blob: d3163e8a50582ccaf42593983f1b13f97fac6c86 [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Declares a Simulator for PPC instructions if we are not generating a native
// PPC binary. This Simulator allows us to run and debug PPC code generation on
// regular desktop machines.
// V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro,
// which will start execution in the Simulator or forwards to the real entry
// on a PPC HW platform.
#ifndef V8_PPC_SIMULATOR_PPC_H_
#define V8_PPC_SIMULATOR_PPC_H_
#include "src/allocation.h"
#if !defined(USE_SIMULATOR)
// Running without a simulator on a native ppc platform.
namespace v8 {
namespace internal {
// When running without a simulator we call the entry directly.
#define CALL_GENERATED_CODE(isolate, entry, p0, p1, p2, p3, p4) \
(entry(p0, p1, p2, p3, p4))
typedef int (*ppc_regexp_matcher)(String*, int, const byte*, const byte*, int*,
int, Address, int, void*, Isolate*);
// Call the generated regexp code directly. The code at the entry address
// should act as a function matching the type ppc_regexp_matcher.
// The ninth argument is a dummy that reserves the space used for
// the return address added by the ExitFrame in native calls.
#define CALL_GENERATED_REGEXP_CODE(isolate, entry, p0, p1, p2, p3, p4, p5, p6, \
p7, p8) \
(FUNCTION_CAST<ppc_regexp_matcher>(entry)(p0, p1, p2, p3, p4, p5, p6, p7, \
NULL, p8))
// The stack limit beyond which we will throw stack overflow errors in
// generated code. Because generated code on ppc uses the C stack, we
// just use the C stack limit.
class SimulatorStack : public v8::internal::AllStatic {
public:
static inline uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate,
uintptr_t c_limit) {
USE(isolate);
return c_limit;
}
static inline uintptr_t RegisterCTryCatch(v8::internal::Isolate* isolate,
uintptr_t try_catch_address) {
USE(isolate);
return try_catch_address;
}
static inline void UnregisterCTryCatch(v8::internal::Isolate* isolate) {
USE(isolate);
}
};
} // namespace internal
} // namespace v8
#else // !defined(USE_SIMULATOR)
// Running with a simulator.
#include "src/assembler.h"
#include "src/base/hashmap.h"
#include "src/ppc/constants-ppc.h"
namespace v8 {
namespace internal {
class CachePage {
public:
static const int LINE_VALID = 0;
static const int LINE_INVALID = 1;
static const int kPageShift = 12;
static const int kPageSize = 1 << kPageShift;
static const int kPageMask = kPageSize - 1;
static const int kLineShift = 2; // The cache line is only 4 bytes right now.
static const int kLineLength = 1 << kLineShift;
static const int kLineMask = kLineLength - 1;
CachePage() { memset(&validity_map_, LINE_INVALID, sizeof(validity_map_)); }
char* ValidityByte(int offset) {
return &validity_map_[offset >> kLineShift];
}
char* CachedData(int offset) { return &data_[offset]; }
private:
char data_[kPageSize]; // The cached data.
static const int kValidityMapSize = kPageSize >> kLineShift;
char validity_map_[kValidityMapSize]; // One byte per line.
};
class Simulator {
public:
friend class PPCDebugger;
enum Register {
no_reg = -1,
r0 = 0,
sp,
r2,
r3,
r4,
r5,
r6,
r7,
r8,
r9,
r10,
r11,
r12,
r13,
r14,
r15,
r16,
r17,
r18,
r19,
r20,
r21,
r22,
r23,
r24,
r25,
r26,
r27,
r28,
r29,
r30,
fp,
kNumGPRs = 32,
d0 = 0,
d1,
d2,
d3,
d4,
d5,
d6,
d7,
d8,
d9,
d10,
d11,
d12,
d13,
d14,
d15,
d16,
d17,
d18,
d19,
d20,
d21,
d22,
d23,
d24,
d25,
d26,
d27,
d28,
d29,
d30,
d31,
kNumFPRs = 32
};
explicit Simulator(Isolate* isolate);
~Simulator();
// The currently executing Simulator instance. Potentially there can be one
// for each native thread.
static Simulator* current(v8::internal::Isolate* isolate);
// Accessors for register state.
void set_register(int reg, intptr_t value);
intptr_t get_register(int reg) const;
double get_double_from_register_pair(int reg);
void set_d_register_from_double(int dreg, const double dbl) {
DCHECK(dreg >= 0 && dreg < kNumFPRs);
*bit_cast<double*>(&fp_registers_[dreg]) = dbl;
}
double get_double_from_d_register(int dreg) {
DCHECK(dreg >= 0 && dreg < kNumFPRs);
return *bit_cast<double*>(&fp_registers_[dreg]);
}
void set_d_register(int dreg, int64_t value) {
DCHECK(dreg >= 0 && dreg < kNumFPRs);
fp_registers_[dreg] = value;
}
int64_t get_d_register(int dreg) {
DCHECK(dreg >= 0 && dreg < kNumFPRs);
return fp_registers_[dreg];
}
// Special case of set_register and get_register to access the raw PC value.
void set_pc(intptr_t value);
intptr_t get_pc() const;
Address get_sp() const {
return reinterpret_cast<Address>(static_cast<intptr_t>(get_register(sp)));
}
// Accessor to the internal simulator stack area.
uintptr_t StackLimit(uintptr_t c_limit) const;
// Executes PPC instructions until the PC reaches end_sim_pc.
void Execute();
// Call on program start.
static void Initialize(Isolate* isolate);
static void TearDown(base::HashMap* i_cache, Redirection* first);
// V8 generally calls into generated JS code with 5 parameters and into
// generated RegExp code with 7 parameters. This is a convenience function,
// which sets up the simulator state and grabs the result on return.
intptr_t Call(byte* entry, int argument_count, ...);
// Alternative: call a 2-argument double function.
void CallFP(byte* entry, double d0, double d1);
int32_t CallFPReturnsInt(byte* entry, double d0, double d1);
double CallFPReturnsDouble(byte* entry, double d0, double d1);
// Push an address onto the JS stack.
uintptr_t PushAddress(uintptr_t address);
// Pop an address from the JS stack.
uintptr_t PopAddress();
// Debugger input.
void set_last_debugger_input(char* input);
char* last_debugger_input() { return last_debugger_input_; }
// ICache checking.
static void FlushICache(base::HashMap* i_cache, void* start, size_t size);
// Returns true if pc register contains one of the 'special_values' defined
// below (bad_lr, end_sim_pc).
bool has_bad_pc() const;
private:
enum special_values {
// Known bad pc value to ensure that the simulator does not execute
// without being properly setup.
bad_lr = -1,
// A pc value used to signal the simulator to stop execution. Generally
// the lr is set to this value on transition from native C code to
// simulated execution, so that the simulator can "return" to the native
// C code.
end_sim_pc = -2
};
enum BCType { BC_OFFSET, BC_LINK_REG, BC_CTR_REG };
// Unsupported instructions use Format to print an error and stop execution.
void Format(Instruction* instr, const char* format);
// Helper functions to set the conditional flags in the architecture state.
bool CarryFrom(int32_t left, int32_t right, int32_t carry = 0);
bool BorrowFrom(int32_t left, int32_t right);
bool OverflowFrom(int32_t alu_out, int32_t left, int32_t right,
bool addition);
// Helper functions to decode common "addressing" modes
int32_t GetShiftRm(Instruction* instr, bool* carry_out);
int32_t GetImm(Instruction* instr, bool* carry_out);
void ProcessPUW(Instruction* instr, int num_regs, int operand_size,
intptr_t* start_address, intptr_t* end_address);
void HandleRList(Instruction* instr, bool load);
void HandleVList(Instruction* inst);
void SoftwareInterrupt(Instruction* instr);
// Stop helper functions.
inline bool isStopInstruction(Instruction* instr);
inline bool isWatchedStop(uint32_t bkpt_code);
inline bool isEnabledStop(uint32_t bkpt_code);
inline void EnableStop(uint32_t bkpt_code);
inline void DisableStop(uint32_t bkpt_code);
inline void IncreaseStopCounter(uint32_t bkpt_code);
void PrintStopInfo(uint32_t code);
// Read and write memory.
inline uint8_t ReadBU(intptr_t addr);
inline int8_t ReadB(intptr_t addr);
inline void WriteB(intptr_t addr, uint8_t value);
inline void WriteB(intptr_t addr, int8_t value);
inline uint16_t ReadHU(intptr_t addr, Instruction* instr);
inline int16_t ReadH(intptr_t addr, Instruction* instr);
// Note: Overloaded on the sign of the value.
inline void WriteH(intptr_t addr, uint16_t value, Instruction* instr);
inline void WriteH(intptr_t addr, int16_t value, Instruction* instr);
inline uint32_t ReadWU(intptr_t addr, Instruction* instr);
inline int32_t ReadW(intptr_t addr, Instruction* instr);
inline void WriteW(intptr_t addr, uint32_t value, Instruction* instr);
inline void WriteW(intptr_t addr, int32_t value, Instruction* instr);
intptr_t* ReadDW(intptr_t addr);
void WriteDW(intptr_t addr, int64_t value);
void Trace(Instruction* instr);
void SetCR0(intptr_t result, bool setSO = false);
void ExecuteBranchConditional(Instruction* instr, BCType type);
void ExecuteExt1(Instruction* instr);
bool ExecuteExt2_10bit(Instruction* instr);
bool ExecuteExt2_9bit_part1(Instruction* instr);
bool ExecuteExt2_9bit_part2(Instruction* instr);
void ExecuteExt2_5bit(Instruction* instr);
void ExecuteExt2(Instruction* instr);
void ExecuteExt3(Instruction* instr);
void ExecuteExt4(Instruction* instr);
#if V8_TARGET_ARCH_PPC64
void ExecuteExt5(Instruction* instr);
#endif
void ExecuteGeneric(Instruction* instr);
void SetFPSCR(int bit) { fp_condition_reg_ |= (1 << (31 - bit)); }
void ClearFPSCR(int bit) { fp_condition_reg_ &= ~(1 << (31 - bit)); }
// Executes one instruction.
void ExecuteInstruction(Instruction* instr);
// ICache.
static void CheckICache(base::HashMap* i_cache, Instruction* instr);
static void FlushOnePage(base::HashMap* i_cache, intptr_t start, int size);
static CachePage* GetCachePage(base::HashMap* i_cache, void* page);
// Runtime call support.
static void* RedirectExternalReference(
Isolate* isolate, void* external_function,
v8::internal::ExternalReference::Type type);
// Handle arguments and return value for runtime FP functions.
void GetFpArgs(double* x, double* y, intptr_t* z);
void SetFpResult(const double& result);
void TrashCallerSaveRegisters();
void CallInternal(byte* entry);
// Architecture state.
// Saturating instructions require a Q flag to indicate saturation.
// There is currently no way to read the CPSR directly, and thus read the Q
// flag, so this is left unimplemented.
intptr_t registers_[kNumGPRs];
int32_t condition_reg_;
int32_t fp_condition_reg_;
intptr_t special_reg_lr_;
intptr_t special_reg_pc_;
intptr_t special_reg_ctr_;
int32_t special_reg_xer_;
int64_t fp_registers_[kNumFPRs];
// Simulator support.
char* stack_;
static const size_t stack_protection_size_ = 256 * kPointerSize;
bool pc_modified_;
int icount_;
// Debugger input.
char* last_debugger_input_;
// Icache simulation
base::HashMap* i_cache_;
// Registered breakpoints.
Instruction* break_pc_;
Instr break_instr_;
v8::internal::Isolate* isolate_;
// A stop is watched if its code is less than kNumOfWatchedStops.
// Only watched stops support enabling/disabling and the counter feature.
static const uint32_t kNumOfWatchedStops = 256;
// Breakpoint is disabled if bit 31 is set.
static const uint32_t kStopDisabledBit = 1 << 31;
// A stop is enabled, meaning the simulator will stop when meeting the
// instruction, if bit 31 of watched_stops_[code].count is unset.
// The value watched_stops_[code].count & ~(1 << 31) indicates how many times
// the breakpoint was hit or gone through.
struct StopCountAndDesc {
uint32_t count;
char* desc;
};
StopCountAndDesc watched_stops_[kNumOfWatchedStops];
};
// When running with the simulator transition into simulated execution at this
// point.
#define CALL_GENERATED_CODE(isolate, entry, p0, p1, p2, p3, p4) \
reinterpret_cast<Object*>(Simulator::current(isolate)->Call( \
FUNCTION_ADDR(entry), 5, (intptr_t)p0, (intptr_t)p1, (intptr_t)p2, \
(intptr_t)p3, (intptr_t)p4))
#define CALL_GENERATED_REGEXP_CODE(isolate, entry, p0, p1, p2, p3, p4, p5, p6, \
p7, p8) \
Simulator::current(isolate)->Call(entry, 10, (intptr_t)p0, (intptr_t)p1, \
(intptr_t)p2, (intptr_t)p3, (intptr_t)p4, \
(intptr_t)p5, (intptr_t)p6, (intptr_t)p7, \
(intptr_t)NULL, (intptr_t)p8)
// The simulator has its own stack. Thus it has a different stack limit from
// the C-based native code. The JS-based limit normally points near the end of
// the simulator stack. When the C-based limit is exhausted we reflect that by
// lowering the JS-based limit as well, to make stack checks trigger.
class SimulatorStack : public v8::internal::AllStatic {
public:
static inline uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate,
uintptr_t c_limit) {
return Simulator::current(isolate)->StackLimit(c_limit);
}
static inline uintptr_t RegisterCTryCatch(v8::internal::Isolate* isolate,
uintptr_t try_catch_address) {
Simulator* sim = Simulator::current(isolate);
return sim->PushAddress(try_catch_address);
}
static inline void UnregisterCTryCatch(v8::internal::Isolate* isolate) {
Simulator::current(isolate)->PopAddress();
}
};
} // namespace internal
} // namespace v8
#endif // !defined(USE_SIMULATOR)
#endif // V8_PPC_SIMULATOR_PPC_H_