blob: a102fc856ff6061c5ada57c6c5dd59cacb666980 [file] [log] [blame]
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef SRC_WASM_ASM_TYPES_H_
#define SRC_WASM_ASM_TYPES_H_
#include <string>
#include "src/base/macros.h"
#include "src/zone-containers.h"
#include "src/zone.h"
namespace v8 {
namespace internal {
namespace wasm {
class AsmType;
class AsmFFIType;
class AsmFunctionType;
class AsmOverloadedFunctionType;
class AsmFunctionTableType;
// List of V(CamelName, string_name, number, parent_types)
#define FOR_EACH_ASM_VALUE_TYPE_LIST(V) \
/* These tags are not types that are expressable in the asm source. They */ \
/* are used to express semantic information about the types they tag. */ \
V(Heap, "[]", 1, 0) \
/*The following are actual types that appear in the asm source. */ \
V(Void, "void", 2, 0) \
V(Extern, "extern", 3, 0) \
V(DoubleQ, "double?", 4, 0) \
V(Double, "double", 5, kAsmDoubleQ | kAsmExtern) \
V(Intish, "intish", 6, 0) \
V(Int, "int", 7, kAsmIntish) \
V(Signed, "signed", 8, kAsmInt | kAsmExtern) \
V(Unsigned, "unsigned", 9, kAsmInt) \
V(FixNum, "fixnum", 10, kAsmSigned | kAsmUnsigned) \
V(Floatish, "floatish", 11, 0) \
V(FloatQ, "float?", 12, kAsmFloatish) \
V(Float, "float", 13, kAsmFloatQ) \
/* Types used for expressing the Heap accesses. */ \
V(Uint8Array, "Uint8Array", 14, kAsmHeap) \
V(Int8Array, "Int8Array", 15, kAsmHeap) \
V(Uint16Array, "Uint16Array", 16, kAsmHeap) \
V(Int16Array, "Int16Array", 17, kAsmHeap) \
V(Uint32Array, "Uint32Array", 18, kAsmHeap) \
V(Int32Array, "Int32Array", 19, kAsmHeap) \
V(Float32Array, "Float32Array", 20, kAsmHeap) \
V(Float64Array, "Float64Array", 21, kAsmHeap) \
/* Pseudo-types used in representing heap access for fp types.*/ \
V(FloatishDoubleQ, "floatish|double?", 22, kAsmFloatish | kAsmDoubleQ) \
V(FloatQDoubleQ, "float?|double?", 23, kAsmFloatQ | kAsmDoubleQ) \
/* None is used to represent errors in the type checker. */ \
V(None, "<none>", 31, 0)
// List of V(CamelName)
#define FOR_EACH_ASM_CALLABLE_TYPE_LIST(V) \
V(FunctionType) \
V(FFIType) \
V(OverloadedFunctionType) \
V(FunctionTableType)
class AsmValueType {
public:
typedef uint32_t bitset_t;
enum : uint32_t {
#define DEFINE_TAG(CamelName, string_name, number, parent_types) \
kAsm##CamelName = ((1u << (number)) | (parent_types)),
FOR_EACH_ASM_VALUE_TYPE_LIST(DEFINE_TAG)
#undef DEFINE_TAG
kAsmUnknown = 0,
kAsmValueTypeTag = 1u
};
private:
friend class AsmType;
static AsmValueType* AsValueType(AsmType* type) {
if ((reinterpret_cast<uintptr_t>(type) & kAsmValueTypeTag) ==
kAsmValueTypeTag) {
return reinterpret_cast<AsmValueType*>(type);
}
return nullptr;
}
bitset_t Bitset() const {
DCHECK((reinterpret_cast<uintptr_t>(this) & kAsmValueTypeTag) ==
kAsmValueTypeTag);
return static_cast<bitset_t>(reinterpret_cast<uintptr_t>(this) &
~kAsmValueTypeTag);
}
static AsmType* New(bitset_t bits) {
DCHECK_EQ((bits & kAsmValueTypeTag), 0);
return reinterpret_cast<AsmType*>(
static_cast<uintptr_t>(bits | kAsmValueTypeTag));
}
// AsmValueTypes can't be created except through AsmValueType::New.
DISALLOW_IMPLICIT_CONSTRUCTORS(AsmValueType);
};
class AsmCallableType : public ZoneObject {
public:
virtual std::string Name() = 0;
virtual AsmType* ValidateCall(AsmType* return_type,
const ZoneVector<AsmType*>& args) = 0;
#define DECLARE_CAST(CamelName) \
virtual Asm##CamelName* As##CamelName() { return nullptr; }
FOR_EACH_ASM_CALLABLE_TYPE_LIST(DECLARE_CAST)
#undef DECLARE_CAST
protected:
AsmCallableType() = default;
virtual ~AsmCallableType() = default;
private:
DISALLOW_COPY_AND_ASSIGN(AsmCallableType);
};
class AsmFunctionType : public AsmCallableType {
public:
AsmFunctionType* AsFunctionType() final { return this; }
void AddArgument(AsmType* type) { args_.push_back(type); }
const ZoneVector<AsmType*> Arguments() const { return args_; }
AsmType* ReturnType() const { return return_type_; }
virtual bool IsMinMaxType() const { return false; }
virtual bool IsFroundType() const { return false; }
protected:
AsmFunctionType(Zone* zone, AsmType* return_type)
: return_type_(return_type), args_(zone) {}
private:
friend AsmType;
std::string Name() override;
AsmType* ValidateCall(AsmType* return_type,
const ZoneVector<AsmType*>& args) override;
AsmType* return_type_;
ZoneVector<AsmType*> args_;
DISALLOW_COPY_AND_ASSIGN(AsmFunctionType);
};
class AsmOverloadedFunctionType final : public AsmCallableType {
public:
AsmOverloadedFunctionType* AsOverloadedFunctionType() override {
return this;
}
void AddOverload(AsmType* overload);
private:
friend AsmType;
explicit AsmOverloadedFunctionType(Zone* zone) : overloads_(zone) {}
std::string Name() override;
AsmType* ValidateCall(AsmType* return_type,
const ZoneVector<AsmType*>& args) override;
ZoneVector<AsmType*> overloads_;
DISALLOW_IMPLICIT_CONSTRUCTORS(AsmOverloadedFunctionType);
};
class AsmFFIType final : public AsmCallableType {
public:
AsmFFIType* AsFFIType() override { return this; }
std::string Name() override { return "Function"; }
AsmType* ValidateCall(AsmType* return_type,
const ZoneVector<AsmType*>& args) override;
private:
friend AsmType;
AsmFFIType() = default;
DISALLOW_COPY_AND_ASSIGN(AsmFFIType);
};
class AsmFunctionTableType : public AsmCallableType {
public:
AsmFunctionTableType* AsFunctionTableType() override { return this; }
std::string Name() override;
AsmType* ValidateCall(AsmType* return_type,
const ZoneVector<AsmType*>& args) override;
size_t length() const { return length_; }
private:
friend class AsmType;
AsmFunctionTableType(size_t length, AsmType* signature);
size_t length_;
AsmType* signature_;
DISALLOW_IMPLICIT_CONSTRUCTORS(AsmFunctionTableType);
};
class AsmType {
public:
#define DEFINE_CONSTRUCTOR(CamelName, string_name, number, parent_types) \
static AsmType* CamelName() { \
return AsmValueType::New(AsmValueType::kAsm##CamelName); \
}
FOR_EACH_ASM_VALUE_TYPE_LIST(DEFINE_CONSTRUCTOR)
#undef DEFINE_CONSTRUCTOR
#define DEFINE_CAST(CamelCase) \
Asm##CamelCase* As##CamelCase() { \
if (AsValueType() != nullptr) { \
return nullptr; \
} \
return reinterpret_cast<AsmCallableType*>(this)->As##CamelCase(); \
}
FOR_EACH_ASM_CALLABLE_TYPE_LIST(DEFINE_CAST)
#undef DEFINE_CAST
AsmValueType* AsValueType() { return AsmValueType::AsValueType(this); }
AsmCallableType* AsCallableType();
// A function returning ret. Callers still need to invoke AddArgument with the
// returned type to fully create this type.
static AsmType* Function(Zone* zone, AsmType* ret) {
AsmFunctionType* f = new (zone) AsmFunctionType(zone, ret);
return reinterpret_cast<AsmType*>(f);
}
// Overloaded function types. Not creatable by asm source, but useful to
// represent the overloaded stdlib functions.
static AsmType* OverloadedFunction(Zone* zone) {
auto* f = new (zone) AsmOverloadedFunctionType(zone);
return reinterpret_cast<AsmType*>(f);
}
// The type for fround(src).
static AsmType* FroundType(Zone* zone);
// The (variadic) type for min and max.
static AsmType* MinMaxType(Zone* zone, AsmType* dest, AsmType* src);
// The type for foreign functions.
static AsmType* FFIType(Zone* zone) {
auto* f = new (zone) AsmFFIType();
return reinterpret_cast<AsmType*>(f);
}
// The type for function tables.
static AsmType* FunctionTableType(Zone* zone, size_t length,
AsmType* signature) {
auto* f = new (zone) AsmFunctionTableType(length, signature);
return reinterpret_cast<AsmType*>(f);
}
std::string Name();
// IsExactly returns true if this is the exact same type as that. For
// non-value types (e.g., callables), this returns this == that.
bool IsExactly(AsmType* that);
// IsA is used to query whether this is an instance of that (i.e., if this is
// a type derived from that.) For non-value types (e.g., callables), this
// returns this == that.
bool IsA(AsmType* that);
// Types allowed in return statements. void is the type for returns without
// an expression.
bool IsReturnType() {
return this == AsmType::Void() || this == AsmType::Double() ||
this == AsmType::Signed() || this == AsmType::Float();
}
// Converts this to the corresponding valid argument type.
AsmType* ToReturnType() {
if (this->IsA(AsmType::Signed())) {
return AsmType::Signed();
}
if (this->IsA(AsmType::Double())) {
return AsmType::Double();
}
if (this->IsA(AsmType::Float())) {
return AsmType::Float();
}
if (this->IsA(AsmType::Void())) {
return AsmType::Void();
}
return AsmType::None();
}
// Types allowed to be parameters in asm functions.
bool IsParameterType() {
return this == AsmType::Double() || this == AsmType::Int() ||
this == AsmType::Float();
}
// Converts this to the corresponding valid argument type.
AsmType* ToParameterType() {
if (this->IsA(AsmType::Int())) {
return AsmType::Int();
}
if (this->IsA(AsmType::Double())) {
return AsmType::Double();
}
if (this->IsA(AsmType::Float())) {
return AsmType::Float();
}
return AsmType::None();
}
// Types allowed to be compared using the comparison operators.
bool IsComparableType() {
return this == AsmType::Double() || this == AsmType::Signed() ||
this == AsmType::Unsigned() || this == AsmType::Float();
}
// The following methods are meant to be used for inspecting the traits of
// element types for the heap view types.
enum : int32_t { kNotHeapType = -1 };
// Returns the element size if this is a heap type. Otherwise returns
// kNotHeapType.
int32_t ElementSizeInBytes();
// Returns the load type if this is a heap type. AsmType::None is returned if
// this is not a heap type.
AsmType* LoadType();
// Returns the store type if this is a heap type. AsmType::None is returned if
// this is not a heap type.
AsmType* StoreType();
};
} // namespace wasm
} // namespace internal
} // namespace v8
#endif // SRC_WASM_ASM_TYPES_H_