blob: 37b612d4cb5dd8f9664fb5edd04a7c24ad663f84 [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/runtime/runtime-utils.h"
#include "src/arguments.h"
#include "src/factory.h"
#include "src/messages.h"
#include "src/objects-inl.h"
#include "src/runtime/runtime.h"
namespace v8 {
namespace internal {
RUNTIME_FUNCTION(Runtime_ArrayBufferGetByteLength) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_CHECKED(JSArrayBuffer, holder, 0);
return holder->byte_length();
}
RUNTIME_FUNCTION(Runtime_ArrayBufferSliceImpl) {
HandleScope scope(isolate);
DCHECK(args.length() == 4);
CONVERT_ARG_HANDLE_CHECKED(JSArrayBuffer, source, 0);
CONVERT_ARG_HANDLE_CHECKED(JSArrayBuffer, target, 1);
CONVERT_NUMBER_ARG_HANDLE_CHECKED(first, 2);
CONVERT_NUMBER_ARG_HANDLE_CHECKED(new_length, 3);
if (source->was_neutered() || target->was_neutered()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kDetachedOperation,
isolate->factory()->NewStringFromAsciiChecked(
"ArrayBuffer.prototype.slice")));
}
CHECK(!source.is_identical_to(target));
size_t start = 0, target_length = 0;
CHECK(TryNumberToSize(isolate, *first, &start));
CHECK(TryNumberToSize(isolate, *new_length, &target_length));
CHECK(NumberToSize(isolate, target->byte_length()) >= target_length);
if (target_length == 0) return isolate->heap()->undefined_value();
size_t source_byte_length = NumberToSize(isolate, source->byte_length());
CHECK(start <= source_byte_length);
CHECK(source_byte_length - start >= target_length);
uint8_t* source_data = reinterpret_cast<uint8_t*>(source->backing_store());
uint8_t* target_data = reinterpret_cast<uint8_t*>(target->backing_store());
CopyBytes(target_data, source_data + start, target_length);
return isolate->heap()->undefined_value();
}
RUNTIME_FUNCTION(Runtime_ArrayBufferNeuter) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(JSArrayBuffer, array_buffer, 0);
if (array_buffer->backing_store() == NULL) {
CHECK(Smi::FromInt(0) == array_buffer->byte_length());
return isolate->heap()->undefined_value();
}
// Shared array buffers should never be neutered.
CHECK(!array_buffer->is_shared());
DCHECK(!array_buffer->is_external());
void* backing_store = array_buffer->backing_store();
size_t byte_length = NumberToSize(isolate, array_buffer->byte_length());
array_buffer->set_is_external(true);
isolate->heap()->UnregisterArrayBuffer(*array_buffer);
array_buffer->Neuter();
isolate->array_buffer_allocator()->Free(backing_store, byte_length);
return isolate->heap()->undefined_value();
}
void Runtime::ArrayIdToTypeAndSize(int arrayId, ExternalArrayType* array_type,
ElementsKind* fixed_elements_kind,
size_t* element_size) {
switch (arrayId) {
#define ARRAY_ID_CASE(Type, type, TYPE, ctype, size) \
case ARRAY_ID_##TYPE: \
*array_type = kExternal##Type##Array; \
*fixed_elements_kind = TYPE##_ELEMENTS; \
*element_size = size; \
break;
TYPED_ARRAYS(ARRAY_ID_CASE)
#undef ARRAY_ID_CASE
default:
UNREACHABLE();
}
}
RUNTIME_FUNCTION(Runtime_TypedArrayInitialize) {
HandleScope scope(isolate);
DCHECK(args.length() == 6);
CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, holder, 0);
CONVERT_SMI_ARG_CHECKED(arrayId, 1);
CONVERT_ARG_HANDLE_CHECKED(Object, maybe_buffer, 2);
CONVERT_NUMBER_ARG_HANDLE_CHECKED(byte_offset_object, 3);
CONVERT_NUMBER_ARG_HANDLE_CHECKED(byte_length_object, 4);
CONVERT_BOOLEAN_ARG_CHECKED(initialize, 5);
CHECK(arrayId >= Runtime::ARRAY_ID_FIRST &&
arrayId <= Runtime::ARRAY_ID_LAST);
ExternalArrayType array_type = kExternalInt8Array; // Bogus initialization.
size_t element_size = 1; // Bogus initialization.
ElementsKind fixed_elements_kind = INT8_ELEMENTS; // Bogus initialization.
Runtime::ArrayIdToTypeAndSize(arrayId, &array_type, &fixed_elements_kind,
&element_size);
CHECK(holder->map()->elements_kind() == fixed_elements_kind);
size_t byte_offset = 0;
size_t byte_length = 0;
CHECK(TryNumberToSize(isolate, *byte_offset_object, &byte_offset));
CHECK(TryNumberToSize(isolate, *byte_length_object, &byte_length));
if (maybe_buffer->IsJSArrayBuffer()) {
Handle<JSArrayBuffer> buffer = Handle<JSArrayBuffer>::cast(maybe_buffer);
size_t array_buffer_byte_length =
NumberToSize(isolate, buffer->byte_length());
CHECK(byte_offset <= array_buffer_byte_length);
CHECK(array_buffer_byte_length - byte_offset >= byte_length);
} else {
CHECK(maybe_buffer->IsNull(isolate));
}
CHECK(byte_length % element_size == 0);
size_t length = byte_length / element_size;
if (length > static_cast<unsigned>(Smi::kMaxValue)) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewRangeError(MessageTemplate::kInvalidTypedArrayLength));
}
// All checks are done, now we can modify objects.
DCHECK_EQ(v8::ArrayBufferView::kInternalFieldCount,
holder->GetInternalFieldCount());
for (int i = 0; i < v8::ArrayBufferView::kInternalFieldCount; i++) {
holder->SetInternalField(i, Smi::FromInt(0));
}
Handle<Object> length_obj = isolate->factory()->NewNumberFromSize(length);
holder->set_length(*length_obj);
holder->set_byte_offset(*byte_offset_object);
holder->set_byte_length(*byte_length_object);
if (!maybe_buffer->IsNull(isolate)) {
Handle<JSArrayBuffer> buffer = Handle<JSArrayBuffer>::cast(maybe_buffer);
holder->set_buffer(*buffer);
Handle<FixedTypedArrayBase> elements =
isolate->factory()->NewFixedTypedArrayWithExternalPointer(
static_cast<int>(length), array_type,
static_cast<uint8_t*>(buffer->backing_store()) + byte_offset);
holder->set_elements(*elements);
} else {
Handle<JSArrayBuffer> buffer = isolate->factory()->NewJSArrayBuffer();
JSArrayBuffer::Setup(buffer, isolate, true, NULL, byte_length,
SharedFlag::kNotShared);
holder->set_buffer(*buffer);
Handle<FixedTypedArrayBase> elements =
isolate->factory()->NewFixedTypedArray(static_cast<int>(length),
array_type, initialize);
holder->set_elements(*elements);
}
return isolate->heap()->undefined_value();
}
// Initializes a typed array from an array-like object.
// If an array-like object happens to be a typed array of the same type,
// initializes backing store using memove.
//
// Returns true if backing store was initialized or false otherwise.
RUNTIME_FUNCTION(Runtime_TypedArrayInitializeFromArrayLike) {
HandleScope scope(isolate);
DCHECK(args.length() == 4);
CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, holder, 0);
CONVERT_SMI_ARG_CHECKED(arrayId, 1);
CONVERT_ARG_HANDLE_CHECKED(Object, source, 2);
CONVERT_NUMBER_ARG_HANDLE_CHECKED(length_obj, 3);
CHECK(arrayId >= Runtime::ARRAY_ID_FIRST &&
arrayId <= Runtime::ARRAY_ID_LAST);
ExternalArrayType array_type = kExternalInt8Array; // Bogus initialization.
size_t element_size = 1; // Bogus initialization.
ElementsKind fixed_elements_kind = INT8_ELEMENTS; // Bogus initialization.
Runtime::ArrayIdToTypeAndSize(arrayId, &array_type, &fixed_elements_kind,
&element_size);
CHECK(holder->map()->elements_kind() == fixed_elements_kind);
Handle<JSArrayBuffer> buffer = isolate->factory()->NewJSArrayBuffer();
size_t length = 0;
if (source->IsJSTypedArray() &&
JSTypedArray::cast(*source)->type() == array_type) {
length_obj = handle(JSTypedArray::cast(*source)->length(), isolate);
length = JSTypedArray::cast(*source)->length_value();
} else {
CHECK(TryNumberToSize(isolate, *length_obj, &length));
}
if ((length > static_cast<unsigned>(Smi::kMaxValue)) ||
(length > (kMaxInt / element_size))) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewRangeError(MessageTemplate::kInvalidTypedArrayLength));
}
size_t byte_length = length * element_size;
DCHECK_EQ(v8::ArrayBufferView::kInternalFieldCount,
holder->GetInternalFieldCount());
for (int i = 0; i < v8::ArrayBufferView::kInternalFieldCount; i++) {
holder->SetInternalField(i, Smi::FromInt(0));
}
// NOTE: not initializing backing store.
// We assume that the caller of this function will initialize holder
// with the loop
// for(i = 0; i < length; i++) { holder[i] = source[i]; }
// We assume that the caller of this function is always a typed array
// constructor.
// If source is a typed array, this loop will always run to completion,
// so we are sure that the backing store will be initialized.
// Otherwise, the indexing operation might throw, so the loop will not
// run to completion and the typed array might remain partly initialized.
// However we further assume that the caller of this function is a typed array
// constructor, and the exception will propagate out of the constructor,
// therefore uninitialized memory will not be accessible by a user program.
//
// TODO(dslomov): revise this once we support subclassing.
if (!JSArrayBuffer::SetupAllocatingData(buffer, isolate, byte_length,
false)) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewRangeError(MessageTemplate::kInvalidArrayBufferLength));
}
holder->set_buffer(*buffer);
holder->set_byte_offset(Smi::FromInt(0));
Handle<Object> byte_length_obj(
isolate->factory()->NewNumberFromSize(byte_length));
holder->set_byte_length(*byte_length_obj);
holder->set_length(*length_obj);
Handle<FixedTypedArrayBase> elements =
isolate->factory()->NewFixedTypedArrayWithExternalPointer(
static_cast<int>(length), array_type,
static_cast<uint8_t*>(buffer->backing_store()));
holder->set_elements(*elements);
if (source->IsJSTypedArray()) {
Handle<JSTypedArray> typed_array(JSTypedArray::cast(*source));
if (typed_array->type() == holder->type()) {
uint8_t* backing_store =
static_cast<uint8_t*>(typed_array->GetBuffer()->backing_store());
size_t source_byte_offset =
NumberToSize(isolate, typed_array->byte_offset());
memcpy(buffer->backing_store(), backing_store + source_byte_offset,
byte_length);
return isolate->heap()->true_value();
}
}
return isolate->heap()->false_value();
}
#define BUFFER_VIEW_GETTER(Type, getter, accessor) \
RUNTIME_FUNCTION(Runtime_##Type##Get##getter) { \
HandleScope scope(isolate); \
DCHECK_EQ(1, args.length()); \
CONVERT_ARG_HANDLE_CHECKED(JS##Type, holder, 0); \
return holder->accessor(); \
}
BUFFER_VIEW_GETTER(ArrayBufferView, ByteLength, byte_length)
BUFFER_VIEW_GETTER(ArrayBufferView, ByteOffset, byte_offset)
BUFFER_VIEW_GETTER(TypedArray, Length, length)
#undef BUFFER_VIEW_GETTER
RUNTIME_FUNCTION(Runtime_TypedArrayGetBuffer) {
HandleScope scope(isolate);
DCHECK_EQ(1, args.length());
CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, holder, 0);
return *holder->GetBuffer();
}
// Return codes for Runtime_TypedArraySetFastCases.
// Should be synchronized with typedarray.js natives.
enum TypedArraySetResultCodes {
// Set from typed array of the same type.
// This is processed by TypedArraySetFastCases
TYPED_ARRAY_SET_TYPED_ARRAY_SAME_TYPE = 0,
// Set from typed array of the different type, overlapping in memory.
TYPED_ARRAY_SET_TYPED_ARRAY_OVERLAPPING = 1,
// Set from typed array of the different type, non-overlapping.
TYPED_ARRAY_SET_TYPED_ARRAY_NONOVERLAPPING = 2,
// Set from non-typed array.
TYPED_ARRAY_SET_NON_TYPED_ARRAY = 3
};
RUNTIME_FUNCTION(Runtime_TypedArraySetFastCases) {
HandleScope scope(isolate);
DCHECK(args.length() == 3);
if (!args[0]->IsJSTypedArray()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kNotTypedArray));
}
if (!args[1]->IsJSTypedArray())
return Smi::FromInt(TYPED_ARRAY_SET_NON_TYPED_ARRAY);
CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, target_obj, 0);
CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, source_obj, 1);
CONVERT_NUMBER_ARG_HANDLE_CHECKED(offset_obj, 2);
Handle<JSTypedArray> target(JSTypedArray::cast(*target_obj));
Handle<JSTypedArray> source(JSTypedArray::cast(*source_obj));
size_t offset = 0;
CHECK(TryNumberToSize(isolate, *offset_obj, &offset));
size_t target_length = target->length_value();
size_t source_length = source->length_value();
size_t target_byte_length = NumberToSize(isolate, target->byte_length());
size_t source_byte_length = NumberToSize(isolate, source->byte_length());
if (offset > target_length || offset + source_length > target_length ||
offset + source_length < offset) { // overflow
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewRangeError(MessageTemplate::kTypedArraySetSourceTooLarge));
}
size_t target_offset = NumberToSize(isolate, target->byte_offset());
size_t source_offset = NumberToSize(isolate, source->byte_offset());
uint8_t* target_base =
static_cast<uint8_t*>(target->GetBuffer()->backing_store()) +
target_offset;
uint8_t* source_base =
static_cast<uint8_t*>(source->GetBuffer()->backing_store()) +
source_offset;
// Typed arrays of the same type: use memmove.
if (target->type() == source->type()) {
memmove(target_base + offset * target->element_size(), source_base,
source_byte_length);
return Smi::FromInt(TYPED_ARRAY_SET_TYPED_ARRAY_SAME_TYPE);
}
// Typed arrays of different types over the same backing store
if ((source_base <= target_base &&
source_base + source_byte_length > target_base) ||
(target_base <= source_base &&
target_base + target_byte_length > source_base)) {
// We do not support overlapping ArrayBuffers
DCHECK(target->GetBuffer()->backing_store() ==
source->GetBuffer()->backing_store());
return Smi::FromInt(TYPED_ARRAY_SET_TYPED_ARRAY_OVERLAPPING);
} else { // Non-overlapping typed arrays
return Smi::FromInt(TYPED_ARRAY_SET_TYPED_ARRAY_NONOVERLAPPING);
}
}
RUNTIME_FUNCTION(Runtime_TypedArrayMaxSizeInHeap) {
DCHECK(args.length() == 0);
DCHECK_OBJECT_SIZE(FLAG_typed_array_max_size_in_heap +
FixedTypedArrayBase::kDataOffset);
return Smi::FromInt(FLAG_typed_array_max_size_in_heap);
}
RUNTIME_FUNCTION(Runtime_IsTypedArray) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
return isolate->heap()->ToBoolean(args[0]->IsJSTypedArray());
}
RUNTIME_FUNCTION(Runtime_IsSharedTypedArray) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
return isolate->heap()->ToBoolean(
args[0]->IsJSTypedArray() &&
JSTypedArray::cast(args[0])->GetBuffer()->is_shared());
}
RUNTIME_FUNCTION(Runtime_IsSharedIntegerTypedArray) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
if (!args[0]->IsJSTypedArray()) {
return isolate->heap()->false_value();
}
Handle<JSTypedArray> obj(JSTypedArray::cast(args[0]));
return isolate->heap()->ToBoolean(obj->GetBuffer()->is_shared() &&
obj->type() != kExternalFloat32Array &&
obj->type() != kExternalFloat64Array &&
obj->type() != kExternalUint8ClampedArray);
}
RUNTIME_FUNCTION(Runtime_IsSharedInteger32TypedArray) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
if (!args[0]->IsJSTypedArray()) {
return isolate->heap()->false_value();
}
Handle<JSTypedArray> obj(JSTypedArray::cast(args[0]));
return isolate->heap()->ToBoolean(obj->GetBuffer()->is_shared() &&
obj->type() == kExternalInt32Array);
}
inline static bool NeedToFlipBytes(bool is_little_endian) {
#ifdef V8_TARGET_LITTLE_ENDIAN
return !is_little_endian;
#else
return is_little_endian;
#endif
}
template <int n>
inline void CopyBytes(uint8_t* target, uint8_t* source) {
for (int i = 0; i < n; i++) {
*(target++) = *(source++);
}
}
template <int n>
inline void FlipBytes(uint8_t* target, uint8_t* source) {
source = source + (n - 1);
for (int i = 0; i < n; i++) {
*(target++) = *(source--);
}
}
template <typename T>
inline static bool DataViewGetValue(Isolate* isolate,
Handle<JSDataView> data_view,
Handle<Object> byte_offset_obj,
bool is_little_endian, T* result) {
size_t byte_offset = 0;
if (!TryNumberToSize(isolate, *byte_offset_obj, &byte_offset)) {
return false;
}
Handle<JSArrayBuffer> buffer(JSArrayBuffer::cast(data_view->buffer()));
size_t data_view_byte_offset =
NumberToSize(isolate, data_view->byte_offset());
size_t data_view_byte_length =
NumberToSize(isolate, data_view->byte_length());
if (byte_offset + sizeof(T) > data_view_byte_length ||
byte_offset + sizeof(T) < byte_offset) { // overflow
return false;
}
union Value {
T data;
uint8_t bytes[sizeof(T)];
};
Value value;
size_t buffer_offset = data_view_byte_offset + byte_offset;
DCHECK(NumberToSize(isolate, buffer->byte_length()) >=
buffer_offset + sizeof(T));
uint8_t* source =
static_cast<uint8_t*>(buffer->backing_store()) + buffer_offset;
if (NeedToFlipBytes(is_little_endian)) {
FlipBytes<sizeof(T)>(value.bytes, source);
} else {
CopyBytes<sizeof(T)>(value.bytes, source);
}
*result = value.data;
return true;
}
template <typename T>
static bool DataViewSetValue(Isolate* isolate, Handle<JSDataView> data_view,
Handle<Object> byte_offset_obj,
bool is_little_endian, T data) {
size_t byte_offset = 0;
if (!TryNumberToSize(isolate, *byte_offset_obj, &byte_offset)) {
return false;
}
Handle<JSArrayBuffer> buffer(JSArrayBuffer::cast(data_view->buffer()));
size_t data_view_byte_offset =
NumberToSize(isolate, data_view->byte_offset());
size_t data_view_byte_length =
NumberToSize(isolate, data_view->byte_length());
if (byte_offset + sizeof(T) > data_view_byte_length ||
byte_offset + sizeof(T) < byte_offset) { // overflow
return false;
}
union Value {
T data;
uint8_t bytes[sizeof(T)];
};
Value value;
value.data = data;
size_t buffer_offset = data_view_byte_offset + byte_offset;
DCHECK(NumberToSize(isolate, buffer->byte_length()) >=
buffer_offset + sizeof(T));
uint8_t* target =
static_cast<uint8_t*>(buffer->backing_store()) + buffer_offset;
if (NeedToFlipBytes(is_little_endian)) {
FlipBytes<sizeof(T)>(target, value.bytes);
} else {
CopyBytes<sizeof(T)>(target, value.bytes);
}
return true;
}
#define DATA_VIEW_GETTER(TypeName, Type, Converter) \
RUNTIME_FUNCTION(Runtime_DataViewGet##TypeName) { \
HandleScope scope(isolate); \
DCHECK(args.length() == 3); \
CONVERT_ARG_HANDLE_CHECKED(JSDataView, holder, 0); \
CONVERT_NUMBER_ARG_HANDLE_CHECKED(offset, 1); \
CONVERT_BOOLEAN_ARG_CHECKED(is_little_endian, 2); \
Type result; \
if (DataViewGetValue(isolate, holder, offset, is_little_endian, \
&result)) { \
return *isolate->factory()->Converter(result); \
} else { \
THROW_NEW_ERROR_RETURN_FAILURE( \
isolate, \
NewRangeError(MessageTemplate::kInvalidDataViewAccessorOffset)); \
} \
}
DATA_VIEW_GETTER(Uint8, uint8_t, NewNumberFromUint)
DATA_VIEW_GETTER(Int8, int8_t, NewNumberFromInt)
DATA_VIEW_GETTER(Uint16, uint16_t, NewNumberFromUint)
DATA_VIEW_GETTER(Int16, int16_t, NewNumberFromInt)
DATA_VIEW_GETTER(Uint32, uint32_t, NewNumberFromUint)
DATA_VIEW_GETTER(Int32, int32_t, NewNumberFromInt)
DATA_VIEW_GETTER(Float32, float, NewNumber)
DATA_VIEW_GETTER(Float64, double, NewNumber)
#undef DATA_VIEW_GETTER
template <typename T>
static T DataViewConvertValue(double value);
template <>
int8_t DataViewConvertValue<int8_t>(double value) {
return static_cast<int8_t>(DoubleToInt32(value));
}
template <>
int16_t DataViewConvertValue<int16_t>(double value) {
return static_cast<int16_t>(DoubleToInt32(value));
}
template <>
int32_t DataViewConvertValue<int32_t>(double value) {
return DoubleToInt32(value);
}
template <>
uint8_t DataViewConvertValue<uint8_t>(double value) {
return static_cast<uint8_t>(DoubleToUint32(value));
}
template <>
uint16_t DataViewConvertValue<uint16_t>(double value) {
return static_cast<uint16_t>(DoubleToUint32(value));
}
template <>
uint32_t DataViewConvertValue<uint32_t>(double value) {
return DoubleToUint32(value);
}
template <>
float DataViewConvertValue<float>(double value) {
return static_cast<float>(value);
}
template <>
double DataViewConvertValue<double>(double value) {
return value;
}
#define DATA_VIEW_SETTER(TypeName, Type) \
RUNTIME_FUNCTION(Runtime_DataViewSet##TypeName) { \
HandleScope scope(isolate); \
DCHECK(args.length() == 4); \
CONVERT_ARG_HANDLE_CHECKED(JSDataView, holder, 0); \
CONVERT_NUMBER_ARG_HANDLE_CHECKED(offset, 1); \
CONVERT_NUMBER_ARG_HANDLE_CHECKED(value, 2); \
CONVERT_BOOLEAN_ARG_CHECKED(is_little_endian, 3); \
Type v = DataViewConvertValue<Type>(value->Number()); \
if (DataViewSetValue(isolate, holder, offset, is_little_endian, v)) { \
return isolate->heap()->undefined_value(); \
} else { \
THROW_NEW_ERROR_RETURN_FAILURE( \
isolate, \
NewRangeError(MessageTemplate::kInvalidDataViewAccessorOffset)); \
} \
}
DATA_VIEW_SETTER(Uint8, uint8_t)
DATA_VIEW_SETTER(Int8, int8_t)
DATA_VIEW_SETTER(Uint16, uint16_t)
DATA_VIEW_SETTER(Int16, int16_t)
DATA_VIEW_SETTER(Uint32, uint32_t)
DATA_VIEW_SETTER(Int32, int32_t)
DATA_VIEW_SETTER(Float32, float)
DATA_VIEW_SETTER(Float64, double)
#undef DATA_VIEW_SETTER
} // namespace internal
} // namespace v8