister, src);
}
}
void MacroAssembler::PositiveSmiTimesPowerOfTwoToInteger64(Register dst,
Register src,
int power) {
DCHECK(power >= 0);
DCHECK(power < 64);
if (power == 0) {
SmiToInteger64(dst, src);
return;
}
if (!dst.is(src)) {
movp(dst, src);
}
if (power < kSmiShift) {
sarp(dst, Immediate(kSmiShift - power));
} else if (power > kSmiShift) {
shlp(dst, Immediate(power - kSmiShift));
}
}
void MacroAssembler::PositiveSmiDivPowerOfTwoToInteger32(Register dst,
Register src,
int power) {
DCHECK((0 <= power) && (power < 32));
if (dst.is(src)) {
shrp(dst, Immediate(power + kSmiShift));
} else {
UNIMPLEMENTED(); // Not used.
}
}
void MacroAssembler::SmiOrIfSmis(Register dst, Register src1, Register src2,
Label* on_not_smis,
Label::Distance near_jump) {
if (dst.is(src1) || dst.is(src2)) {
DCHECK(!src1.is(kScratchRegister));
DCHECK(!src2.is(kScratchRegister));
movp(kScratchRegister, src1);
orp(kScratchRegister, src2);
JumpIfNotSmi(kScratchRegister, on_not_smis, near_jump);
movp(dst, kScratchRegister);
} else {
movp(dst, src1);
orp(dst, src2);
JumpIfNotSmi(dst, on_not_smis, near_jump);
}
}
Condition MacroAssembler::CheckSmi(Register src) {
STATIC_ASSERT(kSmiTag == 0);
testb(src, Immediate(kSmiTagMask));
return zero;
}
Condition MacroAssembler::CheckSmi(const Operand& src) {
STATIC_ASSERT(kSmiTag == 0);
testb(src, Immediate(kSmiTagMask));
return zero;
}
Condition MacroAssembler::CheckNonNegativeSmi(Register src) {
STATIC_ASSERT(kSmiTag == 0);
// Test that both bits of the mask 0x8000000000000001 are zero.
movp(kScratchRegister, src);
rolp(kScratchRegister, Immediate(1));
testb(kScratchRegister, Immediate(3));
return zero;
}
Condition MacroAssembler::CheckBothSmi(Register first, Register second) {
if (first.is(second)) {
return CheckSmi(first);
}
STATIC_ASSERT(kSmiTag == 0 && kHeapObjectTag == 1 && kHeapObjectTagMask == 3);
if (SmiValuesAre32Bits()) {
leal(kScratchRegister, Operand(first, second, times_1, 0));
testb(kScratchRegister, Immediate(0x03));
} else {
DCHECK(SmiValuesAre31Bits());
movl(kScratchRegister, first);
orl(kScratchRegister, second);
testb(kScratchRegister, Immediate(kSmiTagMask));
}
return zero;
}
Condition MacroAssembler::CheckBothNonNegativeSmi(Register first,
Register second) {
if (first.is(second)) {
return CheckNonNegativeSmi(first);
}
movp(kScratchRegister, first);
orp(kScratchRegister, second);
rolp(kScratchRegister, Immediate(1));
testl(kScratchRegister, Immediate(3));
return zero;
}
Condition MacroAssembler::CheckEitherSmi(Register first,
Register second,
Register scratch) {
if (first.is(second)) {
return CheckSmi(first);
}
if (scratch.is(second)) {
andl(scratch, first);
} else {
if (!scratch.is(first)) {
movl(scratch, first);
}
andl(scratch, second);
}
testb(scratch, Immediate(kSmiTagMask));
return zero;
}
Condition MacroAssembler::CheckInteger32ValidSmiValue(Register src) {
if (SmiValuesAre32Bits()) {
// A 32-bit integer value can always be converted to a smi.
return always;
} else {
DCHECK(SmiValuesAre31Bits());
cmpl(src, Immediate(0xc0000000));
return positive;
}
}
Condition MacroAssembler::CheckUInteger32ValidSmiValue(Register src) {
if (SmiValuesAre32Bits()) {
// An unsigned 32-bit integer value is valid as long as the high bit
// is not set.
testl(src, src);
return positive;
} else {
DCHECK(SmiValuesAre31Bits());
testl(src, Immediate(0xc0000000));
return zero;
}
}
void MacroAssembler::CheckSmiToIndicator(Register dst, Register src) {
if (dst.is(src)) {
andl(dst, Immediate(kSmiTagMask));
} else {
movl(dst, Immediate(kSmiTagMask));
andl(dst, src);
}
}
void MacroAssembler::CheckSmiToIndicator(Register dst, const Operand& src) {
if (!(src.AddressUsesRegister(dst))) {
movl(dst, Immediate(kSmiTagMask));
andl(dst, src);
} else {
movl(dst, src);
andl(dst, Immediate(kSmiTagMask));
}
}
void MacroAssembler::JumpIfValidSmiValue(Register src,
Label* on_valid,
Label::Distance near_jump) {
Condition is_valid = CheckInteger32ValidSmiValue(src);
j(is_valid, on_valid, near_jump);
}
void MacroAssembler::JumpIfNotValidSmiValue(Register src,
Label* on_invalid,
Label::Distance near_jump) {
Condition is_valid = CheckInteger32ValidSmiValue(src);
j(NegateCondition(is_valid), on_invalid, near_jump);
}
void MacroAssembler::JumpIfUIntValidSmiValue(Register src,
Label* on_valid,
Label::Distance near_jump) {
Condition is_valid = CheckUInteger32ValidSmiValue(src);
j(is_valid, on_valid, near_jump);
}
void MacroAssembler::JumpIfUIntNotValidSmiValue(Register src,
Label* on_invalid,
Label::Distance near_jump) {
Condition is_valid = CheckUInteger32ValidSmiValue(src);
j(NegateCondition(is_valid), on_invalid, near_jump);
}
void MacroAssembler::JumpIfSmi(Register src,
Label* on_smi,
Label::Distance near_jump) {
Condition smi = CheckSmi(src);
j(smi, on_smi, near_jump);
}
void MacroAssembler::JumpIfNotSmi(Register src,
Label* on_not_smi,
Label::Distance near_jump) {
Condition smi = CheckSmi(src);
j(NegateCondition(smi), on_not_smi, near_jump);
}
void MacroAssembler::JumpUnlessNonNegativeSmi(
Register src, Label* on_not_smi_or_negative,
Label::Distance near_jump) {
Condition non_negative_smi = CheckNonNegativeSmi(src);
j(NegateCondition(non_negative_smi), on_not_smi_or_negative, near_jump);
}
void MacroAssembler::JumpIfSmiEqualsConstant(Register src,
Smi* constant,
Label* on_equals,
Label::Distance near_jump) {
SmiCompare(src, constant);
j(equal, on_equals, near_jump);
}
void MacroAssembler::JumpIfNotBothSmi(Register src1,
Register src2,
Label* on_not_both_smi,
Label::Distance near_jump) {
Condition both_smi = CheckBothSmi(src1, src2);
j(NegateCondition(both_smi), on_not_both_smi, near_jump);
}
void MacroAssembler::JumpUnlessBothNonNegativeSmi(Register src1,
Register src2,
Label* on_not_both_smi,
Label::Distance near_jump) {
Condition both_smi = CheckBothNonNegativeSmi(src1, src2);
j(NegateCondition(both_smi), on_not_both_smi, near_jump);
}
void MacroAssembler::SmiAddConstant(Register dst, Register src, Smi* constant) {
if (constant->value() == 0) {
if (!dst.is(src)) {
movp(dst, src);
}
return;
} else if (dst.is(src)) {
DCHECK(!dst.is(kScratchRegister));
Register constant_reg = GetSmiConstant(constant);
addp(dst, constant_reg);
} else {
LoadSmiConstant(dst, constant);
addp(dst, src);
}
}
void MacroAssembler::SmiAddConstant(const Operand& dst, Smi* constant) {
if (constant->value() != 0) {
if (SmiValuesAre32Bits()) {
addl(Operand(dst, kSmiShift / kBitsPerByte),
Immediate(constant->value()));
} else {
DCHECK(SmiValuesAre31Bits());
addp(dst, Immediate(constant));
}
}
}
void MacroAssembler::SmiAddConstant(Register dst, Register src, Smi* constant,
SmiOperationConstraints constraints,
Label* bailout_label,
Label::Distance near_jump) {
if (constant->value() == 0) {
if (!dst.is(src)) {
movp(dst, src);
}
} else if (dst.is(src)) {
DCHECK(!dst.is(kScratchRegister));
LoadSmiConstant(kScratchRegister, constant);
addp(dst, kScratchRegister);
if (constraints & SmiOperationConstraint::kBailoutOnNoOverflow) {
j(no_overflow, bailout_label, near_jump);
DCHECK(constraints & SmiOperationConstraint::kPreserveSourceRegister);
subp(dst, kScratchRegister);
} else if (constraints & SmiOperationConstraint::kBailoutOnOverflow) {
if (constraints & SmiOperationConstraint::kPreserveSourceRegister) {
Label done;
j(no_overflow, &done, Label::kNear);
subp(dst, kScratchRegister);
jmp(bailout_label, near_jump);
bind(&done);
} else {
// Bailout if overflow without reserving src.
j(overflow, bailout_label, near_jump);
}
} else {
UNREACHABLE();
}
} else {
DCHECK(constraints & SmiOperationConstraint::kPreserveSourceRegister);
DCHECK(constraints & SmiOperationConstraint::kBailoutOnOverflow);
LoadSmiConstant(dst, constant);
addp(dst, src);
j(overflow, bailout_label, near_jump);
}
}
void MacroAssembler::SmiSubConstant(Register dst, Register src, Smi* constant) {
if (constant->value() == 0) {
if (!dst.is(src)) {
movp(dst, src);
}
} else if (dst.is(src)) {
DCHECK(!dst.is(kScratchRegister));
Register constant_reg = GetSmiConstant(constant);
subp(dst, constant_reg);
} else {
if (constant->value() == Smi::kMinValue) {
LoadSmiConstant(dst, constant);
// Adding and subtracting the min-value gives the same result, it only
// differs on the overflow bit, which we don't check here.
addp(dst, src);
} else {
// Subtract by adding the negation.
LoadSmiConstant(dst, Smi::FromInt(-constant->value()));
addp(dst, src);
}
}
}
void MacroAssembler::SmiSubConstant(Register dst, Register src, Smi* constant,
SmiOperationConstraints constraints,
Label* bailout_label,
Label::Distance near_jump) {
if (constant->value() == 0) {
if (!dst.is(src)) {
movp(dst, src);
}
} else if (dst.is(src)) {
DCHECK(!dst.is(kScratchRegister));
LoadSmiConstant(kScratchRegister, constant);
subp(dst, kScratchRegister);
if (constraints & SmiOperationConstraint::kBailoutOnNoOverflow) {
j(no_overflow, bailout_label, near_jump);
DCHECK(constraints & SmiOperationConstraint::kPreserveSourceRegister);
addp(dst, kScratchRegister);
} else if (constraints & SmiOperationConstraint::kBailoutOnOverflow) {
if (constraints & SmiOperationConstraint::kPreserveSourceRegister) {
Label done;
j(no_overflow, &done, Label::kNear);
addp(dst, kScratchRegister);
jmp(bailout_label, near_jump);
bind(&done);
} else {
// Bailout if overflow without reserving src.
j(overflow, bailout_label, near_jump);
}
} else {
UNREACHABLE();
}
} else {
DCHECK(constraints & SmiOperationConstraint::kPreserveSourceRegister);
DCHECK(constraints & SmiOperationConstraint::kBailoutOnOverflow);
if (constant->value() == Smi::kMinValue) {
DCHECK(!dst.is(kScratchRegister));
movp(dst, src);
LoadSmiConstant(kScratchRegister, constant);
subp(dst, kScratchRegister);
j(overflow, bailout_label, near_jump);
} else {
// Subtract by adding the negation.
LoadSmiConstant(dst, Smi::FromInt(-(constant->value())));
addp(dst, src);
j(overflow, bailout_label, near_jump);
}
}
}
void MacroAssembler::SmiNeg(Register dst,
Register src,
Label* on_smi_result,
Label::Distance near_jump) {
if (dst.is(src)) {
DCHECK(!dst.is(kScratchRegister));
movp(kScratchRegister, src);
negp(dst); // Low 32 bits are retained as zero by negation.
// Test if result is zero or Smi::kMinValue.
cmpp(dst, kScratchRegister);
j(not_equal, on_smi_result, near_jump);
movp(src, kScratchRegister);
} else {
movp(dst, src);
negp(dst);
cmpp(dst, src);
// If the result is zero or Smi::kMinValue, negation failed to create a smi.
j(not_equal, on_smi_result, near_jump);
}
}
template<class T>
static void SmiAddHelper(MacroAssembler* masm,
Register dst,
Register src1,
T src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
if (dst.is(src1)) {
Label done;
masm->addp(dst, src2);
masm->j(no_overflow, &done, Label::kNear);
// Restore src1.
masm->subp(dst, src2);
masm->jmp(on_not_smi_result, near_jump);
masm->bind(&done);
} else {
masm->movp(dst, src1);
masm->addp(dst, src2);
masm->j(overflow, on_not_smi_result, near_jump);
}
}
void MacroAssembler::SmiAdd(Register dst,
Register src1,
Register src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
DCHECK_NOT_NULL(on_not_smi_result);
DCHECK(!dst.is(src2));
SmiAddHelper<Register>(this, dst, src1, src2, on_not_smi_result, near_jump);
}
void MacroAssembler::SmiAdd(Register dst,
Register src1,
const Operand& src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
DCHECK_NOT_NULL(on_not_smi_result);
DCHECK(!src2.AddressUsesRegister(dst));
SmiAddHelper<Operand>(this, dst, src1, src2, on_not_smi_result, near_jump);
}
void MacroAssembler::SmiAdd(Register dst,
Register src1,
Register src2) {
// No overflow checking. Use only when it's known that
// overflowing is impossible.
if (!dst.is(src1)) {
if (emit_debug_code()) {
movp(kScratchRegister, src1);
addp(kScratchRegister, src2);
Check(no_overflow, kSmiAdditionOverflow);
}
leap(dst, Operand(src1, src2, times_1, 0));
} else {
addp(dst, src2);
Assert(no_overflow, kSmiAdditionOverflow);
}
}
template<class T>
static void SmiSubHelper(MacroAssembler* masm,
Register dst,
Register src1,
T src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
if (dst.is(src1)) {
Label done;
masm->subp(dst, src2);
masm->j(no_overflow, &done, Label::kNear);
// Restore src1.
masm->addp(dst, src2);
masm->jmp(on_not_smi_result, near_jump);
masm->bind(&done);
} else {
masm->movp(dst, src1);
masm->subp(dst, src2);
masm->j(overflow, on_not_smi_result, near_jump);
}
}
void MacroAssembler::SmiSub(Register dst,
Register src1,
Register src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
DCHECK_NOT_NULL(on_not_smi_result);
DCHECK(!dst.is(src2));
SmiSubHelper<Register>(this, dst, src1, src2, on_not_smi_result, near_jump);
}
void MacroAssembler::SmiSub(Register dst,
Register src1,
const Operand& src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
DCHECK_NOT_NULL(on_not_smi_result);
DCHECK(!src2.AddressUsesRegister(dst));
SmiSubHelper<Operand>(this, dst, src1, src2, on_not_smi_result, near_jump);
}
template<class T>
static void SmiSubNoOverflowHelper(MacroAssembler* masm,
Register dst,
Register src1,
T src2) {
// No overflow checking. Use only when it's known that
// overflowing is impossible (e.g., subtracting two positive smis).
if (!dst.is(src1)) {
masm->movp(dst, src1);
}
masm->subp(dst, src2);
masm->Assert(no_overflow, kSmiSubtractionOverflow);
}
void MacroAssembler::SmiSub(Register dst, Register src1, Register src2) {
DCHECK(!dst.is(src2));
SmiSubNoOverflowHelper<Register>(this, dst, src1, src2);
}
void MacroAssembler::SmiSub(Register dst,
Register src1,
const Operand& src2) {
SmiSubNoOverflowHelper<Operand>(this, dst, src1, src2);
}
void MacroAssembler::SmiMul(Register dst,
Register src1,
Register src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
DCHECK(!dst.is(src2));
DCHECK(!dst.is(kScratchRegister));
DCHECK(!src1.is(kScratchRegister));
DCHECK(!src2.is(kScratchRegister));
if (dst.is(src1)) {
Label failure, zero_correct_result;
movp(kScratchRegister, src1); // Create backup for later testing.
SmiToInteger64(dst, src1);
imulp(dst, src2);
j(overflow, &failure, Label::kNear);
// Check for negative zero result. If product is zero, and one
// argument is negative, go to slow case.
Label correct_result;
testp(dst, dst);
j(not_zero, &correct_result, Label::kNear);
movp(dst, kScratchRegister);
xorp(dst, src2);
// Result was positive zero.
j(positive, &zero_correct_result, Label::kNear);
bind(&failure); // Reused failure exit, restores src1.
movp(src1, kScratchRegister);
jmp(on_not_smi_result, near_jump);
bind(&zero_correct_result);
Set(dst, 0);
bind(&correct_result);
} else {
SmiToInteger64(dst, src1);
imulp(dst, src2);
j(overflow, on_not_smi_result, near_jump);
// Check for negative zero result. If product is zero, and one
// argument is negative, go to slow case.
Label correct_result;
testp(dst, dst);
j(not_zero, &correct_result, Label::kNear);
// One of src1 and src2 is zero, the check whether the other is
// negative.
movp(kScratchRegister, src1);
xorp(kScratchRegister, src2);
j(negative, on_not_smi_result, near_jump);
bind(&correct_result);
}
}
void MacroAssembler::SmiDiv(Register dst,
Register src1,
Register src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
DCHECK(!src1.is(kScratchRegister));
DCHECK(!src2.is(kScratchRegister));
DCHECK(!dst.is(kScratchRegister));
DCHECK(!src2.is(rax));
DCHECK(!src2.is(rdx));
DCHECK(!src1.is(rdx));
// Check for 0 divisor (result is +/-Infinity).
testp(src2, src2);
j(zero, on_not_smi_result, near_jump);
if (src1.is(rax)) {
movp(kScratchRegister, src1);
}
SmiToInteger32(rax, src1);
// We need to rule out dividing Smi::kMinValue by -1, since that would
// overflow in idiv and raise an exception.
// We combine this with negative zero test (negative zero only happens
// when dividing zero by a negative number).
// We overshoot a little and go to slow case if we divide min-value
// by any negative value, not just -1.
Label safe_div;
testl(rax, Immediate(~Smi::kMinValue));
j(not_zero, &safe_div, Label::kNear);
testp(src2, src2);
if (src1.is(rax)) {
j(positive, &safe_div, Label::kNear);
movp(src1, kScratchRegister);
jmp(on_not_smi_result, near_jump);
} else {
j(negative, on_not_smi_result, near_jump);
}
bind(&safe_div);
SmiToInteger32(src2, src2);
// Sign extend src1 into edx:eax.
cdq();
idivl(src2);
Integer32ToSmi(src2, src2);
// Check that the remainder is zero.
testl(rdx, rdx);
if (src1.is(rax)) {
Label smi_result;
j(zero, &smi_result, Label::kNear);
movp(src1, kScratchRegister);
jmp(on_not_smi_result, near_jump);
bind(&smi_result);
} else {
j(not_zero, on_not_smi_result, near_jump);
}
if (!dst.is(src1) && src1.is(rax)) {
movp(src1, kScratchRegister);
}
Integer32ToSmi(dst, rax);
}
void MacroAssembler::SmiMod(Register dst,
Register src1,
Register src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
DCHECK(!dst.is(kScratchRegister));
DCHECK(!src1.is(kScratchRegister));
DCHECK(!src2.is(kScratchRegister));
DCHECK(!src2.is(rax));
DCHECK(!src2.is(rdx));
DCHECK(!src1.is(rdx));
DCHECK(!src1.is(src2));
testp(src2, src2);
j(zero, on_not_smi_result, near_jump);
if (src1.is(rax)) {
movp(kScratchRegister, src1);
}
SmiToInteger32(rax, src1);
SmiToInteger32(src2, src2);
// Test for the edge case of dividing Smi::kMinValue by -1 (will overflow).
Label safe_div;
cmpl(rax, Immediate(Smi::kMinValue));
j(not_equal, &safe_div, Label::kNear);
cmpl(src2, Immediate(-1));
j(not_equal, &safe_div, Label::kNear);
// Retag inputs and go slow case.
Integer32ToSmi(src2, src2);
if (src1.is(rax)) {
movp(src1, kScratchRegister);
}
jmp(on_not_smi_result, near_jump);
bind(&safe_div);
// Sign extend eax into edx:eax.
cdq();
idivl(src2);
// Restore smi tags on inputs.
Integer32ToSmi(src2, src2);
if (src1.is(rax)) {
movp(src1, kScratchRegister);
}
// Check for a negative zero result. If the result is zero, and the
// dividend is negative, go slow to return a floating point negative zero.
Label smi_result;
testl(rdx, rdx);
j(not_zero, &smi_result, Label::kNear);
testp(src1, src1);
j(negative, on_not_smi_result, near_jump);
bind(&smi_result);
Integer32ToSmi(dst, rdx);
}
void MacroAssembler::SmiNot(Register dst, Register src) {
DCHECK(!dst.is(kScratchRegister));
DCHECK(!src.is(kScratchRegister));
if (SmiValuesAre32Bits()) {
// Set tag and padding bits before negating, so that they are zero
// afterwards.
movl(kScratchRegister, Immediate(~0));
} else {
DCHECK(SmiValuesAre31Bits());
movl(kScratchRegister, Immediate(1));
}
if (dst.is(src)) {
xorp(dst, kScratchRegister);
} else {
leap(dst, Operand(src, kScratchRegister, times_1, 0));
}
notp(dst);
}
void MacroAssembler::SmiAnd(Register dst, Register src1, Register src2) {
DCHECK(!dst.is(src2));
if (!dst.is(src1)) {
movp(dst, src1);
}
andp(dst, src2);
}
void MacroAssembler::SmiAndConstant(Register dst, Register src, Smi* constant) {
if (constant->value() == 0) {
Set(dst, 0);
} else if (dst.is(src)) {
DCHECK(!dst.is(kScratchRegister));
Register constant_reg = GetSmiConstant(constant);
andp(dst, constant_reg);
} else {
LoadSmiConstant(dst, constant);
andp(dst, src);
}
}
void MacroAssembler::SmiOr(Register dst, Register src1, Register src2) {
if (!dst.is(src1)) {
DCHECK(!src1.is(src2));
movp(dst, src1);
}
orp(dst, src2);
}
void MacroAssembler::SmiOrConstant(Register dst, Register src, Smi* constant) {
if (dst.is(src)) {
DCHECK(!dst.is(kScratchRegister));
Register constant_reg = GetSmiConstant(constant);
orp(dst, constant_reg);
} else {
LoadSmiConstant(dst, constant);
orp(dst, src);
}
}
void MacroAssembler::SmiXor(Register dst, Register src1, Register src2) {
if (!dst.is(src1)) {
DCHECK(!src1.is(src2));
movp(dst, src1);
}
xorp(dst, src2);
}
void MacroAssembler::SmiXorConstant(Register dst, Register src, Smi* constant) {
if (dst.is(src)) {
DCHECK(!dst.is(kScratchRegister));
Register constant_reg = GetSmiConstant(constant);
xorp(dst, constant_reg);
} else {
LoadSmiConstant(dst, constant);
xorp(dst, src);
}
}
void MacroAssembler::SmiShiftArithmeticRightConstant(Register dst,
Register src,
int shift_value) {
DCHECK(is_uint5(shift_value));
if (shift_value > 0) {
if (dst.is(src)) {
sarp(dst, Immediate(shift_value + kSmiShift));
shlp(dst, Immediate(kSmiShift));
} else {
UNIMPLEMENTED(); // Not used.
}
}
}
void MacroAssembler::SmiShiftLeftConstant(Register dst,
Register src,
int shift_value,
Label* on_not_smi_result,
Label::Distance near_jump) {
if (SmiValuesAre32Bits()) {
if (!dst.is(src)) {
movp(dst, src);
}
if (shift_value > 0) {
// Shift amount specified by lower 5 bits, not six as the shl opcode.
shlq(dst, Immediate(shift_value & 0x1f));
}
} else {
DCHECK(SmiValuesAre31Bits());
if (dst.is(src)) {
UNIMPLEMENTED(); // Not used.
} else {
SmiToInteger32(dst, src);
shll(dst, Immediate(shift_value));
JumpIfNotValidSmiValue(dst, on_not_smi_result, near_jump);
Integer32ToSmi(dst, dst);
}
}
}
void MacroAssembler::SmiShiftLogicalRightConstant(
Register dst, Register src, int shift_value,
Label* on_not_smi_result, Label::Distance near_jump) {
// Logic right shift interprets its result as an *unsigned* number.
if (dst.is(src)) {
UNIMPLEMENTED(); // Not used.
} else {
if (shift_value == 0) {
testp(src, src);
j(negative, on_not_smi_result, near_jump);
}
if (SmiValuesAre32Bits()) {
movp(dst, src);
shrp(dst, Immediate(shift_value + kSmiShift));
shlp(dst, Immediate(kSmiShift));
} else {
DCHECK(SmiValuesAre31Bits());
SmiToInteger32(dst, src);
shrp(dst, Immediate(shift_value));
JumpIfUIntNotValidSmiValue(dst, on_not_smi_result, near_jump);
Integer32ToSmi(dst, dst);
}
}
}
void MacroAssembler::SmiShiftLeft(Register dst,
Register src1,
Register src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
if (SmiValuesAre32Bits()) {
DCHECK(!dst.is(rcx));
if (!dst.is(src1)) {
movp(dst, src1);
}
// Untag shift amount.
SmiToInteger32(rcx, src2);
// Shift amount specified by lower 5 bits, not six as the shl opcode.
andp(rcx, Immediate(0x1f));
shlq_cl(dst);
} else {
DCHECK(SmiValuesAre31Bits());
DCHECK(!dst.is(kScratchRegister));
DCHECK(!src1.is(kScratchRegister));
DCHECK(!src2.is(kScratchRegister));
DCHECK(!dst.is(src2));
DCHECK(!dst.is(rcx));
if (src1.is(rcx) || src2.is(rcx)) {
movq(kScratchRegister, rcx);
}
if (dst.is(src1)) {
UNIMPLEMENTED(); // Not used.
} else {
Label valid_result;
SmiToInteger32(dst, src1);
SmiToInteger32(rcx, src2);
shll_cl(dst);
JumpIfValidSmiValue(dst, &valid_result, Label::kNear);
// As src1 or src2 could not be dst, we do not need to restore them for
// clobbering dst.
if (src1.is(rcx) || src2.is(rcx)) {
if (src1.is(rcx)) {
movq(src1, kScratchRegister);
} else {
movq(src2, kScratchRegister);
}
}
jmp(on_not_smi_result, near_jump);
bind(&valid_result);
Integer32ToSmi(dst, dst);
}
}
}
void MacroAssembler::SmiShiftLogicalRight(Register dst,
Register src1,
Register src2,
Label* on_not_smi_result,
Label::Distance near_jump) {
DCHECK(!dst.is(kScratchRegister));
DCHECK(!src1.is(kScratchRegister));
DCHECK(!src2.is(kScratchRegister));
DCHECK(!dst.is(src2));
DCHECK(!dst.is(rcx));
if (src1.is(rcx) || src2.is(rcx)) {
movq(kScratchRegister, rcx);
}
if (dst.is(src1)) {
UNIMPLEMENTED(); // Not used.
} else {
Label valid_result;
SmiToInteger32(dst, src1);
SmiToInteger32(rcx, src2);
shrl_cl(dst);
JumpIfUIntValidSmiValue(dst, &valid_result, Label::kNear);
// As src1 or src2 could not be dst, we do not need to restore them for
// clobbering dst.
if (src1.is(rcx) || src2.is(rcx)) {
if (src1.is(rcx)) {
movq(src1, kScratchRegister);
} else {
movq(src2, kScratchRegister);
}
}
jmp(on_not_smi_result, near_jump);
bind(&valid_result);
Integer32ToSmi(dst, dst);
}
}
void MacroAssembler::SmiShiftArithmeticRight(Register dst,
Register src1,
Register src2) {
DCHECK(!dst.is(kScratchRegister));
DCHECK(!src1.is(kScratchRegister));
DCHECK(!src2.is(kScratchRegister));
DCHECK(!dst.is(rcx));
SmiToInteger32(rcx, src2);
if (!dst.is(src1)) {
movp(dst, src1);
}
SmiToInteger32(dst, dst);
sarl_cl(dst);
Integer32ToSmi(dst, dst);
}
void MacroAssembler::SelectNonSmi(Register dst,
Register src1,
Register src2,
Label* on_not_smis,
Label::Distance near_jump) {
DCHECK(!dst.is(kScratchRegister));
DCHECK(!src1.is(kScratchRegister));
DCHECK(!src2.is(kScratchRegister));
DCHECK(!dst.is(src1));
DCHECK(!dst.is(src2));
// Both operands must not be smis.
#ifdef DEBUG
Condition not_both_smis = NegateCondition(CheckBothSmi(src1, src2));
Check(not_both_smis, kBothRegistersWereSmisInSelectNonSmi);
#endif
STATIC_ASSERT(kSmiTag == 0);
DCHECK_EQ(static_cast<Smi*>(0), Smi::FromInt(0));
movl(kScratchRegister, Immediate(kSmiTagMask));
andp(kScratchRegister, src1);
testl(kScratchRegister, src2);
// If non-zero then both are smis.
j(not_zero, on_not_smis, near_jump);
// Exactly one operand is a smi.
DCHECK_EQ(1, static_cast<int>(kSmiTagMask));
// kScratchRegister still holds src1 & kSmiTag, which is either zero or one.
subp(kScratchRegister, Immediate(1));
// If src1 is a smi, then scratch register all 1s, else it is all 0s.
movp(dst, src1);
xorp(dst, src2);
andp(dst, kScratchRegister);
// If src1 is a smi, dst holds src1 ^ src2, else it is zero.
xorp(dst, src1);
// If src1 is a smi, dst is src2, else it is src1, i.e., the non-smi.
}
SmiIndex MacroAssembler::SmiToIndex(Register dst,
Register src,
int shift) {
if (SmiValuesAre32Bits()) {
DCHECK(is_uint6(shift));
// There is a possible optimization if shift is in the range 60-63, but that
// will (and must) never happen.
if (!dst.is(src)) {
movp(dst, src);
}
if (shift < kSmiShift) {
sarp(dst, Immediate(kSmiShift - shift));
} else {
shlp(dst, Immediate(shift - kSmiShift));
}
return SmiIndex(dst, times_1);
} else {
DCHECK(SmiValuesAre31Bits());
DCHECK(shift >= times_1 && shift <= (static_cast<int>(times_8) + 1));
if (!dst.is(src)) {
movp(dst, src);
}
// We have to sign extend the index register to 64-bit as the SMI might
// be negative.
movsxlq(dst, dst);
if (shift == times_1) {
sarq(dst, Immediate(kSmiShift));
return SmiIndex(dst, times_1);
}
return SmiIndex(dst, static_cast<ScaleFactor>(shift - 1));
}
}
SmiIndex MacroAssembler::SmiToNegativeIndex(Register dst,
Register src,
int shift) {
if (SmiValuesAre32Bits()) {
// Register src holds a positive smi.
DCHECK(is_uint6(shift));
if (!dst.is(src)) {
movp(dst, src);
}
negp(dst);
if (shift < kSmiShift) {
sarp(dst, Immediate(kSmiShift - shift));
} else {
shlp(dst, Immediate(shift - kSmiShift));
}
return SmiIndex(dst, times_1);
} else {
DCHECK(SmiValuesAre31Bits());
DCHECK(shift >= times_1 && shift <= (static_cast<int>(times_8) + 1));
if (!dst.is(src)) {
movp(dst, src);
}
negq(dst);
if (shift == times_1) {
sarq(dst, Immediate(kSmiShift));
return SmiIndex(dst, times_1);
}
return SmiIndex(dst, static_cast<ScaleFactor>(shift - 1));
}
}
void MacroAssembler::AddSmiField(Register dst, const Operand& src) {
if (SmiValuesAre32Bits()) {
DCHECK_EQ(0, kSmiShift % kBitsPerByte);
addl(dst, Operand(src, kSmiShift / kBitsPerByte));
} else {
DCHECK(SmiValuesAre31Bits());
SmiToInteger32(kScratchRegister, src);
addl(dst, kScratchRegister);
}
}
void MacroAssembler::Push(Smi* source) {
intptr_t smi = reinterpret_cast<intptr_t>(source);
if (is_int32(smi)) {
Push(Immediate(static_cast<int32_t>(smi)));
} else {
Register constant = GetSmiConstant(source);
Push(constant);
}
}
void MacroAssembler::PushRegisterAsTwoSmis(Register src, Register scratch) {
DCHECK(!src.is(scratch));
movp(scratch, src);
// High bits.
shrp(src, Immediate(kPointerSize * kBitsPerByte - kSmiShift));
shlp(src, Immediate(kSmiShift));
Push(src);
// Low bits.
shlp(scratch, Immediate(kSmiShift));
Push(scratch);
}
void MacroAssembler::PopRegisterAsTwoSmis(Register dst, Register scratch) {
DCHECK(!dst.is(scratch));
Pop(scratch);
// Low bits.
shrp(scratch, Immediate(kSmiShift));
Pop(dst);
shrp(dst, Immediate(kSmiShift));
// High bits.
shlp(dst, Immediate(kPointerSize * kBitsPerByte - kSmiShift));
orp(dst, scratch);
}
void MacroAssembler::Test(const Operand& src, Smi* source) {
if (SmiValuesAre32Bits()) {
testl(Operand(src, kIntSize), Immediate(source->value()));
} else {
DCHECK(SmiValuesAre31Bits());
testl(src, Immediate(source));
}
}
// ----------------------------------------------------------------------------
void MacroAssembler::JumpIfNotString(Register object,
Register object_map,
Label* not_string,
Label::Distance near_jump) {
Condition is_smi = CheckSmi(object);
j(is_smi, not_string, near_jump);
CmpObjectType(object, FIRST_NONSTRING_TYPE, object_map);
j(above_equal, not_string, near_jump);
}
void MacroAssembler::JumpIfNotBothSequentialOneByteStrings(
Register first_object, Register second_object, Register scratch1,
Register scratch2, Label* on_fail, Label::Distance near_jump) {
// Check that both objects are not smis.
Condition either_smi = CheckEitherSmi(first_object, second_object);
j(either_smi, on_fail, near_jump);
// Load instance type for both strings.
movp(scratch1, FieldOperand(first_object, HeapObject::kMapOffset));
movp(scratch2, FieldOperand(second_object, HeapObject::kMapOffset));
movzxbl(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset));
movzxbl(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset));
// Check that both are flat one-byte strings.
DCHECK(kNotStringTag != 0);
const int kFlatOneByteStringMask =
kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
const int kFlatOneByteStringTag =
kStringTag | kOneByteStringTag | kSeqStringTag;
andl(scratch1, Immediate(kFlatOneByteStringMask));
andl(scratch2, Immediate(kFlatOneByteStringMask));
// Interleave the bits to check both scratch1 and scratch2 in one test.
DCHECK_EQ(0, kFlatOneByteStringMask & (kFlatOneByteStringMask << 3));
leap(scratch1, Operand(scratch1, scratch2, times_8, 0));
cmpl(scratch1,
Immediate(kFlatOneByteStringTag + (kFlatOneByteStringTag << 3)));
j(not_equal, on_fail, near_jump);
}
void MacroAssembler::JumpIfInstanceTypeIsNotSequentialOneByte(
Register instance_type, Register scratch, Label* failure,
Label::Distance near_jump) {
if (!scratch.is(instance_type)) {
movl(scratch, instance_type);
}
const int kFlatOneByteStringMask =
kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
andl(scratch, Immediate(kFlatOneByteStringMask));
cmpl(scratch, Immediate(kStringTag | kSeqStringTag | kOneByteStringTag));
j(not_equal, failure, near_jump);
}
void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialOneByte(
Register first_object_instance_type, Register second_object_instance_type,
Register scratch1, Register scratch2, Label* on_fail,
Label::Distance near_jump) {
// Load instance type for both strings.
movp(scratch1, first_object_instance_type);
movp(scratch2, second_object_instance_type);
// Check that both are flat one-byte strings.
DCHECK(kNotStringTag != 0);
const int kFlatOneByteStringMask =
kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask;
const int kFlatOneByteStringTag =
kStringTag | kOneByteStringTag | kSeqStringTag;
andl(scratch1, Immediate(kFlatOneByteStringMask));
andl(scratch2, Immediate(kFlatOneByteStringMask));
// Interleave the bits to check both scratch1 and scratch2 in one test.
DCHECK_EQ(0, kFlatOneByteStringMask & (kFlatOneByteStringMask << 3));
leap(scratch1, Operand(scratch1, scratch2, times_8, 0));
cmpl(scratch1,
Immediate(kFlatOneByteStringTag + (kFlatOneByteStringTag << 3)));
j(not_equal, on_fail, near_jump);
}
template<class T>
static void JumpIfNotUniqueNameHelper(MacroAssembler* masm,
T operand_or_register,
Label* not_unique_name,
Label::Distance distance) {
STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
Label succeed;
masm->testb(operand_or_register,
Immediate(kIsNotStringMask | kIsNotInternalizedMask));
masm->j(zero, &succeed, Label::kNear);
masm->cmpb(operand_or_register, Immediate(static_cast<uint8_t>(SYMBOL_TYPE)));
masm->j(not_equal, not_unique_name, distance);
masm->bind(&succeed);
}
void MacroAssembler::JumpIfNotUniqueNameInstanceType(Operand operand,
Label* not_unique_name,
Label::Distance distance) {
JumpIfNotUniqueNameHelper<Operand>(this, operand, not_unique_name, distance);
}
void MacroAssembler::JumpIfNotUniqueNameInstanceType(Register reg,
Label* not_unique_name,
Label::Distance distance) {
JumpIfNotUniqueNameHelper<Register>(this, reg, not_unique_name, distance);
}
void MacroAssembler::Move(Register dst, Register src) {
if (!dst.is(src)) {
movp(dst, src);
}
}
void MacroAssembler::Move(Register dst, Handle<Object> source) {
AllowDeferredHandleDereference smi_check;
if (source->IsSmi()) {
Move(dst, Smi::cast(*source));
} else {
MoveHeapObject(dst, source);
}
}
void MacroAssembler::Move(const Operand& dst, Handle<Object> source) {
AllowDeferredHandleDereference smi_check;
if (source->IsSmi()) {
Move(dst, Smi::cast(*source));
} else {
MoveHeapObject(kScratchRegister, source);
movp(dst, kScratchRegister);
}
}
void MacroAssembler::Move(XMMRegister dst, uint32_t src) {
if (src == 0) {
Xorpd(dst, dst);
} else {
unsigned pop = base::bits::CountPopulation32(src);
DCHECK_NE(0u, pop);
if (pop == 32) {
Pcmpeqd(dst, dst);
} else {
movl(kScratchRegister, Immediate(src));
Movq(dst, kScratchRegister);
}
}
}
void MacroAssembler::Move(XMMRegister dst, uint64_t src) {
if (src == 0) {
Xorpd(dst, dst);
} else {
unsigned nlz = base::bits::CountLeadingZeros64(src);
unsigned ntz = base::bits::CountTrailingZeros64(src);
unsigned pop = base::bits::CountPopulation64(src);
DCHECK_NE(0u, pop);
if (pop == 64) {
Pcmpeqd(dst, dst);
} else if (pop + ntz == 64) {
Pcmpeqd(dst, dst);
Psllq(dst, ntz);
} else if (pop + nlz == 64) {
Pcmpeqd(dst, dst);
Psrlq(dst, nlz);
} else {
uint32_t lower = static_cast<uint32_t>(src);
uint32_t upper = static_cast<uint32_t>(src >> 32);
if (upper == 0) {
Move(dst, lower);
} else {
movq(kScratchRegister, src);
Movq(dst, kScratchRegister);
}
}
}
}
void MacroAssembler::Movaps(XMMRegister dst, XMMRegister src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vmovaps(dst, src);
} else {
movaps(dst, src);
}
}
void MacroAssembler::Movapd(XMMRegister dst, XMMRegister src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vmovapd(dst, src);
} else {
movapd(dst, src);
}
}
void MacroAssembler::Movsd(XMMRegister dst, XMMRegister src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vmovsd(dst, dst, src);
} else {
movsd(dst, src);
}
}
void MacroAssembler::Movsd(XMMRegister dst, const Operand& src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vmovsd(dst, src);
} else {
movsd(dst, src);
}
}
void MacroAssembler::Movsd(const Operand& dst, XMMRegister src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vmovsd(dst, src);
} else {
movsd(dst, src);
}
}
void MacroAssembler::Movss(XMMRegister dst, XMMRegister src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vmovss(dst, dst, src);
} else {
movss(dst, src);
}
}
void MacroAssembler::Movss(XMMRegister dst, const Operand& src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vmovss(dst, src);
} else {
movss(dst, src);
}
}
void MacroAssembler::Movss(const Operand& dst, XMMRegister src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vmovss(dst, src);
} else {
movss(dst, src);
}
}
void MacroAssembler::Movd(XMMRegister dst, Register src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vmovd(dst, src);
} else {
movd(dst, src);
}
}
void MacroAssembler::Movd(XMMRegister dst, const Operand& src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vmovd(dst, src);
} else {
movd(dst, src);
}
}
void MacroAssembler::Movd(Register dst, XMMRegister src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vmovd(dst, src);
} else {
movd(dst, src);
}
}
void MacroAssembler::Movq(XMMRegister dst, Register src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vmovq(dst, src);
} else {
movq(dst, src);
}
}
void MacroAssembler::Movq(Register dst, XMMRegister src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vmovq(dst, src);
} else {
movq(dst, src);
}
}
void MacroAssembler::Movmskpd(Register dst, XMMRegister src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vmovmskpd(dst, src);
} else {
movmskpd(dst, src);
}
}
void MacroAssembler::Roundss(XMMRegister dst, XMMRegister src,
RoundingMode mode) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vroundss(dst, dst, src, mode);
} else {
roundss(dst, src, mode);
}
}
void MacroAssembler::Roundsd(XMMRegister dst, XMMRegister src,
RoundingMode mode) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vroundsd(dst, dst, src, mode);
} else {
roundsd(dst, src, mode);
}
}
void MacroAssembler::Sqrtsd(XMMRegister dst, XMMRegister src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vsqrtsd(dst, dst, src);
} else {
sqrtsd(dst, src);
}
}
void MacroAssembler::Sqrtsd(XMMRegister dst, const Operand& src) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vsqrtsd(dst, dst, src);
} else {
sqrtsd(dst, src);
}
}
void MacroAssembler::Ucomiss(XMMRegister src1, XMMRegister src2) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vucomiss(src1, src2);
} else {
ucomiss(src1, src2);
}
}
void MacroAssembler::Ucomiss(XMMRegister src1, const Operand& src2) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vucomiss(src1, src2);
} else {
ucomiss(src1, src2);
}
}
void MacroAssembler::Ucomisd(XMMRegister src1, XMMRegister src2) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vucomisd(src1, src2);
} else {
ucomisd(src1, src2);
}
}
void MacroAssembler::Ucomisd(XMMRegister src1, const Operand& src2) {
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(this, AVX);
vucomisd(src1, src2);
} else {
ucomisd(src1, src2);
}
}
void MacroAssembler::Cmp(Register dst, Handle<Object> source) {
AllowDeferredHandleDereference smi_check;
if (source->IsSmi()) {
Cmp(dst, Smi::cast(*source));
} else {
MoveHeapObject(kScratchRegister, source);
cmpp(dst, kScratchRegister);
}
}
void MacroAssembler::Cmp(const Operand& dst, Handle<Object> source) {
AllowDeferredHandleDereference smi_check;
if (source->IsSmi()) {
Cmp(dst, Smi::cast(*source));
} else {
MoveHeapObject(kScratchRegister, source);
cmpp(dst, kScratchRegister);
}
}
void MacroAssembler::Push(Handle<Object> source) {
AllowDeferredHandleDereference smi_check;
if (source->IsSmi()) {
Push(Smi::cast(*source));
} else {
MoveHeapObject(kScratchRegister, source);
Push(kScratchRegister);
}
}
void MacroAssembler::MoveHeapObject(Register result,
Handle<Object> object) {
AllowDeferredHandleDereference using_raw_address;
DCHECK(object->IsHeapObject());
if (isolate()->heap()->InNewSpace(*object)) {
Handle<Cell> cell = isolate()->factory()->NewCell(object);
Move(result, cell, RelocInfo::CELL);
movp(result, Operand(result, 0));
} else {
Move(result, object, RelocInfo::EMBEDDED_OBJECT);
}
}
void MacroAssembler::LoadGlobalCell(Register dst, Handle<Cell> cell) {
if (dst.is(rax)) {
AllowDeferredHandleDereference embedding_raw_address;
load_rax(cell.location(), RelocInfo::CELL);
} else {
Move(dst, cell, RelocInfo::CELL);
movp(dst, Operand(dst, 0));
}
}
void MacroAssembler::CmpWeakValue(Register value, Handle<WeakCell> cell,
Register scratch) {
Move(scratch, cell, RelocInfo::EMBEDDED_OBJECT);
cmpp(value, FieldOperand(scratch, WeakCell::kValueOffset));
}
void MacroAssembler::GetWeakValue(Register value, Handle<WeakCell> cell) {
Move(value, cell, RelocInfo::EMBEDDED_OBJECT);
movp(value, FieldOperand(value, WeakCell::kValueOffset));
}
void MacroAssembler::LoadWeakValue(Register value, Handle<WeakCell> cell,
Label* miss) {
GetWeakValue(value, cell);
JumpIfSmi(value, miss);
}
void MacroAssembler::Drop(int stack_elements) {
if (stack_elements > 0) {
addp(rsp, Immediate(stack_elements * kPointerSize));
}
}
void MacroAssembler::DropUnderReturnAddress(int stack_elements,
Register scratch) {
DCHECK(stack_elements > 0);
if (kPointerSize == kInt64Size && stack_elements == 1) {
popq(MemOperand(rsp, 0));
return;
}
PopReturnAddressTo(scratch);
Drop(stack_elements);
PushReturnAddressFrom(scratch);
}
void MacroAssembler::Push(Register src) {
if (kPointerSize == kInt64Size) {
pushq(src);
} else {
// x32 uses 64-bit push for rbp in the prologue.
DCHECK(src.code() != rbp.code());
leal(rsp, Operand(rsp, -4));
movp(Operand(rsp, 0), src);
}
}
void MacroAssembler::Push(const Operand& src) {
if (kPointerSize == kInt64Size) {
pushq(src);
} else {
movp(kScratchRegister, src);
leal(rsp, Operand(rsp, -4));
movp(Operand(rsp, 0), kScratchRegister);
}
}
void MacroAssembler::PushQuad(const Operand& src) {
if (kPointerSize == kInt64Size) {
pushq(src);
} else {
movp(kScratchRegister, src);
pushq(kScratchRegister);
}
}
void MacroAssembler::Push(Immediate value) {
if (kPointerSize == kInt64Size) {
pushq(value);
} else {
leal(rsp, Operand(rsp, -4));
movp(Operand(rsp, 0), value);
}
}
void MacroAssembler::PushImm32(int32_t imm32) {
if (kPointerSize == kInt64Size) {
pushq_imm32(imm32);
} else {
leal(rsp, Operand(rsp, -4));
movp(Operand(rsp, 0), Immediate(imm32));
}
}
void MacroAssembler::Pop(Register dst) {
if (kPointerSize == kInt64Size) {
popq(dst);
} else {
// x32 uses 64-bit pop for rbp in the epilogue.
DCHECK(dst.code() != rbp.code());
movp(dst, Operand(rsp, 0));
leal(rsp, Operand(rsp, 4));
}
}
void MacroAssembler::Pop(const Operand& dst) {
if (kPointerSize == kInt64Size) {
popq(dst);
} else {
Register scratch = dst.AddressUsesRegister(kScratchRegister)
? kRootRegister : kScratchRegister;
movp(scratch, Operand(rsp, 0));
movp(dst, scratch);
leal(rsp, Operand(rsp, 4));
if (scratch.is(kRootRegister)) {
// Restore kRootRegister.
InitializeRootRegister();
}
}
}
void MacroAssembler::PopQuad(const Operand& dst) {
if (kPointerSize == kInt64Size) {
popq(dst);
} else {
popq(kScratchRegister);
movp(dst, kScratchRegister);
}
}
void MacroAssembler::LoadSharedFunctionInfoSpecialField(Register dst,
Register base,
int offset) {
DCHECK(offset > SharedFunctionInfo::kLengthOffset &&
offset <= SharedFunctionInfo::kSize &&
(((offset - SharedFunctionInfo::kLengthOffset) / kIntSize) % 2 == 1));
if (kPointerSize == kInt64Size) {
movsxlq(dst, FieldOperand(base, offset));
} else {
movp(dst, FieldOperand(base, offset));
SmiToInteger32(dst, dst);
}
}
void MacroAssembler::TestBitSharedFunctionInfoSpecialField(Register base,
int offset,
int bits) {
DCHECK(offset > SharedFunctionInfo::kLengthOffset &&
offset <= SharedFunctionInfo::kSize &&
(((offset - SharedFunctionInfo::kLengthOffset) / kIntSize) % 2 == 1));
if (kPointerSize == kInt32Size) {
// On x32, this field is represented by SMI.
bits += kSmiShift;
}
int byte_offset = bits / kBitsPerByte;
int bit_in_byte = bits & (kBitsPerByte - 1);
testb(FieldOperand(base, offset + byte_offset), Immediate(1 << bit_in_byte));
}
void MacroAssembler::Jump(ExternalReference ext) {
LoadAddress(kScratchRegister, ext);
jmp(kScratchRegister);
}
void MacroAssembler::Jump(const Operand& op) {
if (kPointerSize == kInt64Size) {
jmp(op);
} else {
movp(kScratchRegister, op);
jmp(kScratchRegister);
}
}
void MacroAssembler::Jump(Address destination, RelocInfo::Mode rmode) {
Move(kScratchRegister, destination, rmode);
jmp(kScratchRegister);
}
void MacroAssembler::Jump(Handle<Code> code_object, RelocInfo::Mode rmode) {
// TODO(X64): Inline this
jmp(code_object, rmode);
}
int MacroAssembler::CallSize(ExternalReference ext) {
// Opcode for call kScratchRegister is: Rex.B FF D4 (three bytes).
return LoadAddressSize(ext) +
Assembler::kCallScratchRegisterInstructionLength;
}
void MacroAssembler::Call(ExternalReference ext) {
#ifdef DEBUG
int end_position = pc_offset() + CallSize(ext);
#endif
LoadAddress(kScratchRegister, ext);
call(kScratchRegister);
#ifdef DEBUG
CHECK_EQ(end_position, pc_offset());
#endif
}
void MacroAssembler::Call(const Operand& op) {
if (kPointerSize == kInt64Size && !CpuFeatures::IsSupported(ATOM)) {
call(op);
} else {
movp(kScratchRegister, op);
call(kScratchRegister);
}
}
void MacroAssembler::Call(Address destination, RelocInfo::Mode rmode) {
#ifdef DEBUG
int end_position = pc_offset() + CallSize(destination);
#endif
Move(kScratchRegister, destination, rmode);
call(kScratchRegister);
#ifdef DEBUG
CHECK_EQ(pc_offset(), end_position);
#endif
}
void MacroAssembler::Call(Handle<Code> code_object,
RelocInfo::Mode rmode,
TypeFeedbackId ast_id) {
#ifdef DEBUG
int end_position = pc_offset() + CallSize(code_object);
#endif
DCHECK(RelocInfo::IsCodeTarget(rmode) ||
rmode == RelocInfo::CODE_AGE_SEQUENCE);
call(code_object, rmode, ast_id);
#ifdef DEBUG
CHECK_EQ(end_position, pc_offset());
#endif
}
void MacroAssembler::Pextrd(Register dst, XMMRegister src, int8_t imm8) {
if (imm8 == 0) {
Movd(dst, src);
return;
}
DCHECK_EQ(1, imm8);
if (CpuFeatures::IsSupported(SSE4_1)) {
CpuFeatureScope sse_scope(this, SSE4_1);
pextrd(dst, src, imm8);
return;
}
movq(dst, src);
shrq(dst, Immediate(32));
}
void MacroAssembler::Pinsrd(XMMRegister dst, Register src, int8_t imm8) {
if (CpuFeatures::IsSupported(SSE4_1)) {
CpuFeatureScope sse_scope(this, SSE4_1);
pinsrd(dst, src, imm8);
return;
}
Movd(kScratchDoubleReg, src);
if (imm8 == 1) {
punpckldq(dst, kScratchDoubleReg);
} else {
DCHECK_EQ(0, imm8);
Movss(dst, kScratchDoubleReg);
}
}
void MacroAssembler::Pinsrd(XMMRegister dst, const Operand& src, int8_t imm8) {
DCHECK(imm8 == 0 || imm8 == 1);
if (CpuFeatures::IsSupported(SSE4_1)) {
CpuFeatureScope sse_scope(this, SSE4_1);
pinsrd(dst, src, imm8);
return;
}
Movd(kScratchDoubleReg, src);
if (imm8 == 1) {
punpckldq(dst, kScratchDoubleReg);
} else {
DCHECK_EQ(0, imm8);
Movss(dst, kScratchDoubleReg);
}
}
void MacroAssembler::Lzcntl(Register dst, Register src) {
if (CpuFeatures::IsSupported(LZCNT)) {
CpuFeatureScope scope(this, LZCNT);
lzcntl(dst, src);
return;
}
Label not_zero_src;
bsrl(dst, src);
j(not_zero, &not_zero_src, Label::kNear);
Set(dst, 63); // 63^31 == 32
bind(&not_zero_src);
xorl(dst, Immediate(31)); // for x in [0..31], 31^x == 31 - x
}
void MacroAssembler::Lzcntl(Register dst, const Operand& src) {
if (CpuFeatures::IsSupported(LZCNT)) {
CpuFeatureScope scope(this, LZCNT);
lzcntl(dst, src);
return;
}
Label not_zero_src;
bsrl(dst, src);
j(not_zero, &not_zero_src, Label::kNear);
Set(dst, 63); // 63^31 == 32
bind(&not_zero_src);
xorl(dst, Immediate(31)); // for x in [0..31], 31^x == 31 - x
}
void MacroAssembler::Lzcntq(Register dst, Register src) {
if (CpuFeatures::IsSupported(LZCNT)) {
CpuFeatureScope scope(this, LZCNT);
lzcntq(dst, src);
return;
}
Label not_zero_src;
bsrq(dst, src);
j(not_zero, &not_zero_src, Label::kNear);
Set(dst, 127); // 127^63 == 64
bind(&not_zero_src);
xorl(dst, Immediate(63)); // for x in [0..63], 63^x == 63 - x
}
void MacroAssembler::Lzcntq(Register dst, const Operand& src) {
if (CpuFeatures::IsSupported(LZCNT)) {
CpuFeatureScope scope(this, LZCNT);
lzcntq(dst, src);
return;
}
Label not_zero_src;
bsrq(dst, src);
j(not_zero, &not_zero_src, Label::kNear);
Set(dst, 127); // 127^63 == 64
bind(&not_zero_src);
xorl(dst, Immediate(63)); // for x in [0..63], 63^x == 63 - x
}
void MacroAssembler::Tzcntq(Register dst, Register src) {
if (CpuFeatures::IsSupported(BMI1)) {
CpuFeatureScope scope(this, BMI1);
tzcntq(dst, src);
return;
}
Label not_zero_src;
bsfq(dst, src);
j(not_zero, &not_zero_src, Label::kNear);
// Define the result of tzcnt(0) separately, because bsf(0) is undefined.
Set(dst, 64);
bind(&not_zero_src);
}
void MacroAssembler::Tzcntq(Register dst, const Operand& src) {
if (CpuFeatures::IsSupported(BMI1)) {
CpuFeatureScope scope(this, BMI1);
tzcntq(dst, src);
return;
}
Label not_zero_src;
bsfq(dst, src);
j(not_zero, &not_zero_src, Label::kNear);
// Define the result of tzcnt(0) separately, because bsf(0) is undefined.
Set(dst, 64);
bind(&not_zero_src);
}
void MacroAssembler::Tzcntl(Register dst, Register src) {
if (CpuFeatures::IsSupported(BMI1)) {
CpuFeatureScope scope(this, BMI1);
tzcntl(dst, src);
return;
}
Label not_zero_src;
bsfl(dst, src);
j(not_zero, &not_zero_src, Label::kNear);
Set(dst, 32); // The result of tzcnt is 32 if src = 0.
bind(&not_zero_src);
}
void MacroAssembler::Tzcntl(Register dst, const Operand& src) {
if (CpuFeatures::IsSupported(BMI1)) {
CpuFeatureScope scope(this, BMI1);
tzcntl(dst, src);
return;
}
Label not_zero_src;
bsfl(dst, src);
j(not_zero, &not_zero_src, Label::kNear);
Set(dst, 32); // The result of tzcnt is 32 if src = 0.
bind(&not_zero_src);
}
void MacroAssembler::Popcntl(Register dst, Register src) {
if (CpuFeatures::IsSupported(POPCNT)) {
CpuFeatureScope scope(this, POPCNT);
popcntl(dst, src);
return;
}
UNREACHABLE();
}
void MacroAssembler::Popcntl(Register dst, const Operand& src) {
if (CpuFeatures::IsSupported(POPCNT)) {
CpuFeatureScope scope(this, POPCNT);
popcntl(dst, src);
return;
}
UNREACHABLE();
}
void MacroAssembler::Popcntq(Register dst, Register src) {
if (CpuFeatures::IsSupported(POPCNT)) {
CpuFeatureScope scope(this, POPCNT);
popcntq(dst, src);
return;
}
UNREACHABLE();
}
void MacroAssembler::Popcntq(Register dst, const Operand& src) {
if (CpuFeatures::IsSupported(POPCNT)) {
CpuFeatureScope scope(this, POPCNT);
popcntq(dst, src);
return;
}
UNREACHABLE();
}
void MacroAssembler::Pushad() {
Push(rax);
Push(rcx);
Push(rdx);
Push(rbx);
// Not pushing rsp or rbp.
Push(rsi);
Push(rdi);
Push(r8);
Push(r9);
// r10 is kScratchRegister.
Push(r11);
Push(r12);
// r13 is kRootRegister.
Push(r14);
Push(r15);
STATIC_ASSERT(12 == kNumSafepointSavedRegisters);
// Use lea for symmetry with Popad.
int sp_delta =
(kNumSafepointRegisters - kNumSafepointSavedRegisters) * kPointerSize;
leap(rsp, Operand(rsp, -sp_delta));
}
void MacroAssembler::Popad() {
// Popad must not change the flags, so use lea instead of addq.
int sp_delta =
(kNumSafepointRegisters - kNumSafepointSavedRegisters) * kPointerSize;
leap(rsp, Operand(rsp, sp_delta));
Pop(r15);
Pop(r14);
Pop(r12);
Pop(r11);
Pop(r9);
Pop(r8);
Pop(rdi);
Pop(rsi);
Pop(rbx);
Pop(rdx);
Pop(rcx);
Pop(rax);
}
void MacroAssembler::Dropad() {
addp(rsp, Immediate(kNumSafepointRegisters * kPointerSize));
}
// Order general registers are pushed by Pushad:
// rax, rcx, rdx, rbx, rsi, rdi, r8, r9, r11, r14, r15.
const int
MacroAssembler::kSafepointPushRegisterIndices[Register::kNumRegisters] = {
0,
1,
2,
3,
-1,
-1,
4,
5,
6,
7,
-1,
8,
9,
-1,
10,
11
};
void MacroAssembler::StoreToSafepointRegisterSlot(Register dst,
const Immediate& imm) {
movp(SafepointRegisterSlot(dst), imm);
}
void MacroAssembler::StoreToSafepointRegisterSlot(Register dst, Register src) {
movp(SafepointRegisterSlot(dst), src);
}
void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
movp(dst, SafepointRegisterSlot(src));
}
Operand MacroAssembler::SafepointRegisterSlot(Register reg) {
return Operand(rsp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
}
void MacroAssembler::PushStackHandler() {
// Adjust this code if not the case.
STATIC_ASSERT(StackHandlerConstants::kSize == 1 * kPointerSize);
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
// Link the current handler as the next handler.
ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
Push(ExternalOperand(handler_address));
// Set this new handler as the current one.
movp(ExternalOperand(handler_address), rsp);
}
void MacroAssembler::PopStackHandler() {
STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
ExternalReference handler_address(Isolate::kHandlerAddress, isolate());
Pop(ExternalOperand(handler_address));
addp(rsp, Immediate(StackHandlerConstants::kSize - kPointerSize));
}
void MacroAssembler::Ret() {
ret(0);
}
void MacroAssembler::Ret(int bytes_dropped, Register scratch) {
if (is_uint16(bytes_dropped)) {
ret(bytes_dropped);
} else {
PopReturnAddressTo(scratch);
addp(rsp, Immediate(bytes_dropped));
PushReturnAddressFrom(scratch);
ret(0);
}
}
void MacroAssembler::FCmp() {
fucomip();
fstp(0);
}
void MacroAssembler::CmpObjectType(Register heap_object,
InstanceType type,
Register map) {
movp(map, FieldOperand(heap_object, HeapObject::kMapOffset));
CmpInstanceType(map, type);
}
void MacroAssembler::CmpInstanceType(Register map, InstanceType type) {
cmpb(FieldOperand(map, Map::kInstanceTypeOffset),
Immediate(static_cast<int8_t>(type)));
}
void MacroAssembler::CheckFastElements(Register map,
Label* fail,
Label::Distance distance) {
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
STATIC_ASSERT(FAST_ELEMENTS == 2);
STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
cmpb(FieldOperand(map, Map::kBitField2Offset),
Immediate(Map::kMaximumBitField2FastHoleyElementValue));
j(above, fail, distance);
}
void MacroAssembler::CheckFastObjectElements(Register map,
Label* fail,
Label::Distance distance) {
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
STATIC_ASSERT(FAST_ELEMENTS == 2);
STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
cmpb(FieldOperand(map, Map::kBitField2Offset),
Immediate(Map::kMaximumBitField2FastHoleySmiElementValue));
j(below_equal, fail, distance);
cmpb(FieldOperand(map, Map::kBitField2Offset),
Immediate(Map::kMaximumBitField2FastHoleyElementValue));
j(above, fail, distance);
}
void MacroAssembler::CheckFastSmiElements(Register map,
Label* fail,
Label::Distance distance) {
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
cmpb(FieldOperand(map, Map::kBitField2Offset),
Immediate(Map::kMaximumBitField2FastHoleySmiElementValue));
j(above, fail, distance);
}
void MacroAssembler::StoreNumberToDoubleElements(
Register maybe_number,
Register elements,
Register index,
XMMRegister xmm_scratch,
Label* fail,
int elements_offset) {
Label smi_value, done;
JumpIfSmi(maybe_number, &smi_value, Label::kNear);
CheckMap(maybe_number,
isolate()->factory()->heap_number_map(),
fail,
DONT_DO_SMI_CHECK);
// Double value, turn potential sNaN into qNaN.
Move(xmm_scratch, 1.0);
mulsd(xmm_scratch, FieldOperand(maybe_number, HeapNumber::kValueOffset));
jmp(&done, Label::kNear);
bind(&smi_value);
// Value is a smi. convert to a double and store.
// Preserve original value.
SmiToInteger32(kScratchRegister, maybe_number);
Cvtlsi2sd(xmm_scratch, kScratchRegister);
bind(&done);
Movsd(FieldOperand(elements, index, times_8,
FixedDoubleArray::kHeaderSize - elements_offset),
xmm_scratch);
}
void MacroAssembler::CompareMap(Register obj, Handle<Map> map) {
Cmp(FieldOperand(obj, HeapObject::kMapOffset), map);
}
void MacroAssembler::CheckMap(Register obj,
Handle<Map> map,
Label* fail,
SmiCheckType smi_check_type) {
if (smi_check_type == DO_SMI_CHECK) {
JumpIfSmi(obj, fail);
}
CompareMap(obj, map);
j(not_equal, fail);
}
void MacroAssembler::ClampUint8(Register reg) {
Label done;
testl(reg, Immediate(0xFFFFFF00));
j(zero, &done, Label::kNear);
setcc(negative, reg); // 1 if negative, 0 if positive.
decb(reg); // 0 if negative, 255 if positive.
bind(&done);
}
void MacroAssembler::ClampDoubleToUint8(XMMRegister input_reg,
XMMRegister temp_xmm_reg,
Register result_reg) {
Label done;
Label conv_failure;
Xorpd(temp_xmm_reg, temp_xmm_reg);
Cvtsd2si(result_reg, input_reg);
testl(result_reg, Immediate(0xFFFFFF00));
j(zero, &done, Label::kNear);
cmpl(result_reg, Immediate(1));
j(overflow, &conv_failure, Label::kNear);
movl(result_reg, Immediate(0));
setcc(sign, result_reg);
subl(result_reg, Immediate(1));
andl(result_reg, Immediate(255));
jmp(&done, Label::kNear);
bind(&conv_failure);
Set(result_reg, 0);
Ucomisd(input_reg, temp_xmm_reg);
j(below, &done, Label::kNear);
Set(result_reg, 255);
bind(&done);
}
void MacroAssembler::LoadUint32(XMMRegister dst,
Register src) {
if (FLAG_debug_code) {
cmpq(src, Immediate(0xffffffff));
Assert(below_equal, kInputGPRIsExpectedToHaveUpper32Cleared);
}
Cvtqsi2sd(dst, src);
}
void MacroAssembler::SlowTruncateToI(Register result_reg,
Register input_reg,
int offset) {
DoubleToIStub stub(isolate(), input_reg, result_reg, offset, true);
call(stub.GetCode(), RelocInfo::CODE_TARGET);
}
void MacroAssembler::TruncateHeapNumberToI(Register result_reg,
Register input_reg) {
Label done;
Movsd(kScratchDoubleReg, FieldOperand(input_reg, HeapNumber::kValueOffset));
Cvttsd2siq(result_reg, kScratchDoubleReg);
cmpq(result_reg, Immediate(1));
j(no_overflow, &done, Label::kNear);
// Slow case.
if (input_reg.is(result_reg)) {
subp(rsp, Immediate(kDoubleSize));
Movsd(MemOperand(rsp, 0), kScratchDoubleReg);
SlowTruncateToI(result_reg, rsp, 0);
addp(rsp, Immediate(kDoubleSize));
} else {
SlowTruncateToI(result_reg, input_reg);
}
bind(&done);
// Keep our invariant that the upper 32 bits are zero.
movl(result_reg, result_reg);
}
void MacroAssembler::TruncateDoubleToI(Register result_reg,
XMMRegister input_reg) {
Label done;
Cvttsd2siq(result_reg, input_reg);
cmpq(result_reg, Immediate(1));
j(no_overflow, &done, Label::kNear);
subp(rsp, Immediate(kDoubleSize));
Movsd(MemOperand(rsp, 0), input_reg);
SlowTruncateToI(result_reg, rsp, 0);
addp(rsp, Immediate(kDoubleSize));
bind(&done);
// Keep our invariant that the upper 32 bits are zero.
movl(result_reg, result_reg);
}
void MacroAssembler::DoubleToI(Register result_reg, XMMRegister input_reg,
XMMRegister scratch,
MinusZeroMode minus_zero_mode,
Label* lost_precision, Label* is_nan,
Label* minus_zero, Label::Distance dst) {
Cvttsd2si(result_reg, input_reg);
Cvtlsi2sd(kScratchDoubleReg, result_reg);
Ucomisd(kScratchDoubleReg, input_reg);
j(not_equal, lost_precision, dst);
j(parity_even, is_nan, dst); // NaN.
if (minus_zero_mode == FAIL_ON_MINUS_ZERO) {
Label done;
// The integer converted back is equal to the original. We
// only have to test if we got -0 as an input.
testl(result_reg, result_reg);
j(not_zero, &done, Label::kNear);
Movmskpd(result_reg, input_reg);
// Bit 0 contains the sign of the double in input_reg.
// If input was positive, we are ok and return 0, otherwise
// jump to minus_zero.
andl(result_reg, Immediate(1));
j(not_zero, minus_zero, dst);
bind(&done);
}
}
void MacroAssembler::LoadInstanceDescriptors(Register map,
Register descriptors) {
movp(descriptors, FieldOperand(map, Map::kDescriptorsOffset));
}
void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
movl(dst, FieldOperand(map, Map::kBitField3Offset));
DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
}
void MacroAssembler::EnumLength(Register dst, Register map) {
STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
movl(dst, FieldOperand(map, Map::kBitField3Offset));
andl(dst, Immediate(Map::EnumLengthBits::kMask));
Integer32ToSmi(dst, dst);
}
void MacroAssembler::LoadAccessor(Register dst, Register holder,
int accessor_index,
AccessorComponent accessor) {
movp(dst, FieldOperand(holder, HeapObject::kMapOffset));
LoadInstanceDescriptors(dst, dst);
movp(dst, FieldOperand(dst, DescriptorArray::GetValueOffset(accessor_index)));
int offset = accessor == ACCESSOR_GETTER ? AccessorPair::kGetterOffset
: AccessorPair::kSetterOffset;
movp(dst, FieldOperand(dst, offset));
}
void MacroAssembler::DispatchWeakMap(Register obj, Register scratch1,
Register scratch2, Handle<WeakCell> cell,
Handle<Code> success,
SmiCheckType smi_check_type) {
Label fail;
if (smi_check_type == DO_SMI_CHECK) {
JumpIfSmi(obj, &fail);
}
movq(scratch1, FieldOperand(obj, HeapObject::kMapOffset));
CmpWeakValue(scratch1, cell, scratch2);
j(equal, success, RelocInfo::CODE_TARGET);
bind(&fail);
}
void MacroAssembler::AssertNumber(Register object) {
if (emit_debug_code()) {
Label ok;
Condition is_smi = CheckSmi(object);
j(is_smi, &ok, Label::kNear);
Cmp(FieldOperand(object, HeapObject::kMapOffset),
isolate()->factory()->heap_number_map());
Check(equal, kOperandIsNotANumber);
bind(&ok);
}
}
void MacroAssembler::AssertNotNumber(Register object) {
if (emit_debug_code()) {
Condition is_smi = CheckSmi(object);
Check(NegateCondition(is_smi), kOperandIsANumber);
Cmp(FieldOperand(object, HeapObject::kMapOffset),
isolate()->factory()->heap_number_map());
Check(not_equal, kOperandIsANumber);
}
}
void MacroAssembler::AssertNotSmi(Register object) {
if (emit_debug_code()) {
Condition is_smi = CheckSmi(object);
Check(NegateCondition(is_smi), kOperandIsASmi);
}
}
void MacroAssembler::AssertSmi(Register object) {
if (emit_debug_code()) {
Condition is_smi = CheckSmi(object);
Check(is_smi, kOperandIsNotASmi);
}
}
void MacroAssembler::AssertSmi(const Operand& object) {
if (emit_debug_code()) {
Condition is_smi = CheckSmi(object);
Check(is_smi, kOperandIsNotASmi);
}
}
void MacroAssembler::AssertZeroExtended(Register int32_register) {
if (emit_debug_code()) {
DCHECK(!int32_register.is(kScratchRegister));
movq(kScratchRegister, V8_INT64_C(0x0000000100000000));
cmpq(kScratchRegister, int32_register);
Check(above_equal, k32BitValueInRegisterIsNotZeroExtended);
}
}
void MacroAssembler::AssertString(Register object) {
if (emit_debug_code()) {
testb(object, Immediate(kSmiTagMask));
Check(not_equal, kOperandIsASmiAndNotAString);
Push(object);
movp(object, FieldOperand(object, HeapObject::kMapOffset));
CmpInstanceType(object, FIRST_NONSTRING_TYPE);
Pop(object);
Check(below, kOperandIsNotAString);
}
}
void MacroAssembler::AssertName(Register object) {
if (emit_debug_code()) {
testb(object, Immediate(kSmiTagMask));
Check(not_equal, kOperandIsASmiAndNotAName);
Push(object);
movp(object, FieldOperand(object, HeapObject::kMapOffset));
CmpInstanceType(object, LAST_NAME_TYPE);
Pop(object);
Check(below_equal, kOperandIsNotAName);
}
}
void MacroAssembler::AssertFunction(Register object) {
if (emit_debug_code()) {
testb(object, Immediate(kSmiTagMask));
Check(not_equal, kOperandIsASmiAndNotAFunction);
Push(object);
CmpObjectType(object, JS_FUNCTION_TYPE, object);
Pop(object);
Check(equal, kOperandIsNotAFunction);
}
}
void MacroAssembler::AssertBoundFunction(Register object) {
if (emit_debug_code()) {
testb(object, Immediate(kSmiTagMask));
Check(not_equal, kOperandIsASmiAndNotABoundFunction);
Push(object);
CmpObjectType(object, JS_BOUND_FUNCTION_TYPE, object);
Pop(object);
Check(equal, kOperandIsNotABoundFunction);
}
}
void MacroAssembler::AssertGeneratorObject(Register object) {
if (emit_debug_code()) {
testb(object, Immediate(kSmiTagMask));
Check(not_equal, kOperandIsASmiAndNotAGeneratorObject);
Push(object);
CmpObjectType(object, JS_GENERATOR_OBJECT_TYPE, object);
Pop(object);
Check(equal, kOperandIsNotAGeneratorObject);
}
}
void MacroAssembler::AssertReceiver(Register object) {
if (emit_debug_code()) {
testb(object, Immediate(kSmiTagMask));
Check(not_equal, kOperandIsASmiAndNotAReceiver);
Push(object);
STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
CmpObjectType(object, FIRST_JS_RECEIVER_TYPE, object);
Pop(object);
Check(above_equal, kOperandIsNotAReceiver);
}
}
void MacroAssembler::AssertUndefinedOrAllocationSite(Register object) {
if (emit_debug_code()) {
Label done_checking;
AssertNotSmi(object);
Cmp(object, isolate()->factory()->undefined_value());
j(equal, &done_checking);
Cmp(FieldOperand(object, 0), isolate()->factory()->allocation_site_map());
Assert(equal, kExpectedUndefinedOrCell);
bind(&done_checking);
}
}
void MacroAssembler::AssertRootValue(Register src,
Heap::RootListIndex root_value_index,
BailoutReason reason) {
if (emit_debug_code()) {
DCHECK(!src.is(kScratchRegister));
LoadRoot(kScratchRegister, root_value_index);
cmpp(src, kScratchRegister);
Check(equal, reason);
}
}
Condition MacroAssembler::IsObjectStringType(Register heap_object,
Register map,
Register instance_type) {
movp(map, FieldOperand(heap_object, HeapObject::kMapOffset));
movzxbl(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
STATIC_ASSERT(kNotStringTag != 0);
testb(instance_type, Immediate(kIsNotStringMask));
return zero;
}
Condition MacroAssembler::IsObjectNameType(Register heap_object,
Register map,
Register instance_type) {
movp(map, FieldOperand(heap_object, HeapObject::kMapOffset));
movzxbl(instance_type, FieldOperand(map, Map::kInstanceTypeOffset));
cmpb(instance_type, Immediate(static_cast<uint8_t>(LAST_NAME_TYPE)));
return below_equal;
}
void MacroAssembler::GetMapConstructor(Register result, Register map,
Register temp) {
Label done, loop;
movp(result, FieldOperand(map, Map::kConstructorOrBackPointerOffset));
bind(&loop);
JumpIfSmi(result, &done, Label::kNear);
CmpObjectType(result, MAP_TYPE, temp);
j(not_equal, &done, Label::kNear);
movp(result, FieldOperand(result, Map::kConstructorOrBackPointerOffset));
jmp(&loop);
bind(&done);
}
void MacroAssembler::TryGetFunctionPrototype(Register function, Register result,
Label* miss) {
// Get the prototype or initial map from the function.
movp(result,
FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
// If the prototype or initial map is the hole, don't return it and
// simply miss the cache instead. This will allow us to allocate a
// prototype object on-demand in the runtime system.
CompareRoot(result, Heap::kTheHoleValueRootIndex);
j(equal, miss);
// If the function does not have an initial map, we're done.
Label done;
CmpObjectType(result, MAP_TYPE, kScratchRegister);
j(not_equal, &done, Label::kNear);
// Get the prototype from the initial map.
movp(result, FieldOperand(result, Map::kPrototypeOffset));
// All done.
bind(&done);
}
void MacroAssembler::SetCounter(StatsCounter* counter, int value) {
if (FLAG_native_code_counters && counter->Enabled()) {
Operand counter_operand = ExternalOperand(ExternalReference(counter));
movl(counter_operand, Immediate(value));
}
}
void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) {
DCHECK(value > 0);
if (FLAG_native_code_counters && counter->Enabled()) {
Operand counter_operand = ExternalOperand(ExternalReference(counter));
if (value == 1) {
incl(counter_operand);
} else {
addl(counter_operand, Immediate(value));
}
}
}
void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) {
DCHECK(value > 0);
if (FLAG_native_code_counters && counter->Enabled()) {
Operand counter_operand = ExternalOperand(ExternalReference(counter));
if (value == 1) {
decl(counter_operand);
} else {
subl(counter_operand, Immediate(value));
}
}
}
void MacroAssembler::DebugBreak() {
Set(rax, 0); // No arguments.
LoadAddress(rbx,
ExternalReference(Runtime::kHandleDebuggerStatement, isolate()));
CEntryStub ces(isolate(), 1);
DCHECK(AllowThisStubCall(&ces));
Call(ces.GetCode(), RelocInfo::DEBUGGER_STATEMENT);
}
void MacroAssembler::PrepareForTailCall(const ParameterCount& callee_args_count,
Register caller_args_count_reg,
Register scratch0, Register scratch1,
ReturnAddressState ra_state) {
#if DEBUG
if (callee_args_count.is_reg()) {
DCHECK(!AreAliased(callee_args_count.reg(), caller_args_count_reg, scratch0,
scratch1));
} else {
DCHECK(!AreAliased(caller_args_count_reg, scratch0, scratch1));
}
#endif
// Calculate the destination address where we will put the return address
// after we drop current frame.
Register new_sp_reg = scratch0;
if (callee_args_count.is_reg()) {
subp(caller_args_count_reg, callee_args_count.reg());
leap(new_sp_reg, Operand(rbp, caller_args_count_reg, times_pointer_size,
StandardFrameConstants::kCallerPCOffset));
} else {
leap(new_sp_reg, Operand(rbp, caller_args_count_reg, times_pointer_size,
StandardFrameConstants::kCallerPCOffset -
callee_args_count.immediate() * kPointerSize));
}
if (FLAG_debug_code) {
cmpp(rsp, new_sp_reg);
Check(below, kStackAccessBelowStackPointer);
}
// Copy return address from caller's frame to current frame's return address
// to avoid its trashing and let the following loop copy it to the right
// place.
Register tmp_reg = scratch1;
if (ra_state == ReturnAddressState::kOnStack) {
movp(tmp_reg, Operand(rbp, StandardFrameConstants::kCallerPCOffset));
movp(Operand(rsp, 0), tmp_reg);
} else {
DCHECK(ReturnAddressState::kNotOnStack == ra_state);
Push(Operand(rbp, StandardFrameConstants::kCallerPCOffset));
}
// Restore caller's frame pointer now as it could be overwritten by
// the copying loop.
movp(rbp, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
// +2 here is to copy both receiver and return address.
Register count_reg = caller_args_count_reg;
if (callee_args_count.is_reg()) {
leap(count_reg, Operand(callee_args_count.reg(), 2));
} else {
movp(count_reg, Immediate(callee_args_count.immediate() + 2));
// TODO(ishell): Unroll copying loop for small immediate values.
}
// Now copy callee arguments to the caller frame going backwards to avoid
// callee arguments corruption (source and destination areas could overlap).
Label loop, entry;
jmp(&entry, Label::kNear);
bind(&loop);
decp(count_reg);
movp(tmp_reg, Operand(rsp, count_reg, times_pointer_size, 0));
movp(Operand(new_sp_reg, count_reg, times_pointer_size, 0), tmp_reg);
bind(&entry);
cmpp(count_reg, Immediate(0));
j(not_equal, &loop, Label::kNear);
// Leave current frame.
movp(rsp, new_sp_reg);
}
void MacroAssembler::InvokeFunction(Register function,
Register new_target,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
movp(rbx, FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
LoadSharedFunctionInfoSpecialField(
rbx, rbx, SharedFunctionInfo::kFormalParameterCountOffset);
ParameterCount expected(rbx);
InvokeFunction(function, new_target, expected, actual, flag, call_wrapper);
}
void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
Move(rdi, function);
InvokeFunction(rdi, no_reg, expected, actual, flag, call_wrapper);
}
void MacroAssembler::InvokeFunction(Register function,
Register new_target,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
DCHECK(function.is(rdi));
movp(rsi, FieldOperand(function, JSFunction::kContextOffset));
InvokeFunctionCode(rdi, new_target, expected, actual, flag, call_wrapper);
}
void MacroAssembler::InvokeFunctionCode(Register function, Register new_target,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag,
const CallWrapper& call_wrapper) {
// You can't call a function without a valid frame.
DCHECK(flag == JUMP_FUNCTION || has_frame());
DCHECK(function.is(rdi));
DCHECK_IMPLIES(new_target.is_valid(), new_target.is(rdx));
if (call_wrapper.NeedsDebugStepCheck()) {
FloodFunctionIfStepping(function, new_target, expected, actual);
}
// Clear the new.target register if not given.
if (!new_target.is_valid()) {
LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
}
Label done;
bool definitely_mismatches = false;
InvokePrologue(expected,
actual,
&done,
&definitely_mismatches,
flag,
Label::kNear,
call_wrapper);
if (!definitely_mismatches) {
// We call indirectly through the code field in the function to
// allow recompilation to take effect without changing any of the
// call sites.
Operand code = FieldOperand(function, JSFunction::kCodeEntryOffset);
if (flag == CALL_FUNCTION) {
call_wrapper.BeforeCall(CallSize(code));
call(code);
call_wrapper.AfterCall();
} else {
DCHECK(flag == JUMP_FUNCTION);
jmp(code);
}
bind(&done);
}
}
void MacroAssembler::InvokePrologue(const ParameterCount& expected,
const ParameterCount& actual,
Label* done,
bool* definitely_mismatches,
InvokeFlag flag,
Label::Distance near_jump,
const CallWrapper& call_wrapper) {
bool definitely_matches = false;
*definitely_mismatches = false;
Label invoke;
if (expected.is_immediate()) {
DCHECK(actual.is_immediate());
Set(rax, actual.immediate());
if (expected.immediate() == actual.immediate()) {
definitely_matches = true;
} else {
if (expected.immediate() ==
SharedFunctionInfo::kDontAdaptArgumentsSentinel) {
// Don't worry about adapting arguments for built-ins that
// don't want that done. Skip adaption code by making it look
// like we have a match between expected and actual number of
// arguments.
definitely_matches = true;
} else {
*definitely_mismatches = true;
Set(rbx, expected.immediate());
}
}
} else {
if (actual.is_immediate()) {
// Expected is in register, actual is immediate. This is the
// case when we invoke function values without going through the
// IC mechanism.
Set(rax, actual.immediate());
cmpp(expected.reg(), Immediate(actual.immediate()));
j(equal, &invoke, Label::kNear);
DCHECK(expected.reg().is(rbx));
} else if (!expected.reg().is(actual.reg())) {
// Both expected and actual are in (different) registers. This
// is the case when we invoke functions using call and apply.
cmpp(expected.reg(), actual.reg());
j(equal, &invoke, Label::kNear);
DCHECK(actual.reg().is(rax));
DCHECK(expected.reg().is(rbx));
} else {
Move(rax, actual.reg());
}
}
if (!definitely_matches) {
Handle<Code> adaptor = isolate()->builtins()->ArgumentsAdaptorTrampoline();
if (flag == CALL_FUNCTION) {
call_wrapper.BeforeCall(CallSize(adaptor));
Call(adaptor, RelocInfo::CODE_TARGET);
call_wrapper.AfterCall();
if (!*definitely_mismatches) {
jmp(done, near_jump);
}
} else {
Jump(adaptor, RelocInfo::CODE_TARGET);
}
bind(&invoke);
}
}
void MacroAssembler::FloodFunctionIfStepping(Register fun, Register new_target,
const ParameterCount& expected,
const ParameterCount& actual) {
Label skip_flooding;
ExternalReference last_step_action =
ExternalReference::debug_last_step_action_address(isolate());
Operand last_step_action_operand = ExternalOperand(last_step_action);
STATIC_ASSERT(StepFrame > StepIn);
cmpb(last_step_action_operand, Immediate(StepIn));
j(less, &skip_flooding);
{
FrameScope frame(this,
has_frame() ? StackFrame::NONE : StackFrame::INTERNAL);
if (expected.is_reg()) {
Integer32ToSmi(expected.reg(), expected.reg());
Push(expected.reg());
}
if (actual.is_reg()) {
Integer32ToSmi(actual.reg(), actual.reg());
Push(actual.reg());
}
if (new_target.is_valid()) {
Push(new_target);
}
Push(fun);
Push(fun);
CallRuntime(Runtime::kDebugPrepareStepInIfStepping);
Pop(fun);
if (new_target.is_valid()) {
Pop(new_target);
}
if (actual.is_reg()) {
Pop(actual.reg());
SmiToInteger64(actual.reg(), actual.reg());
}
if (expected.is_reg()) {
Pop(expected.reg());
SmiToInteger64(expected.reg(), expected.reg());
}
}
bind(&skip_flooding);
}
void MacroAssembler::StubPrologue(StackFrame::Type type) {
pushq(rbp); // Caller's frame pointer.
movp(rbp, rsp);
Push(Smi::FromInt(type));
}
void MacroAssembler::Prologue(bool code_pre_aging) {
PredictableCodeSizeScope predictible_code_size_scope(this,
kNoCodeAgeSequenceLength);
if (code_pre_aging) {
// Pre-age the code.
Call(isolate()->builtins()->MarkCodeAsExecutedOnce(),
RelocInfo::CODE_AGE_SEQUENCE);
Nop(kNoCodeAgeSequenceLength - Assembler::kShortCallInstructionLength);
} else {
pushq(rbp); // Caller's frame pointer.
movp(rbp, rsp);
Push(rsi); // Callee's context.
Push(rdi); // Callee's JS function.
}
}
void MacroAssembler::EmitLoadTypeFeedbackVector(Register vector) {
movp(vector, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
movp(vector, FieldOperand(vector, JSFunction::kLiteralsOffset));
movp(vector, FieldOperand(vector, LiteralsArray::kFeedbackVectorOffset));
}
void MacroAssembler::EnterFrame(StackFrame::Type type,
bool load_constant_pool_pointer_reg) {
// Out-of-line constant pool not implemented on x64.
UNREACHABLE();
}
void MacroAssembler::EnterFrame(StackFrame::Type type) {
pushq(rbp);
movp(rbp, rsp);
Push(Smi::FromInt(type));
if (type == StackFrame::INTERNAL) {
Move(kScratchRegister, CodeObject(), RelocInfo::EMBEDDED_OBJECT);
Push(kScratchRegister);
}
if (emit_debug_code()) {
Move(kScratchRegister,
isolate()->factory()->undefined_value(),
RelocInfo::EMBEDDED_OBJECT);
cmpp(Operand(rsp, 0), kScratchRegister);
Check(not_equal, kCodeObjectNotProperlyPatched);
}
}
void MacroAssembler::LeaveFrame(StackFrame::Type type) {
if (emit_debug_code()) {
Move(kScratchRegister, Smi::FromInt(type));
cmpp(Operand(rbp, CommonFrameConstants::kContextOrFrameTypeOffset),
kScratchRegister);
Check(equal, kStackFrameTypesMustMatch);
}
movp(rsp, rbp);
popq(rbp);
}
void MacroAssembler::EnterExitFramePrologue(bool save_rax) {
// Set up the frame structure on the stack.
// All constants are relative to the frame pointer of the exit frame.
DCHECK_EQ(kFPOnStackSize + kPCOnStackSize,
ExitFrameConstants::kCallerSPDisplacement);
DCHECK_EQ(kFPOnStackSize, ExitFrameConstants::kCallerPCOffset);
DCHECK_EQ(0 * kPointerSize, ExitFrameConstants::kCallerFPOffset);
pushq(rbp);
movp(rbp, rsp);
// Reserve room for entry stack pointer and push the code object.
Push(Smi::FromInt(StackFrame::EXIT));
DCHECK_EQ(-2 * kPointerSize, ExitFrameConstants::kSPOffset);
Push(Immediate(0)); // Saved entry sp, patched before call.
Move(kScratchRegister, CodeObject(), RelocInfo::EMBEDDED_OBJECT);
Push(kScratchRegister); // Accessed from EditFrame::code_slot.
// Save the frame pointer and the context in top.
if (save_rax) {
movp(r14, rax); // Backup rax in callee-save register.
}
Store(ExternalReference(Isolate::kCEntryFPAddress, isolate()), rbp);
Store(ExternalReference(Isolate::kContextAddress, isolate()), rsi);
Store(ExternalReference(Isolate::kCFunctionAddress, isolate()), rbx);
}
void MacroAssembler::EnterExitFrameEpilogue(int arg_stack_space,
bool save_doubles) {
#ifdef _WIN64
const int kShadowSpace = 4;
arg_stack_space += kShadowSpace;
#endif
// Optionally save all XMM registers.
if (save_doubles) {
int space = XMMRegister::kMaxNumRegisters * kDoubleSize +
arg_stack_space * kRegisterSize;
subp(rsp, Immediate(space));
int offset = -ExitFrameConstants::kFixedFrameSizeFromFp;
const RegisterConfiguration* config = RegisterConfiguration::Crankshaft();
for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
DoubleRegister reg =
DoubleRegister::from_code(config->GetAllocatableDoubleCode(i));
Movsd(Operand(rbp, offset - ((i + 1) * kDoubleSize)), reg);
}
} else if (arg_stack_space > 0) {
subp(rsp, Immediate(arg_stack_space * kRegisterSize));
}
// Get the required frame alignment for the OS.
const int kFrameAlignment = base::OS::ActivationFrameAlignment();
if (kFrameAlignment > 0) {
DCHECK(base::bits::IsPowerOfTwo32(kFrameAlignment));
DCHECK(is_int8(kFrameAlignment));
andp(rsp, Immediate(-kFrameAlignment));
}
// Patch the saved entry sp.
movp(Operand(rbp, ExitFrameConstants::kSPOffset), rsp);
}
void MacroAssembler::EnterExitFrame(int arg_stack_space, bool save_doubles) {
EnterExitFramePrologue(true);
// Set up argv in callee-saved register r15. It is reused in LeaveExitFrame,
// so it must be retained across the C-call.
int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize;
leap(r15, Operand(rbp, r14, times_pointer_size, offset));
EnterExitFrameEpilogue(arg_stack_space, save_doubles);
}
void MacroAssembler::EnterApiExitFrame(int arg_stack_space) {
EnterExitFramePrologue(false);
EnterExitFrameEpilogue(arg_stack_space, false);
}
void MacroAssembler::LeaveExitFrame(bool save_doubles, bool pop_arguments) {
// Registers:
// r15 : argv
if (save_doubles) {
int offset = -ExitFrameConstants::kFixedFrameSizeFromFp;
const RegisterConfiguration* config = RegisterConfiguration::Crankshaft();
for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
DoubleRegister reg =
DoubleRegister::from_code(config->GetAllocatableDoubleCode(i));
Movsd(reg, Operand(rbp, offset - ((i + 1) * kDoubleSize)));
}
}
if (pop_arguments) {
// Get the return address from the stack and restore the frame pointer.
movp(rcx, Operand(rbp, kFPOnStackSize));
movp(rbp, Operand(rbp, 0 * kPointerSize));
// Drop everything up to and including the arguments and the receiver
// from the caller stack.
leap(rsp, Operand(r15, 1 * kPointerSize));
PushReturnAddressFrom(rcx);
} else {
// Otherwise just leave the exit frame.
leave();
}
LeaveExitFrameEpilogue(true);
}
void MacroAssembler::LeaveApiExitFrame(bool restore_context) {
movp(rsp, rbp);
popq(rbp);
LeaveExitFrameEpilogue(restore_context);
}
void MacroAssembler::LeaveExitFrameEpilogue(bool restore_context) {
// Restore current context from top and clear it in debug mode.
ExternalReference context_address(Isolate::kContextAddress, isolate());
Operand context_operand = ExternalOperand(context_address);
if (restore_context) {
movp(rsi, context_operand);
}
#ifdef DEBUG
movp(context_operand, Immediate(0));
#endif
// Clear the top frame.
ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress,
isolate());
Operand c_entry_fp_operand = ExternalOperand(c_entry_fp_address);
movp(c_entry_fp_operand, Immediate(0));
}
void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
Register scratch,
Label* miss) {
Label same_contexts;
DCHECK(!holder_reg.is(scratch));
DCHECK(!scratch.is(kScratchRegister));
// Load current lexical context from the active StandardFrame, which
// may require crawling past STUB frames.
Label load_context;
Label has_context;
movp(scratch, rbp);
bind(&load_context);
DCHECK(SmiValuesAre32Bits());
// This is "JumpIfNotSmi" but without loading the value into a register.
cmpl(MemOperand(scratch, CommonFrameConstants::kContextOrFrameTypeOffset),
Immediate(0));
j(not_equal, &has_context);
movp(scratch, MemOperand(scratch, CommonFrameConstants::kCallerFPOffset));
jmp(&load_context);
bind(&has_context);
movp(scratch,
MemOperand(scratch, CommonFrameConstants::kContextOrFrameTypeOffset));
// When generating debug code, make sure the lexical context is set.
if (emit_debug_code()) {
cmpp(scratch, Immediate(0));
Check(not_equal, kWeShouldNotHaveAnEmptyLexicalContext);
}
// Load the native context of the current context.
movp(scratch, ContextOperand(scratch, Context::NATIVE_CONTEXT_INDEX));
// Check the context is a native context.
if (emit_debug_code()) {
Cmp(FieldOperand(scratch, HeapObject::kMapOffset),
isolate()->factory()->native_context_map());
Check(equal, kJSGlobalObjectNativeContextShouldBeANativeContext);
}
// Check if both contexts are the same.
cmpp(scratch, FieldOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
j(equal, &same_contexts);
// Compare security tokens.
// Check that the security token in the calling global object is
// compatible with the security token in the receiving global
// object.
// Check the context is a native context.
if (emit_debug_code()) {
// Preserve original value of holder_reg.
Push(holder_reg);
movp(holder_reg,
FieldOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
CompareRoot(holder_reg, Heap::kNullValueRootIndex);
Check(not_equal, kJSGlobalProxyContextShouldNotBeNull);
// Read the first word and compare to native_context_map(),
movp(holder_reg, FieldOperand(holder_reg, HeapObject::kMapOffset));
CompareRoot(holder_reg, Heap::kNativeContextMapRootIndex);
Check(equal, kJSGlobalObjectNativeContextShouldBeANativeContext);
Pop(holder_reg);
}
movp(kScratchRegister,
FieldOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
int token_offset =
Context::kHeaderSize + Context::SECURITY_TOKEN_INDEX * kPointerSize;
movp(scratch, FieldOperand(scratch, token_offset));
cmpp(scratch, FieldOperand(kScratchRegister, token_offset));
j(not_equal, miss);
bind(&same_contexts);
}
// Compute the hash code from the untagged key. This must be kept in sync with
// ComputeIntegerHash in utils.h and KeyedLoadGenericStub in
// code-stub-hydrogen.cc
void MacroAssembler::GetNumberHash(Register r0, Register scratch) {
// First of all we assign the hash seed to scratch.
LoadRoot(scratch, Heap::kHashSeedRootIndex);
SmiToInteger32(scratch, scratch);
// Xor original key with a seed.
xorl(r0, scratch);
// Compute the hash code from the untagged key. This must be kept in sync
// with ComputeIntegerHash in utils.h.
//
// hash = ~hash + (hash << 15);
movl(scratch, r0);
notl(r0);
shll(scratch, Immediate(15));
addl(r0, scratch);
// hash = hash ^ (hash >> 12);
movl(scratch, r0);
shrl(scratch, Immediate(12));
xorl(r0, scratch);
// hash = hash + (hash << 2);
leal(r0, Operand(r0, r0, times_4, 0));
// hash = hash ^ (hash >> 4);
movl(scratch, r0);
shrl(scratch, Immediate(4));
xorl(r0, scratch);
// hash = hash * 2057;
imull(r0, r0, Immediate(2057));
// hash = hash ^ (hash >> 16);
movl(scratch, r0);
shrl(scratch, Immediate(16));
xorl(r0, scratch);
andl(r0, Immediate(0x3fffffff));
}
void MacroAssembler::LoadFromNumberDictionary(Label* miss,
Register elements,
Register key,
Register r0,
Register r1,
Register r2,
Register result) {
// Register use:
//
// elements - holds the slow-case elements of the receiver on entry.
// Unchanged unless 'result' is the same register.
//
// key - holds the smi key on entry.
// Unchanged unless 'result' is the same register.
//
// Scratch registers:
//
// r0 - holds the untagged key on entry and holds the hash once computed.
//
// r1 - used to hold the capacity mask of the dictionary
//
// r2 - used for the index into the dictionary.
//
// result - holds the result on exit if the load succeeded.
// Allowed to be the same as 'key' or 'result'.
// Unchanged on bailout so 'key' or 'result' can be used
// in further computation.
Label done;
GetNumberHash(r0, r1);
// Compute capacity mask.
SmiToInteger32(r1, FieldOperand(elements,
SeededNumberDictionary::kCapacityOffset));
decl(r1);
// Generate an unrolled loop that performs a few probes before giving up.
for (int i = 0; i < kNumberDictionaryProbes; i++) {
// Use r2 for index calculations and keep the hash intact in r0.
movp(r2, r0);
// Compute the masked index: (hash + i + i * i) & mask.
if (i > 0) {
addl(r2, Immediate(SeededNumberDictionary::GetProbeOffset(i)));
}
andp(r2, r1);
// Scale the index by multiplying by the entry size.
DCHECK(SeededNumberDictionary::kEntrySize == 3);
leap(r2, Operand(r2, r2, times_2, 0)); // r2 = r2 * 3
// Check if the key matches.
cmpp(key, FieldOperand(elements,
r2,
times_pointer_size,
SeededNumberDictionary::kElementsStartOffset));
if (i != (kNumberDictionaryProbes - 1)) {
j(equal, &done);
} else {
j(not_equal, miss);
}
}
bind(&done);
// Check that the value is a field property.
const int kDetailsOffset =
SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
DCHECK_EQ(DATA, 0);
Test(FieldOperand(elements, r2, times_pointer_size, kDetailsOffset),
Smi::FromInt(PropertyDetails::TypeField::kMask));
j(not_zero, miss);
// Get the value at the masked, scaled index.
const int kValueOffset =
SeededNumberDictionary::kElementsStartOffset + kPointerSize;
movp(result, FieldOperand(elements, r2, times_pointer_size, kValueOffset));
}
void MacroAssembler::LoadAllocationTopHelper(Register result,
Register scratch,
AllocationFlags flags) {
ExternalReference allocation_top =
AllocationUtils::GetAllocationTopReference(isolate(), flags);
// Just return if allocation top is already known.
if ((flags & RESULT_CONTAINS_TOP) != 0) {
// No use of scratch if allocation top is provided.
DCHECK(!scratch.is_valid());
#ifdef DEBUG
// Assert that result actually contains top on entry.
Operand top_operand = ExternalOperand(allocation_top);
cmpp(result, top_operand);
Check(equal, kUnexpectedAllocationTop);
#endif
return;
}
// Move address of new object to result. Use scratch register if available,
// and keep address in scratch until call to UpdateAllocationTopHelper.
if (scratch.is_valid()) {
LoadAddress(scratch, allocation_top);
movp(result, Operand(scratch, 0));
} else {
Load(result, allocation_top);
}
}
void MacroAssembler::MakeSureDoubleAlignedHelper(Register result,
Register scratch,
Label* gc_required,
AllocationFlags flags) {
if (kPointerSize == kDoubleSize) {
if (FLAG_debug_code) {
testl(result, Immediate(kDoubleAlignmentMask));
Check(zero, kAllocationIsNotDoubleAligned);
}
} else {
// Align the next allocation. Storing the filler map without checking top
// is safe in new-space because the limit of the heap is aligned there.
DCHECK(kPointerSize * 2 == kDoubleSize);
DCHECK(kPointerAlignment * 2 == kDoubleAlignment);
// Make sure scratch is not clobbered by this function as it might be
// used in UpdateAllocationTopHelper later.
DCHECK(!scratch.is(kScratchRegister));
Label aligned;
testl(result, Immediate(kDoubleAlignmentMask));
j(zero, &aligned, Label::kNear);
if (((flags & ALLOCATION_FOLDED) == 0) && ((flags & PRETENURE) != 0)) {
ExternalReference allocation_limit =
AllocationUtils::GetAllocationLimitReference(isolate(), flags);
cmpp(result, ExternalOperand(allocation_limit));
j(above_equal, gc_required);
}
LoadRoot(kScratchRegister, Heap::kOnePointerFillerMapRootIndex);
movp(Operand(result, 0), kScratchRegister);
addp(result, Immediate(kDoubleSize / 2));
bind(&aligned);
}
}
void MacroAssembler::UpdateAllocationTopHelper(Register result_end,
Register scratch,
AllocationFlags flags) {
if (emit_debug_code()) {
testp(result_end, Immediate(kObjectAlignmentMask));
Check(zero, kUnalignedAllocationInNewSpace);
}
ExternalReference allocation_top =
AllocationUtils::GetAllocationTopReference(isolate(), flags);
// Update new top.
if (scratch.is_valid()) {
// Scratch already contains address of allocation top.
movp(Operand(scratch, 0), result_end);
} else {
Store(allocation_top, result_end);
}
}
void MacroAssembler::Allocate(int object_size,
Register result,
Register result_end,
Register scratch,
Label* gc_required,
AllocationFlags flags) {
DCHECK((flags & (RESULT_CONTAINS_TOP | SIZE_IN_WORDS)) == 0);
DCHECK(object_size <= Page::kMaxRegularHeapObjectSize);
DCHECK((flags & ALLOCATION_FOLDED) == 0);
if (!FLAG_inline_new) {
if (emit_debug_code()) {
// Trash the registers to simulate an allocation failure.
movl(result, Immediate(0x7091));
if (result_end.is_valid()) {
movl(result_end, Immediate(0x7191));
}
if (scratch.is_valid()) {
movl(scratch, Immediate(0x7291));
}
}
jmp(gc_required);
return;
}
DCHECK(!result.is(result_end));
// Load address of new object into result.
LoadAllocationTopHelper(result, scratch, flags);
if ((flags & DOUBLE_ALIGNMENT) != 0) {
MakeSureDoubleAlignedHelper(result, scratch, gc_required, flags);
}
// Calculate new top and bail out if new space is exhausted.
ExternalReference allocation_limit =
AllocationUtils::GetAllocationLimitReference(isolate(), flags);
Register top_reg = result_end.is_valid() ? result_end : result;
if (!top_reg.is(result)) {
movp(top_reg, result);
}
addp(top_reg, Immediate(object_size));
Operand limit_operand = ExternalOperand(allocation_limit);
cmpp(top_reg, limit_operand);
j(above, gc_required);
if ((flags & ALLOCATION_FOLDING_DOMINATOR) == 0) {
// The top pointer is not updated for allocation folding dominators.
UpdateAllocationTopHelper(top_reg, scratch, flags);
}
if (top_reg.is(result)) {
subp(result, Immediate(object_size - kHeapObjectTag));
} else {
// Tag the result.
DCHECK(kHeapObjectTag == 1);
incp(result);
}
}
void MacroAssembler::Allocate(int header_size,
ScaleFactor element_size,
Register element_count,
Register result,
Register result_end,
Register scratch,
Label* gc_required,
AllocationFlags flags) {
DCHECK((flags & SIZE_IN_WORDS) == 0);
DCHECK((flags & ALLOCATION_FOLDING_DOMINATOR) == 0);
DCHECK((flags & ALLOCATION_FOLDED) == 0);
leap(result_end, Operand(element_count, element_size, header_size));
Allocate(result_end, result, result_end, scratch, gc_required, flags);
}
void MacroAssembler::Allocate(Register object_size,
Register result,
Register result_end,
Register scratch,
Label* gc_required,
AllocationFlags flags) {
DCHECK((flags & SIZE_IN_WORDS) == 0);
DCHECK((flags & ALLOCATION_FOLDED) == 0);
if (!FLAG_inline_new) {
if (emit_debug_code()) {
// Trash the registers to simulate an allocation failure.
movl(result, Immediate(0x7091));
movl(result_end, Immediate(0x7191));
if (scratch.is_valid()) {
movl(scratch, Immediate(0x7291));
}
// object_size is left unchanged by this function.
}
jmp(gc_required);
return;
}
DCHECK(!result.is(result_end));
// Load address of new object into result.
LoadAllocationTopHelper(result, scratch, flags);
if ((flags & DOUBLE_ALIGNMENT) != 0) {
MakeSureDoubleAlignedHelper(result, scratch, gc_required, flags);
}
ExternalReference allocation_limit =
AllocationUtils::GetAllocationLimitReference(isolate(), flags);
if (!object_size.is(result_end)) {
movp(result_end, object_size);
}
addp(result_end, result);
Operand limit_operand = ExternalOperand(allocation_limit);
cmpp(result_end, limit_operand);
j(above, gc_required);
if ((flags & ALLOCATION_FOLDING_DOMINATOR) == 0) {
// The top pointer is not updated for allocation folding dominators.
UpdateAllocationTopHelper(result_end, scratch, flags);
}
// Tag the result.
addp(result, Immediate(kHeapObjectTag));
}
void MacroAssembler::FastAllocate(int object_size, Register result,
Register result_end, AllocationFlags flags) {
DCHECK(!result.is(result_end));
// Load address of new object into result.
LoadAllocationTopHelper(result, no_reg, flags);
if ((flags & DOUBLE_ALIGNMENT) != 0) {
MakeSureDoubleAlignedHelper(result, no_reg, NULL, flags);
}
leap(result_end, Operand(result, object_size));
UpdateAllocationTopHelper(result_end, no_reg, flags);
addp(result, Immediate(kHeapObjectTag));
}
void MacroAssembler::FastAllocate(Register object_size, Register result,
Register result_end, AllocationFlags flags) {
DCHECK(!result.is(result_end));
// Load address of new object into result.
LoadAllocationTopHelper(result, no_reg, flags);
if ((flags & DOUBLE_ALIGNMENT) != 0) {
MakeSureDoubleAlignedHelper(result, no_reg, NULL, flags);
}
leap(result_end, Operand(result, object_size, times_1, 0));
UpdateAllocationTopHelper(result_end, no_reg, flags);
addp(result, Immediate(kHeapObjectTag));
}
void MacroAssembler::AllocateHeapNumber(Register result,
Register scratch,
Label* gc_required,
MutableMode mode) {
// Allocate heap number in new space.
Allocate(HeapNumber::kSize, result, scratch, no_reg, gc_required,
NO_ALLOCATION_FLAGS);
Heap::RootListIndex map_index = mode == MUTABLE
? Heap::kMutableHeapNumberMapRootIndex
: Heap::kHeapNumberMapRootIndex;
// Set the map.
LoadRoot(kScratchRegister, map_index);
movp(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
}
void MacroAssembler::AllocateTwoByteString(Register result,
Register length,
Register scratch1,
Register scratch2,
Register scratch3,
Label* gc_required) {
// Calculate the number of bytes needed for the characters in the string while
// observing object alignment.
const int kHeaderAlignment = SeqTwoByteString::kHeaderSize &
kObjectAlignmentMask;
DCHECK(kShortSize == 2);
// scratch1 = length * 2 + kObjectAlignmentMask.
leap(scratch1, Operand(length, length, times_1, kObjectAlignmentMask +
kHeaderAlignment));
andp(scratch1, Immediate(~kObjectAlignmentMask));
if (kHeaderAlignment > 0) {
subp(scratch1, Immediate(kHeaderAlignment));
}
// Allocate two byte string in new space.
Allocate(SeqTwoByteString::kHeaderSize, times_1, scratch1, result, scratch2,
scratch3, gc_required, NO_ALLOCATION_FLAGS);
// Set the map, length and hash field.
LoadRoot(kScratchRegister, Heap::kStringMapRootIndex);
movp(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
Integer32ToSmi(scratch1, length);
movp(FieldOperand(result, String::kLengthOffset), scratch1);
movp(FieldOperand(result, String::kHashFieldOffset),
Immediate(String::kEmptyHashField));
}
void MacroAssembler::AllocateOneByteString(Register result, Register length,
Register scratch1, Register scratch2,
Register scratch3,
Label* gc_required) {
// Calculate the number of bytes needed for the characters in the string while
// observing object alignment.
const int kHeaderAlignment = SeqOneByteString::kHeaderSize &
kObjectAlignmentMask;
movl(scratch1, length);
DCHECK(kCharSize == 1);
addp(scratch1, Immediate(kObjectAlignmentMask + kHeaderAlignment));
andp(scratch1, Immediate(~kObjectAlignmentMask));
if (kHeaderAlignment > 0) {
subp(scratch1, Immediate(kHeaderAlignment));
}
// Allocate one-byte string in new space.
Allocate(SeqOneByteString::kHeaderSize, times_1, scratch1, result, scratch2,
scratch3, gc_required, NO_ALLOCATION_FLAGS);
// Set the map, length and hash field.
LoadRoot(kScratchRegister, Heap::kOneByteStringMapRootIndex);
movp(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
Integer32ToSmi(scratch1, length);
movp(FieldOperand(result, String::kLengthOffset), scratch1);
movp(FieldOperand(result, String::kHashFieldOffset),
Immediate(String::kEmptyHashField));
}
void MacroAssembler::AllocateTwoByteConsString(Register result,
Register scratch1,
Register scratch2,
Label* gc_required) {
// Allocate heap number in new space.
Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
NO_ALLOCATION_FLAGS);
// Set the map. The other fields are left uninitialized.
LoadRoot(kScratchRegister, Heap::kConsStringMapRootIndex);
movp(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
}
void MacroAssembler::AllocateOneByteConsString(Register result,
Register scratch1,
Register scratch2,
Label* gc_required) {
Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
NO_ALLOCATION_FLAGS);
// Set the map. The other fields are left uninitialized.
LoadRoot(kScratchRegister, Heap::kConsOneByteStringMapRootIndex);
movp(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
}
void MacroAssembler::AllocateTwoByteSlicedString(Register result,
Register scratch1,
Register scratch2,
Label* gc_required) {
// Allocate heap number in new space.
Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
NO_ALLOCATION_FLAGS);
// Set the map. The other fields are left uninitialized.
LoadRoot(kScratchRegister, Heap::kSlicedStringMapRootIndex);
movp(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
}
void MacroAssembler::AllocateOneByteSlicedString(Register result,
Register scratch1,
Register scratch2,
Label* gc_required) {
// Allocate heap number in new space.
Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
NO_ALLOCATION_FLAGS);
// Set the map. The other fields are left uninitialized.
LoadRoot(kScratchRegister, Heap::kSlicedOneByteStringMapRootIndex);
movp(FieldOperand(result, HeapObject::kMapOffset), kScratchRegister);
}
void MacroAssembler::AllocateJSValue(Register result, Register constructor,
Register value, Register scratch,
Label* gc_required) {
DCHECK(!result.is(constructor));
DCHECK(!result.is(scratch));
DCHECK(!result.is(value));
// Allocate JSValue in new space.
Allocate(JSValue::kSize, result, scratch, no_reg, gc_required,
NO_ALLOCATION_FLAGS);
// Initialize the JSValue.
LoadGlobalFunctionInitialMap(constructor, scratch);
movp(FieldOperand(result, HeapObject::kMapOffset), scratch);
LoadRoot(scratch, Heap::kEmptyFixedArrayRootIndex);
movp(FieldOperand(result, JSObject::kPropertiesOffset), scratch);
movp(FieldOperand(result, JSObject::kElementsOffset), scratch);
movp(FieldOperand(result, JSValue::kValueOffset), value);
STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
}
// Copy memory, byte-by-byte, from source to destination. Not optimized for
// long or aligned copies. The contents of scratch and length are destroyed.
// Destination is incremented by length, source, length and scratch are
// clobbered.
// A simpler loop is faster on small copies, but slower on large ones.
// The cld() instruction must have been emitted, to set the direction flag(),
// before calling this function.
void MacroAssembler::CopyBytes(Register destination,
Register source,
Register length,
int min_length,
Register scratch) {
DCHECK(min_length >= 0);
if (emit_debug_code()) {
cmpl(length, Immediate(min_length));
Assert(greater_equal, kInvalidMinLength);
}
Label short_loop, len8, len16, len24, done, short_string;
const int kLongStringLimit = 4 * kPointerSize;
if (min_length <= kLongStringLimit) {
cmpl(length, Immediate(kPointerSize));
j(below, &short_string, Label::kNear);
}
DCHECK(source.is(rsi));
DCHECK(destination.is(rdi));
DCHECK(length.is(rcx));
if (min_length <= kLongStringLimit) {
cmpl(length, Immediate(2 * kPointerSize));
j(below_equal, &len8, Label::kNear);
cmpl(length, Immediate(3 * kPointerSize));
j(below_equal, &len16, Label::kNear);
cmpl(length, Immediate(4 * kPointerSize));
j(below_equal, &len24, Label::kNear);
}
// Because source is 8-byte aligned in our uses of this function,
// we keep source aligned for the rep movs operation by copying the odd bytes
// at the end of the ranges.
movp(scratch, length);
shrl(length, Immediate(kPointerSizeLog2));
repmovsp();
// Move remaining bytes of length.
andl(scratch, Immediate(kPointerSize - 1));
movp(length, Operand(source, scratch, times_1, -kPointerSize));
movp(Operand(destination, scratch, times_1, -kPointerSize), length);
addp(destination, scratch);
if (min_length <= kLongStringLimit) {
jmp(&done, Label::kNear);
bind(&len24);
movp(scratch, Operand(source, 2 * kPointerSize));
movp(Operand(destination, 2 * kPointerSize), scratch);
bind(&len16);
movp(scratch, Operand(source, kPointerSize));
movp(Operand(destination, kPointerSize), scratch);
bind(&len8);
movp(scratch, Operand(source, 0));
movp(Operand(destination, 0), scratch);
// Move remaining bytes of length.
movp(scratch, Operand(source, length, times_1, -kPointerSize));
movp(Operand(destination, length, times_1, -kPointerSize), scratch);
addp(destination, length);
jmp(&done, Label::kNear);
bind(&short_string);
if (min_length == 0) {
testl(length, length);
j(zero, &done, Label::kNear);
}
bind(&short_loop);
movb(scratch, Operand(source, 0));
movb(Operand(destination, 0), scratch);
incp(source);
incp(destination);
decl(length);
j(not_zero, &short_loop, Label::kNear);
}
bind(&done);
}
void MacroAssembler::InitializeFieldsWithFiller(Register current_address,
Register end_address,
Register filler) {
Label loop, entry;
jmp(&entry, Label::kNear);
bind(&loop);
movp(Operand(current_address, 0), filler);
addp(current_address, Immediate(kPointerSize));
bind(&entry);
cmpp(current_address, end_address);
j(below, &loop, Label::kNear);
}
void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
if (context_chain_length > 0) {
// Move up the chain of contexts to the context containing the slot.
movp(dst, Operand(rsi, Context::SlotOffset(Context::PREVIOUS_INDEX)));
for (int i = 1; i < context_chain_length; i++) {
movp(dst, Operand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
}
} else {
// Slot is in the current function context. Move it into the
// destination register in case we store into it (the write barrier
// cannot be allowed to destroy the context in rsi).
movp(dst, rsi);
}
// We should not have found a with context by walking the context
// chain (i.e., the static scope chain and runtime context chain do
// not agree). A variable occurring in such a scope should have
// slot type LOOKUP and not CONTEXT.
if (emit_debug_code()) {
CompareRoot(FieldOperand(dst, HeapObject::kMapOffset),
Heap::kWithContextMapRootIndex);
Check(not_equal, kVariableResolvedToWithContext);
}
}
void MacroAssembler::LoadTransitionedArrayMapConditional(
ElementsKind expected_kind,
ElementsKind transitioned_kind,
Register map_in_out,
Register scratch,
Label* no_map_match) {
DCHECK(IsFastElementsKind(expected_kind));
DCHECK(IsFastElementsKind(transitioned_kind));
// Check that the function's map is the same as the expected cached map.
movp(scratch, NativeContextOperand());
cmpp(map_in_out,
ContextOperand(scratch, Context::ArrayMapIndex(expected_kind)));
j(not_equal, no_map_match);
// Use the transitioned cached map.
movp(map_in_out,
ContextOperand(scratch, Context::ArrayMapIndex(transitioned_kind)));
}
#ifdef _WIN64
static const int kRegisterPassedArguments = 4;
#else
static const int kRegisterPassedArguments = 6;
#endif
void MacroAssembler::LoadNativeContextSlot(int index, Register dst) {
movp(dst, NativeContextOperand());
movp(dst, ContextOperand(dst, index));
}
void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
Register map) {
// Load the initial map. The global functions all have initial maps.
movp(map, FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
if (emit_debug_code()) {
Label ok, fail;
CheckMap(map, isolate()->factory()->meta_map(), &fail, DO_SMI_CHECK);
jmp(&ok);
bind(&fail);
Abort(kGlobalFunctionsMustHaveInitialMap);
bind(&ok);
}
}
int MacroAssembler::ArgumentStackSlotsForCFunctionCall(int num_arguments) {
// On Windows 64 stack slots are reserved by the caller for all arguments
// including the ones passed in registers, and space is always allocated for
// the four register arguments even if the function takes fewer than four
// arguments.
// On AMD64 ABI (Linux/Mac) the first six arguments are passed in registers
// and the caller does not reserve stack slots for them.
DCHECK(num_arguments >= 0);
#ifdef _WIN64
const int kMinimumStackSlots = kRegisterPassedArguments;
if (num_arguments < kMinimumStackSlots) return kMinimumStackSlots;
return num_arguments;
#else
if (num_arguments < kRegisterPassedArguments) return 0;
return num_arguments - kRegisterPassedArguments;
#endif
}
void MacroAssembler::EmitSeqStringSetCharCheck(Register string,
Register index,
Register value,
uint32_t encoding_mask) {
Label is_object;
JumpIfNotSmi(string, &is_object);
Abort(kNonObject);
bind(&is_object);
Push(value);
movp(value, FieldOperand(string, HeapObject::kMapOffset));
movzxbp(value, FieldOperand(value, Map::kInstanceTypeOffset));
andb(value, Immediate(kStringRepresentationMask | kStringEncodingMask));
cmpp(value, Immediate(encoding_mask));
Pop(value);
Check(equal, kUnexpectedStringType);
// The index is assumed to be untagged coming in, tag it to compare with the
// string length without using a temp register, it is restored at the end of
// this function.
Integer32ToSmi(index, index);
SmiCompare(index, FieldOperand(string, String::kLengthOffset));
Check(less, kIndexIsTooLarge);
SmiCompare(index, Smi::FromInt(0));
Check(greater_equal, kIndexIsNegative);
// Restore the index
SmiToInteger32(index, index);
}
void MacroAssembler::PrepareCallCFunction(int num_arguments) {
int frame_alignment = base::OS::ActivationFrameAlignment();
DCHECK(frame_alignment != 0);
DCHECK(num_arguments >= 0);
// Make stack end at alignment and allocate space for arguments and old rsp.
movp(kScratchRegister, rsp);
DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
int argument_slots_on_stack =
ArgumentStackSlotsForCFunctionCall(num_arguments);
subp(rsp, Immediate((argument_slots_on_stack + 1) * kRegisterSize));
andp(rsp, Immediate(-frame_alignment));
movp(Operand(rsp, argument_slots_on_stack * kRegisterSize), kScratchRegister);
}
void MacroAssembler::CallCFunction(ExternalReference function,
int num_arguments) {
LoadAddress(rax, function);
CallCFunction(rax, num_arguments);
}
void MacroAssembler::CallCFunction(Register function, int num_arguments) {
DCHECK(has_frame());
// Check stack alignment.
if (emit_debug_code()) {
CheckStackAlignment();
}
call(function);
DCHECK(base::OS::ActivationFrameAlignment() != 0);
DCHECK(num_arguments >= 0);
int argument_slots_on_stack =
ArgumentStackSlotsForCFunctionCall(num_arguments);
movp(rsp, Operand(rsp, argument_slots_on_stack * kRegisterSize));
}
#ifdef DEBUG
bool AreAliased(Register reg1,
Register reg2,
Register reg3,
Register reg4,
Register reg5,
Register reg6,
Register reg7,
Register reg8) {
int n_of_valid_regs = reg1.is_valid() + reg2.is_valid() +
reg3.is_valid() + reg4.is_valid() + reg5.is_valid() + reg6.is_valid() +
reg7.is_valid() + reg8.is_valid();
RegList regs = 0;
if (reg1.is_valid()) regs |= reg1.bit();
if (reg2.is_valid()) regs |= reg2.bit();
if (reg3.is_valid()) regs |= reg3.bit();
if (reg4.is_valid()) regs |= reg4.bit();
if (reg5.is_valid()) regs |= reg5.bit();
if (reg6.is_valid()) regs |= reg6.bit();
if (reg7.is_valid()) regs |= reg7.bit();
if (reg8.is_valid()) regs |= reg8.bit();
int n_of_non_aliasing_regs = NumRegs(regs);
return n_of_valid_regs != n_of_non_aliasing_regs;
}
#endif
CodePatcher::CodePatcher(Isolate* isolate, byte* address, int size)
: address_(address),
size_(size),
masm_(isolate, address, size + Assembler::kGap, CodeObjectRequired::kNo) {
// Create a new macro assembler pointing to the address of the code to patch.
// The size is adjusted with kGap on order for the assembler to generate size
// bytes of instructions without failing with buffer size constraints.
DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
}
CodePatcher::~CodePatcher() {
// Indicate that code has changed.
Assembler::FlushICache(masm_.isolate(), address_, size_);
// Check that the code was patched as expected.
DCHECK(masm_.pc_ == address_ + size_);
DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
}
void MacroAssembler::CheckPageFlag(
Register object,
Register scratch,
int mask,
Condition cc,
Label* condition_met,
Label::Distance condition_met_distance) {
DCHECK(cc == zero || cc == not_zero);
if (scratch.is(object)) {
andp(scratch, Immediate(~Page::kPageAlignmentMask));
} else {
movp(scratch, Immediate(~Page::kPageAlignmentMask));
andp(scratch, object);
}
if (mask < (1 << kBitsPerByte)) {
testb(Operand(scratch, MemoryChunk::kFlagsOffset),
Immediate(static_cast<uint8_t>(mask)));
} else {
testl(Operand(scratch, MemoryChunk::kFlagsOffset), Immediate(mask));
}
j(cc, condition_met, condition_met_distance);
}
void MacroAssembler::JumpIfBlack(Register object,
Register bitmap_scratch,
Register mask_scratch,
Label* on_black,
Label::Distance on_black_distance) {
DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, rcx));
GetMarkBits(object, bitmap_scratch, mask_scratch);
DCHECK(strcmp(Marking::kBlackBitPattern, "11") == 0);
// The mask_scratch register contains a 1 at the position of the first bit
// and a 1 at a position of the second bit. All other positions are zero.
movp(rcx, mask_scratch);
andp(rcx, Operand(bitmap_scratch, MemoryChunk::kHeaderSize));
cmpp(mask_scratch, rcx);
j(equal, on_black, on_black_distance);
}
void MacroAssembler::GetMarkBits(Register addr_reg,
Register bitmap_reg,
Register mask_reg) {
DCHECK(!AreAliased(addr_reg, bitmap_reg, mask_reg, rcx));
movp(bitmap_reg, addr_reg);
// Sign extended 32 bit immediate.
andp(bitmap_reg, Immediate(~Page::kPageAlignmentMask));
movp(rcx, addr_reg);
int shift =
Bitmap::kBitsPerCellLog2 + kPointerSizeLog2 - Bitmap::kBytesPerCellLog2;
shrl(rcx, Immediate(shift));
andp(rcx,
Immediate((Page::kPageAlignmentMask >> shift) &
~(Bitmap::kBytesPerCell - 1)));
addp(bitmap_reg, rcx);
movp(rcx, addr_reg);
shrl(rcx, Immediate(kPointerSizeLog2));
andp(rcx, Immediate((1 << Bitmap::kBitsPerCellLog2) - 1));
movl(mask_reg, Immediate(3));
shlp_cl(mask_reg);
}
void MacroAssembler::JumpIfWhite(Register value, Register bitmap_scratch,
Register mask_scratch, Label* value_is_white,
Label::Distance distance) {
DCHECK(!AreAliased(value, bitmap_scratch, mask_scratch, rcx));
GetMarkBits(value, bitmap_scratch, mask_scratch);
// If the value is black or grey we don't need to do anything.
DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
DCHECK(strcmp(Marking::kBlackBitPattern, "11") == 0);
DCHECK(strcmp(Marking::kGreyBitPattern, "10") == 0);
DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
// Since both black and grey have a 1 in the first position and white does
// not have a 1 there we only need to check one bit.
testp(Operand(bitmap_scratch, MemoryChunk::kHeaderSize), mask_scratch);
j(zero, value_is_white, distance);
}
void MacroAssembler::CheckEnumCache(Label* call_runtime) {
Label next, start;
Register empty_fixed_array_value = r8;
LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex);
movp(rcx, rax);
// Check if the enum length field is properly initialized, indicating that
// there is an enum cache.
movp(rbx, FieldOperand(rcx, HeapObject::kMapOffset));
EnumLength(rdx, rbx);
Cmp(rdx, Smi::FromInt(kInvalidEnumCacheSentinel));
j(equal, call_runtime);
jmp(&start);
bind(&next);
movp(rbx, FieldOperand(rcx, HeapObject::kMapOffset));
// For all objects but the receiver, check that the cache is empty.
EnumLength(rdx, rbx);
Cmp(rdx, Smi::FromInt(0));
j(not_equal, call_runtime);
bind(&start);
// Check that there are no elements. Register rcx contains the current JS
// object we've reached through the prototype chain.
Label no_elements;
cmpp(empty_fixed_array_value,
FieldOperand(rcx, JSObject::kElementsOffset));
j(equal, &no_elements);
// Second chance, the object may be using the empty slow element dictionary.
LoadRoot(kScratchRegister, Heap::kEmptySlowElementDictionaryRootIndex);
cmpp(kScratchRegister, FieldOperand(rcx, JSObject::kElementsOffset));
j(not_equal, call_runtime);
bind(&no_elements);
movp(rcx, FieldOperand(rbx, Map::kPrototypeOffset));
CompareRoot(rcx, Heap::kNullValueRootIndex);
j(not_equal, &next);
}
void MacroAssembler::TestJSArrayForAllocationMemento(
Register receiver_reg,
Register scratch_reg,
Label* no_memento_found) {
Label map_check;
Label top_check;
ExternalReference new_space_allocation_top =
ExternalReference::new_space_allocation_top_address(isolate());
const int kMementoMapOffset = JSArray::kSize - kHeapObjectTag;
const int kMementoEndOffset = kMementoMapOffset + AllocationMemento::kSize;
// Bail out if the object is not in new space.
JumpIfNotInNewSpace(receiver_reg, scratch_reg, no_memento_found);
// If the object is in new space, we need to check whether it is on the same
// page as the current top.
leap(scratch_reg, Operand(receiver_reg, kMementoEndOffset));
xorp(scratch_reg, ExternalOperand(new_space_allocation_top));
testp(scratch_reg, Immediate(~Page::kPageAlignmentMask));
j(zero, &top_check);
// The object is on a different page than allocation top. Bail out if the
// object sits on the page boundary as no memento can follow and we cannot
// touch the memory following it.
leap(scratch_reg, Operand(receiver_reg, kMementoEndOffset));
xorp(scratch_reg, receiver_reg);
testp(scratch_reg, Immediate(~Page::kPageAlignmentMask));
j(not_zero, no_memento_found);
// Continue with the actual map check.
jmp(&map_check);
// If top is on the same page as the current object, we need to check whether
// we are below top.
bind(&top_check);
leap(scratch_reg, Operand(receiver_reg, kMementoEndOffset));
cmpp(scratch_reg, ExternalOperand(new_space_allocation_top));
j(greater, no_memento_found);
// Memento map check.
bind(&map_check);
CompareRoot(MemOperand(receiver_reg, kMementoMapOffset),
Heap::kAllocationMementoMapRootIndex);
}
void MacroAssembler::JumpIfDictionaryInPrototypeChain(
Register object,
Register scratch0,
Register scratch1,
Label* found) {
DCHECK(!(scratch0.is(kScratchRegister) && scratch1.is(kScratchRegister)));
DCHECK(!scratch1.is(scratch0));
Register current = scratch0;
Label loop_again, end;
movp(current, object);
movp(current, FieldOperand(current, HeapObject::kMapOffset));
movp(current, FieldOperand(current, Map::kPrototypeOffset));
CompareRoot(current, Heap::kNullValueRootIndex);
j(equal, &end);
// Loop based on the map going up the prototype chain.
bind(&loop_again);
movp(current, FieldOperand(current, HeapObject::kMapOffset));
STATIC_ASSERT(JS_PROXY_TYPE < JS_OBJECT_TYPE);
STATIC_ASSERT(JS_VALUE_TYPE < JS_OBJECT_TYPE);
CmpInstanceType(current, JS_OBJECT_TYPE);
j(below, found);
movp(scratch1, FieldOperand(current, Map::kBitField2Offset));
DecodeField<Map::ElementsKindBits>(scratch1);
cmpp(scratch1, Immediate(DICTIONARY_ELEMENTS));
j(equal, found);
movp(current, FieldOperand(current, Map::kPrototypeOffset));
CompareRoot(current, Heap::kNullValueRootIndex);
j(not_equal, &loop_again);
bind(&end);
}
void MacroAssembler::TruncatingDiv(Register dividend, int32_t divisor) {
DCHECK(!dividend.is(rax));
DCHECK(!dividend.is(rdx));
base::MagicNumbersForDivision<uint32_t> mag =
base::SignedDivisionByConstant(static_cast<uint32_t>(divisor));
movl(rax, Immediate(mag.multiplier));
imull(dividend);
bool neg = (mag.multiplier & (static_cast<uint32_t>(1) << 31)) != 0;
if (divisor > 0 && neg) addl(rdx, dividend);
if (divisor < 0 && !neg && mag.multiplier > 0) subl(rdx, dividend);
if (mag.shift > 0) sarl(rdx, Immediate(mag.shift));
movl(rax, dividend);
shrl(rax, Immediate(31));
addl(rdx, rax);
}
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_X64