blob: 1f758bb8535dcf5ec316210a4a2b70829aa35aa9 [file] [log] [blame]
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef WASM_RUN_UTILS_H
#define WASM_RUN_UTILS_H
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "src/base/accounting-allocator.h"
#include "src/base/utils/random-number-generator.h"
#include "src/compiler/graph-visualizer.h"
#include "src/compiler/int64-lowering.h"
#include "src/compiler/js-graph.h"
#include "src/compiler/node.h"
#include "src/compiler/pipeline.h"
#include "src/compiler/wasm-compiler.h"
#include "src/compiler/zone-pool.h"
#include "src/wasm/ast-decoder.h"
#include "src/wasm/wasm-interpreter.h"
#include "src/wasm/wasm-js.h"
#include "src/wasm/wasm-macro-gen.h"
#include "src/wasm/wasm-module.h"
#include "src/wasm/wasm-opcodes.h"
#include "src/zone.h"
#include "test/cctest/cctest.h"
#include "test/cctest/compiler/call-tester.h"
#include "test/cctest/compiler/graph-builder-tester.h"
static const uint32_t kMaxFunctions = 10;
enum WasmExecutionMode { kExecuteInterpreted, kExecuteCompiled };
// TODO(titzer): check traps more robustly in tests.
// Currently, in tests, we just return 0xdeadbeef from the function in which
// the trap occurs if the runtime context is not available to throw a JavaScript
// exception.
#define CHECK_TRAP32(x) \
CHECK_EQ(0xdeadbeef, (bit_cast<uint32_t>(x)) & 0xFFFFFFFF)
#define CHECK_TRAP64(x) \
CHECK_EQ(0xdeadbeefdeadbeef, (bit_cast<uint64_t>(x)) & 0xFFFFFFFFFFFFFFFF)
#define CHECK_TRAP(x) CHECK_TRAP32(x)
#define WASM_RUNNER_MAX_NUM_PARAMETERS 4
#define WASM_WRAPPER_RETURN_VALUE 8754
#define BUILD(r, ...) \
do { \
byte code[] = {__VA_ARGS__}; \
r.Build(code, code + arraysize(code)); \
} while (false)
namespace {
using namespace v8::base;
using namespace v8::internal;
using namespace v8::internal::compiler;
using namespace v8::internal::wasm;
const uint32_t kMaxGlobalsSize = 128;
// A helper for module environments that adds the ability to allocate memory
// and global variables. Contains a built-in {WasmModule} and
// {WasmModuleInstance}.
class TestingModule : public ModuleEnv {
public:
explicit TestingModule(WasmExecutionMode mode = kExecuteCompiled)
: execution_mode_(mode),
instance_(&module_),
isolate_(CcTest::InitIsolateOnce()),
global_offset(0),
interpreter_(mode == kExecuteInterpreted
? new WasmInterpreter(&instance_, &allocator_)
: nullptr) {
module = &module_;
instance = &instance_;
instance->module = &module_;
instance->globals_start = global_data;
module_.globals_size = kMaxGlobalsSize;
instance->mem_start = nullptr;
instance->mem_size = 0;
origin = kWasmOrigin;
memset(global_data, 0, sizeof(global_data));
}
~TestingModule() {
if (instance->mem_start) {
free(instance->mem_start);
}
if (interpreter_) delete interpreter_;
}
byte* AddMemory(uint32_t size) {
CHECK_NULL(instance->mem_start);
CHECK_EQ(0, instance->mem_size);
instance->mem_start = reinterpret_cast<byte*>(malloc(size));
CHECK(instance->mem_start);
memset(instance->mem_start, 0, size);
instance->mem_size = size;
return raw_mem_start<byte>();
}
template <typename T>
T* AddMemoryElems(uint32_t count) {
AddMemory(count * sizeof(T));
return raw_mem_start<T>();
}
template <typename T>
T* AddGlobal(MachineType mem_type) {
const WasmGlobal* global = AddGlobal(mem_type);
return reinterpret_cast<T*>(instance->globals_start + global->offset);
}
byte AddSignature(FunctionSig* sig) {
module_.signatures.push_back(sig);
size_t size = module->signatures.size();
CHECK(size < 127);
return static_cast<byte>(size - 1);
}
template <typename T>
T* raw_mem_start() {
DCHECK(instance->mem_start);
return reinterpret_cast<T*>(instance->mem_start);
}
template <typename T>
T* raw_mem_end() {
DCHECK(instance->mem_start);
return reinterpret_cast<T*>(instance->mem_start + instance->mem_size);
}
template <typename T>
T raw_mem_at(int i) {
DCHECK(instance->mem_start);
return reinterpret_cast<T*>(instance->mem_start)[i];
}
template <typename T>
T raw_val_at(int i) {
T val;
memcpy(&val, reinterpret_cast<void*>(instance->mem_start + i), sizeof(T));
return val;
}
// Zero-initialize the memory.
void BlankMemory() {
byte* raw = raw_mem_start<byte>();
memset(raw, 0, instance->mem_size);
}
// Pseudo-randomly intialize the memory.
void RandomizeMemory(unsigned int seed = 88) {
byte* raw = raw_mem_start<byte>();
byte* end = raw_mem_end<byte>();
v8::base::RandomNumberGenerator rng;
rng.SetSeed(seed);
rng.NextBytes(raw, end - raw);
}
uint32_t AddFunction(FunctionSig* sig, Handle<Code> code) {
if (module->functions.size() == 0) {
// TODO(titzer): Reserving space here to avoid the underlying WasmFunction
// structs from moving.
module_.functions.reserve(kMaxFunctions);
}
uint32_t index = static_cast<uint32_t>(module->functions.size());
module_.functions.push_back({sig, index, 0, 0, 0, 0, 0});
instance->function_code.push_back(code);
if (interpreter_) {
const WasmFunction* function = &module->functions.back();
int interpreter_index = interpreter_->AddFunctionForTesting(function);
CHECK_EQ(index, static_cast<uint32_t>(interpreter_index));
}
DCHECK_LT(index, kMaxFunctions); // limited for testing.
return index;
}
uint32_t AddJsFunction(FunctionSig* sig, const char* source) {
Handle<JSFunction> jsfunc = Handle<JSFunction>::cast(v8::Utils::OpenHandle(
*v8::Local<v8::Function>::Cast(CompileRun(source))));
uint32_t index = AddFunction(sig, Handle<Code>::null());
WasmName module_name = ArrayVector("test");
WasmName function_name;
Handle<Code> code = CompileWasmToJSWrapper(isolate_, jsfunc, sig,
module_name, function_name);
instance->function_code[index] = code;
return index;
}
Handle<JSFunction> WrapCode(uint32_t index) {
// Wrap the code so it can be called as a JS function.
Handle<String> name = isolate_->factory()->NewStringFromStaticChars("main");
Handle<JSObject> module_object = Handle<JSObject>(0, isolate_);
Handle<Code> code = instance->function_code[index];
WasmJs::InstallWasmFunctionMap(isolate_, isolate_->native_context());
return compiler::CompileJSToWasmWrapper(isolate_, this, name, code,
module_object, index);
}
void SetFunctionCode(uint32_t index, Handle<Code> code) {
instance->function_code[index] = code;
}
void AddIndirectFunctionTable(int* functions, int table_size) {
Handle<FixedArray> fixed =
isolate_->factory()->NewFixedArray(2 * table_size);
instance->function_table = fixed;
DCHECK_EQ(0u, module->function_table.size());
for (int i = 0; i < table_size; i++) {
module_.function_table.push_back(functions[i]);
}
}
void PopulateIndirectFunctionTable() {
if (instance->function_table.is_null()) return;
int table_size = static_cast<int>(module->function_table.size());
for (int i = 0; i < table_size; i++) {
int function_index = module->function_table[i];
const WasmFunction* function = &module->functions[function_index];
instance->function_table->set(i, Smi::FromInt(function->sig_index));
instance->function_table->set(i + table_size,
*instance->function_code[function_index]);
}
}
WasmFunction* GetFunctionAt(int index) { return &module_.functions[index]; }
WasmInterpreter* interpreter() { return interpreter_; }
WasmExecutionMode execution_mode() { return execution_mode_; }
private:
WasmExecutionMode execution_mode_;
WasmModule module_;
WasmModuleInstance instance_;
Isolate* isolate_;
v8::base::AccountingAllocator allocator_;
uint32_t global_offset;
V8_ALIGNED(8) byte global_data[kMaxGlobalsSize]; // preallocated global data.
WasmInterpreter* interpreter_;
const WasmGlobal* AddGlobal(MachineType mem_type) {
byte size = WasmOpcodes::MemSize(mem_type);
global_offset = (global_offset + size - 1) & ~(size - 1); // align
module_.globals.push_back({0, 0, mem_type, global_offset, false});
global_offset += size;
// limit number of globals.
CHECK_LT(global_offset, kMaxGlobalsSize);
return &module->globals.back();
}
};
inline void TestBuildingGraph(Zone* zone, JSGraph* jsgraph, ModuleEnv* module,
FunctionSig* sig,
SourcePositionTable* source_position_table,
const byte* start, const byte* end) {
compiler::WasmGraphBuilder builder(zone, jsgraph, sig, source_position_table);
TreeResult result =
BuildTFGraph(zone->allocator(), &builder, module, sig, start, end);
if (result.failed()) {
ptrdiff_t pc = result.error_pc - result.start;
ptrdiff_t pt = result.error_pt - result.start;
std::ostringstream str;
str << "Verification failed: " << result.error_code << " pc = +" << pc;
if (result.error_pt) str << ", pt = +" << pt;
str << ", msg = " << result.error_msg.get();
FATAL(str.str().c_str());
}
builder.Int64LoweringForTesting();
if (FLAG_trace_turbo_graph) {
OFStream os(stdout);
os << AsRPO(*jsgraph->graph());
}
}
template <typename ReturnType>
class WasmFunctionWrapper : public HandleAndZoneScope,
private GraphAndBuilders {
public:
WasmFunctionWrapper()
: GraphAndBuilders(main_zone()),
inner_code_node_(nullptr),
signature_(nullptr) {
// One additional parameter for the pointer to the return value memory.
Signature<MachineType>::Builder sig_builder(
zone(), 1, WASM_RUNNER_MAX_NUM_PARAMETERS + 1);
sig_builder.AddReturn(MachineType::Int32());
for (int i = 0; i < WASM_RUNNER_MAX_NUM_PARAMETERS + 1; i++) {
sig_builder.AddParam(MachineType::Pointer());
}
signature_ = sig_builder.Build();
}
void Init(CallDescriptor* descriptor, MachineType p0 = MachineType::None(),
MachineType p1 = MachineType::None(),
MachineType p2 = MachineType::None(),
MachineType p3 = MachineType::None()) {
// Create the TF graph for the wrapper. The wrapper always takes four
// pointers as parameters, but may not pass the values of all pointers to
// the actual test function.
// Function, effect, and control.
Node** parameters =
zone()->template NewArray<Node*>(WASM_RUNNER_MAX_NUM_PARAMETERS + 3);
graph()->SetStart(graph()->NewNode(common()->Start(6)));
Node* effect = graph()->start();
int parameter_count = 0;
// Dummy node which gets replaced in SetInnerCode.
inner_code_node_ = graph()->NewNode(common()->Int32Constant(0));
parameters[parameter_count++] = inner_code_node_;
if (p0 != MachineType::None()) {
parameters[parameter_count] = graph()->NewNode(
machine()->Load(p0),
graph()->NewNode(common()->Parameter(0), graph()->start()),
graph()->NewNode(common()->Int32Constant(0)), effect,
graph()->start());
effect = parameters[parameter_count++];
}
if (p1 != MachineType::None()) {
parameters[parameter_count] = graph()->NewNode(
machine()->Load(p0),
graph()->NewNode(common()->Parameter(1), graph()->start()),
graph()->NewNode(common()->Int32Constant(0)), effect,
graph()->start());
effect = parameters[parameter_count++];
}
if (p2 != MachineType::None()) {
parameters[parameter_count] = graph()->NewNode(
machine()->Load(p0),
graph()->NewNode(common()->Parameter(2), graph()->start()),
graph()->NewNode(common()->Int32Constant(0)), effect,
graph()->start());
effect = parameters[parameter_count++];
}
if (p3 != MachineType::None()) {
parameters[parameter_count] = graph()->NewNode(
machine()->Load(p0),
graph()->NewNode(common()->Parameter(3), graph()->start()),
graph()->NewNode(common()->Int32Constant(0)), effect,
graph()->start());
effect = parameters[parameter_count++];
}
parameters[parameter_count++] = effect;
parameters[parameter_count++] = graph()->start();
Node* call = graph()->NewNode(common()->Call(descriptor), parameter_count,
parameters);
effect = graph()->NewNode(
machine()->Store(
StoreRepresentation(MachineTypeForC<ReturnType>().representation(),
WriteBarrierKind::kNoWriteBarrier)),
graph()->NewNode(common()->Parameter(WASM_RUNNER_MAX_NUM_PARAMETERS),
graph()->start()),
graph()->NewNode(common()->Int32Constant(0)), call, effect,
graph()->start());
Node* r = graph()->NewNode(
common()->Return(),
graph()->NewNode(common()->Int32Constant(WASM_WRAPPER_RETURN_VALUE)),
effect, graph()->start());
graph()->SetEnd(graph()->NewNode(common()->End(2), r, graph()->start()));
}
void SetInnerCode(Handle<Code> code_handle) {
NodeProperties::ChangeOp(inner_code_node_,
common()->HeapConstant(code_handle));
}
Handle<Code> GetWrapperCode() {
if (code_.is_null()) {
Isolate* isolate = CcTest::InitIsolateOnce();
CallDescriptor* descriptor =
Linkage::GetSimplifiedCDescriptor(zone(), signature_, true);
if (kPointerSize == 4) {
// One additional parameter for the pointer of the return value.
Signature<MachineRepresentation>::Builder rep_builder(
zone(), 1, WASM_RUNNER_MAX_NUM_PARAMETERS + 1);
rep_builder.AddReturn(MachineRepresentation::kWord32);
for (int i = 0; i < WASM_RUNNER_MAX_NUM_PARAMETERS + 1; i++) {
rep_builder.AddParam(MachineRepresentation::kWord32);
}
Int64Lowering r(graph(), machine(), common(), zone(),
rep_builder.Build());
r.LowerGraph();
}
CompilationInfo info(ArrayVector("testing"), isolate, graph()->zone());
code_ =
Pipeline::GenerateCodeForTesting(&info, descriptor, graph(), nullptr);
CHECK(!code_.is_null());
#ifdef ENABLE_DISASSEMBLER
if (FLAG_print_opt_code) {
OFStream os(stdout);
code_->Disassemble("wasm wrapper", os);
}
#endif
}
return code_;
}
Signature<MachineType>* signature() const { return signature_; }
private:
Node* inner_code_node_;
Handle<Code> code_;
Signature<MachineType>* signature_;
};
// A helper for compiling WASM functions for testing. This class can create a
// standalone function if {module} is NULL or a function within a
// {TestingModule}. It contains the internal state for compilation (i.e.
// TurboFan graph) and interpretation (by adding to the interpreter manually).
class WasmFunctionCompiler : public HandleAndZoneScope,
private GraphAndBuilders {
public:
explicit WasmFunctionCompiler(
FunctionSig* sig, WasmExecutionMode mode,
Vector<const char> debug_name = ArrayVector("<WASM UNNAMED>"))
: GraphAndBuilders(main_zone()),
execution_mode_(mode),
jsgraph(this->isolate(), this->graph(), this->common(), nullptr,
nullptr, this->machine()),
sig(sig),
descriptor_(nullptr),
testing_module_(nullptr),
debug_name_(debug_name),
local_decls(main_zone(), sig),
source_position_table_(this->graph()),
interpreter_(nullptr) {
// Create our own function.
function_ = new WasmFunction();
function_->sig = sig;
function_->func_index = 0;
function_->sig_index = 0;
if (mode == kExecuteInterpreted) {
interpreter_ = new WasmInterpreter(nullptr, zone()->allocator());
int index = interpreter_->AddFunctionForTesting(function_);
CHECK_EQ(0, index);
}
}
explicit WasmFunctionCompiler(
FunctionSig* sig, TestingModule* module,
Vector<const char> debug_name = ArrayVector("<WASM UNNAMED>"))
: GraphAndBuilders(main_zone()),
execution_mode_(module->execution_mode()),
jsgraph(this->isolate(), this->graph(), this->common(), nullptr,
nullptr, this->machine()),
sig(sig),
descriptor_(nullptr),
testing_module_(module),
debug_name_(debug_name),
local_decls(main_zone(), sig),
source_position_table_(this->graph()),
interpreter_(module->interpreter()) {
// Get a new function from the testing module.
int index = module->AddFunction(sig, Handle<Code>::null());
function_ = testing_module_->GetFunctionAt(index);
}
~WasmFunctionCompiler() {
if (testing_module_) return; // testing module owns the below things.
delete function_;
if (interpreter_) delete interpreter_;
}
WasmExecutionMode execution_mode_;
JSGraph jsgraph;
FunctionSig* sig;
// The call descriptor is initialized when the function is compiled.
CallDescriptor* descriptor_;
TestingModule* testing_module_;
Vector<const char> debug_name_;
WasmFunction* function_;
LocalDeclEncoder local_decls;
SourcePositionTable source_position_table_;
WasmInterpreter* interpreter_;
Isolate* isolate() { return main_isolate(); }
Graph* graph() const { return main_graph_; }
Zone* zone() const { return graph()->zone(); }
CommonOperatorBuilder* common() { return &main_common_; }
MachineOperatorBuilder* machine() { return &main_machine_; }
void InitializeDescriptor() {
if (descriptor_ == nullptr) {
descriptor_ = testing_module_->GetWasmCallDescriptor(main_zone(), sig);
}
}
CallDescriptor* descriptor() { return descriptor_; }
uint32_t function_index() { return function_->func_index; }
void Build(const byte* start, const byte* end) {
// Build the TurboFan graph.
local_decls.Prepend(main_zone(), &start, &end);
TestBuildingGraph(main_zone(), &jsgraph, testing_module_, sig,
&source_position_table_, start, end);
if (interpreter_) {
// Add the code to the interpreter.
CHECK(interpreter_->SetFunctionCodeForTesting(function_, start, end));
}
}
byte AllocateLocal(LocalType type) {
uint32_t index = local_decls.AddLocals(1, type);
byte result = static_cast<byte>(index);
DCHECK_EQ(index, result);
return result;
}
Handle<Code> Compile() {
InitializeDescriptor();
CallDescriptor* desc = descriptor_;
if (kPointerSize == 4) {
desc = testing_module_->GetI32WasmCallDescriptor(this->zone(), desc);
}
CompilationInfo info(debug_name_, this->isolate(), this->zone(),
Code::ComputeFlags(Code::WASM_FUNCTION));
v8::base::SmartPointer<CompilationJob> job(Pipeline::NewWasmCompilationJob(
&info, graph(), desc, &source_position_table_));
if (job->OptimizeGraph() != CompilationJob::SUCCEEDED ||
job->GenerateCode() != CompilationJob::SUCCEEDED)
return Handle<Code>::null();
Handle<Code> code = info.code();
// Length is always 2, since usually <wasm_obj, func_index> is stored in
// the deopt data. Here, we only store the function index.
DCHECK(code->deoptimization_data() == nullptr ||
code->deoptimization_data()->length() == 0);
Handle<FixedArray> deopt_data =
isolate()->factory()->NewFixedArray(2, TENURED);
deopt_data->set(1, Smi::FromInt(static_cast<int>(function_index())));
deopt_data->set_length(2);
code->set_deoptimization_data(*deopt_data);
#ifdef ENABLE_DISASSEMBLER
if (FLAG_print_opt_code) {
OFStream os(stdout);
code->Disassemble("wasm code", os);
}
#endif
return code;
}
uint32_t CompileAndAdd(uint16_t sig_index = 0) {
CHECK(testing_module_);
function_->sig_index = sig_index;
Handle<Code> code = Compile();
testing_module_->SetFunctionCode(function_index(), code);
return function_index();
}
// Set the context, such that e.g. runtime functions can be called.
void SetModuleContext() {
if (!testing_module_->instance->context.is_null()) {
CHECK(testing_module_->instance->context.is_identical_to(
main_isolate()->native_context()));
return;
}
testing_module_->instance->context = main_isolate()->native_context();
}
};
// A helper class to build graphs from Wasm bytecode, generate machine
// code, and run that code.
template <typename ReturnType>
class WasmRunner {
public:
WasmRunner(WasmExecutionMode execution_mode,
MachineType p0 = MachineType::None(),
MachineType p1 = MachineType::None(),
MachineType p2 = MachineType::None(),
MachineType p3 = MachineType::None())
: zone(&allocator_),
compiled_(false),
signature_(MachineTypeForC<ReturnType>() == MachineType::None() ? 0 : 1,
GetParameterCount(p0, p1, p2, p3), storage_),
compiler_(&signature_, execution_mode) {
InitSigStorage(p0, p1, p2, p3);
}
WasmRunner(TestingModule* module, MachineType p0 = MachineType::None(),
MachineType p1 = MachineType::None(),
MachineType p2 = MachineType::None(),
MachineType p3 = MachineType::None())
: zone(&allocator_),
compiled_(false),
signature_(MachineTypeForC<ReturnType>() == MachineType::None() ? 0 : 1,
GetParameterCount(p0, p1, p2, p3), storage_),
compiler_(&signature_, module) {
DCHECK(module);
InitSigStorage(p0, p1, p2, p3);
}
void InitSigStorage(MachineType p0, MachineType p1, MachineType p2,
MachineType p3) {
int index = 0;
MachineType ret = MachineTypeForC<ReturnType>();
if (ret != MachineType::None()) {
storage_[index++] = WasmOpcodes::LocalTypeFor(ret);
}
if (p0 != MachineType::None())
storage_[index++] = WasmOpcodes::LocalTypeFor(p0);
if (p1 != MachineType::None())
storage_[index++] = WasmOpcodes::LocalTypeFor(p1);
if (p2 != MachineType::None())
storage_[index++] = WasmOpcodes::LocalTypeFor(p2);
if (p3 != MachineType::None())
storage_[index++] = WasmOpcodes::LocalTypeFor(p3);
compiler_.InitializeDescriptor();
wrapper_.Init(compiler_.descriptor(), p0, p1, p2, p3);
}
// Builds a graph from the given Wasm code and generates the machine
// code and call wrapper for that graph. This method must not be called
// more than once.
void Build(const byte* start, const byte* end) {
CHECK(!compiled_);
compiled_ = true;
compiler_.Build(start, end);
if (!interpret()) {
// Compile machine code and install it into the module.
Handle<Code> code = compiler_.Compile();
if (compiler_.testing_module_) {
// Update the table of function code in the module.
compiler_.testing_module_->SetFunctionCode(
compiler_.function_->func_index, code);
}
wrapper_.SetInnerCode(code);
}
}
ReturnType Call() {
if (interpret()) {
return CallInterpreter(Vector<WasmVal>(nullptr, 0));
} else {
return Call(0, 0, 0, 0);
}
}
template <typename P0>
ReturnType Call(P0 p0) {
if (interpret()) {
WasmVal args[] = {WasmVal(p0)};
return CallInterpreter(ArrayVector(args));
} else {
return Call(p0, 0, 0, 0);
}
}
template <typename P0, typename P1>
ReturnType Call(P0 p0, P1 p1) {
if (interpret()) {
WasmVal args[] = {WasmVal(p0), WasmVal(p1)};
return CallInterpreter(ArrayVector(args));
} else {
return Call(p0, p1, 0, 0);
}
}
template <typename P0, typename P1, typename P2>
ReturnType Call(P0 p0, P1 p1, P2 p2) {
if (interpret()) {
WasmVal args[] = {WasmVal(p0), WasmVal(p1), WasmVal(p2)};
return CallInterpreter(ArrayVector(args));
} else {
return Call(p0, p1, p2, 0);
}
}
template <typename P0, typename P1, typename P2, typename P3>
ReturnType Call(P0 p0, P1 p1, P2 p2, P3 p3) {
if (interpret()) {
WasmVal args[] = {WasmVal(p0), WasmVal(p1), WasmVal(p2), WasmVal(p3)};
return CallInterpreter(ArrayVector(args));
} else {
CodeRunner<int32_t> runner(CcTest::InitIsolateOnce(),
wrapper_.GetWrapperCode(),
wrapper_.signature());
ReturnType return_value;
int32_t result = runner.Call<void*, void*, void*, void*, void*>(
&p0, &p1, &p2, &p3, &return_value);
CHECK_EQ(WASM_WRAPPER_RETURN_VALUE, result);
return return_value;
}
}
ReturnType CallInterpreter(Vector<WasmVal> args) {
CHECK_EQ(args.length(),
static_cast<int>(compiler_.function_->sig->parameter_count()));
WasmInterpreter::Thread* thread = interpreter()->GetThread(0);
thread->Reset();
thread->PushFrame(compiler_.function_, args.start());
if (thread->Run() == WasmInterpreter::FINISHED) {
WasmVal val = thread->GetReturnValue();
return val.to<ReturnType>();
} else if (thread->state() == WasmInterpreter::TRAPPED) {
// TODO(titzer): return the correct trap code
int64_t result = 0xdeadbeefdeadbeef;
return static_cast<ReturnType>(result);
} else {
// TODO(titzer): falling off end
ReturnType val = 0;
return val;
}
}
byte AllocateLocal(LocalType type) { return compiler_.AllocateLocal(type); }
WasmFunction* function() { return compiler_.function_; }
WasmInterpreter* interpreter() { return compiler_.interpreter_; }
protected:
v8::base::AccountingAllocator allocator_;
Zone zone;
bool compiled_;
LocalType storage_[WASM_RUNNER_MAX_NUM_PARAMETERS];
FunctionSig signature_;
WasmFunctionCompiler compiler_;
WasmFunctionWrapper<ReturnType> wrapper_;
bool interpret() { return compiler_.execution_mode_ == kExecuteInterpreted; }
static size_t GetParameterCount(MachineType p0, MachineType p1,
MachineType p2, MachineType p3) {
if (p0 == MachineType::None()) return 0;
if (p1 == MachineType::None()) return 1;
if (p2 == MachineType::None()) return 2;
if (p3 == MachineType::None()) return 3;
return 4;
}
};
// A macro to define tests that run in different engine configurations.
// Currently only supports compiled tests, but a future
// RunWasmInterpreted_##name version will allow each test to also run in the
// interpreter.
#define WASM_EXEC_TEST(name) \
void RunWasm_##name(WasmExecutionMode execution_mode); \
TEST(RunWasmCompiled_##name) { RunWasm_##name(kExecuteCompiled); } \
TEST(RunWasmInterpreted_##name) { RunWasm_##name(kExecuteInterpreted); } \
void RunWasm_##name(WasmExecutionMode execution_mode)
} // namespace
#endif