blob: d5920009115d34a8ec9220b49868b75897e378ac [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/pipeline.h"
#include <fstream> // NOLINT(readability/streams)
#include <sstream>
#include "src/base/adapters.h"
#include "src/base/platform/elapsed-timer.h"
#include "src/compiler/ast-graph-builder.h"
#include "src/compiler/ast-loop-assignment-analyzer.h"
#include "src/compiler/basic-block-instrumentor.h"
#include "src/compiler/branch-elimination.h"
#include "src/compiler/bytecode-graph-builder.h"
#include "src/compiler/checkpoint-elimination.h"
#include "src/compiler/code-generator.h"
#include "src/compiler/common-operator-reducer.h"
#include "src/compiler/control-flow-optimizer.h"
#include "src/compiler/dead-code-elimination.h"
#include "src/compiler/effect-control-linearizer.h"
#include "src/compiler/escape-analysis-reducer.h"
#include "src/compiler/escape-analysis.h"
#include "src/compiler/frame-elider.h"
#include "src/compiler/graph-replay.h"
#include "src/compiler/graph-trimmer.h"
#include "src/compiler/graph-visualizer.h"
#include "src/compiler/instruction-selector.h"
#include "src/compiler/instruction.h"
#include "src/compiler/js-builtin-reducer.h"
#include "src/compiler/js-call-reducer.h"
#include "src/compiler/js-context-specialization.h"
#include "src/compiler/js-create-lowering.h"
#include "src/compiler/js-frame-specialization.h"
#include "src/compiler/js-generic-lowering.h"
#include "src/compiler/js-global-object-specialization.h"
#include "src/compiler/js-inlining-heuristic.h"
#include "src/compiler/js-intrinsic-lowering.h"
#include "src/compiler/js-native-context-specialization.h"
#include "src/compiler/js-typed-lowering.h"
#include "src/compiler/jump-threading.h"
#include "src/compiler/live-range-separator.h"
#include "src/compiler/load-elimination.h"
#include "src/compiler/loop-analysis.h"
#include "src/compiler/loop-peeling.h"
#include "src/compiler/machine-operator-reducer.h"
#include "src/compiler/memory-optimizer.h"
#include "src/compiler/move-optimizer.h"
#include "src/compiler/osr.h"
#include "src/compiler/pipeline-statistics.h"
#include "src/compiler/redundancy-elimination.h"
#include "src/compiler/register-allocator-verifier.h"
#include "src/compiler/register-allocator.h"
#include "src/compiler/schedule.h"
#include "src/compiler/scheduler.h"
#include "src/compiler/select-lowering.h"
#include "src/compiler/simplified-lowering.h"
#include "src/compiler/simplified-operator-reducer.h"
#include "src/compiler/simplified-operator.h"
#include "src/compiler/store-store-elimination.h"
#include "src/compiler/tail-call-optimization.h"
#include "src/compiler/type-hint-analyzer.h"
#include "src/compiler/typer.h"
#include "src/compiler/value-numbering-reducer.h"
#include "src/compiler/verifier.h"
#include "src/compiler/zone-pool.h"
#include "src/isolate-inl.h"
#include "src/ostreams.h"
#include "src/parsing/parser.h"
#include "src/register-configuration.h"
#include "src/type-info.h"
#include "src/utils.h"
namespace v8 {
namespace internal {
namespace compiler {
class PipelineData {
public:
// For main entry point.
PipelineData(ZonePool* zone_pool, CompilationInfo* info,
PipelineStatistics* pipeline_statistics)
: isolate_(info->isolate()),
info_(info),
debug_name_(info_->GetDebugName()),
outer_zone_(info_->zone()),
zone_pool_(zone_pool),
pipeline_statistics_(pipeline_statistics),
graph_zone_scope_(zone_pool_),
graph_zone_(graph_zone_scope_.zone()),
instruction_zone_scope_(zone_pool_),
instruction_zone_(instruction_zone_scope_.zone()),
register_allocation_zone_scope_(zone_pool_),
register_allocation_zone_(register_allocation_zone_scope_.zone()) {
PhaseScope scope(pipeline_statistics, "init pipeline data");
graph_ = new (graph_zone_) Graph(graph_zone_);
source_positions_ = new (graph_zone_) SourcePositionTable(graph_);
simplified_ = new (graph_zone_) SimplifiedOperatorBuilder(graph_zone_);
machine_ = new (graph_zone_) MachineOperatorBuilder(
graph_zone_, MachineType::PointerRepresentation(),
InstructionSelector::SupportedMachineOperatorFlags());
common_ = new (graph_zone_) CommonOperatorBuilder(graph_zone_);
javascript_ = new (graph_zone_) JSOperatorBuilder(graph_zone_);
jsgraph_ = new (graph_zone_)
JSGraph(isolate_, graph_, common_, javascript_, simplified_, machine_);
}
// For WASM compile entry point.
PipelineData(ZonePool* zone_pool, CompilationInfo* info, Graph* graph,
SourcePositionTable* source_positions)
: isolate_(info->isolate()),
info_(info),
debug_name_(info_->GetDebugName()),
zone_pool_(zone_pool),
graph_zone_scope_(zone_pool_),
graph_(graph),
source_positions_(source_positions),
instruction_zone_scope_(zone_pool_),
instruction_zone_(instruction_zone_scope_.zone()),
register_allocation_zone_scope_(zone_pool_),
register_allocation_zone_(register_allocation_zone_scope_.zone()) {}
// For machine graph testing entry point.
PipelineData(ZonePool* zone_pool, CompilationInfo* info, Graph* graph,
Schedule* schedule)
: isolate_(info->isolate()),
info_(info),
debug_name_(info_->GetDebugName()),
zone_pool_(zone_pool),
graph_zone_scope_(zone_pool_),
graph_(graph),
source_positions_(new (info->zone()) SourcePositionTable(graph_)),
schedule_(schedule),
instruction_zone_scope_(zone_pool_),
instruction_zone_(instruction_zone_scope_.zone()),
register_allocation_zone_scope_(zone_pool_),
register_allocation_zone_(register_allocation_zone_scope_.zone()) {}
// For register allocation testing entry point.
PipelineData(ZonePool* zone_pool, CompilationInfo* info,
InstructionSequence* sequence)
: isolate_(info->isolate()),
info_(info),
debug_name_(info_->GetDebugName()),
zone_pool_(zone_pool),
graph_zone_scope_(zone_pool_),
instruction_zone_scope_(zone_pool_),
instruction_zone_(sequence->zone()),
sequence_(sequence),
register_allocation_zone_scope_(zone_pool_),
register_allocation_zone_(register_allocation_zone_scope_.zone()) {}
~PipelineData() {
DeleteRegisterAllocationZone();
DeleteInstructionZone();
DeleteGraphZone();
}
Isolate* isolate() const { return isolate_; }
CompilationInfo* info() const { return info_; }
ZonePool* zone_pool() const { return zone_pool_; }
PipelineStatistics* pipeline_statistics() { return pipeline_statistics_; }
bool compilation_failed() const { return compilation_failed_; }
void set_compilation_failed() { compilation_failed_ = true; }
Handle<Code> code() { return code_; }
void set_code(Handle<Code> code) {
DCHECK(code_.is_null());
code_ = code;
}
// RawMachineAssembler generally produces graphs which cannot be verified.
bool MayHaveUnverifiableGraph() const { return outer_zone_ == nullptr; }
Zone* graph_zone() const { return graph_zone_; }
Graph* graph() const { return graph_; }
SourcePositionTable* source_positions() const { return source_positions_; }
MachineOperatorBuilder* machine() const { return machine_; }
CommonOperatorBuilder* common() const { return common_; }
JSOperatorBuilder* javascript() const { return javascript_; }
JSGraph* jsgraph() const { return jsgraph_; }
MaybeHandle<Context> native_context() const {
if (info()->is_native_context_specializing()) {
return handle(info()->native_context(), isolate());
}
return MaybeHandle<Context>();
}
LoopAssignmentAnalysis* loop_assignment() const { return loop_assignment_; }
void set_loop_assignment(LoopAssignmentAnalysis* loop_assignment) {
DCHECK(!loop_assignment_);
loop_assignment_ = loop_assignment;
}
TypeHintAnalysis* type_hint_analysis() const { return type_hint_analysis_; }
void set_type_hint_analysis(TypeHintAnalysis* type_hint_analysis) {
DCHECK_NULL(type_hint_analysis_);
type_hint_analysis_ = type_hint_analysis;
}
Schedule* schedule() const { return schedule_; }
void set_schedule(Schedule* schedule) {
DCHECK(!schedule_);
schedule_ = schedule;
}
void reset_schedule() { schedule_ = nullptr; }
Zone* instruction_zone() const { return instruction_zone_; }
InstructionSequence* sequence() const { return sequence_; }
Frame* frame() const { return frame_; }
Zone* register_allocation_zone() const { return register_allocation_zone_; }
RegisterAllocationData* register_allocation_data() const {
return register_allocation_data_;
}
BasicBlockProfiler::Data* profiler_data() const { return profiler_data_; }
void set_profiler_data(BasicBlockProfiler::Data* profiler_data) {
profiler_data_ = profiler_data;
}
std::string const& source_position_output() const {
return source_position_output_;
}
void set_source_position_output(std::string const& source_position_output) {
source_position_output_ = source_position_output;
}
void DeleteGraphZone() {
if (graph_zone_ == nullptr) return;
graph_zone_scope_.Destroy();
graph_zone_ = nullptr;
graph_ = nullptr;
source_positions_ = nullptr;
loop_assignment_ = nullptr;
type_hint_analysis_ = nullptr;
simplified_ = nullptr;
machine_ = nullptr;
common_ = nullptr;
javascript_ = nullptr;
jsgraph_ = nullptr;
schedule_ = nullptr;
}
void DeleteInstructionZone() {
if (instruction_zone_ == nullptr) return;
instruction_zone_scope_.Destroy();
instruction_zone_ = nullptr;
sequence_ = nullptr;
frame_ = nullptr;
}
void DeleteRegisterAllocationZone() {
if (register_allocation_zone_ == nullptr) return;
register_allocation_zone_scope_.Destroy();
register_allocation_zone_ = nullptr;
register_allocation_data_ = nullptr;
}
void InitializeInstructionSequence(const CallDescriptor* descriptor) {
DCHECK(sequence_ == nullptr);
InstructionBlocks* instruction_blocks =
InstructionSequence::InstructionBlocksFor(instruction_zone(),
schedule());
sequence_ = new (instruction_zone()) InstructionSequence(
info()->isolate(), instruction_zone(), instruction_blocks);
if (descriptor && descriptor->RequiresFrameAsIncoming()) {
sequence_->instruction_blocks()[0]->mark_needs_frame();
} else {
DCHECK_EQ(0, descriptor->CalleeSavedFPRegisters());
DCHECK_EQ(0, descriptor->CalleeSavedRegisters());
}
}
void InitializeFrameData(CallDescriptor* descriptor) {
DCHECK(frame_ == nullptr);
int fixed_frame_size = 0;
if (descriptor != nullptr) {
fixed_frame_size = CalculateFixedFrameSize(descriptor);
}
frame_ = new (instruction_zone()) Frame(fixed_frame_size);
}
void InitializeRegisterAllocationData(const RegisterConfiguration* config,
CallDescriptor* descriptor) {
DCHECK(register_allocation_data_ == nullptr);
register_allocation_data_ = new (register_allocation_zone())
RegisterAllocationData(config, register_allocation_zone(), frame(),
sequence(), debug_name_.get());
}
void BeginPhaseKind(const char* phase_kind_name) {
if (pipeline_statistics() != nullptr) {
pipeline_statistics()->BeginPhaseKind(phase_kind_name);
}
}
void EndPhaseKind() {
if (pipeline_statistics() != nullptr) {
pipeline_statistics()->EndPhaseKind();
}
}
private:
Isolate* const isolate_;
CompilationInfo* const info_;
base::SmartArrayPointer<char> debug_name_;
Zone* outer_zone_ = nullptr;
ZonePool* const zone_pool_;
PipelineStatistics* pipeline_statistics_ = nullptr;
bool compilation_failed_ = false;
Handle<Code> code_ = Handle<Code>::null();
// All objects in the following group of fields are allocated in graph_zone_.
// They are all set to nullptr when the graph_zone_ is destroyed.
ZonePool::Scope graph_zone_scope_;
Zone* graph_zone_ = nullptr;
Graph* graph_ = nullptr;
SourcePositionTable* source_positions_ = nullptr;
LoopAssignmentAnalysis* loop_assignment_ = nullptr;
TypeHintAnalysis* type_hint_analysis_ = nullptr;
SimplifiedOperatorBuilder* simplified_ = nullptr;
MachineOperatorBuilder* machine_ = nullptr;
CommonOperatorBuilder* common_ = nullptr;
JSOperatorBuilder* javascript_ = nullptr;
JSGraph* jsgraph_ = nullptr;
Schedule* schedule_ = nullptr;
// All objects in the following group of fields are allocated in
// instruction_zone_. They are all set to nullptr when the instruction_zone_
// is
// destroyed.
ZonePool::Scope instruction_zone_scope_;
Zone* instruction_zone_;
InstructionSequence* sequence_ = nullptr;
Frame* frame_ = nullptr;
// All objects in the following group of fields are allocated in
// register_allocation_zone_. They are all set to nullptr when the zone is
// destroyed.
ZonePool::Scope register_allocation_zone_scope_;
Zone* register_allocation_zone_;
RegisterAllocationData* register_allocation_data_ = nullptr;
// Basic block profiling support.
BasicBlockProfiler::Data* profiler_data_ = nullptr;
// Source position output for --trace-turbo.
std::string source_position_output_;
int CalculateFixedFrameSize(CallDescriptor* descriptor) {
if (descriptor->IsJSFunctionCall()) {
return StandardFrameConstants::kFixedSlotCount;
}
return descriptor->IsCFunctionCall()
? (CommonFrameConstants::kFixedSlotCountAboveFp +
CommonFrameConstants::kCPSlotCount)
: TypedFrameConstants::kFixedSlotCount;
}
DISALLOW_COPY_AND_ASSIGN(PipelineData);
};
class PipelineImpl final {
public:
explicit PipelineImpl(PipelineData* data) : data_(data) {}
// Helpers for executing pipeline phases.
template <typename Phase>
void Run();
template <typename Phase, typename Arg0>
void Run(Arg0 arg_0);
template <typename Phase, typename Arg0, typename Arg1>
void Run(Arg0 arg_0, Arg1 arg_1);
// Run the graph creation and initial optimization passes.
bool CreateGraph();
// Run the concurrent optimization passes.
bool OptimizeGraph(Linkage* linkage);
// Perform the actual code generation and return handle to a code object.
Handle<Code> GenerateCode(Linkage* linkage);
bool ScheduleAndSelectInstructions(Linkage* linkage);
void RunPrintAndVerify(const char* phase, bool untyped = false);
Handle<Code> ScheduleAndGenerateCode(CallDescriptor* call_descriptor);
void AllocateRegisters(const RegisterConfiguration* config,
CallDescriptor* descriptor, bool run_verifier);
CompilationInfo* info() const;
Isolate* isolate() const;
PipelineData* const data_;
};
namespace {
struct TurboCfgFile : public std::ofstream {
explicit TurboCfgFile(Isolate* isolate)
: std::ofstream(isolate->GetTurboCfgFileName().c_str(),
std::ios_base::app) {}
};
struct TurboJsonFile : public std::ofstream {
TurboJsonFile(CompilationInfo* info, std::ios_base::openmode mode)
: std::ofstream(GetVisualizerLogFileName(info, nullptr, "json").get(),
mode) {}
};
void TraceSchedule(CompilationInfo* info, Schedule* schedule) {
if (FLAG_trace_turbo) {
AllowHandleDereference allow_deref;
TurboJsonFile json_of(info, std::ios_base::app);
json_of << "{\"name\":\"Schedule\",\"type\":\"schedule\",\"data\":\"";
std::stringstream schedule_stream;
schedule_stream << *schedule;
std::string schedule_string(schedule_stream.str());
for (const auto& c : schedule_string) {
json_of << AsEscapedUC16ForJSON(c);
}
json_of << "\"},\n";
}
if (FLAG_trace_turbo_graph || FLAG_trace_turbo_scheduler) {
AllowHandleDereference allow_deref;
OFStream os(stdout);
os << "-- Schedule --------------------------------------\n" << *schedule;
}
}
class AstGraphBuilderWithPositions final : public AstGraphBuilder {
public:
AstGraphBuilderWithPositions(Zone* local_zone, CompilationInfo* info,
JSGraph* jsgraph,
LoopAssignmentAnalysis* loop_assignment,
TypeHintAnalysis* type_hint_analysis,
SourcePositionTable* source_positions)
: AstGraphBuilder(local_zone, info, jsgraph, loop_assignment,
type_hint_analysis),
source_positions_(source_positions),
start_position_(info->shared_info()->start_position()) {}
bool CreateGraph(bool stack_check) {
SourcePositionTable::Scope pos_scope(source_positions_, start_position_);
return AstGraphBuilder::CreateGraph(stack_check);
}
#define DEF_VISIT(type) \
void Visit##type(type* node) override { \
SourcePositionTable::Scope pos(source_positions_, \
SourcePosition(node->position())); \
AstGraphBuilder::Visit##type(node); \
}
AST_NODE_LIST(DEF_VISIT)
#undef DEF_VISIT
private:
SourcePositionTable* const source_positions_;
SourcePosition const start_position_;
};
class SourcePositionWrapper final : public Reducer {
public:
SourcePositionWrapper(Reducer* reducer, SourcePositionTable* table)
: reducer_(reducer), table_(table) {}
~SourcePositionWrapper() final {}
Reduction Reduce(Node* node) final {
SourcePosition const pos = table_->GetSourcePosition(node);
SourcePositionTable::Scope position(table_, pos);
return reducer_->Reduce(node);
}
void Finalize() final { reducer_->Finalize(); }
private:
Reducer* const reducer_;
SourcePositionTable* const table_;
DISALLOW_COPY_AND_ASSIGN(SourcePositionWrapper);
};
class JSGraphReducer final : public GraphReducer {
public:
JSGraphReducer(JSGraph* jsgraph, Zone* zone)
: GraphReducer(zone, jsgraph->graph(), jsgraph->Dead()) {}
~JSGraphReducer() final {}
};
void AddReducer(PipelineData* data, GraphReducer* graph_reducer,
Reducer* reducer) {
if (data->info()->is_source_positions_enabled()) {
void* const buffer = data->graph_zone()->New(sizeof(SourcePositionWrapper));
SourcePositionWrapper* const wrapper =
new (buffer) SourcePositionWrapper(reducer, data->source_positions());
graph_reducer->AddReducer(wrapper);
} else {
graph_reducer->AddReducer(reducer);
}
}
class PipelineRunScope {
public:
PipelineRunScope(PipelineData* data, const char* phase_name)
: phase_scope_(
phase_name == nullptr ? nullptr : data->pipeline_statistics(),
phase_name),
zone_scope_(data->zone_pool()) {}
Zone* zone() { return zone_scope_.zone(); }
private:
PhaseScope phase_scope_;
ZonePool::Scope zone_scope_;
};
PipelineStatistics* CreatePipelineStatistics(CompilationInfo* info,
ZonePool* zone_pool) {
PipelineStatistics* pipeline_statistics = nullptr;
if (FLAG_turbo_stats || FLAG_turbo_stats_nvp) {
pipeline_statistics = new PipelineStatistics(info, zone_pool);
pipeline_statistics->BeginPhaseKind("initializing");
}
if (FLAG_trace_turbo) {
TurboJsonFile json_of(info, std::ios_base::trunc);
Handle<Script> script = info->script();
base::SmartArrayPointer<char> function_name = info->GetDebugName();
int pos = info->shared_info()->start_position();
json_of << "{\"function\":\"" << function_name.get()
<< "\", \"sourcePosition\":" << pos << ", \"source\":\"";
Isolate* isolate = info->isolate();
if (!script->IsUndefined(isolate) &&
!script->source()->IsUndefined(isolate)) {
DisallowHeapAllocation no_allocation;
int start = info->shared_info()->start_position();
int len = info->shared_info()->end_position() - start;
String::SubStringRange source(String::cast(script->source()), start, len);
for (const auto& c : source) {
json_of << AsEscapedUC16ForJSON(c);
}
}
json_of << "\",\n\"phases\":[";
}
return pipeline_statistics;
}
} // namespace
class PipelineCompilationJob final : public CompilationJob {
public:
PipelineCompilationJob(Isolate* isolate, Handle<JSFunction> function)
// Note that the CompilationInfo is not initialized at the time we pass it
// to the CompilationJob constructor, but it is not dereferenced there.
: CompilationJob(&info_, "TurboFan"),
zone_(isolate->allocator()),
zone_pool_(isolate->allocator()),
parse_info_(&zone_, function),
info_(&parse_info_, function),
pipeline_statistics_(CreatePipelineStatistics(info(), &zone_pool_)),
data_(&zone_pool_, info(), pipeline_statistics_.get()),
pipeline_(&data_),
linkage_(nullptr) {}
protected:
Status CreateGraphImpl() final;
Status OptimizeGraphImpl() final;
Status GenerateCodeImpl() final;
private:
Zone zone_;
ZonePool zone_pool_;
ParseInfo parse_info_;
CompilationInfo info_;
base::SmartPointer<PipelineStatistics> pipeline_statistics_;
PipelineData data_;
PipelineImpl pipeline_;
Linkage* linkage_;
};
PipelineCompilationJob::Status PipelineCompilationJob::CreateGraphImpl() {
if (info()->shared_info()->asm_function()) {
if (info()->osr_frame()) info()->MarkAsFrameSpecializing();
info()->MarkAsFunctionContextSpecializing();
} else {
if (!FLAG_always_opt) {
info()->MarkAsBailoutOnUninitialized();
}
if (FLAG_native_context_specialization) {
info()->MarkAsNativeContextSpecializing();
}
}
if (!info()->shared_info()->asm_function() || FLAG_turbo_asm_deoptimization) {
info()->MarkAsDeoptimizationEnabled();
}
if (!info()->is_optimizing_from_bytecode()) {
if (info()->is_deoptimization_enabled() && FLAG_turbo_type_feedback) {
info()->MarkAsTypeFeedbackEnabled();
}
if (!Compiler::EnsureDeoptimizationSupport(info())) return FAILED;
}
linkage_ = new (&zone_) Linkage(Linkage::ComputeIncoming(&zone_, info()));
if (!pipeline_.CreateGraph()) {
if (isolate()->has_pending_exception()) return FAILED; // Stack overflowed.
return AbortOptimization(kGraphBuildingFailed);
}
return SUCCEEDED;
}
PipelineCompilationJob::Status PipelineCompilationJob::OptimizeGraphImpl() {
if (!pipeline_.OptimizeGraph(linkage_)) return FAILED;
return SUCCEEDED;
}
PipelineCompilationJob::Status PipelineCompilationJob::GenerateCodeImpl() {
Handle<Code> code = pipeline_.GenerateCode(linkage_);
if (code.is_null()) {
if (info()->bailout_reason() == kNoReason) {
return AbortOptimization(kCodeGenerationFailed);
}
return FAILED;
}
info()->dependencies()->Commit(code);
info()->SetCode(code);
if (info()->is_deoptimization_enabled()) {
info()->context()->native_context()->AddOptimizedCode(*code);
RegisterWeakObjectsInOptimizedCode(code);
}
return SUCCEEDED;
}
class PipelineWasmCompilationJob final : public CompilationJob {
public:
explicit PipelineWasmCompilationJob(CompilationInfo* info, Graph* graph,
CallDescriptor* descriptor,
SourcePositionTable* source_positions)
: CompilationJob(info, "TurboFan"),
zone_pool_(info->isolate()->allocator()),
data_(&zone_pool_, info, graph, source_positions),
pipeline_(&data_),
linkage_(descriptor) {}
protected:
Status CreateGraphImpl() final;
Status OptimizeGraphImpl() final;
Status GenerateCodeImpl() final;
private:
ZonePool zone_pool_;
PipelineData data_;
PipelineImpl pipeline_;
Linkage linkage_;
};
PipelineWasmCompilationJob::Status
PipelineWasmCompilationJob::CreateGraphImpl() {
return SUCCEEDED;
}
PipelineWasmCompilationJob::Status
PipelineWasmCompilationJob::OptimizeGraphImpl() {
if (FLAG_trace_turbo) {
TurboJsonFile json_of(info(), std::ios_base::trunc);
json_of << "{\"function\":\"" << info()->GetDebugName().get()
<< "\", \"source\":\"\",\n\"phases\":[";
}
pipeline_.RunPrintAndVerify("Machine", true);
if (!pipeline_.ScheduleAndSelectInstructions(&linkage_)) return FAILED;
return SUCCEEDED;
}
PipelineWasmCompilationJob::Status
PipelineWasmCompilationJob::GenerateCodeImpl() {
pipeline_.GenerateCode(&linkage_);
return SUCCEEDED;
}
template <typename Phase>
void PipelineImpl::Run() {
PipelineRunScope scope(this->data_, Phase::phase_name());
Phase phase;
phase.Run(this->data_, scope.zone());
}
template <typename Phase, typename Arg0>
void PipelineImpl::Run(Arg0 arg_0) {
PipelineRunScope scope(this->data_, Phase::phase_name());
Phase phase;
phase.Run(this->data_, scope.zone(), arg_0);
}
template <typename Phase, typename Arg0, typename Arg1>
void PipelineImpl::Run(Arg0 arg_0, Arg1 arg_1) {
PipelineRunScope scope(this->data_, Phase::phase_name());
Phase phase;
phase.Run(this->data_, scope.zone(), arg_0, arg_1);
}
struct LoopAssignmentAnalysisPhase {
static const char* phase_name() { return "loop assignment analysis"; }
void Run(PipelineData* data, Zone* temp_zone) {
if (!data->info()->is_optimizing_from_bytecode()) {
AstLoopAssignmentAnalyzer analyzer(data->graph_zone(), data->info());
LoopAssignmentAnalysis* loop_assignment = analyzer.Analyze();
data->set_loop_assignment(loop_assignment);
}
}
};
struct TypeHintAnalysisPhase {
static const char* phase_name() { return "type hint analysis"; }
void Run(PipelineData* data, Zone* temp_zone) {
if (data->info()->is_type_feedback_enabled()) {
TypeHintAnalyzer analyzer(data->graph_zone());
Handle<Code> code(data->info()->shared_info()->code(), data->isolate());
TypeHintAnalysis* type_hint_analysis = analyzer.Analyze(code);
data->set_type_hint_analysis(type_hint_analysis);
}
}
};
struct GraphBuilderPhase {
static const char* phase_name() { return "graph builder"; }
void Run(PipelineData* data, Zone* temp_zone) {
bool stack_check = !data->info()->IsStub();
bool succeeded = false;
if (data->info()->is_optimizing_from_bytecode()) {
BytecodeGraphBuilder graph_builder(temp_zone, data->info(),
data->jsgraph());
succeeded = graph_builder.CreateGraph();
} else {
AstGraphBuilderWithPositions graph_builder(
temp_zone, data->info(), data->jsgraph(), data->loop_assignment(),
data->type_hint_analysis(), data->source_positions());
succeeded = graph_builder.CreateGraph(stack_check);
}
if (!succeeded) {
data->set_compilation_failed();
}
}
};
struct InliningPhase {
static const char* phase_name() { return "inlining"; }
void Run(PipelineData* data, Zone* temp_zone) {
JSGraphReducer graph_reducer(data->jsgraph(), temp_zone);
DeadCodeElimination dead_code_elimination(&graph_reducer, data->graph(),
data->common());
CommonOperatorReducer common_reducer(&graph_reducer, data->graph(),
data->common(), data->machine());
JSCallReducer call_reducer(data->jsgraph(),
data->info()->is_deoptimization_enabled()
? JSCallReducer::kDeoptimizationEnabled
: JSCallReducer::kNoFlags,
data->native_context());
JSContextSpecialization context_specialization(
&graph_reducer, data->jsgraph(),
data->info()->is_function_context_specializing()
? data->info()->context()
: MaybeHandle<Context>());
JSFrameSpecialization frame_specialization(data->info()->osr_frame(),
data->jsgraph());
JSGlobalObjectSpecialization global_object_specialization(
&graph_reducer, data->jsgraph(), data->native_context(),
data->info()->dependencies());
JSNativeContextSpecialization::Flags flags =
JSNativeContextSpecialization::kNoFlags;
if (data->info()->is_bailout_on_uninitialized()) {
flags |= JSNativeContextSpecialization::kBailoutOnUninitialized;
}
if (data->info()->is_deoptimization_enabled()) {
flags |= JSNativeContextSpecialization::kDeoptimizationEnabled;
}
JSNativeContextSpecialization native_context_specialization(
&graph_reducer, data->jsgraph(), flags, data->native_context(),
data->info()->dependencies(), temp_zone);
JSInliningHeuristic inlining(&graph_reducer,
data->info()->is_inlining_enabled()
? JSInliningHeuristic::kGeneralInlining
: JSInliningHeuristic::kRestrictedInlining,
temp_zone, data->info(), data->jsgraph());
AddReducer(data, &graph_reducer, &dead_code_elimination);
AddReducer(data, &graph_reducer, &common_reducer);
if (data->info()->is_frame_specializing()) {
AddReducer(data, &graph_reducer, &frame_specialization);
}
if (data->info()->is_deoptimization_enabled()) {
AddReducer(data, &graph_reducer, &global_object_specialization);
}
AddReducer(data, &graph_reducer, &native_context_specialization);
AddReducer(data, &graph_reducer, &context_specialization);
AddReducer(data, &graph_reducer, &call_reducer);
if (!data->info()->is_optimizing_from_bytecode()) {
AddReducer(data, &graph_reducer, &inlining);
}
graph_reducer.ReduceGraph();
}
};
struct TyperPhase {
static const char* phase_name() { return "typer"; }
void Run(PipelineData* data, Zone* temp_zone, Typer* typer) {
NodeVector roots(temp_zone);
data->jsgraph()->GetCachedNodes(&roots);
typer->Run(roots);
}
};
#ifdef DEBUG
struct UntyperPhase {
static const char* phase_name() { return "untyper"; }
void Run(PipelineData* data, Zone* temp_zone) {
class RemoveTypeReducer final : public Reducer {
public:
Reduction Reduce(Node* node) final {
if (NodeProperties::IsTyped(node)) {
NodeProperties::RemoveType(node);
return Changed(node);
}
return NoChange();
}
};
JSGraphReducer graph_reducer(data->jsgraph(), temp_zone);
RemoveTypeReducer remove_type_reducer;
AddReducer(data, &graph_reducer, &remove_type_reducer);
graph_reducer.ReduceGraph();
}
};
#endif // DEBUG
struct OsrDeconstructionPhase {
static const char* phase_name() { return "OSR deconstruction"; }
void Run(PipelineData* data, Zone* temp_zone) {
OsrHelper osr_helper(data->info());
osr_helper.Deconstruct(data->jsgraph(), data->common(), temp_zone);
}
};
struct TypedLoweringPhase {
static const char* phase_name() { return "typed lowering"; }
void Run(PipelineData* data, Zone* temp_zone) {
JSGraphReducer graph_reducer(data->jsgraph(), temp_zone);
DeadCodeElimination dead_code_elimination(&graph_reducer, data->graph(),
data->common());
LoadElimination load_elimination(&graph_reducer, data->graph(),
data->jsgraph()->simplified());
JSBuiltinReducer builtin_reducer(&graph_reducer, data->jsgraph());
MaybeHandle<LiteralsArray> literals_array =
data->info()->is_native_context_specializing()
? handle(data->info()->closure()->literals(), data->isolate())
: MaybeHandle<LiteralsArray>();
JSCreateLowering create_lowering(
&graph_reducer, data->info()->dependencies(), data->jsgraph(),
literals_array, temp_zone);
JSTypedLowering::Flags typed_lowering_flags = JSTypedLowering::kNoFlags;
if (data->info()->is_deoptimization_enabled()) {
typed_lowering_flags |= JSTypedLowering::kDeoptimizationEnabled;
}
if (data->info()->shared_info()->HasBytecodeArray()) {
typed_lowering_flags |= JSTypedLowering::kDisableBinaryOpReduction;
}
if (data->info()->is_type_feedback_enabled()) {
typed_lowering_flags |= JSTypedLowering::kTypeFeedbackEnabled;
}
JSTypedLowering typed_lowering(&graph_reducer, data->info()->dependencies(),
typed_lowering_flags, data->jsgraph(),
temp_zone);
JSIntrinsicLowering intrinsic_lowering(
&graph_reducer, data->jsgraph(),
data->info()->is_deoptimization_enabled()
? JSIntrinsicLowering::kDeoptimizationEnabled
: JSIntrinsicLowering::kDeoptimizationDisabled);
SimplifiedOperatorReducer simple_reducer(&graph_reducer, data->jsgraph());
CheckpointElimination checkpoint_elimination(&graph_reducer);
CommonOperatorReducer common_reducer(&graph_reducer, data->graph(),
data->common(), data->machine());
AddReducer(data, &graph_reducer, &dead_code_elimination);
AddReducer(data, &graph_reducer, &builtin_reducer);
if (data->info()->is_deoptimization_enabled()) {
AddReducer(data, &graph_reducer, &create_lowering);
}
AddReducer(data, &graph_reducer, &typed_lowering);
AddReducer(data, &graph_reducer, &intrinsic_lowering);
AddReducer(data, &graph_reducer, &load_elimination);
AddReducer(data, &graph_reducer, &simple_reducer);
AddReducer(data, &graph_reducer, &checkpoint_elimination);
AddReducer(data, &graph_reducer, &common_reducer);
graph_reducer.ReduceGraph();
}
};
struct BranchEliminationPhase {
static const char* phase_name() { return "branch condition elimination"; }
void Run(PipelineData* data, Zone* temp_zone) {
JSGraphReducer graph_reducer(data->jsgraph(), temp_zone);
BranchElimination branch_condition_elimination(&graph_reducer,
data->jsgraph(), temp_zone);
DeadCodeElimination dead_code_elimination(&graph_reducer, data->graph(),
data->common());
AddReducer(data, &graph_reducer, &branch_condition_elimination);
AddReducer(data, &graph_reducer, &dead_code_elimination);
graph_reducer.ReduceGraph();
}
};
struct EscapeAnalysisPhase {
static const char* phase_name() { return "escape analysis"; }
void Run(PipelineData* data, Zone* temp_zone) {
EscapeAnalysis escape_analysis(data->graph(), data->jsgraph()->common(),
temp_zone);
escape_analysis.Run();
JSGraphReducer graph_reducer(data->jsgraph(), temp_zone);
EscapeAnalysisReducer escape_reducer(&graph_reducer, data->jsgraph(),
&escape_analysis, temp_zone);
AddReducer(data, &graph_reducer, &escape_reducer);
graph_reducer.ReduceGraph();
escape_reducer.VerifyReplacement();
}
};
struct RepresentationSelectionPhase {
static const char* phase_name() { return "representation selection"; }
void Run(PipelineData* data, Zone* temp_zone) {
SimplifiedLowering::Flags flags =
data->info()->is_type_feedback_enabled()
? SimplifiedLowering::kTypeFeedbackEnabled
: SimplifiedLowering::kNoFlag;
SimplifiedLowering lowering(data->jsgraph(), temp_zone,
data->source_positions(), flags);
lowering.LowerAllNodes();
}
};
struct EarlyOptimizationPhase {
static const char* phase_name() { return "early optimization"; }
void Run(PipelineData* data, Zone* temp_zone) {
JSGraphReducer graph_reducer(data->jsgraph(), temp_zone);
JSGenericLowering generic_lowering(data->jsgraph());
DeadCodeElimination dead_code_elimination(&graph_reducer, data->graph(),
data->common());
SimplifiedOperatorReducer simple_reducer(&graph_reducer, data->jsgraph());
RedundancyElimination redundancy_elimination(&graph_reducer, temp_zone);
ValueNumberingReducer value_numbering(temp_zone);
MachineOperatorReducer machine_reducer(data->jsgraph());
CommonOperatorReducer common_reducer(&graph_reducer, data->graph(),
data->common(), data->machine());
AddReducer(data, &graph_reducer, &dead_code_elimination);
AddReducer(data, &graph_reducer, &simple_reducer);
AddReducer(data, &graph_reducer, &redundancy_elimination);
AddReducer(data, &graph_reducer, &generic_lowering);
AddReducer(data, &graph_reducer, &value_numbering);
AddReducer(data, &graph_reducer, &machine_reducer);
AddReducer(data, &graph_reducer, &common_reducer);
graph_reducer.ReduceGraph();
}
};
struct ControlFlowOptimizationPhase {
static const char* phase_name() { return "control flow optimization"; }
void Run(PipelineData* data, Zone* temp_zone) {
ControlFlowOptimizer optimizer(data->graph(), data->common(),
data->machine(), temp_zone);
optimizer.Optimize();
}
};
struct EffectControlLinearizationPhase {
static const char* phase_name() { return "effect linearization"; }
void Run(PipelineData* data, Zone* temp_zone) {
// The scheduler requires the graphs to be trimmed, so trim now.
// TODO(jarin) Remove the trimming once the scheduler can handle untrimmed
// graphs.
GraphTrimmer trimmer(temp_zone, data->graph());
NodeVector roots(temp_zone);
data->jsgraph()->GetCachedNodes(&roots);
trimmer.TrimGraph(roots.begin(), roots.end());
// Schedule the graph without node splitting so that we can
// fix the effect and control flow for nodes with low-level side
// effects (such as changing representation to tagged or
// 'floating' allocation regions.)
Schedule* schedule = Scheduler::ComputeSchedule(temp_zone, data->graph(),
Scheduler::kNoFlags);
if (FLAG_turbo_verify) ScheduleVerifier::Run(schedule);
TraceSchedule(data->info(), schedule);
// Post-pass for wiring the control/effects
// - connect allocating representation changes into the control&effect
// chains and lower them,
// - get rid of the region markers,
// - introduce effect phis and rewire effects to get SSA again.
EffectControlLinearizer linearizer(data->jsgraph(), schedule, temp_zone);
linearizer.Run();
}
};
struct StoreStoreEliminationPhase {
static const char* phase_name() { return "Store-store elimination"; }
void Run(PipelineData* data, Zone* temp_zone) {
StoreStoreElimination store_store_elimination(data->jsgraph(), temp_zone);
store_store_elimination.Run();
}
};
struct MemoryOptimizationPhase {
static const char* phase_name() { return "memory optimization"; }
void Run(PipelineData* data, Zone* temp_zone) {
// The memory optimizer requires the graphs to be trimmed, so trim now.
GraphTrimmer trimmer(temp_zone, data->graph());
NodeVector roots(temp_zone);
data->jsgraph()->GetCachedNodes(&roots);
trimmer.TrimGraph(roots.begin(), roots.end());
// Optimize allocations and load/store operations.
MemoryOptimizer optimizer(data->jsgraph(), temp_zone);
optimizer.Optimize();
}
};
struct LateOptimizationPhase {
static const char* phase_name() { return "late optimization"; }
void Run(PipelineData* data, Zone* temp_zone) {
JSGraphReducer graph_reducer(data->jsgraph(), temp_zone);
DeadCodeElimination dead_code_elimination(&graph_reducer, data->graph(),
data->common());
ValueNumberingReducer value_numbering(temp_zone);
MachineOperatorReducer machine_reducer(data->jsgraph());
CommonOperatorReducer common_reducer(&graph_reducer, data->graph(),
data->common(), data->machine());
SelectLowering select_lowering(data->jsgraph()->graph(),
data->jsgraph()->common());
TailCallOptimization tco(data->common(), data->graph());
AddReducer(data, &graph_reducer, &dead_code_elimination);
AddReducer(data, &graph_reducer, &value_numbering);
AddReducer(data, &graph_reducer, &machine_reducer);
AddReducer(data, &graph_reducer, &common_reducer);
AddReducer(data, &graph_reducer, &select_lowering);
AddReducer(data, &graph_reducer, &tco);
graph_reducer.ReduceGraph();
}
};
struct EarlyGraphTrimmingPhase {
static const char* phase_name() { return "early graph trimming"; }
void Run(PipelineData* data, Zone* temp_zone) {
GraphTrimmer trimmer(temp_zone, data->graph());
NodeVector roots(temp_zone);
data->jsgraph()->GetCachedNodes(&roots);
trimmer.TrimGraph(roots.begin(), roots.end());
}
};
struct LateGraphTrimmingPhase {
static const char* phase_name() { return "late graph trimming"; }
void Run(PipelineData* data, Zone* temp_zone) {
GraphTrimmer trimmer(temp_zone, data->graph());
NodeVector roots(temp_zone);
data->jsgraph()->GetCachedNodes(&roots);
trimmer.TrimGraph(roots.begin(), roots.end());
}
};
struct StressLoopPeelingPhase {
static const char* phase_name() { return "stress loop peeling"; }
void Run(PipelineData* data, Zone* temp_zone) {
// Peel the first outer loop for testing.
// TODO(titzer): peel all loops? the N'th loop? Innermost loops?
LoopTree* loop_tree = LoopFinder::BuildLoopTree(data->graph(), temp_zone);
if (loop_tree != nullptr && loop_tree->outer_loops().size() > 0) {
LoopPeeler::Peel(data->graph(), data->common(), loop_tree,
loop_tree->outer_loops()[0], temp_zone);
}
}
};
struct ComputeSchedulePhase {
static const char* phase_name() { return "scheduling"; }
void Run(PipelineData* data, Zone* temp_zone) {
Schedule* schedule = Scheduler::ComputeSchedule(
temp_zone, data->graph(), data->info()->is_splitting_enabled()
? Scheduler::kSplitNodes
: Scheduler::kNoFlags);
if (FLAG_turbo_verify) ScheduleVerifier::Run(schedule);
data->set_schedule(schedule);
}
};
struct InstructionSelectionPhase {
static const char* phase_name() { return "select instructions"; }
void Run(PipelineData* data, Zone* temp_zone, Linkage* linkage) {
InstructionSelector selector(
temp_zone, data->graph()->NodeCount(), linkage, data->sequence(),
data->schedule(), data->source_positions(), data->frame(),
data->info()->is_source_positions_enabled()
? InstructionSelector::kAllSourcePositions
: InstructionSelector::kCallSourcePositions);
selector.SelectInstructions();
}
};
struct MeetRegisterConstraintsPhase {
static const char* phase_name() { return "meet register constraints"; }
void Run(PipelineData* data, Zone* temp_zone) {
ConstraintBuilder builder(data->register_allocation_data());
builder.MeetRegisterConstraints();
}
};
struct ResolvePhisPhase {
static const char* phase_name() { return "resolve phis"; }
void Run(PipelineData* data, Zone* temp_zone) {
ConstraintBuilder builder(data->register_allocation_data());
builder.ResolvePhis();
}
};
struct BuildLiveRangesPhase {
static const char* phase_name() { return "build live ranges"; }
void Run(PipelineData* data, Zone* temp_zone) {
LiveRangeBuilder builder(data->register_allocation_data(), temp_zone);
builder.BuildLiveRanges();
}
};
struct SplinterLiveRangesPhase {
static const char* phase_name() { return "splinter live ranges"; }
void Run(PipelineData* data, Zone* temp_zone) {
LiveRangeSeparator live_range_splinterer(data->register_allocation_data(),
temp_zone);
live_range_splinterer.Splinter();
}
};
template <typename RegAllocator>
struct AllocateGeneralRegistersPhase {
static const char* phase_name() { return "allocate general registers"; }
void Run(PipelineData* data, Zone* temp_zone) {
RegAllocator allocator(data->register_allocation_data(), GENERAL_REGISTERS,
temp_zone);
allocator.AllocateRegisters();
}
};
template <typename RegAllocator>
struct AllocateFPRegistersPhase {
static const char* phase_name() {
return "allocate floating point registers";
}
void Run(PipelineData* data, Zone* temp_zone) {
RegAllocator allocator(data->register_allocation_data(), FP_REGISTERS,
temp_zone);
allocator.AllocateRegisters();
}
};
struct MergeSplintersPhase {
static const char* phase_name() { return "merge splintered ranges"; }
void Run(PipelineData* pipeline_data, Zone* temp_zone) {
RegisterAllocationData* data = pipeline_data->register_allocation_data();
LiveRangeMerger live_range_merger(data, temp_zone);
live_range_merger.Merge();
}
};
struct LocateSpillSlotsPhase {
static const char* phase_name() { return "locate spill slots"; }
void Run(PipelineData* data, Zone* temp_zone) {
SpillSlotLocator locator(data->register_allocation_data());
locator.LocateSpillSlots();
}
};
struct AssignSpillSlotsPhase {
static const char* phase_name() { return "assign spill slots"; }
void Run(PipelineData* data, Zone* temp_zone) {
OperandAssigner assigner(data->register_allocation_data());
assigner.AssignSpillSlots();
}
};
struct CommitAssignmentPhase {
static const char* phase_name() { return "commit assignment"; }
void Run(PipelineData* data, Zone* temp_zone) {
OperandAssigner assigner(data->register_allocation_data());
assigner.CommitAssignment();
}
};
struct PopulateReferenceMapsPhase {
static const char* phase_name() { return "populate pointer maps"; }
void Run(PipelineData* data, Zone* temp_zone) {
ReferenceMapPopulator populator(data->register_allocation_data());
populator.PopulateReferenceMaps();
}
};
struct ConnectRangesPhase {
static const char* phase_name() { return "connect ranges"; }
void Run(PipelineData* data, Zone* temp_zone) {
LiveRangeConnector connector(data->register_allocation_data());
connector.ConnectRanges(temp_zone);
}
};
struct ResolveControlFlowPhase {
static const char* phase_name() { return "resolve control flow"; }
void Run(PipelineData* data, Zone* temp_zone) {
LiveRangeConnector connector(data->register_allocation_data());
connector.ResolveControlFlow(temp_zone);
}
};
struct OptimizeMovesPhase {
static const char* phase_name() { return "optimize moves"; }
void Run(PipelineData* data, Zone* temp_zone) {
MoveOptimizer move_optimizer(temp_zone, data->sequence());
move_optimizer.Run();
}
};
struct FrameElisionPhase {
static const char* phase_name() { return "frame elision"; }
void Run(PipelineData* data, Zone* temp_zone) {
FrameElider(data->sequence()).Run();
}
};
struct JumpThreadingPhase {
static const char* phase_name() { return "jump threading"; }
void Run(PipelineData* data, Zone* temp_zone, bool frame_at_start) {
ZoneVector<RpoNumber> result(temp_zone);
if (JumpThreading::ComputeForwarding(temp_zone, result, data->sequence(),
frame_at_start)) {
JumpThreading::ApplyForwarding(result, data->sequence());
}
}
};
struct GenerateCodePhase {
static const char* phase_name() { return "generate code"; }
void Run(PipelineData* data, Zone* temp_zone, Linkage* linkage) {
CodeGenerator generator(data->frame(), linkage, data->sequence(),
data->info());
data->set_code(generator.GenerateCode());
}
};
struct PrintGraphPhase {
static const char* phase_name() { return nullptr; }
void Run(PipelineData* data, Zone* temp_zone, const char* phase) {
CompilationInfo* info = data->info();
Graph* graph = data->graph();
{ // Print JSON.
AllowHandleDereference allow_deref;
TurboJsonFile json_of(info, std::ios_base::app);
json_of << "{\"name\":\"" << phase << "\",\"type\":\"graph\",\"data\":"
<< AsJSON(*graph, data->source_positions()) << "},\n";
}
if (FLAG_trace_turbo_graph) { // Simple textual RPO.
AllowHandleDereference allow_deref;
OFStream os(stdout);
os << "-- Graph after " << phase << " -- " << std::endl;
os << AsRPO(*graph);
}
}
};
struct VerifyGraphPhase {
static const char* phase_name() { return nullptr; }
void Run(PipelineData* data, Zone* temp_zone, const bool untyped,
bool values_only = false) {
Verifier::Run(data->graph(), !untyped ? Verifier::TYPED : Verifier::UNTYPED,
values_only ? Verifier::kValuesOnly : Verifier::kAll);
}
};
void PipelineImpl::RunPrintAndVerify(const char* phase, bool untyped) {
if (FLAG_trace_turbo) {
Run<PrintGraphPhase>(phase);
}
if (FLAG_turbo_verify) {
Run<VerifyGraphPhase>(untyped);
}
}
bool PipelineImpl::CreateGraph() {
PipelineData* data = this->data_;
data->BeginPhaseKind("graph creation");
if (FLAG_trace_turbo) {
OFStream os(stdout);
os << "---------------------------------------------------\n"
<< "Begin compiling method " << info()->GetDebugName().get()
<< " using Turbofan" << std::endl;
TurboCfgFile tcf(isolate());
tcf << AsC1VCompilation(info());
}
data->source_positions()->AddDecorator();
if (FLAG_loop_assignment_analysis) {
Run<LoopAssignmentAnalysisPhase>();
}
Run<TypeHintAnalysisPhase>();
Run<GraphBuilderPhase>();
if (data->compilation_failed()) {
data->EndPhaseKind();
return false;
}
RunPrintAndVerify("Initial untyped", true);
// Perform OSR deconstruction.
if (info()->is_osr()) {
Run<OsrDeconstructionPhase>();
RunPrintAndVerify("OSR deconstruction", true);
}
// Perform function context specialization and inlining (if enabled).
Run<InliningPhase>();
RunPrintAndVerify("Inlined", true);
// Remove dead->live edges from the graph.
Run<EarlyGraphTrimmingPhase>();
RunPrintAndVerify("Early trimmed", true);
if (FLAG_print_turbo_replay) {
// Print a replay of the initial graph.
GraphReplayPrinter::PrintReplay(data->graph());
}
// Run the type-sensitive lowerings and optimizations on the graph.
{
// Type the graph and keep the Typer running on newly created nodes within
// this scope; the Typer is automatically unlinked from the Graph once we
// leave this scope below.
Typer typer(isolate(), data->graph(), info()->is_deoptimization_enabled()
? Typer::kDeoptimizationEnabled
: Typer::kNoFlags,
info()->dependencies());
Run<TyperPhase>(&typer);
RunPrintAndVerify("Typed");
data->BeginPhaseKind("lowering");
// Lower JSOperators where we can determine types.
Run<TypedLoweringPhase>();
RunPrintAndVerify("Lowered typed");
if (FLAG_turbo_stress_loop_peeling) {
Run<StressLoopPeelingPhase>();
RunPrintAndVerify("Loop peeled");
}
if (FLAG_turbo_escape) {
Run<EscapeAnalysisPhase>();
RunPrintAndVerify("Escape Analysed");
}
// Select representations.
Run<RepresentationSelectionPhase>();
RunPrintAndVerify("Representations selected", true);
}
#ifdef DEBUG
// From now on it is invalid to look at types on the nodes, because:
//
// (a) The remaining passes (might) run concurrent to the main thread and
// therefore must not access the Heap or the Isolate in an uncontrolled
// way (as done by the type system), and
// (b) the types on the nodes might not make sense after representation
// selection due to the way we handle truncations; if we'd want to look
// at types afterwards we'd essentially need to re-type (large portions
// of) the graph.
//
// In order to catch bugs related to type access after this point we remove
// the types from the nodes at this point (currently only in Debug builds).
Run<UntyperPhase>();
RunPrintAndVerify("Untyped", true);
#endif
// Run early optimization pass.
Run<EarlyOptimizationPhase>();
RunPrintAndVerify("Early optimized", true);
data->EndPhaseKind();
return true;
}
bool PipelineImpl::OptimizeGraph(Linkage* linkage) {
PipelineData* data = this->data_;
data->BeginPhaseKind("block building");
Run<EffectControlLinearizationPhase>();
RunPrintAndVerify("Effect and control linearized", true);
if (FLAG_turbo_store_elimination) {
Run<StoreStoreEliminationPhase>();
RunPrintAndVerify("Store-store elimination", true);
}
Run<BranchEliminationPhase>();
RunPrintAndVerify("Branch conditions eliminated", true);
// Optimize control flow.
if (FLAG_turbo_cf_optimization) {
Run<ControlFlowOptimizationPhase>();
RunPrintAndVerify("Control flow optimized", true);
}
// Optimize memory access and allocation operations.
Run<MemoryOptimizationPhase>();
// TODO(jarin, rossberg): Remove UNTYPED once machine typing works.
RunPrintAndVerify("Memory optimized", true);
// Lower changes that have been inserted before.
Run<LateOptimizationPhase>();
// TODO(jarin, rossberg): Remove UNTYPED once machine typing works.
RunPrintAndVerify("Late optimized", true);
Run<LateGraphTrimmingPhase>();
// TODO(jarin, rossberg): Remove UNTYPED once machine typing works.
RunPrintAndVerify("Late trimmed", true);
data->source_positions()->RemoveDecorator();
return ScheduleAndSelectInstructions(linkage);
}
Handle<Code> Pipeline::GenerateCodeForCodeStub(Isolate* isolate,
CallDescriptor* call_descriptor,
Graph* graph, Schedule* schedule,
Code::Flags flags,
const char* debug_name) {
CompilationInfo info(CStrVector(debug_name), isolate, graph->zone(), flags);
// Construct a pipeline for scheduling and code generation.
ZonePool zone_pool(isolate->allocator());
PipelineData data(&zone_pool, &info, graph, schedule);
base::SmartPointer<PipelineStatistics> pipeline_statistics;
if (FLAG_turbo_stats || FLAG_turbo_stats_nvp) {
pipeline_statistics.Reset(new PipelineStatistics(&info, &zone_pool));
pipeline_statistics->BeginPhaseKind("stub codegen");
}
PipelineImpl pipeline(&data);
DCHECK_NOT_NULL(data.schedule());
if (FLAG_trace_turbo) {
{
TurboJsonFile json_of(&info, std::ios_base::trunc);
json_of << "{\"function\":\"" << info.GetDebugName().get()
<< "\", \"source\":\"\",\n\"phases\":[";
}
pipeline.Run<PrintGraphPhase>("Machine");
}
pipeline.Run<VerifyGraphPhase>(false, true);
return pipeline.ScheduleAndGenerateCode(call_descriptor);
}
// static
Handle<Code> Pipeline::GenerateCodeForTesting(CompilationInfo* info) {
ZonePool zone_pool(info->isolate()->allocator());
base::SmartPointer<PipelineStatistics> pipeline_statistics(
CreatePipelineStatistics(info, &zone_pool));
PipelineData data(&zone_pool, info, pipeline_statistics.get());
PipelineImpl pipeline(&data);
Linkage linkage(Linkage::ComputeIncoming(data.instruction_zone(), info));
if (!pipeline.CreateGraph()) return Handle<Code>::null();
if (!pipeline.OptimizeGraph(&linkage)) return Handle<Code>::null();
return pipeline.GenerateCode(&linkage);
}
// static
Handle<Code> Pipeline::GenerateCodeForTesting(CompilationInfo* info,
Graph* graph,
Schedule* schedule) {
CallDescriptor* call_descriptor =
Linkage::ComputeIncoming(info->zone(), info);
return GenerateCodeForTesting(info, call_descriptor, graph, schedule);
}
// static
Handle<Code> Pipeline::GenerateCodeForTesting(CompilationInfo* info,
CallDescriptor* call_descriptor,
Graph* graph,
Schedule* schedule) {
// Construct a pipeline for scheduling and code generation.
ZonePool zone_pool(info->isolate()->allocator());
PipelineData data(&zone_pool, info, graph, schedule);
base::SmartPointer<PipelineStatistics> pipeline_statistics;
if (FLAG_turbo_stats || FLAG_turbo_stats_nvp) {
pipeline_statistics.Reset(new PipelineStatistics(info, &zone_pool));
pipeline_statistics->BeginPhaseKind("test codegen");
}
PipelineImpl pipeline(&data);
if (FLAG_trace_turbo) {
TurboJsonFile json_of(info, std::ios_base::trunc);
json_of << "{\"function\":\"" << info->GetDebugName().get()
<< "\", \"source\":\"\",\n\"phases\":[";
}
// TODO(rossberg): Should this really be untyped?
pipeline.RunPrintAndVerify("Machine", true);
return pipeline.ScheduleAndGenerateCode(call_descriptor);
}
// static
CompilationJob* Pipeline::NewCompilationJob(Handle<JSFunction> function) {
return new PipelineCompilationJob(function->GetIsolate(), function);
}
// static
CompilationJob* Pipeline::NewWasmCompilationJob(
CompilationInfo* info, Graph* graph, CallDescriptor* descriptor,
SourcePositionTable* source_positions) {
return new PipelineWasmCompilationJob(info, graph, descriptor,
source_positions);
}
bool Pipeline::AllocateRegistersForTesting(const RegisterConfiguration* config,
InstructionSequence* sequence,
bool run_verifier) {
CompilationInfo info(ArrayVector("testing"), sequence->isolate(),
sequence->zone());
ZonePool zone_pool(sequence->isolate()->allocator());
PipelineData data(&zone_pool, &info, sequence);
PipelineImpl pipeline(&data);
pipeline.data_->InitializeFrameData(nullptr);
pipeline.AllocateRegisters(config, nullptr, run_verifier);
return !data.compilation_failed();
}
bool PipelineImpl::ScheduleAndSelectInstructions(Linkage* linkage) {
CallDescriptor* call_descriptor = linkage->GetIncomingDescriptor();
PipelineData* data = this->data_;
DCHECK_NOT_NULL(data->graph());
if (data->schedule() == nullptr) Run<ComputeSchedulePhase>();
TraceSchedule(data->info(), data->schedule());
if (FLAG_turbo_profiling) {
data->set_profiler_data(BasicBlockInstrumentor::Instrument(
info(), data->graph(), data->schedule()));
}
data->InitializeInstructionSequence(call_descriptor);
data->InitializeFrameData(call_descriptor);
// Select and schedule instructions covering the scheduled graph.
Run<InstructionSelectionPhase>(linkage);
if (FLAG_trace_turbo && !data->MayHaveUnverifiableGraph()) {
AllowHandleDereference allow_deref;
TurboCfgFile tcf(isolate());
tcf << AsC1V("CodeGen", data->schedule(), data->source_positions(),
data->sequence());
}
if (FLAG_trace_turbo) {
std::ostringstream source_position_output;
// Output source position information before the graph is deleted.
data_->source_positions()->Print(source_position_output);
data_->set_source_position_output(source_position_output.str());
}
data->DeleteGraphZone();
data->BeginPhaseKind("register allocation");
bool run_verifier = FLAG_turbo_verify_allocation;
// Allocate registers.
AllocateRegisters(RegisterConfiguration::Turbofan(), call_descriptor,
run_verifier);
Run<FrameElisionPhase>();
if (data->compilation_failed()) {
info()->AbortOptimization(kNotEnoughVirtualRegistersRegalloc);
data->EndPhaseKind();
return false;
}
// TODO(mtrofin): move this off to the register allocator.
bool generate_frame_at_start =
data_->sequence()->instruction_blocks().front()->must_construct_frame();
// Optimimize jumps.
if (FLAG_turbo_jt) {
Run<JumpThreadingPhase>(generate_frame_at_start);
}
data->EndPhaseKind();
return true;
}
Handle<Code> PipelineImpl::GenerateCode(Linkage* linkage) {
PipelineData* data = this->data_;
data->BeginPhaseKind("code generation");
// Generate final machine code.
Run<GenerateCodePhase>(linkage);
Handle<Code> code = data->code();
if (data->profiler_data()) {
#if ENABLE_DISASSEMBLER
std::ostringstream os;
code->Disassemble(nullptr, os);
data->profiler_data()->SetCode(&os);
#endif
}
info()->SetCode(code);
v8::internal::CodeGenerator::PrintCode(code, info());
if (FLAG_trace_turbo) {
TurboJsonFile json_of(info(), std::ios_base::app);
json_of << "{\"name\":\"disassembly\",\"type\":\"disassembly\",\"data\":\"";
#if ENABLE_DISASSEMBLER
std::stringstream disassembly_stream;
code->Disassemble(nullptr, disassembly_stream);
std::string disassembly_string(disassembly_stream.str());
for (const auto& c : disassembly_string) {
json_of << AsEscapedUC16ForJSON(c);
}
#endif // ENABLE_DISASSEMBLER
json_of << "\"}\n],\n";
json_of << "\"nodePositions\":";
json_of << data->source_position_output();
json_of << "}";
OFStream os(stdout);
os << "---------------------------------------------------\n"
<< "Finished compiling method " << info()->GetDebugName().get()
<< " using Turbofan" << std::endl;
}
return code;
}
Handle<Code> PipelineImpl::ScheduleAndGenerateCode(
CallDescriptor* call_descriptor) {
Linkage linkage(call_descriptor);
// Schedule the graph, perform instruction selection and register allocation.
if (!ScheduleAndSelectInstructions(&linkage)) return Handle<Code>();
// Generate the final machine code.
return GenerateCode(&linkage);
}
void PipelineImpl::AllocateRegisters(const RegisterConfiguration* config,
CallDescriptor* descriptor,
bool run_verifier) {
PipelineData* data = this->data_;
// Don't track usage for this zone in compiler stats.
base::SmartPointer<Zone> verifier_zone;
RegisterAllocatorVerifier* verifier = nullptr;
if (run_verifier) {
verifier_zone.Reset(new Zone(isolate()->allocator()));
verifier = new (verifier_zone.get()) RegisterAllocatorVerifier(
verifier_zone.get(), config, data->sequence());
}
#ifdef DEBUG
data_->sequence()->ValidateEdgeSplitForm();
data_->sequence()->ValidateDeferredBlockEntryPaths();
data_->sequence()->ValidateDeferredBlockExitPaths();
#endif
data->InitializeRegisterAllocationData(config, descriptor);
if (info()->is_osr()) {
OsrHelper osr_helper(info());
osr_helper.SetupFrame(data->frame());
}
Run<MeetRegisterConstraintsPhase>();
Run<ResolvePhisPhase>();
Run<BuildLiveRangesPhase>();
if (FLAG_trace_turbo_graph) {
AllowHandleDereference allow_deref;
OFStream os(stdout);
os << "----- Instruction sequence before register allocation -----\n"
<< PrintableInstructionSequence({config, data->sequence()});
}
if (verifier != nullptr) {
CHECK(!data->register_allocation_data()->ExistsUseWithoutDefinition());
CHECK(data->register_allocation_data()
->RangesDefinedInDeferredStayInDeferred());
}
if (FLAG_turbo_preprocess_ranges) {
Run<SplinterLiveRangesPhase>();
}
Run<AllocateGeneralRegistersPhase<LinearScanAllocator>>();
Run<AllocateFPRegistersPhase<LinearScanAllocator>>();
if (FLAG_turbo_preprocess_ranges) {
Run<MergeSplintersPhase>();
}
Run<AssignSpillSlotsPhase>();
Run<CommitAssignmentPhase>();
Run<PopulateReferenceMapsPhase>();
Run<ConnectRangesPhase>();
Run<ResolveControlFlowPhase>();
if (FLAG_turbo_move_optimization) {
Run<OptimizeMovesPhase>();
}
Run<LocateSpillSlotsPhase>();
if (FLAG_trace_turbo_graph) {
AllowHandleDereference allow_deref;
OFStream os(stdout);
os << "----- Instruction sequence after register allocation -----\n"
<< PrintableInstructionSequence({config, data->sequence()});
}
if (verifier != nullptr) {
verifier->VerifyAssignment();
verifier->VerifyGapMoves();
}
if (FLAG_trace_turbo && !data->MayHaveUnverifiableGraph()) {
TurboCfgFile tcf(data->isolate());
tcf << AsC1VRegisterAllocationData("CodeGen",
data->register_allocation_data());
}
data->DeleteRegisterAllocationZone();
}
CompilationInfo* PipelineImpl::info() const { return data_->info(); }
Isolate* PipelineImpl::isolate() const { return info()->isolate(); }
} // namespace compiler
} // namespace internal
} // namespace v8