blob: f20262b0b4beca729fe3eb521f38e144000867c7 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_MIPS
#include "src/codegen.h"
#include "src/ic/ic.h"
#include "src/ic/ic-compiler.h"
#include "src/ic/stub-cache.h"
namespace v8 {
namespace internal {
// ----------------------------------------------------------------------------
// Static IC stub generators.
//
#define __ ACCESS_MASM(masm)
static void GenerateGlobalInstanceTypeCheck(MacroAssembler* masm, Register type,
Label* global_object) {
// Register usage:
// type: holds the receiver instance type on entry.
__ Branch(global_object, eq, type, Operand(JS_GLOBAL_OBJECT_TYPE));
__ Branch(global_object, eq, type, Operand(JS_GLOBAL_PROXY_TYPE));
}
// Helper function used from LoadIC GenerateNormal.
//
// elements: Property dictionary. It is not clobbered if a jump to the miss
// label is done.
// name: Property name. It is not clobbered if a jump to the miss label is
// done
// result: Register for the result. It is only updated if a jump to the miss
// label is not done. Can be the same as elements or name clobbering
// one of these in the case of not jumping to the miss label.
// The two scratch registers need to be different from elements, name and
// result.
// The generated code assumes that the receiver has slow properties,
// is not a global object and does not have interceptors.
// The address returned from GenerateStringDictionaryProbes() in scratch2
// is used.
static void GenerateDictionaryLoad(MacroAssembler* masm, Label* miss,
Register elements, Register name,
Register result, Register scratch1,
Register scratch2) {
// Main use of the scratch registers.
// scratch1: Used as temporary and to hold the capacity of the property
// dictionary.
// scratch2: Used as temporary.
Label done;
// Probe the dictionary.
NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss, &done, elements,
name, scratch1, scratch2);
// If probing finds an entry check that the value is a normal
// property.
__ bind(&done); // scratch2 == elements + 4 * index.
const int kElementsStartOffset =
NameDictionary::kHeaderSize +
NameDictionary::kElementsStartIndex * kPointerSize;
const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
__ lw(scratch1, FieldMemOperand(scratch2, kDetailsOffset));
__ And(at, scratch1,
Operand(PropertyDetails::TypeField::kMask << kSmiTagSize));
__ Branch(miss, ne, at, Operand(zero_reg));
// Get the value at the masked, scaled index and return.
__ lw(result,
FieldMemOperand(scratch2, kElementsStartOffset + 1 * kPointerSize));
}
// Helper function used from StoreIC::GenerateNormal.
//
// elements: Property dictionary. It is not clobbered if a jump to the miss
// label is done.
// name: Property name. It is not clobbered if a jump to the miss label is
// done
// value: The value to store.
// The two scratch registers need to be different from elements, name and
// result.
// The generated code assumes that the receiver has slow properties,
// is not a global object and does not have interceptors.
// The address returned from GenerateStringDictionaryProbes() in scratch2
// is used.
static void GenerateDictionaryStore(MacroAssembler* masm, Label* miss,
Register elements, Register name,
Register value, Register scratch1,
Register scratch2) {
// Main use of the scratch registers.
// scratch1: Used as temporary and to hold the capacity of the property
// dictionary.
// scratch2: Used as temporary.
Label done;
// Probe the dictionary.
NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss, &done, elements,
name, scratch1, scratch2);
// If probing finds an entry in the dictionary check that the value
// is a normal property that is not read only.
__ bind(&done); // scratch2 == elements + 4 * index.
const int kElementsStartOffset =
NameDictionary::kHeaderSize +
NameDictionary::kElementsStartIndex * kPointerSize;
const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
const int kTypeAndReadOnlyMask =
(PropertyDetails::TypeField::kMask |
PropertyDetails::AttributesField::encode(READ_ONLY))
<< kSmiTagSize;
__ lw(scratch1, FieldMemOperand(scratch2, kDetailsOffset));
__ And(at, scratch1, Operand(kTypeAndReadOnlyMask));
__ Branch(miss, ne, at, Operand(zero_reg));
// Store the value at the masked, scaled index and return.
const int kValueOffset = kElementsStartOffset + kPointerSize;
__ Addu(scratch2, scratch2, Operand(kValueOffset - kHeapObjectTag));
__ sw(value, MemOperand(scratch2));
// Update the write barrier. Make sure not to clobber the value.
__ mov(scratch1, value);
__ RecordWrite(elements, scratch2, scratch1, kRAHasNotBeenSaved,
kDontSaveFPRegs);
}
// Checks the receiver for special cases (value type, slow case bits).
// Falls through for regular JS object.
static void GenerateKeyedLoadReceiverCheck(MacroAssembler* masm,
Register receiver, Register map,
Register scratch,
int interceptor_bit, Label* slow) {
// Check that the object isn't a smi.
__ JumpIfSmi(receiver, slow);
// Get the map of the receiver.
__ lw(map, FieldMemOperand(receiver, HeapObject::kMapOffset));
// Check bit field.
__ lbu(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
__ And(at, scratch,
Operand((1 << Map::kIsAccessCheckNeeded) | (1 << interceptor_bit)));
__ Branch(slow, ne, at, Operand(zero_reg));
// Check that the object is some kind of JS object EXCEPT JS Value type.
// In the case that the object is a value-wrapper object,
// we enter the runtime system to make sure that indexing into string
// objects work as intended.
DCHECK(JS_OBJECT_TYPE > JS_VALUE_TYPE);
__ lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
__ Branch(slow, lt, scratch, Operand(JS_OBJECT_TYPE));
}
// Loads an indexed element from a fast case array.
static void GenerateFastArrayLoad(MacroAssembler* masm, Register receiver,
Register key, Register elements,
Register scratch1, Register scratch2,
Register result, Label* slow) {
// Register use:
//
// receiver - holds the receiver on entry.
// Unchanged unless 'result' is the same register.
//
// key - holds the smi key on entry.
// Unchanged unless 'result' is the same register.
//
// result - holds the result on exit if the load succeeded.
// Allowed to be the the same as 'receiver' or 'key'.
// Unchanged on bailout so 'receiver' and 'key' can be safely
// used by further computation.
//
// Scratch registers:
//
// elements - holds the elements of the receiver and its prototypes.
//
// scratch1 - used to hold elements length, bit fields, base addresses.
//
// scratch2 - used to hold maps, prototypes, and the loaded value.
Label check_prototypes, check_next_prototype;
Label done, in_bounds, absent;
__ lw(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ AssertFastElements(elements);
// Check that the key (index) is within bounds.
__ lw(scratch1, FieldMemOperand(elements, FixedArray::kLengthOffset));
__ Branch(&in_bounds, lo, key, Operand(scratch1));
// Out-of-bounds. Check the prototype chain to see if we can just return
// 'undefined'.
// Negative keys can't take the fast OOB path.
__ Branch(slow, lt, key, Operand(zero_reg));
__ bind(&check_prototypes);
__ lw(scratch2, FieldMemOperand(receiver, HeapObject::kMapOffset));
__ bind(&check_next_prototype);
__ lw(scratch2, FieldMemOperand(scratch2, Map::kPrototypeOffset));
// scratch2: current prototype
__ LoadRoot(at, Heap::kNullValueRootIndex);
__ Branch(&absent, eq, scratch2, Operand(at));
__ lw(elements, FieldMemOperand(scratch2, JSObject::kElementsOffset));
__ lw(scratch2, FieldMemOperand(scratch2, HeapObject::kMapOffset));
// elements: elements of current prototype
// scratch2: map of current prototype
__ lbu(scratch1, FieldMemOperand(scratch2, Map::kInstanceTypeOffset));
__ Branch(slow, lo, scratch1, Operand(JS_OBJECT_TYPE));
__ lbu(scratch1, FieldMemOperand(scratch2, Map::kBitFieldOffset));
__ And(at, scratch1, Operand((1 << Map::kIsAccessCheckNeeded) |
(1 << Map::kHasIndexedInterceptor)));
__ Branch(slow, ne, at, Operand(zero_reg));
__ LoadRoot(at, Heap::kEmptyFixedArrayRootIndex);
__ Branch(slow, ne, elements, Operand(at));
__ Branch(&check_next_prototype);
__ bind(&absent);
__ LoadRoot(result, Heap::kUndefinedValueRootIndex);
__ Branch(&done);
__ bind(&in_bounds);
// Fast case: Do the load.
__ Addu(scratch1, elements,
Operand(FixedArray::kHeaderSize - kHeapObjectTag));
// The key is a smi.
STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2);
__ Lsa(at, scratch1, key, kPointerSizeLog2 - kSmiTagSize);
__ lw(scratch2, MemOperand(at));
__ LoadRoot(at, Heap::kTheHoleValueRootIndex);
// In case the loaded value is the_hole we have to check the prototype chain.
__ Branch(&check_prototypes, eq, scratch2, Operand(at));
__ Move(result, scratch2);
__ bind(&done);
}
// Checks whether a key is an array index string or a unique name.
// Falls through if a key is a unique name.
static void GenerateKeyNameCheck(MacroAssembler* masm, Register key,
Register map, Register hash,
Label* index_string, Label* not_unique) {
// The key is not a smi.
Label unique;
// Is it a name?
__ GetObjectType(key, map, hash);
__ Branch(not_unique, hi, hash, Operand(LAST_UNIQUE_NAME_TYPE));
STATIC_ASSERT(LAST_UNIQUE_NAME_TYPE == FIRST_NONSTRING_TYPE);
__ Branch(&unique, eq, hash, Operand(LAST_UNIQUE_NAME_TYPE));
// Is the string an array index, with cached numeric value?
__ lw(hash, FieldMemOperand(key, Name::kHashFieldOffset));
__ And(at, hash, Operand(Name::kContainsCachedArrayIndexMask));
__ Branch(index_string, eq, at, Operand(zero_reg));
// Is the string internalized? We know it's a string, so a single
// bit test is enough.
// map: key map
__ lbu(hash, FieldMemOperand(map, Map::kInstanceTypeOffset));
STATIC_ASSERT(kInternalizedTag == 0);
__ And(at, hash, Operand(kIsNotInternalizedMask));
__ Branch(not_unique, ne, at, Operand(zero_reg));
__ bind(&unique);
}
void LoadIC::GenerateNormal(MacroAssembler* masm) {
Register dictionary = a0;
DCHECK(!dictionary.is(LoadDescriptor::ReceiverRegister()));
DCHECK(!dictionary.is(LoadDescriptor::NameRegister()));
Label slow;
__ lw(dictionary, FieldMemOperand(LoadDescriptor::ReceiverRegister(),
JSObject::kPropertiesOffset));
GenerateDictionaryLoad(masm, &slow, dictionary,
LoadDescriptor::NameRegister(), v0, a3, t0);
__ Ret();
// Dictionary load failed, go slow (but don't miss).
__ bind(&slow);
GenerateRuntimeGetProperty(masm);
}
// A register that isn't one of the parameters to the load ic.
static const Register LoadIC_TempRegister() { return a3; }
static void LoadIC_PushArgs(MacroAssembler* masm) {
Register receiver = LoadDescriptor::ReceiverRegister();
Register name = LoadDescriptor::NameRegister();
Register slot = LoadDescriptor::SlotRegister();
Register vector = LoadWithVectorDescriptor::VectorRegister();
__ Push(receiver, name, slot, vector);
}
void LoadIC::GenerateMiss(MacroAssembler* masm) {
// The return address is in ra.
Isolate* isolate = masm->isolate();
DCHECK(!AreAliased(t0, t1, LoadWithVectorDescriptor::SlotRegister(),
LoadWithVectorDescriptor::VectorRegister()));
__ IncrementCounter(isolate->counters()->ic_load_miss(), 1, t0, t1);
LoadIC_PushArgs(masm);
// Perform tail call to the entry.
__ TailCallRuntime(Runtime::kLoadIC_Miss);
}
void LoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) {
// The return address is in ra.
__ mov(LoadIC_TempRegister(), LoadDescriptor::ReceiverRegister());
__ Push(LoadIC_TempRegister(), LoadDescriptor::NameRegister());
// Do tail-call to runtime routine.
__ TailCallRuntime(Runtime::kGetProperty);
}
void KeyedLoadIC::GenerateMiss(MacroAssembler* masm) {
// The return address is in ra.
Isolate* isolate = masm->isolate();
DCHECK(!AreAliased(t0, t1, LoadWithVectorDescriptor::SlotRegister(),
LoadWithVectorDescriptor::VectorRegister()));
__ IncrementCounter(isolate->counters()->ic_keyed_load_miss(), 1, t0, t1);
LoadIC_PushArgs(masm);
// Perform tail call to the entry.
__ TailCallRuntime(Runtime::kKeyedLoadIC_Miss);
}
void KeyedLoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) {
// The return address is in ra.
__ Push(LoadDescriptor::ReceiverRegister(), LoadDescriptor::NameRegister());
// Do tail-call to runtime routine.
__ TailCallRuntime(Runtime::kKeyedGetProperty);
}
void KeyedLoadIC::GenerateMegamorphic(MacroAssembler* masm) {
// The return address is in ra.
Label slow, check_name, index_smi, index_name, property_array_property;
Label probe_dictionary, check_number_dictionary;
Register key = LoadDescriptor::NameRegister();
Register receiver = LoadDescriptor::ReceiverRegister();
DCHECK(key.is(a2));
DCHECK(receiver.is(a1));
Isolate* isolate = masm->isolate();
// Check that the key is a smi.
__ JumpIfNotSmi(key, &check_name);
__ bind(&index_smi);
// Now the key is known to be a smi. This place is also jumped to from below
// where a numeric string is converted to a smi.
GenerateKeyedLoadReceiverCheck(masm, receiver, a0, a3,
Map::kHasIndexedInterceptor, &slow);
// Check the receiver's map to see if it has fast elements.
__ CheckFastElements(a0, a3, &check_number_dictionary);
GenerateFastArrayLoad(masm, receiver, key, a0, a3, t0, v0, &slow);
__ IncrementCounter(isolate->counters()->ic_keyed_load_generic_smi(), 1, t0,
a3);
__ Ret();
__ bind(&check_number_dictionary);
__ lw(t0, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ lw(a3, FieldMemOperand(t0, JSObject::kMapOffset));
// Check whether the elements is a number dictionary.
// a3: elements map
// t0: elements
__ LoadRoot(at, Heap::kHashTableMapRootIndex);
__ Branch(&slow, ne, a3, Operand(at));
__ sra(a0, key, kSmiTagSize);
__ LoadFromNumberDictionary(&slow, t0, key, v0, a0, a3, t1);
__ Ret();
// Slow case, key and receiver still in a2 and a1.
__ bind(&slow);
__ IncrementCounter(isolate->counters()->ic_keyed_load_generic_slow(), 1, t0,
a3);
GenerateRuntimeGetProperty(masm);
__ bind(&check_name);
GenerateKeyNameCheck(masm, key, a0, a3, &index_name, &slow);
GenerateKeyedLoadReceiverCheck(masm, receiver, a0, a3,
Map::kHasNamedInterceptor, &slow);
// If the receiver is a fast-case object, check the stub cache. Otherwise
// probe the dictionary.
__ lw(a3, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
__ lw(t0, FieldMemOperand(a3, HeapObject::kMapOffset));
__ LoadRoot(at, Heap::kHashTableMapRootIndex);
__ Branch(&probe_dictionary, eq, t0, Operand(at));
// The handlers in the stub cache expect a vector and slot. Since we won't
// change the IC from any downstream misses, a dummy vector can be used.
Register vector = LoadWithVectorDescriptor::VectorRegister();
Register slot = LoadWithVectorDescriptor::SlotRegister();
DCHECK(!AreAliased(vector, slot, t0, t1, t2, t5));
Handle<TypeFeedbackVector> dummy_vector =
TypeFeedbackVector::DummyVector(masm->isolate());
int slot_index = dummy_vector->GetIndex(
FeedbackVectorSlot(TypeFeedbackVector::kDummyKeyedLoadICSlot));
__ LoadRoot(vector, Heap::kDummyVectorRootIndex);
__ li(slot, Operand(Smi::FromInt(slot_index)));
Code::Flags flags =
Code::RemoveHolderFromFlags(Code::ComputeHandlerFlags(Code::LOAD_IC));
masm->isolate()->stub_cache()->GenerateProbe(masm, Code::KEYED_LOAD_IC, flags,
receiver, key, t0, t1, t2, t5);
// Cache miss.
GenerateMiss(masm);
// Do a quick inline probe of the receiver's dictionary, if it
// exists.
__ bind(&probe_dictionary);
// a3: elements
__ lw(a0, FieldMemOperand(receiver, HeapObject::kMapOffset));
__ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
GenerateGlobalInstanceTypeCheck(masm, a0, &slow);
// Load the property to v0.
GenerateDictionaryLoad(masm, &slow, a3, key, v0, t1, t0);
__ IncrementCounter(isolate->counters()->ic_keyed_load_generic_symbol(), 1,
t0, a3);
__ Ret();
__ bind(&index_name);
__ IndexFromHash(a3, key);
// Now jump to the place where smi keys are handled.
__ Branch(&index_smi);
}
static void KeyedStoreGenerateMegamorphicHelper(
MacroAssembler* masm, Label* fast_object, Label* fast_double, Label* slow,
KeyedStoreCheckMap check_map, KeyedStoreIncrementLength increment_length,
Register value, Register key, Register receiver, Register receiver_map,
Register elements_map, Register elements) {
Label transition_smi_elements;
Label finish_object_store, non_double_value, transition_double_elements;
Label fast_double_without_map_check;
// Fast case: Do the store, could be either Object or double.
__ bind(fast_object);
Register scratch = t0;
Register scratch2 = t4;
Register scratch3 = t5;
Register address = t1;
DCHECK(!AreAliased(value, key, receiver, receiver_map, elements_map, elements,
scratch, scratch2, scratch3, address));
if (check_map == kCheckMap) {
__ lw(elements_map, FieldMemOperand(elements, HeapObject::kMapOffset));
__ Branch(fast_double, ne, elements_map,
Operand(masm->isolate()->factory()->fixed_array_map()));
}
// HOLECHECK: guards "A[i] = V"
// We have to go to the runtime if the current value is the hole because
// there may be a callback on the element.
Label holecheck_passed1;
__ Addu(address, elements, FixedArray::kHeaderSize - kHeapObjectTag);
__ Lsa(address, address, key, kPointerSizeLog2 - kSmiTagSize);
__ lw(scratch, MemOperand(address));
__ Branch(&holecheck_passed1, ne, scratch,
Operand(masm->isolate()->factory()->the_hole_value()));
__ JumpIfDictionaryInPrototypeChain(receiver, elements_map, scratch, slow);
__ bind(&holecheck_passed1);
// Smi stores don't require further checks.
Label non_smi_value;
__ JumpIfNotSmi(value, &non_smi_value);
if (increment_length == kIncrementLength) {
// Add 1 to receiver->length.
__ Addu(scratch, key, Operand(Smi::FromInt(1)));
__ sw(scratch, FieldMemOperand(receiver, JSArray::kLengthOffset));
}
// It's irrelevant whether array is smi-only or not when writing a smi.
__ Addu(address, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ Lsa(address, address, key, kPointerSizeLog2 - kSmiTagSize);
__ sw(value, MemOperand(address));
__ Ret();
__ bind(&non_smi_value);
// Escape to elements kind transition case.
__ CheckFastObjectElements(receiver_map, scratch, &transition_smi_elements);
// Fast elements array, store the value to the elements backing store.
__ bind(&finish_object_store);
if (increment_length == kIncrementLength) {
// Add 1 to receiver->length.
__ Addu(scratch, key, Operand(Smi::FromInt(1)));
__ sw(scratch, FieldMemOperand(receiver, JSArray::kLengthOffset));
}
__ Addu(address, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ Lsa(address, address, key, kPointerSizeLog2 - kSmiTagSize);
__ sw(value, MemOperand(address));
// Update write barrier for the elements array address.
__ mov(scratch, value); // Preserve the value which is returned.
__ RecordWrite(elements, address, scratch, kRAHasNotBeenSaved,
kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
__ Ret();
__ bind(fast_double);
if (check_map == kCheckMap) {
// Check for fast double array case. If this fails, call through to the
// runtime.
__ LoadRoot(at, Heap::kFixedDoubleArrayMapRootIndex);
__ Branch(slow, ne, elements_map, Operand(at));
}
// HOLECHECK: guards "A[i] double hole?"
// We have to see if the double version of the hole is present. If so
// go to the runtime.
__ Addu(address, elements, Operand(FixedDoubleArray::kHeaderSize +
kHoleNanUpper32Offset - kHeapObjectTag));
__ Lsa(address, address, key, kPointerSizeLog2);
__ lw(scratch, MemOperand(address));
__ Branch(&fast_double_without_map_check, ne, scratch,
Operand(kHoleNanUpper32));
__ JumpIfDictionaryInPrototypeChain(receiver, elements_map, scratch, slow);
__ bind(&fast_double_without_map_check);
__ StoreNumberToDoubleElements(value, key, elements, scratch, scratch2,
scratch3, &transition_double_elements);
if (increment_length == kIncrementLength) {
// Add 1 to receiver->length.
__ Addu(scratch, key, Operand(Smi::FromInt(1)));
__ sw(scratch, FieldMemOperand(receiver, JSArray::kLengthOffset));
}
__ Ret();
__ bind(&transition_smi_elements);
// Transition the array appropriately depending on the value type.
__ lw(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
__ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
__ Branch(&non_double_value, ne, scratch, Operand(at));
// Value is a double. Transition FAST_SMI_ELEMENTS ->
// FAST_DOUBLE_ELEMENTS and complete the store.
__ LoadTransitionedArrayMapConditional(
FAST_SMI_ELEMENTS, FAST_DOUBLE_ELEMENTS, receiver_map, scratch, slow);
AllocationSiteMode mode =
AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_DOUBLE_ELEMENTS);
ElementsTransitionGenerator::GenerateSmiToDouble(masm, receiver, key, value,
receiver_map, mode, slow);
__ lw(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ jmp(&fast_double_without_map_check);
__ bind(&non_double_value);
// Value is not a double, FAST_SMI_ELEMENTS -> FAST_ELEMENTS
__ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS, FAST_ELEMENTS,
receiver_map, scratch, slow);
mode = AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_ELEMENTS);
ElementsTransitionGenerator::GenerateMapChangeElementsTransition(
masm, receiver, key, value, receiver_map, mode, slow);
__ lw(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ jmp(&finish_object_store);
__ bind(&transition_double_elements);
// Elements are FAST_DOUBLE_ELEMENTS, but value is an Object that's not a
// HeapNumber. Make sure that the receiver is a Array with FAST_ELEMENTS and
// transition array from FAST_DOUBLE_ELEMENTS to FAST_ELEMENTS
__ LoadTransitionedArrayMapConditional(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS,
receiver_map, scratch, slow);
mode = AllocationSite::GetMode(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS);
ElementsTransitionGenerator::GenerateDoubleToObject(
masm, receiver, key, value, receiver_map, mode, slow);
__ lw(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ jmp(&finish_object_store);
}
void KeyedStoreIC::GenerateMegamorphic(MacroAssembler* masm,
LanguageMode language_mode) {
// ---------- S t a t e --------------
// -- a0 : value
// -- a1 : key
// -- a2 : receiver
// -- ra : return address
// -----------------------------------
Label slow, fast_object, fast_object_grow;
Label fast_double, fast_double_grow;
Label array, extra, check_if_double_array, maybe_name_key, miss;
// Register usage.
Register value = StoreDescriptor::ValueRegister();
Register key = StoreDescriptor::NameRegister();
Register receiver = StoreDescriptor::ReceiverRegister();
DCHECK(value.is(a0));
Register receiver_map = a3;
Register elements_map = t2;
Register elements = t3; // Elements array of the receiver.
// t0 and t1 are used as general scratch registers.
// Check that the key is a smi.
__ JumpIfNotSmi(key, &maybe_name_key);
// Check that the object isn't a smi.
__ JumpIfSmi(receiver, &slow);
// Get the map of the object.
__ lw(receiver_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
// Check that the receiver does not require access checks.
// The generic stub does not perform map checks.
__ lbu(t0, FieldMemOperand(receiver_map, Map::kBitFieldOffset));
__ And(t0, t0, Operand(1 << Map::kIsAccessCheckNeeded));
__ Branch(&slow, ne, t0, Operand(zero_reg));
// Check if the object is a JS array or not.
__ lbu(t0, FieldMemOperand(receiver_map, Map::kInstanceTypeOffset));
__ Branch(&array, eq, t0, Operand(JS_ARRAY_TYPE));
// Check that the object is some kind of JS object EXCEPT JS Value type. In
// the case that the object is a value-wrapper object, we enter the runtime
// system to make sure that indexing into string objects works as intended.
STATIC_ASSERT(JS_VALUE_TYPE < JS_OBJECT_TYPE);
__ Branch(&slow, lo, t0, Operand(JS_OBJECT_TYPE));
// Object case: Check key against length in the elements array.
__ lw(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
// Check array bounds. Both the key and the length of FixedArray are smis.
__ lw(t0, FieldMemOperand(elements, FixedArray::kLengthOffset));
__ Branch(&fast_object, lo, key, Operand(t0));
// Slow case, handle jump to runtime.
__ bind(&slow);
// Entry registers are intact.
// a0: value.
// a1: key.
// a2: receiver.
PropertyICCompiler::GenerateRuntimeSetProperty(masm, language_mode);
// Never returns to here.
__ bind(&maybe_name_key);
__ lw(t0, FieldMemOperand(key, HeapObject::kMapOffset));
__ lb(t0, FieldMemOperand(t0, Map::kInstanceTypeOffset));
__ JumpIfNotUniqueNameInstanceType(t0, &slow);
// The handlers in the stub cache expect a vector and slot. Since we won't
// change the IC from any downstream misses, a dummy vector can be used.
Register vector = VectorStoreICDescriptor::VectorRegister();
Register slot = VectorStoreICDescriptor::SlotRegister();
DCHECK(!AreAliased(vector, slot, t1, t2, t4, t5));
Handle<TypeFeedbackVector> dummy_vector =
TypeFeedbackVector::DummyVector(masm->isolate());
int slot_index = dummy_vector->GetIndex(
FeedbackVectorSlot(TypeFeedbackVector::kDummyKeyedStoreICSlot));
__ LoadRoot(vector, Heap::kDummyVectorRootIndex);
__ li(slot, Operand(Smi::FromInt(slot_index)));
Code::Flags flags =
Code::RemoveHolderFromFlags(Code::ComputeHandlerFlags(Code::STORE_IC));
masm->isolate()->stub_cache()->GenerateProbe(
masm, Code::KEYED_STORE_IC, flags, receiver, key, t1, t2, t4, t5);
// Cache miss.
__ Branch(&miss);
// Extra capacity case: Check if there is extra capacity to
// perform the store and update the length. Used for adding one
// element to the array by writing to array[array.length].
__ bind(&extra);
// Condition code from comparing key and array length is still available.
// Only support writing to array[array.length].
__ Branch(&slow, ne, key, Operand(t0));
// Check for room in the elements backing store.
// Both the key and the length of FixedArray are smis.
__ lw(t0, FieldMemOperand(elements, FixedArray::kLengthOffset));
__ Branch(&slow, hs, key, Operand(t0));
__ lw(elements_map, FieldMemOperand(elements, HeapObject::kMapOffset));
__ Branch(&check_if_double_array, ne, elements_map,
Heap::kFixedArrayMapRootIndex);
__ jmp(&fast_object_grow);
__ bind(&check_if_double_array);
__ Branch(&slow, ne, elements_map, Heap::kFixedDoubleArrayMapRootIndex);
__ jmp(&fast_double_grow);
// Array case: Get the length and the elements array from the JS
// array. Check that the array is in fast mode (and writable); if it
// is the length is always a smi.
__ bind(&array);
__ lw(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
// Check the key against the length in the array.
__ lw(t0, FieldMemOperand(receiver, JSArray::kLengthOffset));
__ Branch(&extra, hs, key, Operand(t0));
KeyedStoreGenerateMegamorphicHelper(
masm, &fast_object, &fast_double, &slow, kCheckMap, kDontIncrementLength,
value, key, receiver, receiver_map, elements_map, elements);
KeyedStoreGenerateMegamorphicHelper(masm, &fast_object_grow,
&fast_double_grow, &slow, kDontCheckMap,
kIncrementLength, value, key, receiver,
receiver_map, elements_map, elements);
__ bind(&miss);
GenerateMiss(masm);
}
static void StoreIC_PushArgs(MacroAssembler* masm) {
__ Push(StoreDescriptor::ReceiverRegister(), StoreDescriptor::NameRegister(),
StoreDescriptor::ValueRegister(),
VectorStoreICDescriptor::SlotRegister(),
VectorStoreICDescriptor::VectorRegister());
}
void KeyedStoreIC::GenerateMiss(MacroAssembler* masm) {
StoreIC_PushArgs(masm);
__ TailCallRuntime(Runtime::kKeyedStoreIC_Miss);
}
void StoreIC::GenerateMiss(MacroAssembler* masm) {
StoreIC_PushArgs(masm);
// Perform tail call to the entry.
__ TailCallRuntime(Runtime::kStoreIC_Miss);
}
void StoreIC::GenerateNormal(MacroAssembler* masm) {
Label miss;
Register receiver = StoreDescriptor::ReceiverRegister();
Register name = StoreDescriptor::NameRegister();
Register value = StoreDescriptor::ValueRegister();
Register dictionary = t1;
DCHECK(receiver.is(a1));
DCHECK(name.is(a2));
DCHECK(value.is(a0));
DCHECK(VectorStoreICDescriptor::VectorRegister().is(a3));
DCHECK(VectorStoreICDescriptor::SlotRegister().is(t0));
__ lw(dictionary, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
GenerateDictionaryStore(masm, &miss, dictionary, name, value, t2, t5);
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->ic_store_normal_hit(), 1, t2, t5);
__ Ret();
__ bind(&miss);
__ IncrementCounter(counters->ic_store_normal_miss(), 1, t2, t5);
GenerateMiss(masm);
}
#undef __
Condition CompareIC::ComputeCondition(Token::Value op) {
switch (op) {
case Token::EQ_STRICT:
case Token::EQ:
return eq;
case Token::LT:
return lt;
case Token::GT:
return gt;
case Token::LTE:
return le;
case Token::GTE:
return ge;
default:
UNREACHABLE();
return kNoCondition;
}
}
bool CompareIC::HasInlinedSmiCode(Address address) {
// The address of the instruction following the call.
Address andi_instruction_address =
address + Assembler::kCallTargetAddressOffset;
// If the instruction following the call is not a andi at, rx, #yyy, nothing
// was inlined.
Instr instr = Assembler::instr_at(andi_instruction_address);
return Assembler::IsAndImmediate(instr) &&
Assembler::GetRt(instr) == static_cast<uint32_t>(zero_reg.code());
}
void PatchInlinedSmiCode(Isolate* isolate, Address address,
InlinedSmiCheck check) {
Address andi_instruction_address =
address + Assembler::kCallTargetAddressOffset;
// If the instruction following the call is not a andi at, rx, #yyy, nothing
// was inlined.
Instr instr = Assembler::instr_at(andi_instruction_address);
if (!(Assembler::IsAndImmediate(instr) &&
Assembler::GetRt(instr) == static_cast<uint32_t>(zero_reg.code()))) {
return;
}
// The delta to the start of the map check instruction and the
// condition code uses at the patched jump.
int delta = Assembler::GetImmediate16(instr);
delta += Assembler::GetRs(instr) * kImm16Mask;
// If the delta is 0 the instruction is andi at, zero_reg, #0 which also
// signals that nothing was inlined.
if (delta == 0) {
return;
}
if (FLAG_trace_ic) {
PrintF("[ patching ic at %p, andi=%p, delta=%d\n",
static_cast<void*>(address),
static_cast<void*>(andi_instruction_address), delta);
}
Address patch_address =
andi_instruction_address - delta * Instruction::kInstrSize;
Instr instr_at_patch = Assembler::instr_at(patch_address);
// This is patching a conditional "jump if not smi/jump if smi" site.
// Enabling by changing from
// andi at, rx, 0
// Branch <target>, eq, at, Operand(zero_reg)
// to:
// andi at, rx, #kSmiTagMask
// Branch <target>, ne, at, Operand(zero_reg)
// and vice-versa to be disabled again.
CodePatcher patcher(isolate, patch_address, 2);
Register reg = Register::from_code(Assembler::GetRs(instr_at_patch));
if (check == ENABLE_INLINED_SMI_CHECK) {
DCHECK(Assembler::IsAndImmediate(instr_at_patch));
DCHECK_EQ(0u, Assembler::GetImmediate16(instr_at_patch));
patcher.masm()->andi(at, reg, kSmiTagMask);
} else {
DCHECK_EQ(check, DISABLE_INLINED_SMI_CHECK);
DCHECK(Assembler::IsAndImmediate(instr_at_patch));
patcher.masm()->andi(at, reg, 0);
}
Instr branch_instr =
Assembler::instr_at(patch_address + Instruction::kInstrSize);
DCHECK(Assembler::IsBranch(branch_instr));
uint32_t opcode = Assembler::GetOpcodeField(branch_instr);
// Currently only the 'eq' and 'ne' cond values are supported and the simple
// branch instructions and their r6 variants (with opcode being the branch
// type). There are some special cases (see Assembler::IsBranch()) so
// extending this would be tricky.
DCHECK(opcode == BEQ || // BEQ
opcode == BNE || // BNE
opcode == POP10 || // BEQC
opcode == POP30 || // BNEC
opcode == POP66 || // BEQZC
opcode == POP76); // BNEZC
switch (opcode) {
case BEQ:
opcode = BNE; // change BEQ to BNE.
break;
case POP10:
opcode = POP30; // change BEQC to BNEC.
break;
case POP66:
opcode = POP76; // change BEQZC to BNEZC.
break;
case BNE:
opcode = BEQ; // change BNE to BEQ.
break;
case POP30:
opcode = POP10; // change BNEC to BEQC.
break;
case POP76:
opcode = POP66; // change BNEZC to BEQZC.
break;
default:
UNIMPLEMENTED();
}
patcher.ChangeBranchCondition(branch_instr, opcode);
}
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_MIPS