blob: 24abb722c57f050e58ba9748f48bb7995ccb2b3b [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/builtins.h"
#include "src/api-arguments.h"
#include "src/api-natives.h"
#include "src/api.h"
#include "src/base/ieee754.h"
#include "src/base/once.h"
#include "src/bootstrapper.h"
#include "src/code-factory.h"
#include "src/code-stub-assembler.h"
#include "src/dateparser-inl.h"
#include "src/elements.h"
#include "src/frames-inl.h"
#include "src/gdb-jit.h"
#include "src/ic/handler-compiler.h"
#include "src/ic/ic.h"
#include "src/isolate-inl.h"
#include "src/json-parser.h"
#include "src/json-stringifier.h"
#include "src/messages.h"
#include "src/property-descriptor.h"
#include "src/prototype.h"
#include "src/string-builder.h"
#include "src/uri.h"
#include "src/vm-state-inl.h"
namespace v8 {
namespace internal {
namespace {
// Arguments object passed to C++ builtins.
class BuiltinArguments : public Arguments {
public:
BuiltinArguments(int length, Object** arguments)
: Arguments(length, arguments) {
// Check we have at least the receiver.
DCHECK_LE(1, this->length());
}
Object*& operator[] (int index) {
DCHECK_LT(index, length());
return Arguments::operator[](index);
}
template <class S> Handle<S> at(int index) {
DCHECK_LT(index, length());
return Arguments::at<S>(index);
}
Handle<Object> atOrUndefined(Isolate* isolate, int index) {
if (index >= length()) {
return isolate->factory()->undefined_value();
}
return at<Object>(index);
}
Handle<Object> receiver() {
return Arguments::at<Object>(0);
}
template <class S>
Handle<S> target() {
return Arguments::at<S>(Arguments::length() - 2);
}
Handle<HeapObject> new_target() {
return Arguments::at<HeapObject>(Arguments::length() - 1);
}
// Gets the total number of arguments including the receiver (but
// excluding extra arguments).
int length() const { return Arguments::length() - 2; }
};
// ----------------------------------------------------------------------------
// Support macro for defining builtins in C++.
// ----------------------------------------------------------------------------
//
// A builtin function is defined by writing:
//
// BUILTIN(name) {
// ...
// }
//
// In the body of the builtin function the arguments can be accessed
// through the BuiltinArguments object args.
// TODO(cbruni): add global flag to check whether any tracing events have been
// enabled.
#define BUILTIN(name) \
MUST_USE_RESULT static Object* Builtin_Impl_##name(BuiltinArguments args, \
Isolate* isolate); \
\
V8_NOINLINE static Object* Builtin_Impl_Stats_##name( \
int args_length, Object** args_object, Isolate* isolate) { \
BuiltinArguments args(args_length, args_object); \
RuntimeCallTimerScope timer(isolate, &RuntimeCallStats::Builtin_##name); \
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.runtime"), \
"V8.Builtin_" #name); \
return Builtin_Impl_##name(args, isolate); \
} \
\
MUST_USE_RESULT static Object* Builtin_##name( \
int args_length, Object** args_object, Isolate* isolate) { \
if (FLAG_runtime_call_stats) { \
return Builtin_Impl_Stats_##name(args_length, args_object, isolate); \
} \
BuiltinArguments args(args_length, args_object); \
return Builtin_Impl_##name(args, isolate); \
} \
\
MUST_USE_RESULT static Object* Builtin_Impl_##name(BuiltinArguments args, \
Isolate* isolate)
// ----------------------------------------------------------------------------
#define CHECK_RECEIVER(Type, name, method) \
if (!args.receiver()->Is##Type()) { \
THROW_NEW_ERROR_RETURN_FAILURE( \
isolate, \
NewTypeError(MessageTemplate::kIncompatibleMethodReceiver, \
isolate->factory()->NewStringFromAsciiChecked(method), \
args.receiver())); \
} \
Handle<Type> name = Handle<Type>::cast(args.receiver())
// Throws a TypeError for {method} if the receiver is not coercible to Object,
// or converts the receiver to a String otherwise and assigns it to a new var
// with the given {name}.
#define TO_THIS_STRING(name, method) \
if (args.receiver()->IsNull(isolate) || \
args.receiver()->IsUndefined(isolate)) { \
THROW_NEW_ERROR_RETURN_FAILURE( \
isolate, \
NewTypeError(MessageTemplate::kCalledOnNullOrUndefined, \
isolate->factory()->NewStringFromAsciiChecked(method))); \
} \
Handle<String> name; \
ASSIGN_RETURN_FAILURE_ON_EXCEPTION( \
isolate, name, Object::ToString(isolate, args.receiver()))
inline bool ClampedToInteger(Isolate* isolate, Object* object, int* out) {
// This is an extended version of ECMA-262 7.1.11 handling signed values
// Try to convert object to a number and clamp values to [kMinInt, kMaxInt]
if (object->IsSmi()) {
*out = Smi::cast(object)->value();
return true;
} else if (object->IsHeapNumber()) {
double value = HeapNumber::cast(object)->value();
if (std::isnan(value)) {
*out = 0;
} else if (value > kMaxInt) {
*out = kMaxInt;
} else if (value < kMinInt) {
*out = kMinInt;
} else {
*out = static_cast<int>(value);
}
return true;
} else if (object->IsUndefined(isolate) || object->IsNull(isolate)) {
*out = 0;
return true;
} else if (object->IsBoolean()) {
*out = object->IsTrue(isolate);
return true;
}
return false;
}
inline bool GetSloppyArgumentsLength(Isolate* isolate, Handle<JSObject> object,
int* out) {
Context* context = *isolate->native_context();
Map* map = object->map();
if (map != context->sloppy_arguments_map() &&
map != context->strict_arguments_map() &&
map != context->fast_aliased_arguments_map()) {
return false;
}
DCHECK(object->HasFastElements() || object->HasFastArgumentsElements());
Object* len_obj = object->InObjectPropertyAt(JSArgumentsObject::kLengthIndex);
if (!len_obj->IsSmi()) return false;
*out = Max(0, Smi::cast(len_obj)->value());
return *out <= object->elements()->length();
}
inline bool PrototypeHasNoElements(Isolate* isolate, JSObject* object) {
DisallowHeapAllocation no_gc;
HeapObject* prototype = HeapObject::cast(object->map()->prototype());
HeapObject* null = isolate->heap()->null_value();
HeapObject* empty = isolate->heap()->empty_fixed_array();
while (prototype != null) {
Map* map = prototype->map();
if (map->instance_type() <= LAST_CUSTOM_ELEMENTS_RECEIVER) return false;
if (JSObject::cast(prototype)->elements() != empty) return false;
prototype = HeapObject::cast(map->prototype());
}
return true;
}
inline bool IsJSArrayFastElementMovingAllowed(Isolate* isolate,
JSArray* receiver) {
return PrototypeHasNoElements(isolate, receiver);
}
inline bool HasSimpleElements(JSObject* current) {
return current->map()->instance_type() > LAST_CUSTOM_ELEMENTS_RECEIVER &&
!current->GetElementsAccessor()->HasAccessors(current);
}
inline bool HasOnlySimpleReceiverElements(Isolate* isolate,
JSObject* receiver) {
// Check that we have no accessors on the receiver's elements.
if (!HasSimpleElements(receiver)) return false;
return PrototypeHasNoElements(isolate, receiver);
}
inline bool HasOnlySimpleElements(Isolate* isolate, JSReceiver* receiver) {
DisallowHeapAllocation no_gc;
PrototypeIterator iter(isolate, receiver, kStartAtReceiver);
for (; !iter.IsAtEnd(); iter.Advance()) {
if (iter.GetCurrent()->IsJSProxy()) return false;
JSObject* current = iter.GetCurrent<JSObject>();
if (!HasSimpleElements(current)) return false;
}
return true;
}
// Returns |false| if not applicable.
MUST_USE_RESULT
inline bool EnsureJSArrayWithWritableFastElements(Isolate* isolate,
Handle<Object> receiver,
BuiltinArguments* args,
int first_added_arg) {
if (!receiver->IsJSArray()) return false;
Handle<JSArray> array = Handle<JSArray>::cast(receiver);
ElementsKind origin_kind = array->GetElementsKind();
if (IsDictionaryElementsKind(origin_kind)) return false;
if (!array->map()->is_extensible()) return false;
if (args == nullptr) return true;
// If there may be elements accessors in the prototype chain, the fast path
// cannot be used if there arguments to add to the array.
if (!IsJSArrayFastElementMovingAllowed(isolate, *array)) return false;
// Adding elements to the array prototype would break code that makes sure
// it has no elements. Handle that elsewhere.
if (isolate->IsAnyInitialArrayPrototype(array)) return false;
// Need to ensure that the arguments passed in args can be contained in
// the array.
int args_length = args->length();
if (first_added_arg >= args_length) return true;
if (IsFastObjectElementsKind(origin_kind)) return true;
ElementsKind target_kind = origin_kind;
{
DisallowHeapAllocation no_gc;
for (int i = first_added_arg; i < args_length; i++) {
Object* arg = (*args)[i];
if (arg->IsHeapObject()) {
if (arg->IsHeapNumber()) {
target_kind = FAST_DOUBLE_ELEMENTS;
} else {
target_kind = FAST_ELEMENTS;
break;
}
}
}
}
if (target_kind != origin_kind) {
// Use a short-lived HandleScope to avoid creating several copies of the
// elements handle which would cause issues when left-trimming later-on.
HandleScope scope(isolate);
JSObject::TransitionElementsKind(array, target_kind);
}
return true;
}
MUST_USE_RESULT static Object* CallJsIntrinsic(Isolate* isolate,
Handle<JSFunction> function,
BuiltinArguments args) {
HandleScope handleScope(isolate);
int argc = args.length() - 1;
ScopedVector<Handle<Object> > argv(argc);
for (int i = 0; i < argc; ++i) {
argv[i] = args.at<Object>(i + 1);
}
RETURN_RESULT_OR_FAILURE(
isolate,
Execution::Call(isolate, function, args.receiver(), argc, argv.start()));
}
} // namespace
BUILTIN(Illegal) {
UNREACHABLE();
return isolate->heap()->undefined_value(); // Make compiler happy.
}
BUILTIN(EmptyFunction) { return isolate->heap()->undefined_value(); }
void Builtins::Generate_ArrayIsArray(CodeStubAssembler* assembler) {
typedef compiler::Node Node;
typedef CodeStubAssembler::Label Label;
Node* object = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Label call_runtime(assembler), return_true(assembler),
return_false(assembler);
assembler->GotoIf(assembler->WordIsSmi(object), &return_false);
Node* instance_type = assembler->LoadInstanceType(object);
assembler->GotoIf(assembler->Word32Equal(
instance_type, assembler->Int32Constant(JS_ARRAY_TYPE)),
&return_true);
// TODO(verwaest): Handle proxies in-place.
assembler->Branch(assembler->Word32Equal(
instance_type, assembler->Int32Constant(JS_PROXY_TYPE)),
&call_runtime, &return_false);
assembler->Bind(&return_true);
assembler->Return(assembler->BooleanConstant(true));
assembler->Bind(&return_false);
assembler->Return(assembler->BooleanConstant(false));
assembler->Bind(&call_runtime);
assembler->Return(
assembler->CallRuntime(Runtime::kArrayIsArray, context, object));
}
void Builtins::Generate_ObjectHasOwnProperty(CodeStubAssembler* assembler) {
typedef compiler::Node Node;
typedef CodeStubAssembler::Label Label;
typedef CodeStubAssembler::Variable Variable;
Node* object = assembler->Parameter(0);
Node* key = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Label call_runtime(assembler), return_true(assembler),
return_false(assembler);
// Smi receivers do not have own properties.
Label if_objectisnotsmi(assembler);
assembler->Branch(assembler->WordIsSmi(object), &return_false,
&if_objectisnotsmi);
assembler->Bind(&if_objectisnotsmi);
Node* map = assembler->LoadMap(object);
Node* instance_type = assembler->LoadMapInstanceType(map);
Variable var_index(assembler, MachineRepresentation::kWord32);
Label keyisindex(assembler), if_iskeyunique(assembler);
assembler->TryToName(key, &keyisindex, &var_index, &if_iskeyunique,
&call_runtime);
assembler->Bind(&if_iskeyunique);
assembler->TryHasOwnProperty(object, map, instance_type, key, &return_true,
&return_false, &call_runtime);
assembler->Bind(&keyisindex);
assembler->TryLookupElement(object, map, instance_type, var_index.value(),
&return_true, &return_false, &call_runtime);
assembler->Bind(&return_true);
assembler->Return(assembler->BooleanConstant(true));
assembler->Bind(&return_false);
assembler->Return(assembler->BooleanConstant(false));
assembler->Bind(&call_runtime);
assembler->Return(assembler->CallRuntime(Runtime::kObjectHasOwnProperty,
context, object, key));
}
namespace {
Object* DoArrayPush(Isolate* isolate, BuiltinArguments args) {
HandleScope scope(isolate);
Handle<Object> receiver = args.receiver();
if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 1)) {
return CallJsIntrinsic(isolate, isolate->array_push(), args);
}
// Fast Elements Path
int to_add = args.length() - 1;
Handle<JSArray> array = Handle<JSArray>::cast(receiver);
int len = Smi::cast(array->length())->value();
if (to_add == 0) return Smi::FromInt(len);
// Currently fixed arrays cannot grow too big, so we should never hit this.
DCHECK_LE(to_add, Smi::kMaxValue - Smi::cast(array->length())->value());
if (JSArray::HasReadOnlyLength(array)) {
return CallJsIntrinsic(isolate, isolate->array_push(), args);
}
ElementsAccessor* accessor = array->GetElementsAccessor();
int new_length = accessor->Push(array, &args, to_add);
return Smi::FromInt(new_length);
}
} // namespace
BUILTIN(ArrayPush) { return DoArrayPush(isolate, args); }
// TODO(verwaest): This is a temporary helper until the FastArrayPush stub can
// tailcall to the builtin directly.
RUNTIME_FUNCTION(Runtime_ArrayPush) {
DCHECK_EQ(2, args.length());
Arguments* incoming = reinterpret_cast<Arguments*>(args[0]);
// Rewrap the arguments as builtins arguments.
BuiltinArguments caller_args(incoming->length() + 3,
incoming->arguments() + 1);
return DoArrayPush(isolate, caller_args);
}
BUILTIN(ArrayPop) {
HandleScope scope(isolate);
Handle<Object> receiver = args.receiver();
if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, nullptr, 0)) {
return CallJsIntrinsic(isolate, isolate->array_pop(), args);
}
Handle<JSArray> array = Handle<JSArray>::cast(receiver);
uint32_t len = static_cast<uint32_t>(Smi::cast(array->length())->value());
if (len == 0) return isolate->heap()->undefined_value();
if (JSArray::HasReadOnlyLength(array)) {
return CallJsIntrinsic(isolate, isolate->array_pop(), args);
}
Handle<Object> result;
if (IsJSArrayFastElementMovingAllowed(isolate, JSArray::cast(*receiver))) {
// Fast Elements Path
result = array->GetElementsAccessor()->Pop(array);
} else {
// Use Slow Lookup otherwise
uint32_t new_length = len - 1;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, result, JSReceiver::GetElement(isolate, array, new_length));
JSArray::SetLength(array, new_length);
}
return *result;
}
BUILTIN(ArrayShift) {
HandleScope scope(isolate);
Heap* heap = isolate->heap();
Handle<Object> receiver = args.receiver();
if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, nullptr, 0) ||
!IsJSArrayFastElementMovingAllowed(isolate, JSArray::cast(*receiver))) {
return CallJsIntrinsic(isolate, isolate->array_shift(), args);
}
Handle<JSArray> array = Handle<JSArray>::cast(receiver);
int len = Smi::cast(array->length())->value();
if (len == 0) return heap->undefined_value();
if (JSArray::HasReadOnlyLength(array)) {
return CallJsIntrinsic(isolate, isolate->array_shift(), args);
}
Handle<Object> first = array->GetElementsAccessor()->Shift(array);
return *first;
}
BUILTIN(ArrayUnshift) {
HandleScope scope(isolate);
Handle<Object> receiver = args.receiver();
if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 1)) {
return CallJsIntrinsic(isolate, isolate->array_unshift(), args);
}
Handle<JSArray> array = Handle<JSArray>::cast(receiver);
int to_add = args.length() - 1;
if (to_add == 0) return array->length();
// Currently fixed arrays cannot grow too big, so we should never hit this.
DCHECK_LE(to_add, Smi::kMaxValue - Smi::cast(array->length())->value());
if (JSArray::HasReadOnlyLength(array)) {
return CallJsIntrinsic(isolate, isolate->array_unshift(), args);
}
ElementsAccessor* accessor = array->GetElementsAccessor();
int new_length = accessor->Unshift(array, &args, to_add);
return Smi::FromInt(new_length);
}
BUILTIN(ArraySlice) {
HandleScope scope(isolate);
Handle<Object> receiver = args.receiver();
int len = -1;
int relative_start = 0;
int relative_end = 0;
if (receiver->IsJSArray()) {
DisallowHeapAllocation no_gc;
JSArray* array = JSArray::cast(*receiver);
if (V8_UNLIKELY(!array->HasFastElements() ||
!IsJSArrayFastElementMovingAllowed(isolate, array) ||
!isolate->IsArraySpeciesLookupChainIntact() ||
// If this is a subclass of Array, then call out to JS
!array->HasArrayPrototype(isolate))) {
AllowHeapAllocation allow_allocation;
return CallJsIntrinsic(isolate, isolate->array_slice(), args);
}
len = Smi::cast(array->length())->value();
} else if (receiver->IsJSObject() &&
GetSloppyArgumentsLength(isolate, Handle<JSObject>::cast(receiver),
&len)) {
// Array.prototype.slice.call(arguments, ...) is quite a common idiom
// (notably more than 50% of invocations in Web apps).
// Treat it in C++ as well.
DCHECK(JSObject::cast(*receiver)->HasFastElements() ||
JSObject::cast(*receiver)->HasFastArgumentsElements());
} else {
AllowHeapAllocation allow_allocation;
return CallJsIntrinsic(isolate, isolate->array_slice(), args);
}
DCHECK_LE(0, len);
int argument_count = args.length() - 1;
// Note carefully chosen defaults---if argument is missing,
// it's undefined which gets converted to 0 for relative_start
// and to len for relative_end.
relative_start = 0;
relative_end = len;
if (argument_count > 0) {
DisallowHeapAllocation no_gc;
if (!ClampedToInteger(isolate, args[1], &relative_start)) {
AllowHeapAllocation allow_allocation;
return CallJsIntrinsic(isolate, isolate->array_slice(), args);
}
if (argument_count > 1) {
Object* end_arg = args[2];
// slice handles the end_arg specially
if (end_arg->IsUndefined(isolate)) {
relative_end = len;
} else if (!ClampedToInteger(isolate, end_arg, &relative_end)) {
AllowHeapAllocation allow_allocation;
return CallJsIntrinsic(isolate, isolate->array_slice(), args);
}
}
}
// ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 6.
uint32_t actual_start = (relative_start < 0) ? Max(len + relative_start, 0)
: Min(relative_start, len);
// ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 8.
uint32_t actual_end =
(relative_end < 0) ? Max(len + relative_end, 0) : Min(relative_end, len);
Handle<JSObject> object = Handle<JSObject>::cast(receiver);
ElementsAccessor* accessor = object->GetElementsAccessor();
return *accessor->Slice(object, actual_start, actual_end);
}
BUILTIN(ArraySplice) {
HandleScope scope(isolate);
Handle<Object> receiver = args.receiver();
if (V8_UNLIKELY(
!EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 3) ||
// If this is a subclass of Array, then call out to JS.
!Handle<JSArray>::cast(receiver)->HasArrayPrototype(isolate) ||
// If anything with @@species has been messed with, call out to JS.
!isolate->IsArraySpeciesLookupChainIntact())) {
return CallJsIntrinsic(isolate, isolate->array_splice(), args);
}
Handle<JSArray> array = Handle<JSArray>::cast(receiver);
int argument_count = args.length() - 1;
int relative_start = 0;
if (argument_count > 0) {
DisallowHeapAllocation no_gc;
if (!ClampedToInteger(isolate, args[1], &relative_start)) {
AllowHeapAllocation allow_allocation;
return CallJsIntrinsic(isolate, isolate->array_splice(), args);
}
}
int len = Smi::cast(array->length())->value();
// clip relative start to [0, len]
int actual_start = (relative_start < 0) ? Max(len + relative_start, 0)
: Min(relative_start, len);
int actual_delete_count;
if (argument_count == 1) {
// SpiderMonkey, TraceMonkey and JSC treat the case where no delete count is
// given as a request to delete all the elements from the start.
// And it differs from the case of undefined delete count.
// This does not follow ECMA-262, but we do the same for compatibility.
DCHECK(len - actual_start >= 0);
actual_delete_count = len - actual_start;
} else {
int delete_count = 0;
DisallowHeapAllocation no_gc;
if (argument_count > 1) {
if (!ClampedToInteger(isolate, args[2], &delete_count)) {
AllowHeapAllocation allow_allocation;
return CallJsIntrinsic(isolate, isolate->array_splice(), args);
}
}
actual_delete_count = Min(Max(delete_count, 0), len - actual_start);
}
int add_count = (argument_count > 1) ? (argument_count - 2) : 0;
int new_length = len - actual_delete_count + add_count;
if (new_length != len && JSArray::HasReadOnlyLength(array)) {
AllowHeapAllocation allow_allocation;
return CallJsIntrinsic(isolate, isolate->array_splice(), args);
}
ElementsAccessor* accessor = array->GetElementsAccessor();
Handle<JSArray> result_array = accessor->Splice(
array, actual_start, actual_delete_count, &args, add_count);
return *result_array;
}
// Array Concat -------------------------------------------------------------
namespace {
/**
* A simple visitor visits every element of Array's.
* The backend storage can be a fixed array for fast elements case,
* or a dictionary for sparse array. Since Dictionary is a subtype
* of FixedArray, the class can be used by both fast and slow cases.
* The second parameter of the constructor, fast_elements, specifies
* whether the storage is a FixedArray or Dictionary.
*
* An index limit is used to deal with the situation that a result array
* length overflows 32-bit non-negative integer.
*/
class ArrayConcatVisitor {
public:
ArrayConcatVisitor(Isolate* isolate, Handle<Object> storage,
bool fast_elements)
: isolate_(isolate),
storage_(isolate->global_handles()->Create(*storage)),
index_offset_(0u),
bit_field_(FastElementsField::encode(fast_elements) |
ExceedsLimitField::encode(false) |
IsFixedArrayField::encode(storage->IsFixedArray())) {
DCHECK(!(this->fast_elements() && !is_fixed_array()));
}
~ArrayConcatVisitor() { clear_storage(); }
MUST_USE_RESULT bool visit(uint32_t i, Handle<Object> elm) {
uint32_t index = index_offset_ + i;
if (i >= JSObject::kMaxElementCount - index_offset_) {
set_exceeds_array_limit(true);
// Exception hasn't been thrown at this point. Return true to
// break out, and caller will throw. !visit would imply that
// there is already a pending exception.
return true;
}
if (!is_fixed_array()) {
LookupIterator it(isolate_, storage_, index, LookupIterator::OWN);
MAYBE_RETURN(
JSReceiver::CreateDataProperty(&it, elm, Object::THROW_ON_ERROR),
false);
return true;
}
if (fast_elements()) {
if (index < static_cast<uint32_t>(storage_fixed_array()->length())) {
storage_fixed_array()->set(index, *elm);
return true;
}
// Our initial estimate of length was foiled, possibly by
// getters on the arrays increasing the length of later arrays
// during iteration.
// This shouldn't happen in anything but pathological cases.
SetDictionaryMode();
// Fall-through to dictionary mode.
}
DCHECK(!fast_elements());
Handle<SeededNumberDictionary> dict(
SeededNumberDictionary::cast(*storage_));
// The object holding this backing store has just been allocated, so
// it cannot yet be used as a prototype.
Handle<SeededNumberDictionary> result =
SeededNumberDictionary::AtNumberPut(dict, index, elm, false);
if (!result.is_identical_to(dict)) {
// Dictionary needed to grow.
clear_storage();
set_storage(*result);
}
return true;
}
void increase_index_offset(uint32_t delta) {
if (JSObject::kMaxElementCount - index_offset_ < delta) {
index_offset_ = JSObject::kMaxElementCount;
} else {
index_offset_ += delta;
}
// If the initial length estimate was off (see special case in visit()),
// but the array blowing the limit didn't contain elements beyond the
// provided-for index range, go to dictionary mode now.
if (fast_elements() &&
index_offset_ >
static_cast<uint32_t>(FixedArrayBase::cast(*storage_)->length())) {
SetDictionaryMode();
}
}
bool exceeds_array_limit() const {
return ExceedsLimitField::decode(bit_field_);
}
Handle<JSArray> ToArray() {
DCHECK(is_fixed_array());
Handle<JSArray> array = isolate_->factory()->NewJSArray(0);
Handle<Object> length =
isolate_->factory()->NewNumber(static_cast<double>(index_offset_));
Handle<Map> map = JSObject::GetElementsTransitionMap(
array, fast_elements() ? FAST_HOLEY_ELEMENTS : DICTIONARY_ELEMENTS);
array->set_map(*map);
array->set_length(*length);
array->set_elements(*storage_fixed_array());
return array;
}
// Storage is either a FixedArray (if is_fixed_array()) or a JSReciever
// (otherwise)
Handle<FixedArray> storage_fixed_array() {
DCHECK(is_fixed_array());
return Handle<FixedArray>::cast(storage_);
}
Handle<JSReceiver> storage_jsreceiver() {
DCHECK(!is_fixed_array());
return Handle<JSReceiver>::cast(storage_);
}
private:
// Convert storage to dictionary mode.
void SetDictionaryMode() {
DCHECK(fast_elements() && is_fixed_array());
Handle<FixedArray> current_storage = storage_fixed_array();
Handle<SeededNumberDictionary> slow_storage(
SeededNumberDictionary::New(isolate_, current_storage->length()));
uint32_t current_length = static_cast<uint32_t>(current_storage->length());
FOR_WITH_HANDLE_SCOPE(
isolate_, uint32_t, i = 0, i, i < current_length, i++, {
Handle<Object> element(current_storage->get(i), isolate_);
if (!element->IsTheHole(isolate_)) {
// The object holding this backing store has just been allocated, so
// it cannot yet be used as a prototype.
Handle<SeededNumberDictionary> new_storage =
SeededNumberDictionary::AtNumberPut(slow_storage, i, element,
false);
if (!new_storage.is_identical_to(slow_storage)) {
slow_storage = loop_scope.CloseAndEscape(new_storage);
}
}
});
clear_storage();
set_storage(*slow_storage);
set_fast_elements(false);
}
inline void clear_storage() { GlobalHandles::Destroy(storage_.location()); }
inline void set_storage(FixedArray* storage) {
DCHECK(is_fixed_array());
storage_ = isolate_->global_handles()->Create(storage);
}
class FastElementsField : public BitField<bool, 0, 1> {};
class ExceedsLimitField : public BitField<bool, 1, 1> {};
class IsFixedArrayField : public BitField<bool, 2, 1> {};
bool fast_elements() const { return FastElementsField::decode(bit_field_); }
void set_fast_elements(bool fast) {
bit_field_ = FastElementsField::update(bit_field_, fast);
}
void set_exceeds_array_limit(bool exceeds) {
bit_field_ = ExceedsLimitField::update(bit_field_, exceeds);
}
bool is_fixed_array() const { return IsFixedArrayField::decode(bit_field_); }
Isolate* isolate_;
Handle<Object> storage_; // Always a global handle.
// Index after last seen index. Always less than or equal to
// JSObject::kMaxElementCount.
uint32_t index_offset_;
uint32_t bit_field_;
};
uint32_t EstimateElementCount(Handle<JSArray> array) {
DisallowHeapAllocation no_gc;
uint32_t length = static_cast<uint32_t>(array->length()->Number());
int element_count = 0;
switch (array->GetElementsKind()) {
case FAST_SMI_ELEMENTS:
case FAST_HOLEY_SMI_ELEMENTS:
case FAST_ELEMENTS:
case FAST_HOLEY_ELEMENTS: {
// Fast elements can't have lengths that are not representable by
// a 32-bit signed integer.
DCHECK(static_cast<int32_t>(FixedArray::kMaxLength) >= 0);
int fast_length = static_cast<int>(length);
Isolate* isolate = array->GetIsolate();
FixedArray* elements = FixedArray::cast(array->elements());
for (int i = 0; i < fast_length; i++) {
if (!elements->get(i)->IsTheHole(isolate)) element_count++;
}
break;
}
case FAST_DOUBLE_ELEMENTS:
case FAST_HOLEY_DOUBLE_ELEMENTS: {
// Fast elements can't have lengths that are not representable by
// a 32-bit signed integer.
DCHECK(static_cast<int32_t>(FixedDoubleArray::kMaxLength) >= 0);
int fast_length = static_cast<int>(length);
if (array->elements()->IsFixedArray()) {
DCHECK(FixedArray::cast(array->elements())->length() == 0);
break;
}
FixedDoubleArray* elements = FixedDoubleArray::cast(array->elements());
for (int i = 0; i < fast_length; i++) {
if (!elements->is_the_hole(i)) element_count++;
}
break;
}
case DICTIONARY_ELEMENTS: {
SeededNumberDictionary* dictionary =
SeededNumberDictionary::cast(array->elements());
Isolate* isolate = dictionary->GetIsolate();
int capacity = dictionary->Capacity();
for (int i = 0; i < capacity; i++) {
Object* key = dictionary->KeyAt(i);
if (dictionary->IsKey(isolate, key)) {
element_count++;
}
}
break;
}
#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) case TYPE##_ELEMENTS:
TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
// External arrays are always dense.
return length;
case NO_ELEMENTS:
return 0;
case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
case FAST_STRING_WRAPPER_ELEMENTS:
case SLOW_STRING_WRAPPER_ELEMENTS:
UNREACHABLE();
return 0;
}
// As an estimate, we assume that the prototype doesn't contain any
// inherited elements.
return element_count;
}
// Used for sorting indices in a List<uint32_t>.
int compareUInt32(const uint32_t* ap, const uint32_t* bp) {
uint32_t a = *ap;
uint32_t b = *bp;
return (a == b) ? 0 : (a < b) ? -1 : 1;
}
void CollectElementIndices(Handle<JSObject> object, uint32_t range,
List<uint32_t>* indices) {
Isolate* isolate = object->GetIsolate();
ElementsKind kind = object->GetElementsKind();
switch (kind) {
case FAST_SMI_ELEMENTS:
case FAST_ELEMENTS:
case FAST_HOLEY_SMI_ELEMENTS:
case FAST_HOLEY_ELEMENTS: {
DisallowHeapAllocation no_gc;
FixedArray* elements = FixedArray::cast(object->elements());
uint32_t length = static_cast<uint32_t>(elements->length());
if (range < length) length = range;
for (uint32_t i = 0; i < length; i++) {
if (!elements->get(i)->IsTheHole(isolate)) {
indices->Add(i);
}
}
break;
}
case FAST_HOLEY_DOUBLE_ELEMENTS:
case FAST_DOUBLE_ELEMENTS: {
if (object->elements()->IsFixedArray()) {
DCHECK(object->elements()->length() == 0);
break;
}
Handle<FixedDoubleArray> elements(
FixedDoubleArray::cast(object->elements()));
uint32_t length = static_cast<uint32_t>(elements->length());
if (range < length) length = range;
for (uint32_t i = 0; i < length; i++) {
if (!elements->is_the_hole(i)) {
indices->Add(i);
}
}
break;
}
case DICTIONARY_ELEMENTS: {
DisallowHeapAllocation no_gc;
SeededNumberDictionary* dict =
SeededNumberDictionary::cast(object->elements());
uint32_t capacity = dict->Capacity();
FOR_WITH_HANDLE_SCOPE(isolate, uint32_t, j = 0, j, j < capacity, j++, {
Object* k = dict->KeyAt(j);
if (!dict->IsKey(isolate, k)) continue;
DCHECK(k->IsNumber());
uint32_t index = static_cast<uint32_t>(k->Number());
if (index < range) {
indices->Add(index);
}
});
break;
}
#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) case TYPE##_ELEMENTS:
TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
{
uint32_t length = static_cast<uint32_t>(
FixedArrayBase::cast(object->elements())->length());
if (range <= length) {
length = range;
// We will add all indices, so we might as well clear it first
// and avoid duplicates.
indices->Clear();
}
for (uint32_t i = 0; i < length; i++) {
indices->Add(i);
}
if (length == range) return; // All indices accounted for already.
break;
}
case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: {
ElementsAccessor* accessor = object->GetElementsAccessor();
for (uint32_t i = 0; i < range; i++) {
if (accessor->HasElement(object, i)) {
indices->Add(i);
}
}
break;
}
case FAST_STRING_WRAPPER_ELEMENTS:
case SLOW_STRING_WRAPPER_ELEMENTS: {
DCHECK(object->IsJSValue());
Handle<JSValue> js_value = Handle<JSValue>::cast(object);
DCHECK(js_value->value()->IsString());
Handle<String> string(String::cast(js_value->value()), isolate);
uint32_t length = static_cast<uint32_t>(string->length());
uint32_t i = 0;
uint32_t limit = Min(length, range);
for (; i < limit; i++) {
indices->Add(i);
}
ElementsAccessor* accessor = object->GetElementsAccessor();
for (; i < range; i++) {
if (accessor->HasElement(object, i)) {
indices->Add(i);
}
}
break;
}
case NO_ELEMENTS:
break;
}
PrototypeIterator iter(isolate, object);
if (!iter.IsAtEnd()) {
// The prototype will usually have no inherited element indices,
// but we have to check.
CollectElementIndices(PrototypeIterator::GetCurrent<JSObject>(iter), range,
indices);
}
}
bool IterateElementsSlow(Isolate* isolate, Handle<JSReceiver> receiver,
uint32_t length, ArrayConcatVisitor* visitor) {
FOR_WITH_HANDLE_SCOPE(isolate, uint32_t, i = 0, i, i < length, ++i, {
Maybe<bool> maybe = JSReceiver::HasElement(receiver, i);
if (!maybe.IsJust()) return false;
if (maybe.FromJust()) {
Handle<Object> element_value;
ASSIGN_RETURN_ON_EXCEPTION_VALUE(
isolate, element_value, JSReceiver::GetElement(isolate, receiver, i),
false);
if (!visitor->visit(i, element_value)) return false;
}
});
visitor->increase_index_offset(length);
return true;
}
/**
* A helper function that visits "array" elements of a JSReceiver in numerical
* order.
*
* The visitor argument called for each existing element in the array
* with the element index and the element's value.
* Afterwards it increments the base-index of the visitor by the array
* length.
* Returns false if any access threw an exception, otherwise true.
*/
bool IterateElements(Isolate* isolate, Handle<JSReceiver> receiver,
ArrayConcatVisitor* visitor) {
uint32_t length = 0;
if (receiver->IsJSArray()) {
Handle<JSArray> array = Handle<JSArray>::cast(receiver);
length = static_cast<uint32_t>(array->length()->Number());
} else {
Handle<Object> val;
ASSIGN_RETURN_ON_EXCEPTION_VALUE(
isolate, val, Object::GetLengthFromArrayLike(isolate, receiver), false);
// TODO(caitp): Support larger element indexes (up to 2^53-1).
if (!val->ToUint32(&length)) {
length = 0;
}
// TODO(cbruni): handle other element kind as well
return IterateElementsSlow(isolate, receiver, length, visitor);
}
if (!HasOnlySimpleElements(isolate, *receiver)) {
return IterateElementsSlow(isolate, receiver, length, visitor);
}
Handle<JSObject> array = Handle<JSObject>::cast(receiver);
switch (array->GetElementsKind()) {
case FAST_SMI_ELEMENTS:
case FAST_ELEMENTS:
case FAST_HOLEY_SMI_ELEMENTS:
case FAST_HOLEY_ELEMENTS: {
// Run through the elements FixedArray and use HasElement and GetElement
// to check the prototype for missing elements.
Handle<FixedArray> elements(FixedArray::cast(array->elements()));
int fast_length = static_cast<int>(length);
DCHECK(fast_length <= elements->length());
FOR_WITH_HANDLE_SCOPE(isolate, int, j = 0, j, j < fast_length, j++, {
Handle<Object> element_value(elements->get(j), isolate);
if (!element_value->IsTheHole(isolate)) {
if (!visitor->visit(j, element_value)) return false;
} else {
Maybe<bool> maybe = JSReceiver::HasElement(array, j);
if (!maybe.IsJust()) return false;
if (maybe.FromJust()) {
// Call GetElement on array, not its prototype, or getters won't
// have the correct receiver.
ASSIGN_RETURN_ON_EXCEPTION_VALUE(
isolate, element_value,
JSReceiver::GetElement(isolate, array, j), false);
if (!visitor->visit(j, element_value)) return false;
}
}
});
break;
}
case FAST_HOLEY_DOUBLE_ELEMENTS:
case FAST_DOUBLE_ELEMENTS: {
// Empty array is FixedArray but not FixedDoubleArray.
if (length == 0) break;
// Run through the elements FixedArray and use HasElement and GetElement
// to check the prototype for missing elements.
if (array->elements()->IsFixedArray()) {
DCHECK(array->elements()->length() == 0);
break;
}
Handle<FixedDoubleArray> elements(
FixedDoubleArray::cast(array->elements()));
int fast_length = static_cast<int>(length);
DCHECK(fast_length <= elements->length());
FOR_WITH_HANDLE_SCOPE(isolate, int, j = 0, j, j < fast_length, j++, {
if (!elements->is_the_hole(j)) {
double double_value = elements->get_scalar(j);
Handle<Object> element_value =
isolate->factory()->NewNumber(double_value);
if (!visitor->visit(j, element_value)) return false;
} else {
Maybe<bool> maybe = JSReceiver::HasElement(array, j);
if (!maybe.IsJust()) return false;
if (maybe.FromJust()) {
// Call GetElement on array, not its prototype, or getters won't
// have the correct receiver.
Handle<Object> element_value;
ASSIGN_RETURN_ON_EXCEPTION_VALUE(
isolate, element_value,
JSReceiver::GetElement(isolate, array, j), false);
if (!visitor->visit(j, element_value)) return false;
}
}
});
break;
}
case DICTIONARY_ELEMENTS: {
Handle<SeededNumberDictionary> dict(array->element_dictionary());
List<uint32_t> indices(dict->Capacity() / 2);
// Collect all indices in the object and the prototypes less
// than length. This might introduce duplicates in the indices list.
CollectElementIndices(array, length, &indices);
indices.Sort(&compareUInt32);
int n = indices.length();
FOR_WITH_HANDLE_SCOPE(isolate, int, j = 0, j, j < n, (void)0, {
uint32_t index = indices[j];
Handle<Object> element;
ASSIGN_RETURN_ON_EXCEPTION_VALUE(
isolate, element, JSReceiver::GetElement(isolate, array, index),
false);
if (!visitor->visit(index, element)) return false;
// Skip to next different index (i.e., omit duplicates).
do {
j++;
} while (j < n && indices[j] == index);
});
break;
}
case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: {
FOR_WITH_HANDLE_SCOPE(
isolate, uint32_t, index = 0, index, index < length, index++, {
Handle<Object> element;
ASSIGN_RETURN_ON_EXCEPTION_VALUE(
isolate, element, JSReceiver::GetElement(isolate, array, index),
false);
if (!visitor->visit(index, element)) return false;
});
break;
}
case NO_ELEMENTS:
break;
#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) case TYPE##_ELEMENTS:
TYPED_ARRAYS(TYPED_ARRAY_CASE)
#undef TYPED_ARRAY_CASE
return IterateElementsSlow(isolate, receiver, length, visitor);
case FAST_STRING_WRAPPER_ELEMENTS:
case SLOW_STRING_WRAPPER_ELEMENTS:
// |array| is guaranteed to be an array or typed array.
UNREACHABLE();
break;
}
visitor->increase_index_offset(length);
return true;
}
static Maybe<bool> IsConcatSpreadable(Isolate* isolate, Handle<Object> obj) {
HandleScope handle_scope(isolate);
if (!obj->IsJSReceiver()) return Just(false);
if (!isolate->IsIsConcatSpreadableLookupChainIntact()) {
// Slow path if @@isConcatSpreadable has been used.
Handle<Symbol> key(isolate->factory()->is_concat_spreadable_symbol());
Handle<Object> value;
MaybeHandle<Object> maybeValue =
i::Runtime::GetObjectProperty(isolate, obj, key);
if (!maybeValue.ToHandle(&value)) return Nothing<bool>();
if (!value->IsUndefined(isolate)) return Just(value->BooleanValue());
}
return Object::IsArray(obj);
}
Object* Slow_ArrayConcat(BuiltinArguments* args, Handle<Object> species,
Isolate* isolate) {
int argument_count = args->length();
bool is_array_species = *species == isolate->context()->array_function();
// Pass 1: estimate the length and number of elements of the result.
// The actual length can be larger if any of the arguments have getters
// that mutate other arguments (but will otherwise be precise).
// The number of elements is precise if there are no inherited elements.
ElementsKind kind = FAST_SMI_ELEMENTS;
uint32_t estimate_result_length = 0;
uint32_t estimate_nof_elements = 0;
FOR_WITH_HANDLE_SCOPE(isolate, int, i = 0, i, i < argument_count, i++, {
Handle<Object> obj((*args)[i], isolate);
uint32_t length_estimate;
uint32_t element_estimate;
if (obj->IsJSArray()) {
Handle<JSArray> array(Handle<JSArray>::cast(obj));
length_estimate = static_cast<uint32_t>(array->length()->Number());
if (length_estimate != 0) {
ElementsKind array_kind =
GetPackedElementsKind(array->GetElementsKind());
kind = GetMoreGeneralElementsKind(kind, array_kind);
}
element_estimate = EstimateElementCount(array);
} else {
if (obj->IsHeapObject()) {
kind = GetMoreGeneralElementsKind(
kind, obj->IsNumber() ? FAST_DOUBLE_ELEMENTS : FAST_ELEMENTS);
}
length_estimate = 1;
element_estimate = 1;
}
// Avoid overflows by capping at kMaxElementCount.
if (JSObject::kMaxElementCount - estimate_result_length < length_estimate) {
estimate_result_length = JSObject::kMaxElementCount;
} else {
estimate_result_length += length_estimate;
}
if (JSObject::kMaxElementCount - estimate_nof_elements < element_estimate) {
estimate_nof_elements = JSObject::kMaxElementCount;
} else {
estimate_nof_elements += element_estimate;
}
});
// If estimated number of elements is more than half of length, a
// fixed array (fast case) is more time and space-efficient than a
// dictionary.
bool fast_case =
is_array_species && (estimate_nof_elements * 2) >= estimate_result_length;
if (fast_case && kind == FAST_DOUBLE_ELEMENTS) {
Handle<FixedArrayBase> storage =
isolate->factory()->NewFixedDoubleArray(estimate_result_length);
int j = 0;
bool failure = false;
if (estimate_result_length > 0) {
Handle<FixedDoubleArray> double_storage =
Handle<FixedDoubleArray>::cast(storage);
for (int i = 0; i < argument_count; i++) {
Handle<Object> obj((*args)[i], isolate);
if (obj->IsSmi()) {
double_storage->set(j, Smi::cast(*obj)->value());
j++;
} else if (obj->IsNumber()) {
double_storage->set(j, obj->Number());
j++;
} else {
DisallowHeapAllocation no_gc;
JSArray* array = JSArray::cast(*obj);
uint32_t length = static_cast<uint32_t>(array->length()->Number());
switch (array->GetElementsKind()) {
case FAST_HOLEY_DOUBLE_ELEMENTS:
case FAST_DOUBLE_ELEMENTS: {
// Empty array is FixedArray but not FixedDoubleArray.
if (length == 0) break;
FixedDoubleArray* elements =
FixedDoubleArray::cast(array->elements());
for (uint32_t i = 0; i < length; i++) {
if (elements->is_the_hole(i)) {
// TODO(jkummerow/verwaest): We could be a bit more clever
// here: Check if there are no elements/getters on the
// prototype chain, and if so, allow creation of a holey
// result array.
// Same thing below (holey smi case).
failure = true;
break;
}
double double_value = elements->get_scalar(i);
double_storage->set(j, double_value);
j++;
}
break;
}
case FAST_HOLEY_SMI_ELEMENTS:
case FAST_SMI_ELEMENTS: {
Object* the_hole = isolate->heap()->the_hole_value();
FixedArray* elements(FixedArray::cast(array->elements()));
for (uint32_t i = 0; i < length; i++) {
Object* element = elements->get(i);
if (element == the_hole) {
failure = true;
break;
}
int32_t int_value = Smi::cast(element)->value();
double_storage->set(j, int_value);
j++;
}
break;
}
case FAST_HOLEY_ELEMENTS:
case FAST_ELEMENTS:
case DICTIONARY_ELEMENTS:
case NO_ELEMENTS:
DCHECK_EQ(0u, length);
break;
default:
UNREACHABLE();
}
}
if (failure) break;
}
}
if (!failure) {
return *isolate->factory()->NewJSArrayWithElements(storage, kind, j);
}
// In case of failure, fall through.
}
Handle<Object> storage;
if (fast_case) {
// The backing storage array must have non-existing elements to preserve
// holes across concat operations.
storage =
isolate->factory()->NewFixedArrayWithHoles(estimate_result_length);
} else if (is_array_species) {
// TODO(126): move 25% pre-allocation logic into Dictionary::Allocate
uint32_t at_least_space_for =
estimate_nof_elements + (estimate_nof_elements >> 2);
storage = SeededNumberDictionary::New(isolate, at_least_space_for);
} else {
DCHECK(species->IsConstructor());
Handle<Object> length(Smi::FromInt(0), isolate);
Handle<Object> storage_object;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, storage_object,
Execution::New(isolate, species, species, 1, &length));
storage = storage_object;
}
ArrayConcatVisitor visitor(isolate, storage, fast_case);
for (int i = 0; i < argument_count; i++) {
Handle<Object> obj((*args)[i], isolate);
Maybe<bool> spreadable = IsConcatSpreadable(isolate, obj);
MAYBE_RETURN(spreadable, isolate->heap()->exception());
if (spreadable.FromJust()) {
Handle<JSReceiver> object = Handle<JSReceiver>::cast(obj);
if (!IterateElements(isolate, object, &visitor)) {
return isolate->heap()->exception();
}
} else {
if (!visitor.visit(0, obj)) return isolate->heap()->exception();
visitor.increase_index_offset(1);
}
}
if (visitor.exceeds_array_limit()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewRangeError(MessageTemplate::kInvalidArrayLength));
}
if (is_array_species) {
return *visitor.ToArray();
} else {
return *visitor.storage_jsreceiver();
}
}
bool IsSimpleArray(Isolate* isolate, Handle<JSArray> obj) {
DisallowHeapAllocation no_gc;
Map* map = obj->map();
// If there is only the 'length' property we are fine.
if (map->prototype() ==
isolate->native_context()->initial_array_prototype() &&
map->NumberOfOwnDescriptors() == 1) {
return true;
}
// TODO(cbruni): slower lookup for array subclasses and support slow
// @@IsConcatSpreadable lookup.
return false;
}
MaybeHandle<JSArray> Fast_ArrayConcat(Isolate* isolate,
BuiltinArguments* args) {
if (!isolate->IsIsConcatSpreadableLookupChainIntact()) {
return MaybeHandle<JSArray>();
}
// We shouldn't overflow when adding another len.
const int kHalfOfMaxInt = 1 << (kBitsPerInt - 2);
STATIC_ASSERT(FixedArray::kMaxLength < kHalfOfMaxInt);
STATIC_ASSERT(FixedDoubleArray::kMaxLength < kHalfOfMaxInt);
USE(kHalfOfMaxInt);
int n_arguments = args->length();
int result_len = 0;
{
DisallowHeapAllocation no_gc;
// Iterate through all the arguments performing checks
// and calculating total length.
for (int i = 0; i < n_arguments; i++) {
Object* arg = (*args)[i];
if (!arg->IsJSArray()) return MaybeHandle<JSArray>();
if (!HasOnlySimpleReceiverElements(isolate, JSObject::cast(arg))) {
return MaybeHandle<JSArray>();
}
// TODO(cbruni): support fast concatenation of DICTIONARY_ELEMENTS.
if (!JSObject::cast(arg)->HasFastElements()) {
return MaybeHandle<JSArray>();
}
Handle<JSArray> array(JSArray::cast(arg), isolate);
if (!IsSimpleArray(isolate, array)) {
return MaybeHandle<JSArray>();
}
// The Array length is guaranted to be <= kHalfOfMaxInt thus we won't
// overflow.
result_len += Smi::cast(array->length())->value();
DCHECK(result_len >= 0);
// Throw an Error if we overflow the FixedArray limits
if (FixedDoubleArray::kMaxLength < result_len ||
FixedArray::kMaxLength < result_len) {
AllowHeapAllocation gc;
THROW_NEW_ERROR(isolate,
NewRangeError(MessageTemplate::kInvalidArrayLength),
JSArray);
}
}
}
return ElementsAccessor::Concat(isolate, args, n_arguments, result_len);
}
} // namespace
// ES6 22.1.3.1 Array.prototype.concat
BUILTIN(ArrayConcat) {
HandleScope scope(isolate);
Handle<Object> receiver = args.receiver();
// TODO(bmeurer): Do we really care about the exact exception message here?
if (receiver->IsNull(isolate) || receiver->IsUndefined(isolate)) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kCalledOnNullOrUndefined,
isolate->factory()->NewStringFromAsciiChecked(
"Array.prototype.concat")));
}
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, receiver, Object::ToObject(isolate, args.receiver()));
args[0] = *receiver;
Handle<JSArray> result_array;
// Avoid a real species read to avoid extra lookups to the array constructor
if (V8_LIKELY(receiver->IsJSArray() &&
Handle<JSArray>::cast(receiver)->HasArrayPrototype(isolate) &&
isolate->IsArraySpeciesLookupChainIntact())) {
if (Fast_ArrayConcat(isolate, &args).ToHandle(&result_array)) {
return *result_array;
}
if (isolate->has_pending_exception()) return isolate->heap()->exception();
}
// Reading @@species happens before anything else with a side effect, so
// we can do it here to determine whether to take the fast path.
Handle<Object> species;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, species, Object::ArraySpeciesConstructor(isolate, receiver));
if (*species == *isolate->array_function()) {
if (Fast_ArrayConcat(isolate, &args).ToHandle(&result_array)) {
return *result_array;
}
if (isolate->has_pending_exception()) return isolate->heap()->exception();
}
return Slow_ArrayConcat(&args, species, isolate);
}
namespace {
MUST_USE_RESULT Maybe<bool> FastAssign(Handle<JSReceiver> to,
Handle<Object> next_source) {
// Non-empty strings are the only non-JSReceivers that need to be handled
// explicitly by Object.assign.
if (!next_source->IsJSReceiver()) {
return Just(!next_source->IsString() ||
String::cast(*next_source)->length() == 0);
}
// If the target is deprecated, the object will be updated on first store. If
// the source for that store equals the target, this will invalidate the
// cached representation of the source. Preventively upgrade the target.
// Do this on each iteration since any property load could cause deprecation.
if (to->map()->is_deprecated()) {
JSObject::MigrateInstance(Handle<JSObject>::cast(to));
}
Isolate* isolate = to->GetIsolate();
Handle<Map> map(JSReceiver::cast(*next_source)->map(), isolate);
if (!map->IsJSObjectMap()) return Just(false);
if (!map->OnlyHasSimpleProperties()) return Just(false);
Handle<JSObject> from = Handle<JSObject>::cast(next_source);
if (from->elements() != isolate->heap()->empty_fixed_array()) {
return Just(false);
}
Handle<DescriptorArray> descriptors(map->instance_descriptors(), isolate);
int length = map->NumberOfOwnDescriptors();
bool stable = true;
for (int i = 0; i < length; i++) {
Handle<Name> next_key(descriptors->GetKey(i), isolate);
Handle<Object> prop_value;
// Directly decode from the descriptor array if |from| did not change shape.
if (stable) {
PropertyDetails details = descriptors->GetDetails(i);
if (!details.IsEnumerable()) continue;
if (details.kind() == kData) {
if (details.location() == kDescriptor) {
prop_value = handle(descriptors->GetValue(i), isolate);
} else {
Representation representation = details.representation();
FieldIndex index = FieldIndex::ForDescriptor(*map, i);
prop_value = JSObject::FastPropertyAt(from, representation, index);
}
} else {
ASSIGN_RETURN_ON_EXCEPTION_VALUE(
isolate, prop_value, JSReceiver::GetProperty(from, next_key),
Nothing<bool>());
stable = from->map() == *map;
}
} else {
// If the map did change, do a slower lookup. We are still guaranteed that
// the object has a simple shape, and that the key is a name.
LookupIterator it(from, next_key, from,
LookupIterator::OWN_SKIP_INTERCEPTOR);
if (!it.IsFound()) continue;
DCHECK(it.state() == LookupIterator::DATA ||
it.state() == LookupIterator::ACCESSOR);
if (!it.IsEnumerable()) continue;
ASSIGN_RETURN_ON_EXCEPTION_VALUE(
isolate, prop_value, Object::GetProperty(&it), Nothing<bool>());
}
LookupIterator it(to, next_key, to);
bool call_to_js = it.IsFound() && it.state() != LookupIterator::DATA;
Maybe<bool> result = Object::SetProperty(
&it, prop_value, STRICT, Object::CERTAINLY_NOT_STORE_FROM_KEYED);
if (result.IsNothing()) return result;
if (stable && call_to_js) stable = from->map() == *map;
}
return Just(true);
}
} // namespace
// ES6 19.1.2.1 Object.assign
BUILTIN(ObjectAssign) {
HandleScope scope(isolate);
Handle<Object> target = args.atOrUndefined(isolate, 1);
// 1. Let to be ? ToObject(target).
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, target,
Object::ToObject(isolate, target));
Handle<JSReceiver> to = Handle<JSReceiver>::cast(target);
// 2. If only one argument was passed, return to.
if (args.length() == 2) return *to;
// 3. Let sources be the List of argument values starting with the
// second argument.
// 4. For each element nextSource of sources, in ascending index order,
for (int i = 2; i < args.length(); ++i) {
Handle<Object> next_source = args.at<Object>(i);
Maybe<bool> fast_assign = FastAssign(to, next_source);
if (fast_assign.IsNothing()) return isolate->heap()->exception();
if (fast_assign.FromJust()) continue;
// 4a. If nextSource is undefined or null, let keys be an empty List.
// 4b. Else,
// 4b i. Let from be ToObject(nextSource).
// Only non-empty strings and JSReceivers have enumerable properties.
Handle<JSReceiver> from =
Object::ToObject(isolate, next_source).ToHandleChecked();
// 4b ii. Let keys be ? from.[[OwnPropertyKeys]]().
Handle<FixedArray> keys;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, keys, KeyAccumulator::GetKeys(
from, KeyCollectionMode::kOwnOnly, ALL_PROPERTIES,
GetKeysConversion::kKeepNumbers));
// 4c. Repeat for each element nextKey of keys in List order,
for (int j = 0; j < keys->length(); ++j) {
Handle<Object> next_key(keys->get(j), isolate);
// 4c i. Let desc be ? from.[[GetOwnProperty]](nextKey).
PropertyDescriptor desc;
Maybe<bool> found =
JSReceiver::GetOwnPropertyDescriptor(isolate, from, next_key, &desc);
if (found.IsNothing()) return isolate->heap()->exception();
// 4c ii. If desc is not undefined and desc.[[Enumerable]] is true, then
if (found.FromJust() && desc.enumerable()) {
// 4c ii 1. Let propValue be ? Get(from, nextKey).
Handle<Object> prop_value;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, prop_value,
Runtime::GetObjectProperty(isolate, from, next_key));
// 4c ii 2. Let status be ? Set(to, nextKey, propValue, true).
Handle<Object> status;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, status, Runtime::SetObjectProperty(isolate, to, next_key,
prop_value, STRICT));
}
}
}
// 5. Return to.
return *to;
}
// ES6 section 19.1.2.2 Object.create ( O [ , Properties ] )
// TODO(verwaest): Support the common cases with precached map directly in
// an Object.create stub.
BUILTIN(ObjectCreate) {
HandleScope scope(isolate);
Handle<Object> prototype = args.atOrUndefined(isolate, 1);
if (!prototype->IsNull(isolate) && !prototype->IsJSReceiver()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kProtoObjectOrNull, prototype));
}
// Generate the map with the specified {prototype} based on the Object
// function's initial map from the current native context.
// TODO(bmeurer): Use a dedicated cache for Object.create; think about
// slack tracking for Object.create.
Handle<Map> map(isolate->native_context()->object_function()->initial_map(),
isolate);
if (map->prototype() != *prototype) {
if (prototype->IsNull(isolate)) {
map = isolate->object_with_null_prototype_map();
} else if (prototype->IsJSObject()) {
Handle<JSObject> js_prototype = Handle<JSObject>::cast(prototype);
if (!js_prototype->map()->is_prototype_map()) {
JSObject::OptimizeAsPrototype(js_prototype, FAST_PROTOTYPE);
}
Handle<PrototypeInfo> info =
Map::GetOrCreatePrototypeInfo(js_prototype, isolate);
// TODO(verwaest): Use inobject slack tracking for this map.
if (info->HasObjectCreateMap()) {
map = handle(info->ObjectCreateMap(), isolate);
} else {
map = Map::CopyInitialMap(map);
Map::SetPrototype(map, prototype, FAST_PROTOTYPE);
PrototypeInfo::SetObjectCreateMap(info, map);
}
} else {
map = Map::TransitionToPrototype(map, prototype, REGULAR_PROTOTYPE);
}
}
// Actually allocate the object.
Handle<JSObject> object = isolate->factory()->NewJSObjectFromMap(map);
// Define the properties if properties was specified and is not undefined.
Handle<Object> properties = args.atOrUndefined(isolate, 2);
if (!properties->IsUndefined(isolate)) {
RETURN_FAILURE_ON_EXCEPTION(
isolate, JSReceiver::DefineProperties(isolate, object, properties));
}
return *object;
}
// ES6 section 19.1.2.3 Object.defineProperties
BUILTIN(ObjectDefineProperties) {
HandleScope scope(isolate);
DCHECK_EQ(3, args.length());
Handle<Object> target = args.at<Object>(1);
Handle<Object> properties = args.at<Object>(2);
RETURN_RESULT_OR_FAILURE(
isolate, JSReceiver::DefineProperties(isolate, target, properties));
}
// ES6 section 19.1.2.4 Object.defineProperty
BUILTIN(ObjectDefineProperty) {
HandleScope scope(isolate);
DCHECK_EQ(4, args.length());
Handle<Object> target = args.at<Object>(1);
Handle<Object> key = args.at<Object>(2);
Handle<Object> attributes = args.at<Object>(3);
return JSReceiver::DefineProperty(isolate, target, key, attributes);
}
namespace {
template <AccessorComponent which_accessor>
Object* ObjectDefineAccessor(Isolate* isolate, Handle<Object> object,
Handle<Object> name, Handle<Object> accessor) {
// 1. Let O be ? ToObject(this value).
Handle<JSReceiver> receiver;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, receiver,
Object::ConvertReceiver(isolate, object));
// 2. If IsCallable(getter) is false, throw a TypeError exception.
if (!accessor->IsCallable()) {
MessageTemplate::Template message =
which_accessor == ACCESSOR_GETTER
? MessageTemplate::kObjectGetterExpectingFunction
: MessageTemplate::kObjectSetterExpectingFunction;
THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewTypeError(message));
}
// 3. Let desc be PropertyDescriptor{[[Get]]: getter, [[Enumerable]]: true,
// [[Configurable]]: true}.
PropertyDescriptor desc;
if (which_accessor == ACCESSOR_GETTER) {
desc.set_get(accessor);
} else {
DCHECK(which_accessor == ACCESSOR_SETTER);
desc.set_set(accessor);
}
desc.set_enumerable(true);
desc.set_configurable(true);
// 4. Let key be ? ToPropertyKey(P).
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, name,
Object::ToPropertyKey(isolate, name));
// 5. Perform ? DefinePropertyOrThrow(O, key, desc).
// To preserve legacy behavior, we ignore errors silently rather than
// throwing an exception.
Maybe<bool> success = JSReceiver::DefineOwnProperty(
isolate, receiver, name, &desc, Object::DONT_THROW);
MAYBE_RETURN(success, isolate->heap()->exception());
if (!success.FromJust()) {
isolate->CountUsage(v8::Isolate::kDefineGetterOrSetterWouldThrow);
}
// 6. Return undefined.
return isolate->heap()->undefined_value();
}
Object* ObjectLookupAccessor(Isolate* isolate, Handle<Object> object,
Handle<Object> key, AccessorComponent component) {
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, object,
Object::ConvertReceiver(isolate, object));
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, key,
Object::ToPropertyKey(isolate, key));
bool success = false;
LookupIterator it = LookupIterator::PropertyOrElement(
isolate, object, key, &success,
LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR);
DCHECK(success);
for (; it.IsFound(); it.Next()) {
switch (it.state()) {
case LookupIterator::INTERCEPTOR:
case LookupIterator::NOT_FOUND:
case LookupIterator::TRANSITION:
UNREACHABLE();
case LookupIterator::ACCESS_CHECK:
if (it.HasAccess()) continue;
isolate->ReportFailedAccessCheck(it.GetHolder<JSObject>());
RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
return isolate->heap()->undefined_value();
case LookupIterator::JSPROXY:
return isolate->heap()->undefined_value();
case LookupIterator::INTEGER_INDEXED_EXOTIC:
return isolate->heap()->undefined_value();
case LookupIterator::DATA:
continue;
case LookupIterator::ACCESSOR: {
Handle<Object> maybe_pair = it.GetAccessors();
if (maybe_pair->IsAccessorPair()) {
return *AccessorPair::GetComponent(
Handle<AccessorPair>::cast(maybe_pair), component);
}
}
}
}
return isolate->heap()->undefined_value();
}
} // namespace
// ES6 B.2.2.2 a.k.a.
// https://tc39.github.io/ecma262/#sec-object.prototype.__defineGetter__
BUILTIN(ObjectDefineGetter) {
HandleScope scope(isolate);
Handle<Object> object = args.at<Object>(0); // Receiver.
Handle<Object> name = args.at<Object>(1);
Handle<Object> getter = args.at<Object>(2);
return ObjectDefineAccessor<ACCESSOR_GETTER>(isolate, object, name, getter);
}
// ES6 B.2.2.3 a.k.a.
// https://tc39.github.io/ecma262/#sec-object.prototype.__defineSetter__
BUILTIN(ObjectDefineSetter) {
HandleScope scope(isolate);
Handle<Object> object = args.at<Object>(0); // Receiver.
Handle<Object> name = args.at<Object>(1);
Handle<Object> setter = args.at<Object>(2);
return ObjectDefineAccessor<ACCESSOR_SETTER>(isolate, object, name, setter);
}
// ES6 B.2.2.4 a.k.a.
// https://tc39.github.io/ecma262/#sec-object.prototype.__lookupGetter__
BUILTIN(ObjectLookupGetter) {
HandleScope scope(isolate);
Handle<Object> object = args.at<Object>(0);
Handle<Object> name = args.at<Object>(1);
return ObjectLookupAccessor(isolate, object, name, ACCESSOR_GETTER);
}
// ES6 B.2.2.5 a.k.a.
// https://tc39.github.io/ecma262/#sec-object.prototype.__lookupSetter__
BUILTIN(ObjectLookupSetter) {
HandleScope scope(isolate);
Handle<Object> object = args.at<Object>(0);
Handle<Object> name = args.at<Object>(1);
return ObjectLookupAccessor(isolate, object, name, ACCESSOR_SETTER);
}
// ES6 section 19.1.2.5 Object.freeze ( O )
BUILTIN(ObjectFreeze) {
HandleScope scope(isolate);
Handle<Object> object = args.atOrUndefined(isolate, 1);
if (object->IsJSReceiver()) {
MAYBE_RETURN(JSReceiver::SetIntegrityLevel(Handle<JSReceiver>::cast(object),
FROZEN, Object::THROW_ON_ERROR),
isolate->heap()->exception());
}
return *object;
}
// ES section 19.1.2.9 Object.getPrototypeOf ( O )
BUILTIN(ObjectGetPrototypeOf) {
HandleScope scope(isolate);
Handle<Object> object = args.atOrUndefined(isolate, 1);
Handle<JSReceiver> receiver;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, receiver, Object::ToObject(isolate, object));
RETURN_RESULT_OR_FAILURE(isolate,
JSReceiver::GetPrototype(isolate, receiver));
}
// ES6 section 19.1.2.6 Object.getOwnPropertyDescriptor ( O, P )
BUILTIN(ObjectGetOwnPropertyDescriptor) {
HandleScope scope(isolate);
// 1. Let obj be ? ToObject(O).
Handle<Object> object = args.atOrUndefined(isolate, 1);
Handle<JSReceiver> receiver;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, receiver,
Object::ToObject(isolate, object));
// 2. Let key be ? ToPropertyKey(P).
Handle<Object> property = args.atOrUndefined(isolate, 2);
Handle<Name> key;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, key,
Object::ToName(isolate, property));
// 3. Let desc be ? obj.[[GetOwnProperty]](key).
PropertyDescriptor desc;
Maybe<bool> found =
JSReceiver::GetOwnPropertyDescriptor(isolate, receiver, key, &desc);
MAYBE_RETURN(found, isolate->heap()->exception());
// 4. Return FromPropertyDescriptor(desc).
if (!found.FromJust()) return isolate->heap()->undefined_value();
return *desc.ToObject(isolate);
}
namespace {
Object* GetOwnPropertyKeys(Isolate* isolate, BuiltinArguments args,
PropertyFilter filter) {
HandleScope scope(isolate);
Handle<Object> object = args.atOrUndefined(isolate, 1);
Handle<JSReceiver> receiver;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, receiver,
Object::ToObject(isolate, object));
Handle<FixedArray> keys;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, keys,
KeyAccumulator::GetKeys(receiver, KeyCollectionMode::kOwnOnly, filter,
GetKeysConversion::kConvertToString));
return *isolate->factory()->NewJSArrayWithElements(keys);
}
} // namespace
// ES6 section 19.1.2.7 Object.getOwnPropertyNames ( O )
BUILTIN(ObjectGetOwnPropertyNames) {
return GetOwnPropertyKeys(isolate, args, SKIP_SYMBOLS);
}
// ES6 section 19.1.2.8 Object.getOwnPropertySymbols ( O )
BUILTIN(ObjectGetOwnPropertySymbols) {
return GetOwnPropertyKeys(isolate, args, SKIP_STRINGS);
}
// ES#sec-object.is Object.is ( value1, value2 )
BUILTIN(ObjectIs) {
SealHandleScope shs(isolate);
DCHECK_EQ(3, args.length());
Handle<Object> value1 = args.at<Object>(1);
Handle<Object> value2 = args.at<Object>(2);
return isolate->heap()->ToBoolean(value1->SameValue(*value2));
}
// ES6 section 19.1.2.11 Object.isExtensible ( O )
BUILTIN(ObjectIsExtensible) {
HandleScope scope(isolate);
Handle<Object> object = args.atOrUndefined(isolate, 1);
Maybe<bool> result =
object->IsJSReceiver()
? JSReceiver::IsExtensible(Handle<JSReceiver>::cast(object))
: Just(false);
MAYBE_RETURN(result, isolate->heap()->exception());
return isolate->heap()->ToBoolean(result.FromJust());
}
// ES6 section 19.1.2.12 Object.isFrozen ( O )
BUILTIN(ObjectIsFrozen) {
HandleScope scope(isolate);
Handle<Object> object = args.atOrUndefined(isolate, 1);
Maybe<bool> result = object->IsJSReceiver()
? JSReceiver::TestIntegrityLevel(
Handle<JSReceiver>::cast(object), FROZEN)
: Just(true);
MAYBE_RETURN(result, isolate->heap()->exception());
return isolate->heap()->ToBoolean(result.FromJust());
}
// ES6 section 19.1.2.13 Object.isSealed ( O )
BUILTIN(ObjectIsSealed) {
HandleScope scope(isolate);
Handle<Object> object = args.atOrUndefined(isolate, 1);
Maybe<bool> result = object->IsJSReceiver()
? JSReceiver::TestIntegrityLevel(
Handle<JSReceiver>::cast(object), SEALED)
: Just(true);
MAYBE_RETURN(result, isolate->heap()->exception());
return isolate->heap()->ToBoolean(result.FromJust());
}
// ES6 section 19.1.2.14 Object.keys ( O )
BUILTIN(ObjectKeys) {
HandleScope scope(isolate);
Handle<Object> object = args.atOrUndefined(isolate, 1);
Handle<JSReceiver> receiver;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, receiver,
Object::ToObject(isolate, object));
Handle<FixedArray> keys;
int enum_length = receiver->map()->EnumLength();
if (enum_length != kInvalidEnumCacheSentinel &&
JSObject::cast(*receiver)->elements() ==
isolate->heap()->empty_fixed_array()) {
DCHECK(receiver->IsJSObject());
DCHECK(!JSObject::cast(*receiver)->HasNamedInterceptor());
DCHECK(!JSObject::cast(*receiver)->IsAccessCheckNeeded());
DCHECK(!receiver->map()->has_hidden_prototype());
DCHECK(JSObject::cast(*receiver)->HasFastProperties());
if (enum_length == 0) {
keys = isolate->factory()->empty_fixed_array();
} else {
Handle<FixedArray> cache(
receiver->map()->instance_descriptors()->GetEnumCache());
keys = isolate->factory()->CopyFixedArrayUpTo(cache, enum_length);
}
} else {
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, keys,
KeyAccumulator::GetKeys(receiver, KeyCollectionMode::kOwnOnly,
ENUMERABLE_STRINGS,
GetKeysConversion::kConvertToString));
}
return *isolate->factory()->NewJSArrayWithElements(keys, FAST_ELEMENTS);
}
BUILTIN(ObjectValues) {
HandleScope scope(isolate);
Handle<Object> object = args.atOrUndefined(isolate, 1);
Handle<JSReceiver> receiver;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, receiver,
Object::ToObject(isolate, object));
Handle<FixedArray> values;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, values, JSReceiver::GetOwnValues(receiver, ENUMERABLE_STRINGS));
return *isolate->factory()->NewJSArrayWithElements(values);
}
BUILTIN(ObjectEntries) {
HandleScope scope(isolate);
Handle<Object> object = args.atOrUndefined(isolate, 1);
Handle<JSReceiver> receiver;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, receiver,
Object::ToObject(isolate, object));
Handle<FixedArray> entries;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, entries,
JSReceiver::GetOwnEntries(receiver, ENUMERABLE_STRINGS));
return *isolate->factory()->NewJSArrayWithElements(entries);
}
BUILTIN(ObjectGetOwnPropertyDescriptors) {
HandleScope scope(isolate);
Handle<Object> object = args.atOrUndefined(isolate, 1);
Handle<Object> undefined = isolate->factory()->undefined_value();
Handle<JSReceiver> receiver;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, receiver,
Object::ToObject(isolate, object));
Handle<FixedArray> keys;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, keys, KeyAccumulator::GetKeys(
receiver, KeyCollectionMode::kOwnOnly, ALL_PROPERTIES,
GetKeysConversion::kConvertToString));
Handle<JSObject> descriptors =
isolate->factory()->NewJSObject(isolate->object_function());
for (int i = 0; i < keys->length(); ++i) {
Handle<Name> key = Handle<Name>::cast(FixedArray::get(*keys, i, isolate));
PropertyDescriptor descriptor;
Maybe<bool> did_get_descriptor = JSReceiver::GetOwnPropertyDescriptor(
isolate, receiver, key, &descriptor);
MAYBE_RETURN(did_get_descriptor, isolate->heap()->exception());
Handle<Object> from_descriptor = did_get_descriptor.FromJust()
? descriptor.ToObject(isolate)
: undefined;
LookupIterator it = LookupIterator::PropertyOrElement(
isolate, descriptors, key, descriptors, LookupIterator::OWN);
Maybe<bool> success = JSReceiver::CreateDataProperty(&it, from_descriptor,
Object::DONT_THROW);
CHECK(success.FromJust());
}
return *descriptors;
}
// ES6 section 19.1.2.15 Object.preventExtensions ( O )
BUILTIN(ObjectPreventExtensions) {
HandleScope scope(isolate);
Handle<Object> object = args.atOrUndefined(isolate, 1);
if (object->IsJSReceiver()) {
MAYBE_RETURN(JSReceiver::PreventExtensions(Handle<JSReceiver>::cast(object),
Object::THROW_ON_ERROR),
isolate->heap()->exception());
}
return *object;
}
// ES6 section 19.1.2.17 Object.seal ( O )
BUILTIN(ObjectSeal) {
HandleScope scope(isolate);
Handle<Object> object = args.atOrUndefined(isolate, 1);
if (object->IsJSReceiver()) {
MAYBE_RETURN(JSReceiver::SetIntegrityLevel(Handle<JSReceiver>::cast(object),
SEALED, Object::THROW_ON_ERROR),
isolate->heap()->exception());
}
return *object;
}
// ES6 section 18.2.6.2 decodeURI (encodedURI)
BUILTIN(GlobalDecodeURI) {
HandleScope scope(isolate);
Handle<String> encoded_uri;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, encoded_uri,
Object::ToString(isolate, args.atOrUndefined(isolate, 1)));
RETURN_RESULT_OR_FAILURE(isolate, Uri::DecodeUri(isolate, encoded_uri));
}
// ES6 section 18.2.6.3 decodeURIComponent (encodedURIComponent)
BUILTIN(GlobalDecodeURIComponent) {
HandleScope scope(isolate);
Handle<String> encoded_uri_component;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, encoded_uri_component,
Object::ToString(isolate, args.atOrUndefined(isolate, 1)));
RETURN_RESULT_OR_FAILURE(
isolate, Uri::DecodeUriComponent(isolate, encoded_uri_component));
}
// ES6 section 18.2.6.4 encodeURI (uri)
BUILTIN(GlobalEncodeURI) {
HandleScope scope(isolate);
Handle<String> uri;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, uri, Object::ToString(isolate, args.atOrUndefined(isolate, 1)));
RETURN_RESULT_OR_FAILURE(isolate, Uri::EncodeUri(isolate, uri));
}
// ES6 section 18.2.6.5 encodeURIComponenet (uriComponent)
BUILTIN(GlobalEncodeURIComponent) {
HandleScope scope(isolate);
Handle<String> uri_component;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, uri_component,
Object::ToString(isolate, args.atOrUndefined(isolate, 1)));
RETURN_RESULT_OR_FAILURE(isolate,
Uri::EncodeUriComponent(isolate, uri_component));
}
// ES6 section B.2.1.1 escape (string)
BUILTIN(GlobalEscape) {
HandleScope scope(isolate);
Handle<String> string;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, string,
Object::ToString(isolate, args.atOrUndefined(isolate, 1)));
RETURN_RESULT_OR_FAILURE(isolate, Uri::Escape(isolate, string));
}
// ES6 section B.2.1.2 unescape (string)
BUILTIN(GlobalUnescape) {
HandleScope scope(isolate);
Handle<String> string;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, string,
Object::ToString(isolate, args.atOrUndefined(isolate, 1)));
RETURN_RESULT_OR_FAILURE(isolate, Uri::Unescape(isolate, string));
}
namespace {
bool CodeGenerationFromStringsAllowed(Isolate* isolate,
Handle<Context> context) {
DCHECK(context->allow_code_gen_from_strings()->IsFalse(isolate));
// Check with callback if set.
AllowCodeGenerationFromStringsCallback callback =
isolate->allow_code_gen_callback();
if (callback == NULL) {
// No callback set and code generation disallowed.
return false;
} else {
// Callback set. Let it decide if code generation is allowed.
VMState<EXTERNAL> state(isolate);
return callback(v8::Utils::ToLocal(context));
}
}
MaybeHandle<JSFunction> CompileString(Handle<Context> context,
Handle<String> source,
ParseRestriction restriction) {
Isolate* const isolate = context->GetIsolate();
Handle<Context> native_context(context->native_context(), isolate);
// Check if native context allows code generation from
// strings. Throw an exception if it doesn't.
if (native_context->allow_code_gen_from_strings()->IsFalse(isolate) &&
!CodeGenerationFromStringsAllowed(isolate, native_context)) {
Handle<Object> error_message =
native_context->ErrorMessageForCodeGenerationFromStrings();
THROW_NEW_ERROR(isolate, NewEvalError(MessageTemplate::kCodeGenFromStrings,
error_message),
JSFunction);
}
// Compile source string in the native context.
int eval_scope_position = 0;
int eval_position = RelocInfo::kNoPosition;
Handle<SharedFunctionInfo> outer_info(native_context->closure()->shared());
return Compiler::GetFunctionFromEval(source, outer_info, native_context,
SLOPPY, restriction, eval_scope_position,
eval_position);
}
} // namespace
// ES6 section 18.2.1 eval (x)
BUILTIN(GlobalEval) {
HandleScope scope(isolate);
Handle<Object> x = args.atOrUndefined(isolate, 1);
Handle<JSFunction> target = args.target<JSFunction>();
Handle<JSObject> target_global_proxy(target->global_proxy(), isolate);
if (!x->IsString()) return *x;
Handle<JSFunction> function;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, function,
CompileString(handle(target->native_context(), isolate),
Handle<String>::cast(x), NO_PARSE_RESTRICTION));
RETURN_RESULT_OR_FAILURE(
isolate,
Execution::Call(isolate, function, target_global_proxy, 0, nullptr));
}
// ES6 section 24.3.1 JSON.parse.
BUILTIN(JsonParse) {
HandleScope scope(isolate);
Handle<Object> source = args.atOrUndefined(isolate, 1);
Handle<Object> reviver = args.atOrUndefined(isolate, 2);
Handle<String> string;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, string,
Object::ToString(isolate, source));
string = String::Flatten(string);
RETURN_RESULT_OR_FAILURE(
isolate, string->IsSeqOneByteString()
? JsonParser<true>::Parse(isolate, string, reviver)
: JsonParser<false>::Parse(isolate, string, reviver));
}
// ES6 section 24.3.2 JSON.stringify.
BUILTIN(JsonStringify) {
HandleScope scope(isolate);
JsonStringifier stringifier(isolate);
Handle<Object> object = args.atOrUndefined(isolate, 1);
Handle<Object> replacer = args.atOrUndefined(isolate, 2);
Handle<Object> indent = args.atOrUndefined(isolate, 3);
RETURN_RESULT_OR_FAILURE(isolate,
stringifier.Stringify(object, replacer, indent));
}
// -----------------------------------------------------------------------------
// ES6 section 20.2.2 Function Properties of the Math Object
// ES6 section 20.2.2.2 Math.acos ( x )
BUILTIN(MathAcos) {
HandleScope scope(isolate);
DCHECK_EQ(2, args.length());
Handle<Object> x = args.at<Object>(1);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, x, Object::ToNumber(x));
return *isolate->factory()->NewHeapNumber(std::acos(x->Number()));
}
// ES6 section 20.2.2.4 Math.asin ( x )
BUILTIN(MathAsin) {
HandleScope scope(isolate);
DCHECK_EQ(2, args.length());
Handle<Object> x = args.at<Object>(1);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, x, Object::ToNumber(x));
return *isolate->factory()->NewHeapNumber(std::asin(x->Number()));
}
// ES6 section 20.2.2.6 Math.atan ( x )
void Builtins::Generate_MathAtan(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Atan(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.8 Math.atan2 ( y, x )
void Builtins::Generate_MathAtan2(CodeStubAssembler* assembler) {
using compiler::Node;
Node* y = assembler->Parameter(1);
Node* x = assembler->Parameter(2);
Node* context = assembler->Parameter(5);
Node* y_value = assembler->TruncateTaggedToFloat64(context, y);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Atan2(y_value, x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.7 Math.atanh ( x )
void Builtins::Generate_MathAtanh(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Atanh(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
namespace {
void Generate_MathRoundingOperation(
CodeStubAssembler* assembler,
compiler::Node* (CodeStubAssembler::*float64op)(compiler::Node*)) {
typedef CodeStubAssembler::Label Label;
typedef compiler::Node Node;
typedef CodeStubAssembler::Variable Variable;
Node* context = assembler->Parameter(4);
// We might need to loop once for ToNumber conversion.
Variable var_x(assembler, MachineRepresentation::kTagged);
Label loop(assembler, &var_x);
var_x.Bind(assembler->Parameter(1));
assembler->Goto(&loop);
assembler->Bind(&loop);
{
// Load the current {x} value.
Node* x = var_x.value();
// Check if {x} is a Smi or a HeapObject.
Label if_xissmi(assembler), if_xisnotsmi(assembler);
assembler->Branch(assembler->WordIsSmi(x), &if_xissmi, &if_xisnotsmi);
assembler->Bind(&if_xissmi);
{
// Nothing to do when {x} is a Smi.
assembler->Return(x);
}
assembler->Bind(&if_xisnotsmi);
{
// Check if {x} is a HeapNumber.
Label if_xisheapnumber(assembler),
if_xisnotheapnumber(assembler, Label::kDeferred);
assembler->Branch(
assembler->WordEqual(assembler->LoadMap(x),
assembler->HeapNumberMapConstant()),
&if_xisheapnumber, &if_xisnotheapnumber);
assembler->Bind(&if_xisheapnumber);
{
Node* x_value = assembler->LoadHeapNumberValue(x);
Node* value = (assembler->*float64op)(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
assembler->Bind(&if_xisnotheapnumber);
{
// Need to convert {x} to a Number first.
Callable callable =
CodeFactory::NonNumberToNumber(assembler->isolate());
var_x.Bind(assembler->CallStub(callable, context, x));
assembler->Goto(&loop);
}
}
}
}
} // namespace
// ES6 section 20.2.2.10 Math.ceil ( x )
void Builtins::Generate_MathCeil(CodeStubAssembler* assembler) {
Generate_MathRoundingOperation(assembler, &CodeStubAssembler::Float64Ceil);
}
// ES6 section 20.2.2.9 Math.cbrt ( x )
void Builtins::Generate_MathCbrt(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Cbrt(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.11 Math.clz32 ( x )
void Builtins::Generate_MathClz32(CodeStubAssembler* assembler) {
typedef CodeStubAssembler::Label Label;
typedef compiler::Node Node;
typedef CodeStubAssembler::Variable Variable;
Node* context = assembler->Parameter(4);
// Shared entry point for the clz32 operation.
Variable var_clz32_x(assembler, MachineRepresentation::kWord32);
Label do_clz32(assembler);
// We might need to loop once for ToNumber conversion.
Variable var_x(assembler, MachineRepresentation::kTagged);
Label loop(assembler, &var_x);
var_x.Bind(assembler->Parameter(1));
assembler->Goto(&loop);
assembler->Bind(&loop);
{
// Load the current {x} value.
Node* x = var_x.value();
// Check if {x} is a Smi or a HeapObject.
Label if_xissmi(assembler), if_xisnotsmi(assembler);
assembler->Branch(assembler->WordIsSmi(x), &if_xissmi, &if_xisnotsmi);
assembler->Bind(&if_xissmi);
{
var_clz32_x.Bind(assembler->SmiToWord32(x));
assembler->Goto(&do_clz32);
}
assembler->Bind(&if_xisnotsmi);
{
// Check if {x} is a HeapNumber.
Label if_xisheapnumber(assembler),
if_xisnotheapnumber(assembler, Label::kDeferred);
assembler->Branch(
assembler->WordEqual(assembler->LoadMap(x),
assembler->HeapNumberMapConstant()),
&if_xisheapnumber, &if_xisnotheapnumber);
assembler->Bind(&if_xisheapnumber);
{
var_clz32_x.Bind(assembler->TruncateHeapNumberValueToWord32(x));
assembler->Goto(&do_clz32);
}
assembler->Bind(&if_xisnotheapnumber);
{
// Need to convert {x} to a Number first.
Callable callable =
CodeFactory::NonNumberToNumber(assembler->isolate());
var_x.Bind(assembler->CallStub(callable, context, x));
assembler->Goto(&loop);
}
}
}
assembler->Bind(&do_clz32);
{
Node* x_value = var_clz32_x.value();
Node* value = assembler->Word32Clz(x_value);
Node* result = assembler->ChangeInt32ToTagged(value);
assembler->Return(result);
}
}
// ES6 section 20.2.2.12 Math.cos ( x )
void Builtins::Generate_MathCos(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Cos(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.14 Math.exp ( x )
void Builtins::Generate_MathExp(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Exp(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.16 Math.floor ( x )
void Builtins::Generate_MathFloor(CodeStubAssembler* assembler) {
Generate_MathRoundingOperation(assembler, &CodeStubAssembler::Float64Floor);
}
// ES6 section 20.2.2.17 Math.fround ( x )
BUILTIN(MathFround) {
HandleScope scope(isolate);
DCHECK_EQ(2, args.length());
Handle<Object> x = args.at<Object>(1);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, x, Object::ToNumber(x));
float x32 = DoubleToFloat32(x->Number());
return *isolate->factory()->NewNumber(x32);
}
// ES6 section 20.2.2.19 Math.imul ( x, y )
BUILTIN(MathImul) {
HandleScope scope(isolate);
DCHECK_EQ(3, args.length());
Handle<Object> x = args.at<Object>(1);
Handle<Object> y = args.at<Object>(2);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, x, Object::ToNumber(x));
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, y, Object::ToNumber(y));
int product = static_cast<int>(NumberToUint32(*x) * NumberToUint32(*y));
return *isolate->factory()->NewNumberFromInt(product);
}
// ES6 section 20.2.2.20 Math.log ( x )
void Builtins::Generate_MathLog(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Log(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.21 Math.log1p ( x )
void Builtins::Generate_MathLog1p(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Log1p(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.23 Math.log2 ( x )
void Builtins::Generate_MathLog2(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Log2(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.22 Math.log10 ( x )
void Builtins::Generate_MathLog10(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Log10(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.15 Math.expm1 ( x )
void Builtins::Generate_MathExpm1(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Expm1(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.28 Math.round ( x )
void Builtins::Generate_MathRound(CodeStubAssembler* assembler) {
Generate_MathRoundingOperation(assembler, &CodeStubAssembler::Float64Round);
}
// ES6 section 20.2.2.30 Math.sin ( x )
void Builtins::Generate_MathSin(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Sin(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.32 Math.sqrt ( x )
void Builtins::Generate_MathSqrt(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Sqrt(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.33 Math.tan ( x )
void Builtins::Generate_MathTan(CodeStubAssembler* assembler) {
using compiler::Node;
Node* x = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* x_value = assembler->TruncateTaggedToFloat64(context, x);
Node* value = assembler->Float64Tan(x_value);
Node* result = assembler->ChangeFloat64ToTagged(value);
assembler->Return(result);
}
// ES6 section 20.2.2.35 Math.trunc ( x )
void Builtins::Generate_MathTrunc(CodeStubAssembler* assembler) {
Generate_MathRoundingOperation(assembler, &CodeStubAssembler::Float64Trunc);
}
// -----------------------------------------------------------------------------
// ES6 section 19.2 Function Objects
// ES6 section 19.2.3.6 Function.prototype [ @@hasInstance ] ( V )
void Builtins::Generate_FunctionPrototypeHasInstance(
CodeStubAssembler* assembler) {
using compiler::Node;
Node* f = assembler->Parameter(0);
Node* v = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* result = assembler->OrdinaryHasInstance(context, f, v);
assembler->Return(result);
}
// -----------------------------------------------------------------------------
// ES6 section 25.3 Generator Objects
namespace {
void Generate_GeneratorPrototypeResume(
CodeStubAssembler* assembler, JSGeneratorObject::ResumeMode resume_mode,
char const* const method_name) {
typedef CodeStubAssembler::Label Label;
typedef compiler::Node Node;
Node* receiver = assembler->Parameter(0);
Node* value = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
Node* closed = assembler->SmiConstant(
Smi::FromInt(JSGeneratorObject::kGeneratorClosed));
// Check if the {receiver} is actually a JSGeneratorObject.
Label if_receiverisincompatible(assembler, Label::kDeferred);
assembler->GotoIf(assembler->WordIsSmi(receiver), &if_receiverisincompatible);
Node* receiver_instance_type = assembler->LoadInstanceType(receiver);
assembler->GotoUnless(assembler->Word32Equal(
receiver_instance_type,
assembler->Int32Constant(JS_GENERATOR_OBJECT_TYPE)),
&if_receiverisincompatible);
// Check if the {receiver} is running or already closed.
Node* receiver_continuation = assembler->LoadObjectField(
receiver, JSGeneratorObject::kContinuationOffset);
Label if_receiverisclosed(assembler, Label::kDeferred),
if_receiverisrunning(assembler, Label::kDeferred);
assembler->GotoIf(assembler->SmiEqual(receiver_continuation, closed),
&if_receiverisclosed);
DCHECK_LT(JSGeneratorObject::kGeneratorExecuting,
JSGeneratorObject::kGeneratorClosed);
assembler->GotoIf(assembler->SmiLessThan(receiver_continuation, closed),
&if_receiverisrunning);
// Resume the {receiver} using our trampoline.
Node* result = assembler->CallStub(
CodeFactory::ResumeGenerator(assembler->isolate()), context, value,
receiver, assembler->SmiConstant(Smi::FromInt(resume_mode)));
assembler->Return(result);
assembler->Bind(&if_receiverisincompatible);
{
// The {receiver} is not a valid JSGeneratorObject.
Node* result = assembler->CallRuntime(
Runtime::kThrowIncompatibleMethodReceiver, context,
assembler->HeapConstant(assembler->factory()->NewStringFromAsciiChecked(
method_name, TENURED)),
receiver);
assembler->Return(result); // Never reached.
}
assembler->Bind(&if_receiverisclosed);
{
// The {receiver} is closed already.
Node* result = nullptr;
switch (resume_mode) {
case JSGeneratorObject::kNext:
result = assembler->CallRuntime(Runtime::kCreateIterResultObject,
context, assembler->UndefinedConstant(),
assembler->BooleanConstant(true));
break;
case JSGeneratorObject::kReturn:
result =
assembler->CallRuntime(Runtime::kCreateIterResultObject, context,
value, assembler->BooleanConstant(true));
break;
case JSGeneratorObject::kThrow:
result = assembler->CallRuntime(Runtime::kThrow, context, value);
break;
}
assembler->Return(result);
}
assembler->Bind(&if_receiverisrunning);
{
Node* result =
assembler->CallRuntime(Runtime::kThrowGeneratorRunning, context);
assembler->Return(result); // Never reached.
}
}
} // namespace
// ES6 section 25.3.1.2 Generator.prototype.next ( value )
void Builtins::Generate_GeneratorPrototypeNext(CodeStubAssembler* assembler) {
Generate_GeneratorPrototypeResume(assembler, JSGeneratorObject::kNext,
"[Generator].prototype.next");
}
// ES6 section 25.3.1.3 Generator.prototype.return ( value )
void Builtins::Generate_GeneratorPrototypeReturn(CodeStubAssembler* assembler) {
Generate_GeneratorPrototypeResume(assembler, JSGeneratorObject::kReturn,
"[Generator].prototype.return");
}
// ES6 section 25.3.1.4 Generator.prototype.throw ( exception )
void Builtins::Generate_GeneratorPrototypeThrow(CodeStubAssembler* assembler) {
Generate_GeneratorPrototypeResume(assembler, JSGeneratorObject::kThrow,
"[Generator].prototype.throw");
}
// -----------------------------------------------------------------------------
// ES6 section 26.1 The Reflect Object
// ES6 section 26.1.3 Reflect.defineProperty
BUILTIN(ReflectDefineProperty) {
HandleScope scope(isolate);
DCHECK_EQ(4, args.length());
Handle<Object> target = args.at<Object>(1);
Handle<Object> key = args.at<Object>(2);
Handle<Object> attributes = args.at<Object>(3);
if (!target->IsJSReceiver()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kCalledOnNonObject,
isolate->factory()->NewStringFromAsciiChecked(
"Reflect.defineProperty")));
}
Handle<Name> name;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, name,
Object::ToName(isolate, key));
PropertyDescriptor desc;
if (!PropertyDescriptor::ToPropertyDescriptor(isolate, attributes, &desc)) {
return isolate->heap()->exception();
}
Maybe<bool> result =
JSReceiver::DefineOwnProperty(isolate, Handle<JSReceiver>::cast(target),
name, &desc, Object::DONT_THROW);
MAYBE_RETURN(result, isolate->heap()->exception());
return *isolate->factory()->ToBoolean(result.FromJust());
}
// ES6 section 26.1.4 Reflect.deleteProperty
BUILTIN(ReflectDeleteProperty) {
HandleScope scope(isolate);
DCHECK_EQ(3, args.length());
Handle<Object> target = args.at<Object>(1);
Handle<Object> key = args.at<Object>(2);
if (!target->IsJSReceiver()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kCalledOnNonObject,
isolate->factory()->NewStringFromAsciiChecked(
"Reflect.deleteProperty")));
}
Handle<Name> name;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, name,
Object::ToName(isolate, key));
Maybe<bool> result = JSReceiver::DeletePropertyOrElement(
Handle<JSReceiver>::cast(target), name, SLOPPY);
MAYBE_RETURN(result, isolate->heap()->exception());
return *isolate->factory()->ToBoolean(result.FromJust());
}
// ES6 section 26.1.6 Reflect.get
BUILTIN(ReflectGet) {
HandleScope scope(isolate);
Handle<Object> target = args.atOrUndefined(isolate, 1);
Handle<Object> key = args.atOrUndefined(isolate, 2);
Handle<Object> receiver = args.length() > 3 ? args.at<Object>(3) : target;
if (!target->IsJSReceiver()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kCalledOnNonObject,
isolate->factory()->NewStringFromAsciiChecked(
"Reflect.get")));
}
Handle<Name> name;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, name,
Object::ToName(isolate, key));
RETURN_RESULT_OR_FAILURE(
isolate, Object::GetPropertyOrElement(receiver, name,
Handle<JSReceiver>::cast(target)));
}
// ES6 section 26.1.7 Reflect.getOwnPropertyDescriptor
BUILTIN(ReflectGetOwnPropertyDescriptor) {
HandleScope scope(isolate);
DCHECK_EQ(3, args.length());
Handle<Object> target = args.at<Object>(1);
Handle<Object> key = args.at<Object>(2);
if (!target->IsJSReceiver()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kCalledOnNonObject,
isolate->factory()->NewStringFromAsciiChecked(
"Reflect.getOwnPropertyDescriptor")));
}
Handle<Name> name;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, name,
Object::ToName(isolate, key));
PropertyDescriptor desc;
Maybe<bool> found = JSReceiver::GetOwnPropertyDescriptor(
isolate, Handle<JSReceiver>::cast(target), name, &desc);
MAYBE_RETURN(found, isolate->heap()->exception());
if (!found.FromJust()) return isolate->heap()->undefined_value();
return *desc.ToObject(isolate);
}
// ES6 section 26.1.8 Reflect.getPrototypeOf
BUILTIN(ReflectGetPrototypeOf) {
HandleScope scope(isolate);
DCHECK_EQ(2, args.length());
Handle<Object> target = args.at<Object>(1);
if (!target->IsJSReceiver()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kCalledOnNonObject,
isolate->factory()->NewStringFromAsciiChecked(
"Reflect.getPrototypeOf")));
}
Handle<JSReceiver> receiver = Handle<JSReceiver>::cast(target);
RETURN_RESULT_OR_FAILURE(isolate,
JSReceiver::GetPrototype(isolate, receiver));
}
// ES6 section 26.1.9 Reflect.has
BUILTIN(ReflectHas) {
HandleScope scope(isolate);
DCHECK_EQ(3, args.length());
Handle<Object> target = args.at<Object>(1);
Handle<Object> key = args.at<Object>(2);
if (!target->IsJSReceiver()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kCalledOnNonObject,
isolate->factory()->NewStringFromAsciiChecked(
"Reflect.has")));
}
Handle<Name> name;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, name,
Object::ToName(isolate, key));
Maybe<bool> result =
JSReceiver::HasProperty(Handle<JSReceiver>::cast(target), name);
return result.IsJust() ? *isolate->factory()->ToBoolean(result.FromJust())
: isolate->heap()->exception();
}
// ES6 section 26.1.10 Reflect.isExtensible
BUILTIN(ReflectIsExtensible) {
HandleScope scope(isolate);
DCHECK_EQ(2, args.length());
Handle<Object> target = args.at<Object>(1);
if (!target->IsJSReceiver()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kCalledOnNonObject,
isolate->factory()->NewStringFromAsciiChecked(
"Reflect.isExtensible")));
}
Maybe<bool> result =
JSReceiver::IsExtensible(Handle<JSReceiver>::cast(target));
MAYBE_RETURN(result, isolate->heap()->exception());
return *isolate->factory()->ToBoolean(result.FromJust());
}
// ES6 section 26.1.11 Reflect.ownKeys
BUILTIN(ReflectOwnKeys) {
HandleScope scope(isolate);
DCHECK_EQ(2, args.length());
Handle<Object> target = args.at<Object>(1);
if (!target->IsJSReceiver()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kCalledOnNonObject,
isolate->factory()->NewStringFromAsciiChecked(
"Reflect.ownKeys")));
}
Handle<FixedArray> keys;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, keys,
KeyAccumulator::GetKeys(Handle<JSReceiver>::cast(target),
KeyCollectionMode::kOwnOnly, ALL_PROPERTIES,
GetKeysConversion::kConvertToString));
return *isolate->factory()->NewJSArrayWithElements(keys);
}
// ES6 section 26.1.12 Reflect.preventExtensions
BUILTIN(ReflectPreventExtensions) {
HandleScope scope(isolate);
DCHECK_EQ(2, args.length());
Handle<Object> target = args.at<Object>(1);
if (!target->IsJSReceiver()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kCalledOnNonObject,
isolate->factory()->NewStringFromAsciiChecked(
"Reflect.preventExtensions")));
}
Maybe<bool> result = JSReceiver::PreventExtensions(
Handle<JSReceiver>::cast(target), Object::DONT_THROW);
MAYBE_RETURN(result, isolate->heap()->exception());
return *isolate->factory()->ToBoolean(result.FromJust());
}
// ES6 section 26.1.13 Reflect.set
BUILTIN(ReflectSet) {
HandleScope scope(isolate);
Handle<Object> target = args.atOrUndefined(isolate, 1);
Handle<Object> key = args.atOrUndefined(isolate, 2);
Handle<Object> value = args.atOrUndefined(isolate, 3);
Handle<Object> receiver = args.length() > 4 ? args.at<Object>(4) : target;
if (!target->IsJSReceiver()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kCalledOnNonObject,
isolate->factory()->NewStringFromAsciiChecked(
"Reflect.set")));
}
Handle<Name> name;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, name,
Object::ToName(isolate, key));
LookupIterator it = LookupIterator::PropertyOrElement(
isolate, receiver, name, Handle<JSReceiver>::cast(target));
Maybe<bool> result = Object::SetSuperProperty(
&it, value, SLOPPY, Object::MAY_BE_STORE_FROM_KEYED);
MAYBE_RETURN(result, isolate->heap()->exception());
return *isolate->factory()->ToBoolean(result.FromJust());
}
// ES6 section 26.1.14 Reflect.setPrototypeOf
BUILTIN(ReflectSetPrototypeOf) {
HandleScope scope(isolate);
DCHECK_EQ(3, args.length());
Handle<Object> target = args.at<Object>(1);
Handle<Object> proto = args.at<Object>(2);
if (!target->IsJSReceiver()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kCalledOnNonObject,
isolate->factory()->NewStringFromAsciiChecked(
"Reflect.setPrototypeOf")));
}
if (!proto->IsJSReceiver() && !proto->IsNull(isolate)) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kProtoObjectOrNull, proto));
}
Maybe<bool> result = JSReceiver::SetPrototype(
Handle<JSReceiver>::cast(target), proto, true, Object::DONT_THROW);
MAYBE_RETURN(result, isolate->heap()->exception());
return *isolate->factory()->ToBoolean(result.FromJust());
}
// -----------------------------------------------------------------------------
// ES6 section 19.3 Boolean Objects
// ES6 section 19.3.1.1 Boolean ( value ) for the [[Call]] case.
BUILTIN(BooleanConstructor) {
HandleScope scope(isolate);
Handle<Object> value = args.atOrUndefined(isolate, 1);
return isolate->heap()->ToBoolean(value->BooleanValue());
}
// ES6 section 19.3.1.1 Boolean ( value ) for the [[Construct]] case.
BUILTIN(BooleanConstructor_ConstructStub) {
HandleScope scope(isolate);
Handle<Object> value = args.atOrUndefined(isolate, 1);
Handle<JSFunction> target = args.target<JSFunction>();
Handle<JSReceiver> new_target = Handle<JSReceiver>::cast(args.new_target());
DCHECK(*target == target->native_context()->boolean_function());
Handle<JSObject> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result,
JSObject::New(target, new_target));
Handle<JSValue>::cast(result)->set_value(
isolate->heap()->ToBoolean(value->BooleanValue()));
return *result;
}
// ES6 section 19.3.3.2 Boolean.prototype.toString ( )
BUILTIN(BooleanPrototypeToString) {
HandleScope scope(isolate);
Handle<Object> receiver = args.receiver();
if (receiver->IsJSValue()) {
receiver = handle(Handle<JSValue>::cast(receiver)->value(), isolate);
}
if (!receiver->IsBoolean()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kNotGeneric,
isolate->factory()->NewStringFromAsciiChecked(
"Boolean.prototype.toString")));
}
return Handle<Oddball>::cast(receiver)->to_string();
}
// ES6 section 19.3.3.3 Boolean.prototype.valueOf ( )
BUILTIN(BooleanPrototypeValueOf) {
HandleScope scope(isolate);
Handle<Object> receiver = args.receiver();
if (receiver->IsJSValue()) {
receiver = handle(Handle<JSValue>::cast(receiver)->value(), isolate);
}
if (!receiver->IsBoolean()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kNotGeneric,
isolate->factory()->NewStringFromAsciiChecked(
"Boolean.prototype.valueOf")));
}
return *receiver;
}
// -----------------------------------------------------------------------------
// ES6 section 24.2 DataView Objects
// ES6 section 24.2.2 The DataView Constructor for the [[Call]] case.
BUILTIN(DataViewConstructor) {
HandleScope scope(isolate);
THROW_NEW_ERROR_RETURN_FAILURE(
isolate,
NewTypeError(MessageTemplate::kConstructorNotFunction,
isolate->factory()->NewStringFromAsciiChecked("DataView")));
}
// ES6 section 24.2.2 The DataView Constructor for the [[Construct]] case.
BUILTIN(DataViewConstructor_ConstructStub) {
HandleScope scope(isolate);
Handle<JSFunction> target = args.target<JSFunction>();
Handle<JSReceiver> new_target = Handle<JSReceiver>::cast(args.new_target());
Handle<Object> buffer = args.atOrUndefined(isolate, 1);
Handle<Object> byte_offset = args.atOrUndefined(isolate, 2);
Handle<Object> byte_length = args.atOrUndefined(isolate, 3);
// 2. If Type(buffer) is not Object, throw a TypeError exception.
// 3. If buffer does not have an [[ArrayBufferData]] internal slot, throw a
// TypeError exception.
if (!buffer->IsJSArrayBuffer()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kDataViewNotArrayBuffer));
}
Handle<JSArrayBuffer> array_buffer = Handle<JSArrayBuffer>::cast(buffer);
// 4. Let numberOffset be ? ToNumber(byteOffset).
Handle<Object> number_offset;
if (byte_offset->IsUndefined(isolate)) {
// We intentionally violate the specification at this point to allow
// for new DataView(buffer) invocations to be equivalent to the full
// new DataView(buffer, 0) invocation.
number_offset = handle(Smi::FromInt(0), isolate);
} else {
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, number_offset,
Object::ToNumber(byte_offset));
}
// 5. Let offset be ToInteger(numberOffset).
Handle<Object> offset;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, offset,
Object::ToInteger(isolate, number_offset));
// 6. If numberOffset ≠ offset or offset < 0, throw a RangeError exception.
if (number_offset->Number() != offset->Number() || offset->Number() < 0.0) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewRangeError(MessageTemplate::kInvalidDataViewOffset));
}
// 7. If IsDetachedBuffer(buffer) is true, throw a TypeError exception.
// We currently violate the specification at this point.
// 8. Let bufferByteLength be the value of buffer's [[ArrayBufferByteLength]]
// internal slot.
double const buffer_byte_length = array_buffer->byte_length()->Number();
// 9. If offset > bufferByteLength, throw a RangeError exception
if (offset->Number() > buffer_byte_length) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewRangeError(MessageTemplate::kInvalidDataViewOffset));
}
Handle<Object> view_byte_length;
if (byte_length->IsUndefined(isolate)) {
// 10. If byteLength is undefined, then
// a. Let viewByteLength be bufferByteLength - offset.
view_byte_length =
isolate->factory()->NewNumber(buffer_byte_length - offset->Number());
} else {
// 11. Else,
// a. Let viewByteLength be ? ToLength(byteLength).
// b. If offset+viewByteLength > bufferByteLength, throw a RangeError
// exception
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, view_byte_length, Object::ToLength(isolate, byte_length));
if (offset->Number() + view_byte_length->Number() > buffer_byte_length) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewRangeError(MessageTemplate::kInvalidDataViewLength));
}
}
// 12. Let O be ? OrdinaryCreateFromConstructor(NewTarget,
// "%DataViewPrototype%", «[[DataView]], [[ViewedArrayBuffer]],
// [[ByteLength]], [[ByteOffset]]»).
// 13. Set O's [[DataView]] internal slot to true.
Handle<JSObject> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result,
JSObject::New(target, new_target));
for (int i = 0; i < ArrayBufferView::kInternalFieldCount; ++i) {
Handle<JSDataView>::cast(result)->SetInternalField(i, Smi::FromInt(0));
}
// 14. Set O's [[ViewedArrayBuffer]] internal slot to buffer.
Handle<JSDataView>::cast(result)->set_buffer(*array_buffer);
// 15. Set O's [[ByteLength]] internal slot to viewByteLength.
Handle<JSDataView>::cast(result)->set_byte_length(*view_byte_length);
// 16. Set O's [[ByteOffset]] internal slot to offset.
Handle<JSDataView>::cast(result)->set_byte_offset(*offset);
// 17. Return O.
return *result;
}
// ES6 section 24.2.4.1 get DataView.prototype.buffer
BUILTIN(DataViewPrototypeGetBuffer) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDataView, data_view, "get DataView.prototype.buffer");
return data_view->buffer();
}
// ES6 section 24.2.4.2 get DataView.prototype.byteLength
BUILTIN(DataViewPrototypeGetByteLength) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDataView, data_view, "get DataView.prototype.byteLength");
// TODO(bmeurer): According to the ES6 spec, we should throw a TypeError
// here if the JSArrayBuffer of the {data_view} was neutered.
return data_view->byte_length();
}
// ES6 section 24.2.4.3 get DataView.prototype.byteOffset
BUILTIN(DataViewPrototypeGetByteOffset) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDataView, data_view, "get DataView.prototype.byteOffset");
// TODO(bmeurer): According to the ES6 spec, we should throw a TypeError
// here if the JSArrayBuffer of the {data_view} was neutered.
return data_view->byte_offset();
}
// -----------------------------------------------------------------------------
// ES6 section 22.2 TypedArray Objects
// ES6 section 22.2.3.1 get %TypedArray%.prototype.buffer
BUILTIN(TypedArrayPrototypeBuffer) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSTypedArray, typed_array, "get TypedArray.prototype.buffer");
return *typed_array->GetBuffer();
}
namespace {
void Generate_TypedArrayProtoypeGetter(CodeStubAssembler* assembler,
const char* method_name,
int object_offset) {
typedef CodeStubAssembler::Label Label;
typedef compiler::Node Node;
Node* receiver = assembler->Parameter(0);
Node* context = assembler->Parameter(3);
// Check if the {receiver} is actually a JSTypedArray.
Label if_receiverisincompatible(assembler, Label::kDeferred);
assembler->GotoIf(assembler->WordIsSmi(receiver), &if_receiverisincompatible);
Node* receiver_instance_type = assembler->LoadInstanceType(receiver);
assembler->GotoUnless(
assembler->Word32Equal(receiver_instance_type,
assembler->Int32Constant(JS_TYPED_ARRAY_TYPE)),
&if_receiverisincompatible);
// Check if the {receiver}'s JSArrayBuffer was neutered.
Node* receiver_buffer =
assembler->LoadObjectField(receiver, JSTypedArray::kBufferOffset);
Node* receiver_buffer_bit_field = assembler->LoadObjectField(
receiver_buffer, JSArrayBuffer::kBitFieldOffset, MachineType::Uint32());
Label if_receiverisneutered(assembler, Label::kDeferred);
assembler->GotoUnless(
assembler->Word32Equal(
assembler->Word32And(
receiver_buffer_bit_field,
assembler->Int32Constant(JSArrayBuffer::WasNeutered::kMask)),
assembler->Int32Constant(0)),
&if_receiverisneutered);
assembler->Return(assembler->LoadObjectField(receiver, object_offset));
assembler->Bind(&if_receiverisneutered);
{
// The {receiver}s buffer was neutered, default to zero.
assembler->Return(assembler->SmiConstant(0));
}
assembler->Bind(&if_receiverisincompatible);
{
// The {receiver} is not a valid JSGeneratorObject.
Node* result = assembler->CallRuntime(
Runtime::kThrowIncompatibleMethodReceiver, context,
assembler->HeapConstant(assembler->factory()->NewStringFromAsciiChecked(
method_name, TENURED)),
receiver);
assembler->Return(result); // Never reached.
}
}
} // namespace
// ES6 section 22.2.3.2 get %TypedArray%.prototype.byteLength
void Builtins::Generate_TypedArrayPrototypeByteLength(
CodeStubAssembler* assembler) {
Generate_TypedArrayProtoypeGetter(assembler,
"get TypedArray.prototype.byteLength",
JSTypedArray::kByteLengthOffset);
}
// ES6 section 22.2.3.3 get %TypedArray%.prototype.byteOffset
void Builtins::Generate_TypedArrayPrototypeByteOffset(
CodeStubAssembler* assembler) {
Generate_TypedArrayProtoypeGetter(assembler,
"get TypedArray.prototype.byteOffset",
JSTypedArray::kByteOffsetOffset);
}
// ES6 section 22.2.3.18 get %TypedArray%.prototype.length
void Builtins::Generate_TypedArrayPrototypeLength(
CodeStubAssembler* assembler) {
Generate_TypedArrayProtoypeGetter(assembler,
"get TypedArray.prototype.length",
JSTypedArray::kLengthOffset);
}
// -----------------------------------------------------------------------------
// ES6 section 20.3 Date Objects
namespace {
// ES6 section 20.3.1.1 Time Values and Time Range
const double kMinYear = -1000000.0;
const double kMaxYear = -kMinYear;
const double kMinMonth = -10000000.0;
const double kMaxMonth = -kMinMonth;
// 20.3.1.2 Day Number and Time within Day
const double kMsPerDay = 86400000.0;
// ES6 section 20.3.1.11 Hours, Minutes, Second, and Milliseconds
const double kMsPerSecond = 1000.0;
const double kMsPerMinute = 60000.0;
const double kMsPerHour = 3600000.0;
// ES6 section 20.3.1.14 MakeDate (day, time)
double MakeDate(double day, double time) {
if (std::isfinite(day) && std::isfinite(time)) {
return time + day * kMsPerDay;
}
return std::numeric_limits<double>::quiet_NaN();
}
// ES6 section 20.3.1.13 MakeDay (year, month, date)
double MakeDay(double year, double month, double date) {
if ((kMinYear <= year && year <= kMaxYear) &&
(kMinMonth <= month && month <= kMaxMonth) && std::isfinite(date)) {
int y = FastD2I(year);
int m = FastD2I(month);
y += m / 12;
m %= 12;
if (m < 0) {
m += 12;
y -= 1;
}
DCHECK_LE(0, m);
DCHECK_LT(m, 12);
// kYearDelta is an arbitrary number such that:
// a) kYearDelta = -1 (mod 400)
// b) year + kYearDelta > 0 for years in the range defined by
// ECMA 262 - 15.9.1.1, i.e. upto 100,000,000 days on either side of
// Jan 1 1970. This is required so that we don't run into integer
// division of negative numbers.
// c) there shouldn't be an overflow for 32-bit integers in the following
// operations.
static const int kYearDelta = 399999;
static const int kBaseDay =
365 * (1970 + kYearDelta) + (1970 + kYearDelta) / 4 -
(1970 + kYearDelta) / 100 + (1970 + kYearDelta) / 400;
int day_from_year = 365 * (y + kYearDelta) + (y + kYearDelta) / 4 -
(y + kYearDelta) / 100 + (y + kYearDelta) / 400 -
kBaseDay;
if ((y % 4 != 0) || (y % 100 == 0 && y % 400 != 0)) {
static const int kDayFromMonth[] = {0, 31, 59, 90, 120, 151,
181, 212, 243, 273, 304, 334};
day_from_year += kDayFromMonth[m];
} else {
static const int kDayFromMonth[] = {0, 31, 60, 91, 121, 152,
182, 213, 244, 274, 305, 335};
day_from_year += kDayFromMonth[m];
}
return static_cast<double>(day_from_year - 1) + date;
}
return std::numeric_limits<double>::quiet_NaN();
}
// ES6 section 20.3.1.12 MakeTime (hour, min, sec, ms)
double MakeTime(double hour, double min, double sec, double ms) {
if (std::isfinite(hour) && std::isfinite(min) && std::isfinite(sec) &&
std::isfinite(ms)) {
double const h = DoubleToInteger(hour);
double const m = DoubleToInteger(min);
double const s = DoubleToInteger(sec);
double const milli = DoubleToInteger(ms);
return h * kMsPerHour + m * kMsPerMinute + s * kMsPerSecond + milli;
}
return std::numeric_limits<double>::quiet_NaN();
}
// ES6 section 20.3.1.15 TimeClip (time)
double TimeClip(double time) {
if (-DateCache::kMaxTimeInMs <= time && time <= DateCache::kMaxTimeInMs) {
return DoubleToInteger(time) + 0.0;
}
return std::numeric_limits<double>::quiet_NaN();
}
const char* kShortWeekDays[] = {"Sun", "Mon", "Tue", "Wed",
"Thu", "Fri", "Sat"};
const char* kShortMonths[] = {"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};
// ES6 section 20.3.1.16 Date Time String Format
double ParseDateTimeString(Handle<String> str) {
Isolate* const isolate = str->GetIsolate();
str = String::Flatten(str);
// TODO(bmeurer): Change DateParser to not use the FixedArray.
Handle<FixedArray> tmp =
isolate->factory()->NewFixedArray(DateParser::OUTPUT_SIZE);
DisallowHeapAllocation no_gc;
String::FlatContent str_content = str->GetFlatContent();
bool result;
if (str_content.IsOneByte()) {
result = DateParser::Parse(isolate, str_content.ToOneByteVector(), *tmp);
} else {
result = DateParser::Parse(isolate, str_content.ToUC16Vector(), *tmp);
}
if (!result) return std::numeric_limits<double>::quiet_NaN();
double const day = MakeDay(tmp->get(0)->Number(), tmp->get(1)->Number(),
tmp->get(2)->Number());
double const time = MakeTime(tmp->get(3)->Number(), tmp->get(4)->Number(),
tmp->get(5)->Number(), tmp->get(6)->Number());
double date = MakeDate(day, time);
if (tmp->get(7)->IsNull(isolate)) {
if (!std::isnan(date)) {
date = isolate->date_cache()->ToUTC(static_cast<int64_t>(date));
}
} else {
date -= tmp->get(7)->Number() * 1000.0;
}
return date;
}
enum ToDateStringMode { kDateOnly, kTimeOnly, kDateAndTime };
// ES6 section 20.3.4.41.1 ToDateString(tv)
void ToDateString(double time_val, Vector<char> str, DateCache* date_cache,
ToDateStringMode mode = kDateAndTime) {
if (std::isnan(time_val)) {
SNPrintF(str, "Invalid Date");
return;
}
int64_t time_ms = static_cast<int64_t>(time_val);
int64_t local_time_ms = date_cache->ToLocal(time_ms);
int year, month, day, weekday, hour, min, sec, ms;
date_cache->BreakDownTime(local_time_ms, &year, &month, &day, &weekday, &hour,
&min, &sec, &ms);
int timezone_offset = -date_cache->TimezoneOffset(time_ms);
int timezone_hour = std::abs(timezone_offset) / 60;
int timezone_min = std::abs(timezone_offset) % 60;
const char* local_timezone = date_cache->LocalTimezone(time_ms);
switch (mode) {
case kDateOnly:
SNPrintF(str, "%s %s %02d %4d", kShortWeekDays[weekday],
kShortMonths[month], day, year);
return;
case kTimeOnly:
SNPrintF(str, "%02d:%02d:%02d GMT%c%02d%02d (%s)", hour, min, sec,
(timezone_offset < 0) ? '-' : '+', timezone_hour, timezone_min,
local_timezone);
return;
case kDateAndTime:
SNPrintF(str, "%s %s %02d %4d %02d:%02d:%02d GMT%c%02d%02d (%s)",
kShortWeekDays[weekday], kShortMonths[month], day, year, hour,
min, sec, (timezone_offset < 0) ? '-' : '+', timezone_hour,
timezone_min, local_timezone);
return;
}
UNREACHABLE();
}
Object* SetLocalDateValue(Handle<JSDate> date, double time_val) {
if (time_val >= -DateCache::kMaxTimeBeforeUTCInMs &&
time_val <= DateCache::kMaxTimeBeforeUTCInMs) {
Isolate* const isolate = date->GetIsolate();
time_val = isolate->date_cache()->ToUTC(static_cast<int64_t>(time_val));
} else {
time_val = std::numeric_limits<double>::quiet_NaN();
}
return *JSDate::SetValue(date, TimeClip(time_val));
}
} // namespace
// ES6 section 20.3.2 The Date Constructor for the [[Call]] case.
BUILTIN(DateConstructor) {
HandleScope scope(isolate);
double const time_val = JSDate::CurrentTimeValue(isolate);
char buffer[128];
ToDateString(time_val, ArrayVector(buffer), isolate->date_cache());
RETURN_RESULT_OR_FAILURE(
isolate, isolate->factory()->NewStringFromUtf8(CStrVector(buffer)));
}
// ES6 section 20.3.2 The Date Constructor for the [[Construct]] case.
BUILTIN(DateConstructor_ConstructStub) {
HandleScope scope(isolate);
int const argc = args.length() - 1;
Handle<JSFunction> target = args.target<JSFunction>();
Handle<JSReceiver> new_target = Handle<JSReceiver>::cast(args.new_target());
double time_val;
if (argc == 0) {
time_val = JSDate::CurrentTimeValue(isolate);
} else if (argc == 1) {
Handle<Object> value = args.at<Object>(1);
if (value->IsJSDate()) {
time_val = Handle<JSDate>::cast(value)->value()->Number();
} else {
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, value,
Object::ToPrimitive(value));
if (value->IsString()) {
time_val = ParseDateTimeString(Handle<String>::cast(value));
} else {
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, value,
Object::ToNumber(value));
time_val = value->Number();
}
}
} else {
Handle<Object> year_object;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, year_object,
Object::ToNumber(args.at<Object>(1)));
Handle<Object> month_object;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, month_object,
Object::ToNumber(args.at<Object>(2)));
double year = year_object->Number();
double month = month_object->Number();
double date = 1.0, hours = 0.0, minutes = 0.0, seconds = 0.0, ms = 0.0;
if (argc >= 3) {
Handle<Object> date_object;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, date_object,
Object::ToNumber(args.at<Object>(3)));
date = date_object->Number();
if (argc >= 4) {
Handle<Object> hours_object;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, hours_object, Object::ToNumber(args.at<Object>(4)));
hours = hours_object->Number();
if (argc >= 5) {
Handle<Object> minutes_object;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, minutes_object, Object::ToNumber(args.at<Object>(5)));
minutes = minutes_object->Number();
if (argc >= 6) {
Handle<Object> seconds_object;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, seconds_object, Object::ToNumber(args.at<Object>(6)));
seconds = seconds_object->Number();
if (argc >= 7) {
Handle<Object> ms_object;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, ms_object, Object::ToNumber(args.at<Object>(7)));
ms = ms_object->Number();
}
}
}
}
}
if (!std::isnan(year)) {
double const y = DoubleToInteger(year);
if (0.0 <= y && y <= 99) year = 1900 + y;
}
double const day = MakeDay(year, month, date);
double const time = MakeTime(hours, minutes, seconds, ms);
time_val = MakeDate(day, time);
if (time_val >= -DateCache::kMaxTimeBeforeUTCInMs &&
time_val <= DateCache::kMaxTimeBeforeUTCInMs) {
time_val = isolate->date_cache()->ToUTC(static_cast<int64_t>(time_val));
} else {
time_val = std::numeric_limits<double>::quiet_NaN();
}
}
RETURN_RESULT_OR_FAILURE(isolate, JSDate::New(target, new_target, time_val));
}
// ES6 section 20.3.3.1 Date.now ( )
BUILTIN(DateNow) {
HandleScope scope(isolate);
return *isolate->factory()->NewNumber(JSDate::CurrentTimeValue(isolate));
}
// ES6 section 20.3.3.2 Date.parse ( string )
BUILTIN(DateParse) {
HandleScope scope(isolate);
Handle<String> string;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, string,
Object::ToString(isolate, args.atOrUndefined(isolate, 1)));
return *isolate->factory()->NewNumber(ParseDateTimeString(string));
}
// ES6 section 20.3.3.4 Date.UTC (year,month,date,hours,minutes,seconds,ms)
BUILTIN(DateUTC) {
HandleScope scope(isolate);
int const argc = args.length() - 1;
double year = std::numeric_limits<double>::quiet_NaN();
double month = std::numeric_limits<double>::quiet_NaN();
double date = 1.0, hours = 0.0, minutes = 0.0, seconds = 0.0, ms = 0.0;
if (argc >= 1) {
Handle<Object> year_object;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, year_object,
Object::ToNumber(args.at<Object>(1)));
year = year_object->Number();
if (argc >= 2) {
Handle<Object> month_object;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, month_object,
Object::ToNumber(args.at<Object>(2)));
month = month_object->Number();
if (argc >= 3) {
Handle<Object> date_object;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, date_object, Object::ToNumber(args.at<Object>(3)));
date = date_object->Number();
if (argc >= 4) {
Handle<Object> hours_object;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, hours_object, Object::ToNumber(args.at<Object>(4)));
hours = hours_object->Number();
if (argc >= 5) {
Handle<Object> minutes_object;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, minutes_object, Object::ToNumber(args.at<Object>(5)));
minutes = minutes_object->Number();
if (argc >= 6) {
Handle<Object> seconds_object;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, seconds_object,
Object::ToNumber(args.at<Object>(6)));
seconds = seconds_object->Number();
if (argc >= 7) {
Handle<Object> ms_object;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, ms_object, Object::ToNumber(args.at<Object>(7)));
ms = ms_object->Number();
}
}
}
}
}
}
}
if (!std::isnan(year)) {
double const y = DoubleToInteger(year);
if (0.0 <= y && y <= 99) year = 1900 + y;
}
double const day = MakeDay(year, month, date);
double const time = MakeTime(hours, minutes, seconds, ms);
return *isolate->factory()->NewNumber(TimeClip(MakeDate(day, time)));
}
// ES6 section 20.3.4.20 Date.prototype.setDate ( date )
BUILTIN(DatePrototypeSetDate) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.setDate");
Handle<Object> value = args.atOrUndefined(isolate, 1);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, value, Object::ToNumber(value));
double time_val = date->value()->Number();
if (!std::isnan(time_val)) {
int64_t const time_ms = static_cast<int64_t>(time_val);
int64_t local_time_ms = isolate->date_cache()->ToLocal(time_ms);
int const days = isolate->date_cache()->DaysFromTime(local_time_ms);
int time_within_day = isolate->date_cache()->TimeInDay(local_time_ms, days);
int year, month, day;
isolate->date_cache()->YearMonthDayFromDays(days, &year, &month, &day);
time_val = MakeDate(MakeDay(year, month, value->Number()), time_within_day);
}
return SetLocalDateValue(date, time_val);
}
// ES6 section 20.3.4.21 Date.prototype.setFullYear (year, month, date)
BUILTIN(DatePrototypeSetFullYear) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.setFullYear");
int const argc = args.length() - 1;
Handle<Object> year = args.atOrUndefined(isolate, 1);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, year, Object::ToNumber(year));
double y = year->Number(), m = 0.0, dt = 1.0;
int time_within_day = 0;
if (!std::isnan(date->value()->Number())) {
int64_t const time_ms = static_cast<int64_t>(date->value()->Number());
int64_t local_time_ms = isolate->date_cache()->ToLocal(time_ms);
int const days = isolate->date_cache()->DaysFromTime(local_time_ms);
time_within_day = isolate->date_cache()->TimeInDay(local_time_ms, days);
int year, month, day;
isolate->date_cache()->YearMonthDayFromDays(days, &year, &month, &day);
m = month;
dt = day;
}
if (argc >= 2) {
Handle<Object> month = args.at<Object>(2);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, month, Object::ToNumber(month));
m = month->Number();
if (argc >= 3) {
Handle<Object> date = args.at<Object>(3);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, date, Object::ToNumber(date));
dt = date->Number();
}
}
double time_val = MakeDate(MakeDay(y, m, dt), time_within_day);
return SetLocalDateValue(date, time_val);
}
// ES6 section 20.3.4.22 Date.prototype.setHours(hour, min, sec, ms)
BUILTIN(DatePrototypeSetHours) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.setHours");
int const argc = args.length() - 1;
Handle<Object> hour = args.atOrUndefined(isolate, 1);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, hour, Object::ToNumber(hour));
double h = hour->Number();
double time_val = date->value()->Number();
if (!std::isnan(time_val)) {
int64_t const time_ms = static_cast<int64_t>(time_val);
int64_t local_time_ms = isolate->date_cache()->ToLocal(time_ms);
int day = isolate->date_cache()->DaysFromTime(local_time_ms);
int time_within_day = isolate->date_cache()->TimeInDay(local_time_ms, day);
double m = (time_within_day / (60 * 1000)) % 60;
double s = (time_within_day / 1000) % 60;
double milli = time_within_day % 1000;
if (argc >= 2) {
Handle<Object> min = args.at<Object>(2);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, min, Object::ToNumber(min));
m = min->Number();
if (argc >= 3) {
Handle<Object> sec = args.at<Object>(3);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, sec, Object::ToNumber(sec));
s = sec->Number();
if (argc >= 4) {
Handle<Object> ms = args.at<Object>(4);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, ms, Object::ToNumber(ms));
milli = ms->Number();
}
}
}
time_val = MakeDate(day, MakeTime(h, m, s, milli));
}
return SetLocalDateValue(date, time_val);
}
// ES6 section 20.3.4.23 Date.prototype.setMilliseconds(ms)
BUILTIN(DatePrototypeSetMilliseconds) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.setMilliseconds");
Handle<Object> ms = args.atOrUndefined(isolate, 1);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, ms, Object::ToNumber(ms));
double time_val = date->value()->Number();
if (!std::isnan(time_val)) {
int64_t const time_ms = static_cast<int64_t>(time_val);
int64_t local_time_ms = isolate->date_cache()->ToLocal(time_ms);
int day = isolate->date_cache()->DaysFromTime(local_time_ms);
int time_within_day = isolate->date_cache()->TimeInDay(local_time_ms, day);
int h = time_within_day / (60 * 60 * 1000);
int m = (time_within_day / (60 * 1000)) % 60;
int s = (time_within_day / 1000) % 60;
time_val = MakeDate(day, MakeTime(h, m, s, ms->Number()));
}
return SetLocalDateValue(date, time_val);
}
// ES6 section 20.3.4.24 Date.prototype.setMinutes ( min, sec, ms )
BUILTIN(DatePrototypeSetMinutes) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.setMinutes");
int const argc = args.length() - 1;
Handle<Object> min = args.atOrUndefined(isolate, 1);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, min, Object::ToNumber(min));
double time_val = date->value()->Number();
if (!std::isnan(time_val)) {
int64_t const time_ms = static_cast<int64_t>(time_val);
int64_t local_time_ms = isolate->date_cache()->ToLocal(time_ms);
int day = isolate->date_cache()->DaysFromTime(local_time_ms);
int time_within_day = isolate->date_cache()->TimeInDay(local_time_ms, day);
int h = time_within_day / (60 * 60 * 1000);
double m = min->Number();
double s = (time_within_day / 1000) % 60;
double milli = time_within_day % 1000;
if (argc >= 2) {
Handle<Object> sec = args.at<Object>(2);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, sec, Object::ToNumber(sec));
s = sec->Number();
if (argc >= 3) {
Handle<Object> ms = args.at<Object>(3);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, ms, Object::ToNumber(ms));
milli = ms->Number();
}
}
time_val = MakeDate(day, MakeTime(h, m, s, milli));
}
return SetLocalDateValue(date, time_val);
}
// ES6 section 20.3.4.25 Date.prototype.setMonth ( month, date )
BUILTIN(DatePrototypeSetMonth) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.setMonth");
int const argc = args.length() - 1;
Handle<Object> month = args.atOrUndefined(isolate, 1);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, month, Object::ToNumber(month));
double time_val = date->value()->Number();
if (!std::isnan(time_val)) {
int64_t const time_ms = static_cast<int64_t>(time_val);
int64_t local_time_ms = isolate->date_cache()->ToLocal(time_ms);
int days = isolate->date_cache()->DaysFromTime(local_time_ms);
int time_within_day = isolate->date_cache()->TimeInDay(local_time_ms, days);
int year, unused, day;
isolate->date_cache()->YearMonthDayFromDays(days, &year, &unused, &day);
double m = month->Number();
double dt = day;
if (argc >= 2) {
Handle<Object> date = args.at<Object>(2);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, date, Object::ToNumber(date));
dt = date->Number();
}
time_val = MakeDate(MakeDay(year, m, dt), time_within_day);
}
return SetLocalDateValue(date, time_val);
}
// ES6 section 20.3.4.26 Date.prototype.setSeconds ( sec, ms )
BUILTIN(DatePrototypeSetSeconds) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.setSeconds");
int const argc = args.length() - 1;
Handle<Object> sec = args.atOrUndefined(isolate, 1);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, sec, Object::ToNumber(sec));
double time_val = date->value()->Number();
if (!std::isnan(time_val)) {
int64_t const time_ms = static_cast<int64_t>(time_val);
int64_t local_time_ms = isolate->date_cache()->ToLocal(time_ms);
int day = isolate->date_cache()->DaysFromTime(local_time_ms);
int time_within_day = isolate->date_cache()->TimeInDay(local_time_ms, day);
int h = time_within_day / (60 * 60 * 1000);
double m = (time_within_day / (60 * 1000)) % 60;
double s = sec->Number();
double milli = time_within_day % 1000;
if (argc >= 2) {
Handle<Object> ms = args.at<Object>(2);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, ms, Object::ToNumber(ms));
milli = ms->Number();
}
time_val = MakeDate(day, MakeTime(h, m, s, milli));
}
return SetLocalDateValue(date, time_val);
}
// ES6 section 20.3.4.27 Date.prototype.setTime ( time )
BUILTIN(DatePrototypeSetTime) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.setTime");
Handle<Object> value = args.atOrUndefined(isolate, 1);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, value, Object::ToNumber(value));
return *JSDate::SetValue(date, TimeClip(value->Number()));
}
// ES6 section 20.3.4.28 Date.prototype.setUTCDate ( date )
BUILTIN(DatePrototypeSetUTCDate) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.setUTCDate");
Handle<Object> value = args.atOrUndefined(isolate, 1);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, value, Object::ToNumber(value));
if (std::isnan(date->value()->Number())) return date->value();
int64_t const time_ms = static_cast<int64_t>(date->value()->Number());
int const days = isolate->date_cache()->DaysFromTime(time_ms);
int const time_within_day = isolate->date_cache()->TimeInDay(time_ms, days);
int year, month, day;
isolate->date_cache()->YearMonthDayFromDays(days, &year, &month, &day);
double const time_val =
MakeDate(MakeDay(year, month, value->Number()), time_within_day);
return *JSDate::SetValue(date, TimeClip(time_val));
}
// ES6 section 20.3.4.29 Date.prototype.setUTCFullYear (year, month, date)
BUILTIN(DatePrototypeSetUTCFullYear) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.setUTCFullYear");
int const argc = args.length() - 1;
Handle<Object> year = args.atOrUndefined(isolate, 1);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, year, Object::ToNumber(year));
double y = year->Number(), m = 0.0, dt = 1.0;
int time_within_day = 0;
if (!std::isnan(date->value()->Number())) {
int64_t const time_ms = static_cast<int64_t>(date->value()->Number());
int const days = isolate->date_cache()->DaysFromTime(time_ms);
time_within_day = isolate->date_cache()->TimeInDay(time_ms, days);
int year, month, day;
isolate->date_cache()->YearMonthDayFromDays(days, &year, &month, &day);
m = month;
dt = day;
}
if (argc >= 2) {
Handle<Object> month = args.at<Object>(2);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, month, Object::ToNumber(month));
m = month->Number();
if (argc >= 3) {
Handle<Object> date = args.at<Object>(3);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, date, Object::ToNumber(date));
dt = date->Number();
}
}
double const time_val = MakeDate(MakeDay(y, m, dt), time_within_day);
return *JSDate::SetValue(date, TimeClip(time_val));
}
// ES6 section 20.3.4.30 Date.prototype.setUTCHours(hour, min, sec, ms)
BUILTIN(DatePrototypeSetUTCHours) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.setUTCHours");
int const argc = args.length() - 1;
Handle<Object> hour = args.atOrUndefined(isolate, 1);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, hour, Object::ToNumber(hour));
double h = hour->Number();
double time_val = date->value()->Number();
if (!std::isnan(time_val)) {
int64_t const time_ms = static_cast<int64_t>(time_val);
int day = isolate->date_cache()->DaysFromTime(time_ms);
int time_within_day = isolate->date_cache()->TimeInDay(time_ms, day);
double m = (time_within_day / (60 * 1000)) % 60;
double s = (time_within_day / 1000) % 60;
double milli = time_within_day % 1000;
if (argc >= 2) {
Handle<Object> min = args.at<Object>(2);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, min, Object::ToNumber(min));
m = min->Number();
if (argc >= 3) {
Handle<Object> sec = args.at<Object>(3);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, sec, Object::ToNumber(sec));
s = sec->Number();
if (argc >= 4) {
Handle<Object> ms = args.at<Object>(4);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, ms, Object::ToNumber(ms));
milli = ms->Number();
}
}
}
time_val = MakeDate(day, MakeTime(h, m, s, milli));
}
return *JSDate::SetValue(date, TimeClip(time_val));
}
// ES6 section 20.3.4.31 Date.prototype.setUTCMilliseconds(ms)
BUILTIN(DatePrototypeSetUTCMilliseconds) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.setUTCMilliseconds");
Handle<Object> ms = args.atOrUndefined(isolate, 1);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, ms, Object::ToNumber(ms));
double time_val = date->value()->Number();
if (!std::isnan(time_val)) {
int64_t const time_ms = static_cast<int64_t>(time_val);
int day = isolate->date_cache()->DaysFromTime(time_ms);
int time_within_day = isolate->date_cache()->TimeInDay(time_ms, day);
int h = time_within_day / (60 * 60 * 1000);
int m = (time_within_day / (60 * 1000)) % 60;
int s = (time_within_day / 1000) % 60;
time_val = MakeDate(day, MakeTime(h, m, s, ms->Number()));
}
return *JSDate::SetValue(date, TimeClip(time_val));
}
// ES6 section 20.3.4.32 Date.prototype.setUTCMinutes ( min, sec, ms )
BUILTIN(DatePrototypeSetUTCMinutes) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.setUTCMinutes");
int const argc = args.length() - 1;
Handle<Object> min = args.atOrUndefined(isolate, 1);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, min, Object::ToNumber(min));
double time_val = date->value()->Number();
if (!std::isnan(time_val)) {
int64_t const time_ms = static_cast<int64_t>(time_val);
int day = isolate->date_cache()->DaysFromTime(time_ms);
int time_within_day = isolate->date_cache()->TimeInDay(time_ms, day);
int h = time_within_day / (60 * 60 * 1000);
double m = min->Number();
double s = (time_within_day / 1000) % 60;
double milli = time_within_day % 1000;
if (argc >= 2) {
Handle<Object> sec = args.at<Object>(2);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, sec, Object::ToNumber(sec));
s = sec->Number();
if (argc >= 3) {
Handle<Object> ms = args.at<Object>(3);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, ms, Object::ToNumber(ms));
milli = ms->Number();
}
}
time_val = MakeDate(day, MakeTime(h, m, s, milli));
}
return *JSDate::SetValue(date, TimeClip(time_val));
}
// ES6 section 20.3.4.31 Date.prototype.setUTCMonth ( month, date )
BUILTIN(DatePrototypeSetUTCMonth) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.setUTCMonth");
int const argc = args.length() - 1;
Handle<Object> month = args.atOrUndefined(isolate, 1);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, month, Object::ToNumber(month));
double time_val = date->value()->Number();
if (!std::isnan(time_val)) {
int64_t const time_ms = static_cast<int64_t>(time_val);
int days = isolate->date_cache()->DaysFromTime(time_ms);
int time_within_day = isolate->date_cache()->TimeInDay(time_ms, days);
int year, unused, day;
isolate->date_cache()->YearMonthDayFromDays(days, &year, &unused, &day);
double m = month->Number();
double dt = day;
if (argc >= 2) {
Handle<Object> date = args.at<Object>(2);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, date, Object::ToNumber(date));
dt = date->Number();
}
time_val = MakeDate(MakeDay(year, m, dt), time_within_day);
}
return *JSDate::SetValue(date, TimeClip(time_val));
}
// ES6 section 20.3.4.34 Date.prototype.setUTCSeconds ( sec, ms )
BUILTIN(DatePrototypeSetUTCSeconds) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.setUTCSeconds");
int const argc = args.length() - 1;
Handle<Object> sec = args.atOrUndefined(isolate, 1);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, sec, Object::ToNumber(sec));
double time_val = date->value()->Number();
if (!std::isnan(time_val)) {
int64_t const time_ms = static_cast<int64_t>(time_val);
int day = isolate->date_cache()->DaysFromTime(time_ms);
int time_within_day = isolate->date_cache()->TimeInDay(time_ms, day);
int h = time_within_day / (60 * 60 * 1000);
double m = (time_within_day / (60 * 1000)) % 60;
double s = sec->Number();
double milli = time_within_day % 1000;
if (argc >= 2) {
Handle<Object> ms = args.at<Object>(2);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, ms, Object::ToNumber(ms));
milli = ms->Number();
}
time_val = MakeDate(day, MakeTime(h, m, s, milli));
}
return *JSDate::SetValue(date, TimeClip(time_val));
}
// ES6 section 20.3.4.35 Date.prototype.toDateString ( )
BUILTIN(DatePrototypeToDateString) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.toDateString");
char buffer[128];
ToDateString(date->value()->Number(), ArrayVector(buffer),
isolate->date_cache(), kDateOnly);
RETURN_RESULT_OR_FAILURE(
isolate, isolate->factory()->NewStringFromUtf8(CStrVector(buffer)));
}
// ES6 section 20.3.4.36 Date.prototype.toISOString ( )
BUILTIN(DatePrototypeToISOString) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.toISOString");
double const time_val = date->value()->Number();
if (std::isnan(time_val)) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewRangeError(MessageTemplate::kInvalidTimeValue));
}
int64_t const time_ms = static_cast<int64_t>(time_val);
int year, month, day, weekday, hour, min, sec, ms;
isolate->date_cache()->BreakDownTime(time_ms, &year, &month, &day, &weekday,
&hour, &min, &sec, &ms);
char buffer[128];
if (year >= 0 && year <= 9999) {
SNPrintF(ArrayVector(buffer), "%04d-%02d-%02dT%02d:%02d:%02d.%03dZ", year,
month + 1, day, hour, min, sec, ms);
} else if (year < 0) {
SNPrintF(ArrayVector(buffer), "-%06d-%02d-%02dT%02d:%02d:%02d.%03dZ", -year,
month + 1, day, hour, min, sec, ms);
} else {
SNPrintF(ArrayVector(buffer), "+%06d-%02d-%02dT%02d:%02d:%02d.%03dZ", year,
month + 1, day, hour, min, sec, ms);
}
return *isolate->factory()->NewStringFromAsciiChecked(buffer);
}
// ES6 section 20.3.4.41 Date.prototype.toString ( )
BUILTIN(DatePrototypeToString) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.toString");
char buffer[128];
ToDateString(date->value()->Number(), ArrayVector(buffer),
isolate->date_cache());
RETURN_RESULT_OR_FAILURE(
isolate, isolate->factory()->NewStringFromUtf8(CStrVector(buffer)));
}
// ES6 section 20.3.4.42 Date.prototype.toTimeString ( )
BUILTIN(DatePrototypeToTimeString) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.toTimeString");
char buffer[128];
ToDateString(date->value()->Number(), ArrayVector(buffer),
isolate->date_cache(), kTimeOnly);
RETURN_RESULT_OR_FAILURE(
isolate, isolate->factory()->NewStringFromUtf8(CStrVector(buffer)));
}
// ES6 section 20.3.4.43 Date.prototype.toUTCString ( )
BUILTIN(DatePrototypeToUTCString) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.toUTCString");
double const time_val = date->value()->Number();
if (std::isnan(time_val)) {
return *isolate->factory()->NewStringFromAsciiChecked("Invalid Date");
}
char buffer[128];
int64_t time_ms = static_cast<int64_t>(time_val);
int year, month, day, weekday, hour, min, sec, ms;
isolate->date_cache()->BreakDownTime(time_ms, &year, &month, &day, &weekday,
&hour, &min, &sec, &ms);
SNPrintF(ArrayVector(buffer), "%s, %02d %s %4d %02d:%02d:%02d GMT",
kShortWeekDays[weekday], day, kShortMonths[month], year, hour, min,
sec);
return *isolate->factory()->NewStringFromAsciiChecked(buffer);
}
// ES6 section 20.3.4.44 Date.prototype.valueOf ( )
BUILTIN(DatePrototypeValueOf) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.valueOf");
return date->value();
}
// ES6 section 20.3.4.45 Date.prototype [ @@toPrimitive ] ( hint )
BUILTIN(DatePrototypeToPrimitive) {
HandleScope scope(isolate);
DCHECK_EQ(2, args.length());
CHECK_RECEIVER(JSReceiver, receiver, "Date.prototype [ @@toPrimitive ]");
Handle<Object> hint = args.at<Object>(1);
RETURN_RESULT_OR_FAILURE(isolate, JSDate::ToPrimitive(receiver, hint));
}
// ES6 section B.2.4.1 Date.prototype.getYear ( )
BUILTIN(DatePrototypeGetYear) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.getYear");
double time_val = date->value()->Number();
if (std::isnan(time_val)) return date->value();
int64_t time_ms = static_cast<int64_t>(time_val);
int64_t local_time_ms = isolate->date_cache()->ToLocal(time_ms);
int days = isolate->date_cache()->DaysFromTime(local_time_ms);
int year, month, day;
isolate->date_cache()->YearMonthDayFromDays(days, &year, &month, &day);
return Smi::FromInt(year - 1900);
}
// ES6 section B.2.4.2 Date.prototype.setYear ( year )
BUILTIN(DatePrototypeSetYear) {
HandleScope scope(isolate);
CHECK_RECEIVER(JSDate, date, "Date.prototype.setYear");
Handle<Object> year = args.atOrUndefined(isolate, 1);
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, year, Object::ToNumber(year));
double m = 0.0, dt = 1.0, y = year->Number();
if (0.0 <= y && y <= 99.0) {
y = 1900.0 + DoubleToInteger(y);
}
int time_within_day = 0;
if (!std::isnan(date->value()->Number())) {
int64_t const time_ms = static_cast<int64_t>(date->value()->Number());
int64_t local_time_ms = isolate->date_cache()->ToLocal(time_ms);
int const days = isolate->date_cache()->DaysFromTime(local_time_ms);
time_within_day = isolate->date_cache()->TimeInDay(local_time_ms, days);
int year, month, day;
isolate->date_cache()->YearMonthDayFromDays(days, &year, &month, &day);
m = month;
dt = day;
}
double time_val = MakeDate(MakeDay(y, m, dt), time_within_day);
return SetLocalDateValue(date, time_val);
}
// ES6 section 20.3.4.37 Date.prototype.toJSON ( key )
BUILTIN(DatePrototypeToJson) {
HandleScope scope(isolate);
Handle<Object> receiver = args.atOrUndefined(isolate, 0);
Handle<JSReceiver> receiver_obj;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, receiver_obj,
Object::ToObject(isolate, receiver));
Handle<Object> primitive;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, primitive,
Object::ToPrimitive(receiver_obj, ToPrimitiveHint::kNumber));
if (primitive->IsNumber() && !std::isfinite(primitive->Number())) {
return isolate->heap()->null_value();
} else {
Handle<String> name =
isolate->factory()->NewStringFromAsciiChecked("toISOString");
Handle<Object> function;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, function,
Object::GetProperty(receiver_obj, name));
if (!function->IsCallable()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kCalledNonCallable, name));
}
RETURN_RESULT_OR_FAILURE(
isolate, Execution::Call(isolate, function, receiver_obj, 0, NULL));
}
}
// static
void Builtins::Generate_DatePrototypeGetDate(MacroAssembler* masm) {
Generate_DatePrototype_GetField(masm, JSDate::kDay);
}
// static
void Builtins::Generate_DatePrototypeGetDay(MacroAssembler* masm) {
Generate_DatePrototype_GetField(masm, JSDate::kWeekday);
}
// static
void Builtins::Generate_DatePrototypeGetFullYear(MacroAssembler* masm) {
Generate_DatePrototype_GetField(masm, JSDate::kYear);
}
// static
void Builtins::Generate_DatePrototypeGetHours(MacroAssembler* masm) {
Generate_DatePrototype_GetField(masm, JSDate::kHour);
}
// static
void Builtins::Generate_DatePrototypeGetMilliseconds(MacroAssembler* masm) {
Generate_DatePrototype_GetField(masm, JSDate::kMillisecond);
}
// static
void Builtins::Generate_DatePrototypeGetMinutes(MacroAssembler* masm) {
Generate_DatePrototype_GetField(masm, JSDate::kMinute);
}
// static
void Builtins::Generate_DatePrototypeGetMonth(MacroAssembler* masm) {
Generate_DatePrototype_GetField(masm, JSDate::kMonth);
}
// static
void Builtins::Generate_DatePrototypeGetSeconds(MacroAssembler* masm) {
Generate_DatePrototype_GetField(masm, JSDate::kSecond);
}
// static
void Builtins::Generate_DatePrototypeGetTime(MacroAssembler* masm) {
Generate_DatePrototype_GetField(masm, JSDate::kDateValue);
}
// static
void Builtins::Generate_DatePrototypeGetTimezoneOffset(MacroAssembler* masm) {
Generate_DatePrototype_GetField(masm, JSDate::kTimezoneOffset);
}
// static
void Builtins::Generate_DatePrototypeGetUTCDate(MacroAssembler* masm) {
Generate_DatePrototype_GetField(masm, JSDate::kDayUTC);
}
// static
void Builtins::Generate_DatePrototypeGetUTCDay(MacroAssembler* masm) {
Generate_DatePrototype_GetField(masm, JSDate::kWeekdayUTC);
}
// static
void Builtins::Generate_DatePrototypeGetUTCFullYear(MacroAssembler* masm) {
Generate_DatePrototype_GetField(masm, JSDate::kYearUTC);
}
// static
void Builtins::Generate_DatePrototypeGetUTCHours(MacroAssembler* masm) {
Generate_DatePrototype_GetField(masm, JSDate::kHourUTC);
}
// static
void Builtins::Generate_DatePrototypeGetUTCMilliseconds(MacroAssembler* masm) {
Generate_DatePrototype_GetField(masm, JSDate::kMillisecondUTC);
}
// static
void Builtins::Generate_DatePrototypeGetUTCMinutes(MacroAssembler* masm) {
Generate_DatePrototype_GetField(masm, JSDate::kMinuteUTC);
}
// static
void Builtins::Generate_DatePrototypeGetUTCMonth(MacroAssembler* masm) {
Generate_DatePrototype_GetField(masm, JSDate::kMonthUTC);
}
// static
void Builtins::Generate_DatePrototypeGetUTCSeconds(MacroAssembler* masm) {
Generate_DatePrototype_GetField(masm, JSDate::kSecondUTC);
}
namespace {
// ES6 section 19.2.1.1.1 CreateDynamicFunction
MaybeHandle<JSFunction> CreateDynamicFunction(Isolate* isolate,
BuiltinArguments args,
const char* token) {
// Compute number of arguments, ignoring the receiver.
DCHECK_LE(1, args.length());
int const argc = args.length() - 1;
// Build the source string.
Handle<String> source;
{
IncrementalStringBuilder builder(isolate);
builder.AppendCharacter('(');
builder.AppendCString(token);
builder.AppendCharacter('(');
bool parenthesis_in_arg_string = false;
if (argc > 1) {
for (int i = 1; i < argc; ++i) {
if (i > 1) builder.AppendCharacter(',');
Handle<String> param;
ASSIGN_RETURN_ON_EXCEPTION(
isolate, param, Object::ToString(isolate, args.at<Object>(i)),
JSFunction);
param = String::Flatten(param);
builder.AppendString(param);
// If the formal parameters string include ) - an illegal
// character - it may make the combined function expression
// compile. We avoid this problem by checking for this early on.
DisallowHeapAllocation no_gc; // Ensure vectors stay valid.
String::FlatContent param_content = param->GetFlatContent();
for (int i = 0, length = param->length(); i < length; ++i) {
if (param_content.Get(i) == ')') {
parenthesis_in_arg_string = true;
break;
}
}
}
// If the formal parameters include an unbalanced block comment, the
// function must be rejected. Since JavaScript does not allow nested
// comments we can include a trailing block comment to catch this.
builder.AppendCString("\n/**/");
}
builder.AppendCString(") {\n");
if (argc > 0) {
Handle<String> body;
ASSIGN_RETURN_ON_EXCEPTION(
isolate, body, Object::ToString(isolate, args.at<Object>(argc)),
JSFunction);
builder.AppendString(body);
}
builder.AppendCString("\n})");
ASSIGN_RETURN_ON_EXCEPTION(isolate, source, builder.Finish(), JSFunction);
// The SyntaxError must be thrown after all the (observable) ToString
// conversions are done.
if (parenthesis_in_arg_string) {
THROW_NEW_ERROR(isolate,
NewSyntaxError(MessageTemplate::kParenthesisInArgString),
JSFunction);
}
}
// Compile the string in the constructor and not a helper so that errors to
// come from here.
Handle<JSFunction> target = args.target<JSFunction>();
Handle<JSObject> target_global_proxy(target->global_proxy(), isolate);
Handle<JSFunction> function;
{
ASSIGN_RETURN_ON_EXCEPTION(
isolate, function,
CompileString(handle(target->native_context(), isolate), source,
ONLY_SINGLE_FUNCTION_LITERAL),
JSFunction);
Handle<Object> result;
ASSIGN_RETURN_ON_EXCEPTION(
isolate, result,
Execution::Call(isolate, function, target_global_proxy, 0, nullptr),
JSFunction);
function = Handle<JSFunction>::cast(result);
function->shared()->set_name_should_print_as_anonymous(true);
}
// If new.target is equal to target then the function created
// is already correctly setup and nothing else should be done
// here. But if new.target is not equal to target then we are
// have a Function builtin subclassing case and therefore the
// function has wrong initial map. To fix that we create a new
// function object with correct initial map.
Handle<Object> unchecked_new_target = args.new_target();
if (!unchecked_new_target->IsUndefined(isolate) &&
!unchecked_new_target.is_identical_to(target)) {
Handle<JSReceiver> new_target =
Handle<JSReceiver>::cast(unchecked_new_target);
Handle<Map> initial_map;
ASSIGN_RETURN_ON_EXCEPTION(
isolate, initial_map,
JSFunction::GetDerivedMap(isolate, target, new_target), JSFunction);
Handle<SharedFunctionInfo> shared_info(function->shared(), isolate);
Handle<Map> map = Map::AsLanguageMode(
initial_map, shared_info->language_mode(), shared_info->kind());
Handle<Context> context(function->context(), isolate);
function = isolate->factory()->NewFunctionFromSharedFunctionInfo(
map, shared_info, context, NOT_TENURED);
}
return function;
}
} // namespace
// ES6 section 19.2.1.1 Function ( p1, p2, ... , pn, body )
BUILTIN(FunctionConstructor) {
HandleScope scope(isolate);
Handle<JSFunction> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, result, CreateDynamicFunction(isolate, args, "function"));
return *result;
}
namespace {
Object* DoFunctionBind(Isolate* isolate, BuiltinArguments args) {
HandleScope scope(isolate);
DCHECK_LE(1, args.length());
if (!args.receiver()->IsCallable()) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kFunctionBind));
}
// Allocate the bound function with the given {this_arg} and {args}.
Handle<JSReceiver> target = args.at<JSReceiver>(0);
Handle<Object> this_arg = isolate->factory()->undefined_value();
ScopedVector<Handle<Object>> argv(std::max(0, args.length() - 2));
if (args.length() > 1) {
this_arg = args.at<Object>(1);
for (int i = 2; i < args.length(); ++i) {
argv[i - 2] = args.at<Object>(i);
}
}
Handle<JSBoundFunction> function;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, function,
isolate->factory()->NewJSBoundFunction(target, this_arg, argv));
LookupIterator length_lookup(target, isolate->factory()->length_string(),
target, LookupIterator::OWN);
// Setup the "length" property based on the "length" of the {target}.
// If the targets length is the default JSFunction accessor, we can keep the
// accessor that's installed by default on the JSBoundFunction. It lazily
// computes the value from the underlying internal length.
if (!target->IsJSFunction() ||
length_lookup.state() != LookupIterator::ACCESSOR ||
!length_lookup.GetAccessors()->IsAccessorInfo()) {
Handle<Object> length(Smi::FromInt(0), isolate);
Maybe<PropertyAttributes> attributes =
JSReceiver::GetPropertyAttributes(&length_lookup);
if (!attributes.IsJust()) return isolate->heap()->exception();
if (attributes.FromJust() != ABSENT) {
Handle<Object> target_length;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, target_length,
Object::GetProperty(&length_lookup));
if (target_length->IsNumber()) {
length = isolate->factory()->NewNumber(std::max(
0.0, DoubleToInteger(target_length->Number()) - argv.length()));
}
}
LookupIterator it(function, isolate->factory()->length_string(), function);
DCHECK_EQ(LookupIterator::ACCESSOR, it.state());
RETURN_FAILURE_ON_EXCEPTION(isolate,
JSObject::DefineOwnPropertyIgnoreAttributes(
&it, length, it.property_attributes()));
}
// Setup the "name" property based on the "name" of the {target}.
// If the targets name is the default JSFunction accessor, we can keep the
// accessor that's installed by default on the JSBoundFunction. It lazily
// computes the value from the underlying internal name.
LookupIterator name_lookup(target, isolate->factory()->name_string(), target,
LookupIterator::OWN);
if (!target->IsJSFunction() ||
name_lookup.state() != LookupIterator::ACCESSOR ||
!name_lookup.GetAccessors()->IsAccessorInfo()) {
Handle<Object> target_name;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, target_name,
Object::GetProperty(&name_lookup));
Handle<String> name;
if (target_name->IsString()) {
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, name,
Name::ToFunctionName(Handle<String>::cast(target_name)));
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, name, isolate->factory()->NewConsString(
isolate->factory()->bound__string(), name));
} else {
name = isolate->factory()->bound__string();
}
LookupIterator it(function, isolate->factory()->name_string());
DCHECK_EQ(LookupIterator::ACCESSOR, it.state());
RETURN_FAILURE_ON_EXCEPTION(isolate,
JSObject::DefineOwnPropertyIgnoreAttributes(
&it, name, it.property_attributes()));
}
return *function;
}
} // namespace
// ES6 section 19.2.3.2 Function.prototype.bind ( thisArg, ...args )
BUILTIN(FunctionPrototypeBind) { return DoFunctionBind(isolate, args); }
// TODO(verwaest): This is a temporary helper until the FastFunctionBind stub
// can tailcall to the builtin directly.
RUNTIME_FUNCTION(Runtime_FunctionBind) {
DCHECK_EQ(2, args.length());
Arguments* incoming = reinterpret_cast<Arguments*>(args[0]);
// Rewrap the arguments as builtins arguments.
BuiltinArguments caller_args(incoming->length() + 3,
incoming->arguments() + 1);
return DoFunctionBind(isolate, caller_args);
}
// ES6 section 19.2.3.5 Function.prototype.toString ( )
BUILTIN(FunctionPrototypeToString) {
HandleScope scope(isolate);
Handle<Object> receiver = args.receiver();
if (receiver->IsJSBoundFunction()) {
return *JSBoundFunction::ToString(Handle<JSBoundFunction>::cast(receiver));
} else if (receiver->IsJSFunction()) {
return *JSFunction::ToString(Handle<JSFunction>::cast(receiver));
}
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kNotGeneric,
isolate->factory()->NewStringFromAsciiChecked(
"Function.prototype.toString")));
}
// ES6 section 25.2.1.1 GeneratorFunction (p1, p2, ... , pn, body)
BUILTIN(GeneratorFunctionConstructor) {
HandleScope scope(isolate);
RETURN_RESULT_OR_FAILURE(isolate,
CreateDynamicFunction(isolate, args, "function*"));
}
BUILTIN(AsyncFunctionConstructor) {
HandleScope scope(isolate);
Handle<JSFunction> func;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, func, CreateDynamicFunction(isolate, args, "async function"));
// Do not lazily compute eval position for AsyncFunction, as they may not be
// determined after the function is resumed.
Handle<Script> script = handle(Script::cast(func->shared()->script()));
int position = script->GetEvalPosition();
USE(position);
return *func;
}
// ES6 section 19.4.1.1 Symbol ( [ description ] ) for the [[Call]] case.
BUILTIN(SymbolConstructor) {
HandleScope scope(isolate);
Handle<Symbol> result = isolate->factory()->NewSymbol();
Handle<Object> description = args.atOrUndefined(isolate, 1);
if (!description->IsUndefined(isolate)) {
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, description,
Object::ToString(isolate, description));
result->set_name(*description);
}
return *result;
}
// ES6 section 19.4.1.1 Symbol ( [ description ] ) for the [[Construct]] case.
BUILTIN(SymbolConstructor_ConstructStub) {
HandleScope scope(isolate);
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kNotConstructor,
isolate->factory()->Symbol_string()));
}
// ES6 19.1.3.6 Object.prototype.toString
BUILTIN(ObjectProtoToString) {
HandleScope scope(isolate);
Handle<Object> object = args.at<Object>(0);
RETURN_RESULT_OR_FAILURE(isolate,
Object::ObjectProtoToString(isolate, object));
}
// -----------------------------------------------------------------------------
// ES6 section 21.1 String Objects
// ES6 section 21.1.2.1 String.fromCharCode ( ...codeUnits )
void Builtins::Generate_StringFromCharCode(CodeStubAssembler* assembler) {
typedef CodeStubAssembler::Label Label;
typedef compiler::Node Node;
typedef CodeStubAssembler::Variable Variable;
Node* code = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
// Check if we have exactly one argument (plus the implicit receiver), i.e.
// if the parent frame is not an arguments adaptor frame.
Label if_oneargument(assembler), if_notoneargument(assembler);
Node* parent_frame_pointer = assembler->LoadParentFramePointer();
Node* parent_frame_type =
assembler->Load(MachineType::Pointer(), parent_frame_pointer,
assembler->IntPtrConstant(
CommonFrameConstants::kContextOrFrameTypeOffset));
assembler->Branch(
assembler->WordEqual(
parent_frame_type,
assembler->SmiConstant(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))),
&if_notoneargument, &if_oneargument);
assembler->Bind(&if_oneargument);
{
// Single argument case, perform fast single character string cache lookup
// for one-byte code units, or fall back to creating a single character
// string on the fly otherwise.
Node* code32 = assembler->TruncateTaggedToWord32(context, code);
Node* code16 = assembler->Word32And(
code32, assembler->Int32Constant(String::kMaxUtf16CodeUnit));
Node* result = assembler->StringFromCharCode(code16);
assembler->Return(result);
}
assembler->Bind(&if_notoneargument);
{
// Determine the resulting string length.
Node* parent_frame_length =
assembler->Load(MachineType::Pointer(), parent_frame_pointer,
assembler->IntPtrConstant(
ArgumentsAdaptorFrameConstants::kLengthOffset));
Node* length = assembler->SmiToWord(parent_frame_length);
// Assume that the resulting string contains only one-byte characters.
Node* result = assembler->AllocateSeqOneByteString(context, length);
// Truncate all input parameters and append them to the resulting string.
Variable var_offset(assembler, MachineType::PointerRepresentation());
Label loop(assembler, &var_offset), done_loop(assembler);
var_offset.Bind(assembler->IntPtrConstant(0));
assembler->Goto(&loop);
assembler->Bind(&loop);
{
// Load the current {offset}.
Node* offset = var_offset.value();
// Check if we're done with the string.
assembler->GotoIf(assembler->WordEqual(offset, length), &done_loop);
// Load the next code point and truncate it to a 16-bit value.
Node* code = assembler->Load(
MachineType::AnyTagged(), parent_frame_pointer,
assembler->IntPtrAdd(
assembler->WordShl(assembler->IntPtrSub(length, offset),
assembler->IntPtrConstant(kPointerSizeLog2)),
assembler->IntPtrConstant(
CommonFrameConstants::kFixedFrameSizeAboveFp -
kPointerSize)));
Node* code32 = assembler->TruncateTaggedToWord32(context, code);
Node* code16 = assembler->Word32And(
code32, assembler->Int32Constant(String::kMaxUtf16CodeUnit));
// Check if {code16} fits into a one-byte string.
Label if_codeisonebyte(assembler), if_codeistwobyte(assembler);
assembler->Branch(
assembler->Int32LessThanOrEqual(
code16, assembler->Int32Constant(String::kMaxOneByteCharCode)),
&if_codeisonebyte, &if_codeistwobyte);
assembler->Bind(&if_codeisonebyte);
{
// The {code16} fits into the SeqOneByteString {result}.
assembler->StoreNoWriteBarrier(
MachineRepresentation::kWord8, result,
assembler->IntPtrAdd(
assembler->IntPtrConstant(SeqOneByteString::kHeaderSize -
kHeapObjectTag),
offset),
code16);
var_offset.Bind(
assembler->IntPtrAdd(offset, assembler->IntPtrConstant(1)));
assembler->Goto(&loop);
}
assembler->Bind(&if_codeistwobyte);
{
// Allocate a SeqTwoByteString to hold the resulting string.
Node* cresult = assembler->AllocateSeqTwoByteString(context, length);
// Copy all characters that were previously written to the
// SeqOneByteString in {result} over to the new {cresult}.
Variable var_coffset(assembler, MachineType::PointerRepresentation());
Label cloop(assembler, &var_coffset), done_cloop(assembler);
var_coffset.Bind(assembler->IntPtrConstant(0));
assembler->Goto(&cloop);
assembler->Bind(&cloop);
{
Node* coffset = var_coffset.value();
assembler->GotoIf(assembler->WordEqual(coffset, offset), &done_cloop);
Node* ccode = assembler->Load(
MachineType::Uint8(), result,
assembler->IntPtrAdd(
assembler->IntPtrConstant(SeqOneByteString::kHeaderSize -
kHeapObjectTag),
coffset));
assembler->StoreNoWriteBarrier(
MachineRepresentation::kWord16, cresult,
assembler->IntPtrAdd(
assembler->IntPtrConstant(SeqTwoByteString::kHeaderSize -
kHeapObjectTag),
assembler->WordShl(coffset, 1)),
ccode);
var_coffset.Bind(
assembler->IntPtrAdd(coffset, assembler->IntPtrConstant(1)));
assembler->Goto(&cloop);
}
// Write the pending {code16} to {offset}.
assembler->Bind(&done_cloop);
assembler->StoreNoWriteBarrier(
MachineRepresentation::kWord16, cresult,
assembler->IntPtrAdd(
assembler->IntPtrConstant(SeqTwoByteString::kHeaderSize -
kHeapObjectTag),
assembler->WordShl(offset, 1)),
code16);
// Copy the remaining parameters to the SeqTwoByteString {cresult}.
Label floop(assembler, &var_offset), done_floop(assembler);
assembler->Goto(&floop);
assembler->Bind(&floop);
{
// Compute the next {offset}.
Node* offset = assembler->IntPtrAdd(var_offset.value(),
assembler->IntPtrConstant(1));
// Check if we're done with the string.
assembler->GotoIf(assembler->WordEqual(offset, length), &done_floop);
// Load the next code point and truncate it to a 16-bit value.
Node* code = assembler->Load(
MachineType::AnyTagged(), parent_frame_pointer,
assembler->IntPtrAdd(
assembler->WordShl(
assembler->IntPtrSub(length, offset),
assembler->IntPtrConstant(kPointerSizeLog2)),
assembler->IntPtrConstant(
CommonFrameConstants::kFixedFrameSizeAboveFp -
kPointerSize)));
Node* code32 = assembler->TruncateTaggedToWord32(context, code);
Node* code16 = assembler->Word32And(
code32, assembler->Int32Constant(String::kMaxUtf16CodeUnit));
// Store the truncated {code} point at the next offset.
assembler->StoreNoWriteBarrier(
MachineRepresentation::kWord16, cresult,
assembler->IntPtrAdd(
assembler->IntPtrConstant(SeqTwoByteString::kHeaderSize -
kHeapObjectTag),
assembler->WordShl(offset, 1)),
code16);
var_offset.Bind(offset);
assembler->Goto(&floop);
}
// Return the SeqTwoByteString.
assembler->Bind(&done_floop);
assembler->Return(cresult);
}
}
assembler->Bind(&done_loop);
assembler->Return(result);
}
}
namespace { // for String.fromCodePoint
bool IsValidCodePoint(Isolate* isolate, Handle<Object> value) {
if (!value->IsNumber() && !Object::ToNumber(value).ToHandle(&value)) {
return false;
}
if (Object::ToInteger(isolate, value).ToHandleChecked()->Number() !=
value->Number()) {
return false;
}
if (value->Number() < 0 || value->Number() > 0x10FFFF) {
return false;
}
return true;
}
uc32 NextCodePoint(Isolate* isolate, BuiltinArguments args, int index) {
Handle<Object> value = args.at<Object>(1 + index);
ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, value, Object::ToNumber(value), -1);
if (!IsValidCodePoint(isolate, value)) {
isolate->Throw(*isolate->factory()->NewRangeError(
MessageTemplate::kInvalidCodePoint, value));
return -1;
}
return DoubleToUint32(value->Number());
}
} // namespace
// ES6 section 21.1.2.2 String.fromCodePoint ( ...codePoints )
BUILTIN(StringFromCodePoint) {
HandleScope scope(isolate);
int const length = args.length() - 1;
if (length == 0) return isolate->heap()->empty_string();
DCHECK_LT(0, length);
// Optimistically assume that the resulting String contains only one byte
// characters.
List<uint8_t> one_byte_buffer(length);
uc32 code = 0;
int index;
for (index = 0; index < length; index++) {
code = NextCodePoint(isolate, args, index);
if (code < 0) {
return isolate->heap()->exception();
}
if (code > String::kMaxOneByteCharCode) {
break;
}
one_byte_buffer.Add(code);
}
if (index == length) {
RETURN_RESULT_OR_FAILURE(isolate, isolate->factory()->NewStringFromOneByte(
one_byte_buffer.ToConstVector()));
}
List<uc16> two_byte_buffer(length - index);
while (true) {
if (code <= unibrow::Utf16::kMaxNonSurrogateCharCode) {
two_byte_buffer.Add(code);
} else {
two_byte_buffer.Add(unibrow::Utf16::LeadSurrogate(code));
two_byte_buffer.Add(unibrow::Utf16::TrailSurrogate(code));
}
if (++index == length) {
break;
}
code = NextCodePoint(isolate, args, index);
if (code < 0) {
return isolate->heap()->exception();
}
}
Handle<SeqTwoByteString> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
isolate, result,
isolate->factory()->NewRawTwoByteString(one_byte_buffer.length() +
two_byte_buffer.length()));
CopyChars(result->GetChars(), one_byte_buffer.ToConstVector().start(),
one_byte_buffer.length());
CopyChars(result->GetChars() + one_byte_buffer.length(),
two_byte_buffer.ToConstVector().start(), two_byte_buffer.length());
return *result;
}
// ES6 section 21.1.3.1 String.prototype.charAt ( pos )
void Builtins::Generate_StringPrototypeCharAt(CodeStubAssembler* assembler) {
typedef CodeStubAssembler::Label Label;
typedef compiler::Node Node;
typedef CodeStubAssembler::Variable Variable;
Node* receiver = assembler->Parameter(0);
Node* position = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
// Check that {receiver} is coercible to Object and convert it to a String.
receiver =
assembler->ToThisString(context, receiver, "String.prototype.charAt");
// Convert the {position} to a Smi and check that it's in bounds of the
// {receiver}.
// TODO(bmeurer): Find an abstraction for this!
{
// Check if the {position} is already a Smi.
Variable var_position(assembler, MachineRepresentation::kTagged);
var_position.Bind(position);
Label if_positionissmi(assembler),
if_positionisnotsmi(assembler, Label::kDeferred);
assembler->Branch(assembler->WordIsSmi(position), &if_positionissmi,
&if_positionisnotsmi);
assembler->Bind(&if_positionisnotsmi);
{
// Convert the {position} to an Integer via the ToIntegerStub.
Callable callable = CodeFactory::ToInteger(assembler->isolate());
Node* index = assembler->CallStub(callable, context, position);
// Check if the resulting {index} is now a Smi.
Label if_indexissmi(assembler, Label::kDeferred),
if_indexisnotsmi(assembler, Label::kDeferred);
assembler->Branch(assembler->WordIsSmi(index), &if_indexissmi,
&if_indexisnotsmi);
assembler->Bind(&if_indexissmi);
{
var_position.Bind(index);
assembler->Goto(&if_positionissmi);
}
assembler->Bind(&if_indexisnotsmi);
{
// The ToIntegerStub canonicalizes everything in Smi range to Smi
// representation, so any HeapNumber returned is not in Smi range.
// The only exception here is -0.0, which we treat as 0.
Node* index_value = assembler->LoadHeapNumberValue(index);
Label if_indexiszero(assembler, Label::kDeferred),
if_indexisnotzero(assembler, Label::kDeferred);
assembler->Branch(assembler->Float64Equal(
index_value, assembler->Float64Constant(0.0)),
&if_indexiszero, &if_indexisnotzero);
assembler->Bind(&if_indexiszero);
{
var_position.Bind(assembler->SmiConstant(Smi::FromInt(0)));
assembler->Goto(&if_positionissmi);
}
assembler->Bind(&if_indexisnotzero);
{
// The {index} is some other integral Number, that is definitely
// neither -0.0 nor in Smi range.
assembler->Return(assembler->EmptyStringConstant());
}
}
}
assembler->Bind(&if_positionissmi);
position = var_position.value();
// Determine the actual length of the {receiver} String.
Node* receiver_length =
assembler->LoadObjectField(receiver, String::kLengthOffset);
// Return "" if the Smi {position} is outside the bounds of the {receiver}.
Label if_positioninbounds(assembler),
if_positionnotinbounds(assembler, Label::kDeferred);
assembler->Branch(assembler->SmiAboveOrEqual(position, receiver_length),
&if_positionnotinbounds, &if_positioninbounds);
assembler->Bind(&if_positionnotinbounds);
assembler->Return(assembler->EmptyStringConstant());
assembler->Bind(&if_positioninbounds);
}
// Load the character code at the {position} from the {receiver}.
Node* code = assembler->StringCharCodeAt(receiver, position);
// And return the single character string with only that {code}.
Node* result = assembler->StringFromCharCode(code);
assembler->Return(result);
}
// ES6 section 21.1.3.2 String.prototype.charCodeAt ( pos )
void Builtins::Generate_StringPrototypeCharCodeAt(
CodeStubAssembler* assembler) {
typedef CodeStubAssembler::Label Label;
typedef compiler::Node Node;
typedef CodeStubAssembler::Variable Variable;
Node* receiver = assembler->Parameter(0);
Node* position = assembler->Parameter(1);
Node* context = assembler->Parameter(4);
// Check that {receiver} is coercible to Object and convert it to a String.
receiver =
assembler->ToThisString(context, receiver, "String.prototype.charCodeAt");
// Convert the {position} to a Smi and check that it's in bounds of the
// {receiver}.
// TODO(bmeurer): Find an abstraction for this!
{
// Check if the {position} is already a Smi.
Variable var_position(assembler, MachineRepresentation::kTagged);
var_position.Bind(position);
Label if_positionissmi(assembler),
if_positionisnotsmi(assembler, Label::kDeferred);
assembler->Branch(assembler->WordIsSmi(position), &if_positionissmi,
&if_positionisnotsmi);
assembler->Bind(&if_positionisnotsmi);
{
// Convert the {position} to an Integer via the ToIntegerStub.
Callable callable = CodeFactory::ToInteger(assembler->isolate());
Node* index = assembler->CallStub(callable, context, position);
// Check if the resulting {index} is now a Smi.
Label if_indexissmi(assembler, Label::kDeferred),
if_indexisnotsmi(assembler, Label::kDeferred);
assembler->Branch(assembler->WordIsSmi(index), &if_indexissmi,
&if_indexisnotsmi);
assembler->Bind(&if_indexissmi);
{
var_position.Bind(index);
assembler->Goto(&if_positionissmi);
}
assembler->Bind(&if_indexisnotsmi);
{
// The ToIntegerStub canonicalizes everything in Smi range to Smi
// representation, so any HeapNumber returned is not in Smi range.
// The only exception here is -0.0, which we treat as 0.
Node* index_value = assembler->LoadHeapNumberValue(index);
Label if_indexiszero(assembler, Label::kDeferred),
if_indexisnotzero(assembler, Label::kDeferred);
assembler->Branch(assembler->Float64Equal(
index_value, assembler->Float64Constant(0.0)),
&if_indexiszero, &if_indexisnotzero);
assembler->Bind(&if_indexiszero);
{
var_position.Bind(assembler->SmiConstant(Smi::FromInt(0)));
assembler->Goto(&if_positionissmi);
}
assembler->Bind(&if_indexisnotzero);
{
// The {index} is some other integral Number, that is definitely
// neither -0.0 nor in Smi range.
assembler->Return(assembler->NaNConstant());
}
}
}
assembler->Bind(&if_positionissmi);
position = var_position.value();
// Determine the actual length of the {receiver} String.
Node* receiver_length =
assembler->LoadObjectField(receiver, String::kLengthOffset);
// Return NaN if the Smi {position} is outside the bounds of the {receiver}.
Label if_positioninbounds(assembler),
if_positionnotinbounds(assembler, Label::kDeferred);
assembler->Branch(assembler->SmiAboveOrEqual(position, receiver_length),
&if_positionnotinbounds, &if_positioninbounds);
assembler->Bind(&if_positionnotinbounds);
assembler->Return(assembler->NaNConstant());
assembler->Bind(&if_positioninbounds);
}
// Load the character at the {position} from the {receiver}.
Node* value = assembler->StringCharCodeAt(receiver, position);
Node* result = assembler->SmiFromWord32(value);
assembler->Return(result);
}
// ES6 section 21.1.3.25 String.prototype.trim ()
BUILTIN(StringPrototypeTrim) {
HandleScope scope(isolate);
TO_THIS_STRING(string, "String.prototype.trim");
return *String::Trim(string, String::kTrim);
}
// Non-standard WebKit extension
BUILTIN(StringPrototypeTrimLeft) {
HandleScope scope(isolate);
TO_THIS_STRING(string, "String.prototype.trimLeft");
return *String::Trim(string, String::kTrimLeft);
}
// Non-standard WebKit extension
BUILTIN(StringPrototypeTrimRight) {
HandleScope scope(isolate);
TO_THIS_STRING(string, "String.prototype.trimRight");
return *String::Trim(string, String::kTrimRight);
}
// -----------------------------------------------------------------------------
// ES6 section 21.1 ArrayBuffer Objects
// ES6 section 24.1.2.1 ArrayBuffer ( length ) for the [[Call]] case.
BUILTIN(ArrayBufferConstructor) {
HandleScope scope(isolate);
Handle<JSFunction> target = args.target<JSFunction>();
DCHECK(*target == target->native_context()->array_buffer_fun() ||
*target == target->native_context()->shared_array_buffer_fun());
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kConstructorNotFunction,
handle(target->shared()->name(), isolate)));
}
// ES6 section 24.1.2.1 ArrayBuffer ( length ) for the [[Construct]] case.
BUILTIN(ArrayBufferConstructor_ConstructStub) {
HandleScope scope(isolate);
Handle<JSFunction> target = args.target<JSFunction>();
Handle<JSReceiver> new_target = Handle<JSReceiver>::cast(args.new_target());
Handle<Object> length = args.atOrUndefined(isolate, 1);
DCHECK(*target == target->native_context()->array_buffer_fun() ||
*target == target->native_context()->shared_array_buffer_fun());
Handle<Object> number_length;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, number_length,
Object::ToInteger(isolate, length));
if (number_length->Number() < 0.0) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewRangeError(MessageTemplate::kInvalidArrayBufferLength));
}
Handle<JSObject> result;
ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result,
JSObject::New(target, new_target));
size_t byte_length;
if (!TryNumberToSize(isolate, *number_length, &byte_length)) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewRangeError(MessageTemplate::kInvalidArrayBufferLength));
}
SharedFlag shared_flag =
(*target == target->native_context()->array_buffer_fun())
? SharedFlag::kNotShared
: SharedFlag::kShared;
if (!JSArrayBuffer::SetupAllocatingData(Handle<JSArrayBuffer>::cast(result),
isolate, byte_length, true,
shared_flag)) {
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewRangeError(MessageTemplate::kArrayBufferAllocationFailed));
}
return *result;
}
// ES6 section 24.1.3.1 ArrayBuffer.isView ( arg )
BUILTIN(ArrayBufferIsView) {
SealHandleScope shs(isolate);
DCHECK_EQ(2, args.length());
Object* arg = args[1];
return isolate->heap()->ToBoolean(arg->IsJSArrayBufferView());
}
// ES6 section 26.2.1.1 Proxy ( target, handler ) for the [[Call]] case.
BUILTIN(ProxyConstructor) {
HandleScope scope(isolate);
THROW_NEW_ERROR_RETURN_FAILURE(
isolate,
NewTypeError(MessageTemplate::kConstructorNotFunction,
isolate->factory()->NewStringFromAsciiChecked("Proxy")));
}
// ES6 section 26.2.1.1 Proxy ( target, handler ) for the [[Construct]] case.
BUILTIN(ProxyConstructor_ConstructStub) {
HandleScope scope(isolate);
DCHECK(isolate->proxy_function()->IsConstructor());
Handle<Object> target = args.atOrUndefined(isolate, 1);
Handle<Object> handler = args.atOrUndefined(isolate, 2);
RETURN_RESULT_OR_FAILURE(isolate, JSProxy::New(isolate, target, handler));
}
// -----------------------------------------------------------------------------
// Throwers for restricted function properties and strict arguments object
// properties
BUILTIN(RestrictedFunctionPropertiesThrower) {
HandleScope scope(isolate);
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kRestrictedFunctionProperties));
}
BUILTIN(RestrictedStrictArgumentsPropertiesThrower) {
HandleScope scope(isolate);
THROW_NEW_ERROR_RETURN_FAILURE(
isolate, NewTypeError(MessageTemplate::kStrictPoisonPill));
}
// -----------------------------------------------------------------------------
//
namespace {
// Returns the holder JSObject if the function can legally be called with this
// receiver. Returns nullptr if the call is illegal.
// TODO(dcarney): CallOptimization duplicates this logic, merge.
JSObject* GetCompatibleReceiver(Isolate* isolate, FunctionTemplateInfo* info,
JSObject* receiver) {
Object* recv_type = info->signature();
// No signature, return holder.
if (!recv_type->IsFunctionTemplateInfo()) return receiver;
FunctionTemplateInfo* signature = FunctionTemplateInfo::cast(recv_type);
// Check the receiver. Fast path for receivers with no hidden prototypes.
if (signature->IsTemplateFor(receiver)) return receiver;
if (!receiver->map()->has_hidden_prototype()) return nullptr;
for (PrototypeIterator iter(isolate, receiver, kStartAtPrototype,
PrototypeIterator::END_AT_NON_HIDDEN);
!iter.IsAtEnd(); iter.Advance()) {
JSObject* current = iter.GetCurrent<JSObject>();
if (signature->IsTemplateFor(current)) return current;
}
return nullptr;
}
template <bool is_construct>
MUST_USE_RESULT MaybeHandle<Object> HandleApiCallHelper(
Isolate* isolate, Handle<HeapObject> function,
Handle<HeapObject> new_target, Handle<FunctionTemplateInfo> fun_data,
Handle<Object> receiver, BuiltinArguments args) {
Handle<JSObject> js_receiver;
JSObject* raw_holder;
if (is_construct) {
DCHECK(args.receiver()->IsTheHole(isolate));
if (fun_data->instance_template()->IsUndefined(isolate)) {
v8::Local<ObjectTemplate> templ =
ObjectTemplate::New(reinterpret_cast<v8::Isolate*>(isolate),
ToApiHandle<v8::FunctionTemplate>(fun_data));
fun_data->set_instance_template(*Utils::OpenHandle(*templ));
}
Handle<ObjectTemplateInfo> instance_template(
ObjectTemplateInfo::cast(fun_data->instance_template()), isolate);
ASSIGN_RETURN_ON_EXCEPTION(
isolate, js_receiver,
ApiNatives::InstantiateObject(instance_template,
Handle<JSReceiver>::cast(new_target)),
Object);
args[0] = *js_receiver;
DCHECK_EQ(*js_receiver, *args.receiver());
raw_holder = *js_receiver;
} else {
DCHECK(receiver->IsJSReceiver());
if (!receiver->IsJSObject()) {
// This function cannot be called with the given receiver. Abort!
THROW_NEW_ERROR(
isolate, NewTypeError(MessageTemplate::kIllegalInvocation), Object);
}
js_receiver = Handle<JSObject>::cast(receiver);
if (!fun_data->accept_any_receiver() &&
js_receiver->IsAccessCheckNeeded() &&
!isolate->MayAccess(handle(isolate->context()), js_receiver)) {
isolate->ReportFailedAccessCheck(js_receiver);
RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object);
}
raw_holder = GetCompatibleReceiver(isolate, *fun_data, *js_receiver);
if (raw_holder == nullptr) {
// This function cannot be called with the given receiver. Abort!
THROW_NEW_ERROR(
isolate, NewTypeError(MessageTemplate::kIllegalInvocation), Object);
}
}
Object* raw_call_data = fun_data->call_code();
if (!raw_call_data->IsUndefined(isolate)) {
DCHECK(raw_call_data->IsCallHandlerInfo());
CallHandlerInfo* call_data = CallHandlerInfo::cast(raw_call_data);
Object* callback_obj = call_data->callback();
v8::FunctionCallback callback =
v8::ToCData<v8::FunctionCallback>(callback_obj);
Object* data_obj = call_data->data();
LOG(isolate, ApiObjectAccess("call", JSObject::cast(*js_receiver)));
FunctionCallbackArguments custom(isolate, data_obj, *function, raw_holder,
*new_target, &args[0] - 1,
args.length() - 1);
Handle<Object> result = custom.Call(callback);
RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object);
if (result.is_null()) {
if (is_construct) return js_receiver;
return isolate->factory()->undefined_value();
}
// Rebox the result.
result->VerifyApiCallResultType();
if (!is_construct || result->IsJSObject()) return handle(*result, isolate);
}
return js_receiver;
}
} // namespace
BUILTIN(HandleApiCall) {
HandleScope scope(isolate);
Handle<JSFunction> function = args.target<JSFunction>();
Handle<Object> receiver = args.receiver();
Handle<HeapObject> new_target = args.new_target();
Handle<FunctionTemplateInfo> fun_data(function->shared()->get_api_func_data(),
isolate);
if (new_target->IsJSReceiver()) {
RETURN_RESULT_OR_FAILURE(
isolate, HandleApiCallHelper<true>(isolate, function, new_target,
fun_data, receiver, args));
} else {
RETURN_RESULT_OR_FAILURE(
isolate, HandleApiCallHelper<false>(isolate, function, new_target,
fun_data, receiver, args));
}
}
Handle<Code> Builtins::CallFunction(ConvertReceiverMode mode,
TailCallMode tail_call_mode) {
switch (tail_call_mode) {
case TailCallMode::kDisallow:
switch (mode) {
case ConvertReceiverMode::kNullOrUndefined:
return CallFunction_ReceiverIsNullOrUndefined();
case ConvertReceiverMode::kNotNullOrUndefined:
return CallFunction_ReceiverIsNotNullOrUndefined();
case ConvertReceiverMode::kAny:
return CallFunction_ReceiverIsAny();
}
break;
case TailCallMode::kAllow:
switch (mode) {
case ConvertReceiverMode::kNullOrUndefined:
return TailCallFunction_ReceiverIsNullOrUndefined();
case ConvertReceiverMode::kNotNullOrUndefined:
return TailCallFunction_ReceiverIsNotNullOrUndefined();
case ConvertReceiverMode::kAny:
return TailCallFunction_ReceiverIsAny();
}
break;
}
UNREACHABLE();
return Handle<Code>::null();
}
Handle<Code> Builtins::Call(ConvertReceiverMode mode,
TailCallMode tail_call_mode) {
switch (tail_call_mode) {
case TailCallMode::kDisallow:
switch (mode) {
case ConvertReceiverMode::kNullOrUndefined:
return Call_ReceiverIsNullOrUndefined();
case ConvertReceiverMode::kNotNullOrUndefined:
return Call_ReceiverIsNotNullOrUndefined();
case ConvertReceiverMode::kAny:
return Call_ReceiverIsAny();
}
break;
case TailCallMode::kAllow:
switch (mode) {
case ConvertReceiverMode::kNullOrUndefined:
return TailCall_ReceiverIsNullOrUndefined();
case ConvertReceiverMode::kNotNullOrUndefined:
return TailCall_ReceiverIsNotNullOrUndefined();
case ConvertReceiverMode::kAny:
return TailCall_ReceiverIsAny();
}
break;
}
UNREACHABLE();
return Handle<Code>::null();
}
Handle<Code> Builtins::CallBoundFunction(TailCallMode tail_call_mode) {
switch (tail_call_mode) {
case TailCallMode::kDisallow:
return CallBoundFunction();
case TailCallMode::kAllow:
return TailCallBoundFunction();
}
UNREACHABLE();
return Handle<Code>::null();
}
Handle<Code> Builtins::InterpreterPushArgsAndCall(TailCallMode tail_call_mode) {
switch (tail_call_mode) {
case TailCallMode::kDisallow:
return InterpreterPushArgsAndCall();
case TailCallMode::kAllow:
return InterpreterPushArgsAndTailCall();
}
UNREACHABLE();
return Handle<Code>::null();
}
namespace {
class RelocatableArguments : public BuiltinArguments, public Relocatable {
public:
RelocatableArguments(Isolate* isolate, int length, Object** arguments)
: BuiltinArguments(length, arguments), Relocatable(isolate) {}
virtual inline void IterateInstance(ObjectVisitor* v) {
if (length() == 0) return;
v->VisitPointers(lowest_address(), highest_address() + 1);
}
private:
DISALLOW_COPY_AND_ASSIGN(RelocatableArguments);
};
} // namespace
MaybeHandle<Object> Builtins::InvokeApiFunction(Isolate* isolate,
Handle<HeapObject> function,
Handle<Object> receiver,
int argc,
Handle<Object> args[]) {
DCHECK(function->IsFunctionTemplateInfo() ||
(function->IsJSFunction() &&
JSFunction::cast(*function)->shared()->IsApiFunction()));
// Do proper receiver conversion for non-strict mode api functions.
if (!receiver->IsJSReceiver()) {
if (function->IsFunctionTemplateInfo() ||
is_sloppy(JSFunction::cast(*function)->shared()->language_mode())) {
ASSIGN_RETURN_ON_EXCEPTION(isolate, receiver,
Object::ConvertReceiver(isolate, receiver),
Object);
}
}
Handle<FunctionTemplateInfo> fun_data =
function->IsFunctionTemplateInfo()
? Handle<FunctionTemplateInfo>::cast(function)
: handle(JSFunction::cast(*function)->shared()->get_api_func_data(),
isolate);
Handle<HeapObject> new_target = isolate->factory()->undefined_value();
// Construct BuiltinArguments object:
// new target, function, arguments reversed, receiver.
const int kBufferSize = 32;
Object* small_argv[kBufferSize];
Object** argv;
if (argc + 3 <= kBufferSize) {
argv = small_argv;
} else {
argv = new Object*[argc + 3];
}
argv[argc + 2] = *receiver;
for (int i = 0; i < argc; ++i) {
argv[argc - i + 1] = *args[i];
}
argv[1] = *function;
argv[0] = *new_target;
MaybeHandle<Object> result;
{
RelocatableArguments arguments(isolate, argc + 3, &argv[argc] + 2);
result = HandleApiCallHelper<false>(isolate, function, new_target, fun_data,
receiver, arguments);
}
if (argv != small_argv) delete[] argv;
return result;
}
// Helper function to handle calls to non-function objects created through the
// API. The object can be called as either a constructor (using new) or just as
// a function (without new).
MUST_USE_RESULT static Object* HandleApiCallAsFunctionOrConstructor(
Isolate* isolate, bool is_construct_call, BuiltinArguments args) {
Handle<Object> receiver = args.receiver();
// Get the object called.
JSObject* obj = JSObject::cast(*receiver);
// Set the new target.
HeapObject* new_target;
if (is_construct_call) {
// TODO(adamk): This should be passed through in args instead of
// being patched in here. We need to set a non-undefined value
// for v8::FunctionCallbackInfo::IsConstructCall() to get the
// right answer.
new_target = obj;
} else {
new_target = isolate->heap()->undefined_value();
}
// Get the invocation callback from the function descriptor that was
// used to create the called object.
DCHECK(obj->map()->is_callable());
JSFunction* constructor = JSFunction::cast(obj->map()->GetConstructor());
// TODO(ishell): turn this back to a DCHECK.
CHECK(constructor->shared()->IsApiFunction());
Object* handler =
constructor->shared()->get_api_func_data()->instance_call_handler();
DCHECK(!handler->IsUndefined(isolate));
// TODO(ishell): remove this debugging code.
CHECK(handler->IsCallHandlerInfo());
CallHandlerInfo* call_data = CallHandlerInfo::cast(handler);
Object* callback_obj = call_data->callback();
v8::FunctionCallback callback =
v8::ToCData<v8::FunctionCallback>(callback_obj);
// Get the data for the call and perform the callback.
Object* result;
{
HandleScope scope(isolate);
LOG(isolate, ApiObjectAccess("call non-function", obj));
FunctionCallbackArguments custom(isolate, call_data->data(), constructor,
obj, new_target, &args[0] - 1,
args.length() - 1);
Handle<Object> result_handle = custom.Call(callback);
if (result_handle.is_null()) {
result = isolate->heap()->undefined_value();
} else {
result = *result_handle;
}
}
// Check for exceptions and return result.
RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
return result;
}
// Handle calls to non-function objects created through the API. This delegate
// function is used when the call is a normal function call.
BUILTIN(HandleApiCallAsFunction) {
return HandleApiCallAsFunctionOrConstructor(isolate, false, args);
}
// Handle calls to non-function objects created through the API. This delegate
// function is used when the call is a construct call.
BUILTIN(HandleApiCallAsConstructor) {
return HandleApiCallAsFunctionOrConstructor(isolate, true, args);
}
namespace {
void Generate_LoadIC_Miss(CodeStubAssembler* assembler) {
typedef compiler::Node Node;
Node* receiver = assembler->Parameter(0);
Node* name = assembler->Parameter(1);
Node* slot = assembler->Parameter(2);
Node* vector = assembler->Parameter(3);
Node* context = assembler->Parameter(4);
assembler->TailCallRuntime(Runtime::kLoadIC_Miss, context, receiver, name,
slot, vector);
}
void Generate_LoadGlobalIC_Miss(CodeStubAssembler* assembler) {
typedef compiler::Node Node;
Node* slot = assembler->Parameter(0);
Node* vector = assembler->Parameter(1);
Node* context = assembler->Parameter(2);
assembler->TailCallRuntime(Runtime::kLoadGlobalIC_Miss, context, slot,
vector);
}
void Generate_LoadIC_Normal(MacroAssembler* masm) {
LoadIC::GenerateNormal(masm);
}
void Generate_LoadIC_Getter_ForDeopt(MacroAssembler* masm) {
NamedLoadHandlerCompiler::GenerateLoadViaGetterForDeopt(masm);
}
void Generate_LoadIC_Slow(CodeStubAssembler* assembler) {
typedef compiler::Node Node;
Node* receiver = assembler->Parameter(0);
Node* name = assembler->Parameter(1);
// Node* slot = assembler->Parameter(2);
// Node* vector = assembler->Parameter(3);
Node* context = assembler->Parameter(4);
assembler->TailCallRuntime(Runtime::kGetProperty, context, receiver, name);
}
void Generate_LoadGlobalIC_Slow(CodeStubAssembler* assembler) {
typedef compiler::Node Node;
Node* slot = assembler->Parameter(0);
Node* vector = assembler->Parameter(1);
Node* context = assembler->Parameter(2);
assembler->TailCallRuntime(Runtime::kLoadGlobalIC_Slow, context, slot,
vector);
}
void Generate_KeyedLoadIC_Slow(MacroAssembler* masm) {
KeyedLoadIC::GenerateRuntimeGetProperty(masm);
}
void Generate_KeyedLoadIC_Miss(MacroAssembler* masm) {
KeyedLoadIC::GenerateMiss(masm);
}
void Generate_KeyedLoadIC_Megamorphic(MacroAssembler* masm) {
KeyedLoadIC::GenerateMegamorphic(masm);
}
void Generate_StoreIC_Miss(MacroAssembler* masm) {
StoreIC::GenerateMiss(masm);
}
void Generate_StoreIC_Normal(MacroAssembler* masm) {
StoreIC::GenerateNormal(masm);
}
void Generate_StoreIC_Slow(MacroAssembler* masm) {
NamedStoreHandlerCompiler::GenerateSlow(masm);
}
void Generate_KeyedStoreIC_Slow(MacroAssembler* masm) {
ElementHandlerCompiler::GenerateStoreSlow(masm);
}
void Generate_StoreIC_Setter_ForDeopt(MacroAssembler* masm) {
NamedStoreHandlerCompiler::GenerateStoreViaSetterForDeopt(masm);
}
void Generate_KeyedStoreIC_Megamorphic(MacroAssembler* masm) {
KeyedStoreIC::GenerateMegamorphic(masm, SLOPPY);
}
void Generate_KeyedStoreIC_Megamorphic_Strict(MacroAssembler* masm) {
KeyedStoreIC::GenerateMegamorphic(masm, STRICT);
}
void Generate_KeyedStoreIC_Miss(MacroAssembler* masm) {
KeyedStoreIC::GenerateMiss(masm);
}
void Generate_Return_DebugBreak(MacroAssembler* masm) {
DebugCodegen::GenerateDebugBreakStub(masm,
DebugCodegen::SAVE_RESULT_REGISTER);
}
void Generate_Slot_DebugBreak(MacroAssembler* masm) {
DebugCodegen::GenerateDebugBreakStub(masm,
DebugCodegen::IGNORE_RESULT_REGISTER);
}
void Generate_FrameDropper_LiveEdit(MacroAssembler* masm) {
DebugCodegen::GenerateFrameDropperLiveEdit(masm);
}
} // namespace
Builtins::Builtins() : initialized_(false) {
memset(builtins_, 0, sizeof(builtins_[0]) * builtin_count);
memset(names_, 0, sizeof(names_[0]) * builtin_count);
}
Builtins::~Builtins() {
}
#define DEF_ENUM_C(name) FUNCTION_ADDR(Builtin_##name),
Address const Builtins::c_functions_[cfunction_count] = {
BUILTIN_LIST_C(DEF_ENUM_C)
};
#undef DEF_ENUM_C
struct BuiltinDesc {
Handle<Code> (*builder)(Isolate*, struct BuiltinDesc const*);
byte* generator;
byte* c_code;
const char* s_name; // name is only used for generating log information.
int name;
Code::Flags flags;
int argc;
};
#define BUILTIN_FUNCTION_TABLE_INIT { V8_ONCE_INIT, {} }
class BuiltinFunctionTable {
public:
BuiltinDesc* functions() {
base::CallOnce(&once_, &Builtins::InitBuiltinFunctionTable);
return functions_;
}
base::OnceType once_;
BuiltinDesc functions_[Builtins::builtin_count + 1];
friend class Builtins;
};
namespace {
BuiltinFunctionTable builtin_function_table = BUILTIN_FUNCTION_TABLE_INIT;
Handle<Code> MacroAssemblerBuilder(Isolate* isolate,
BuiltinDesc const* builtin_desc) {
// For now we generate builtin adaptor code into a stack-allocated
// buffer, before copying it into individual code objects. Be careful
// with alignment, some platforms don't like unaligned code.
#ifdef DEBUG
// We can generate a lot of debug code on Arm64.
const size_t buffer_size = 32 * KB;
#elif V8_TARGET_ARCH_PPC64
// 8 KB is insufficient on PPC64 when FLAG_debug_code is on.
const size_t buffer_size = 10 * KB;
#else
const size_t buffer_size = 8 * KB;
#endif
union {
int force_alignment;
byte buffer[buffer_size]; // NOLINT(runtime/arrays)
} u;
MacroAssembler masm(isolate, u.buffer, sizeof(u.buffer),
CodeObjectRequired::kYes);
// Generate the code/adaptor.
typedef void (*Generator)(MacroAssembler*, int);
Generator g = FUNCTION_CAST<Generator>(builtin_desc->generator);
// We pass all arguments to the generator, but it may not use all of
// them. This works because the first arguments are on top of the
// stack.
DCHECK(!masm.has_frame());
g(&masm, builtin_desc->name);
// Move the code into the object heap.
CodeDesc desc;
masm.GetCode(&desc);
Code::Flags flags = builtin_desc->flags;
return isolate->factory()->NewCode(desc, flags, masm.CodeObject());
}
// Builder for builtins implemented in TurboFan with JS linkage.
Handle<Code> CodeStubAssemblerBuilderJS(Isolate* isolate,
BuiltinDesc const* builtin_desc) {
Zone zone(isolate->allocator());
CodeStubAssembler assembler(isolate, &zone, builtin_desc->argc,
builtin_desc->flags, builtin_desc->s_name);
// Generate the code/adaptor.
typedef void (*Generator)(CodeStubAssembler*);
Generator g = FUNCTION_CAST<Generator>(builtin_desc->generator);
g(&assembler);
return assembler.GenerateCode();
}
// Builder for builtins implemented in TurboFan with CallStub linkage.
Handle<Code> CodeStubAssemblerBuilderCS(Isolate* isolate,
BuiltinDesc const* builtin_desc) {
Zone zone(isolate->allocator());
// The interface descriptor with given key must be initialized at this point
// and this construction just queries the details from the descriptors table.
CallInterfaceDescriptor descriptor(
isolate, static_cast<CallDescriptors::Key>(builtin_desc->argc));
// Ensure descriptor is already initialized.
DCHECK_NOT_NULL(descriptor.GetFunctionType());
CodeStubAssembler assembler(isolate, &zone, descriptor, builtin_desc->flags,
builtin_desc->s_name);
// Generate the code/adaptor.
typedef void (*Generator)(CodeStubAssembler*);
Generator g = FUNCTION_CAST<Generator>(builtin_desc->generator);
g(&assembler);
return assembler.GenerateCode();
}
} // namespace
// Define array of pointers to generators and C builtin functions.
// We do this in a sort of roundabout way so that we can do the initialization
// within the lexical scope of Builtins:: and within a context where
// Code::Flags names a non-abstract type.
void Builtins::InitBuiltinFunctionTable() {
BuiltinDesc* functions = builtin_function_table.functions_;
functions[builtin_count].builder = nullptr;
functions[builtin_count].generator = nullptr;
functions[builtin_count].c_code = nullptr;
functions[builtin_count].s_name = nullptr;
functions[builtin_count].name = builtin_count;
functions[builtin_count].flags = static_cast<Code::Flags>(0);
functions[builtin_count].argc = 0;
#define DEF_FUNCTION_PTR_C(aname) \
functions->builder = &MacroAssemblerBuilder; \
functions->generator = FUNCTION_ADDR(Generate_Adaptor); \
functions->c_code = FUNCTION_ADDR(Builtin_##aname); \
functions->s_name = #aname; \
functions->name = c_##aname; \
functions->flags = Code::ComputeFlags(Code::BUILTIN); \
functions->argc = 0; \
++functions;
#define DEF_FUNCTION_PTR_A(aname, kind, extra) \
functions->builder = &MacroAssemblerBuilder; \
functions->generator = FUNCTION_ADDR(Generate_##aname); \
functions->c_code = NULL; \
functions->s_name = #aname; \
functions->name = k##aname; \
functions->flags = Code::ComputeFlags(Code::kind, extra); \
functions->argc = 0; \
++functions;
#define DEF_FUNCTION_PTR_T(aname, aargc) \
functions->builder = &CodeStubAssemblerBuilderJS; \
functions->generator = FUNCTION_ADDR(Generate_##aname); \
functions->c_code = NULL; \
functions->s_name = #aname; \
functions->name = k##aname; \
functions->flags = Code::ComputeFlags(Code::BUILTIN); \
functions->argc = aargc; \
++functions;
#define DEF_FUNCTION_PTR_S(aname, kind, extra, interface_descriptor) \
functions->builder = &CodeStubAssemblerBuilderCS; \
functions->generator = FUNCTION_ADDR(Generate_##aname); \
functions->c_code = NULL; \
functions->s_name = #aname; \
functions->name = k##aname; \
functions->flags = Code::ComputeFlags(Code::kind, extra); \
functions->argc = CallDescriptors::interface_descriptor; \
++functions;
#define DEF_FUNCTION_PTR_H(aname, kind) \
functions->builder = &MacroAssemblerBuilder; \
functions->generator = FUNCTION_ADDR(Generate_##aname); \
functions->c_code = NULL; \
functions->s_name = #aname; \
functions->name = k##aname; \
functions->flags = Code::ComputeHandlerFlags(Code::kind); \
functions->argc = 0; \
++functions;
BUILTIN_LIST_C(DEF_FUNCTION_PTR_C)
BUILTIN_LIST_A(DEF_FUNCTION_PTR_A)
BUILTIN_LIST_T(DEF_FUNCTION_PTR_T)
BUILTIN_LIST_S(DEF_FUNCTION_PTR_S)
BUILTIN_LIST_H(DEF_FUNCTION_PTR_H)
BUILTIN_LIST_DEBUG_A(DEF_FUNCTION_PTR_A)
#undef DEF_FUNCTION_PTR_C
#undef DEF_FUNCTION_PTR_A
#undef DEF_FUNCTION_PTR_T
#undef DEF_FUNCTION_PTR_S
#undef DEF_FUNCTION_PTR_H
}
void Builtins::SetUp(Isolate* isolate, bool create_heap_objects) {
DCHECK(!initialized_);
// Create a scope for the handles in the builtins.
HandleScope scope(isolate);
#define INITIALIZE_CALL_DESCRIPTOR(name, kind, extra, interface_descriptor) \
{ interface_descriptor##Descriptor descriptor(isolate); }
BUILTIN_LIST_S(INITIALIZE_CALL_DESCRIPTOR)
#undef INITIALIZE_CALL_DESCRIPTOR
const BuiltinDesc* functions = builtin_function_table.functions();
// Traverse the list of builtins and generate an adaptor in a
// separate code object for each one.
for (int i = 0; i < builtin_count; i++) {
if (create_heap_objects) {
Handle<Code> code = (*functions[i].builder)(isolate, functions + i);
// Log the event and add the code to the builtins array.
PROFILE(isolate,
CodeCreateEvent(CodeEventListener::BUILTIN_TAG,
AbstractCode::cast(*code), functions[i].s_name));
builtins_[i] = *code;
code->set_builtin_index(i);
#ifdef ENABLE_DISASSEMBLER
if (FLAG_print_builtin_code) {
CodeTracer::Scope trace_scope(isolate->GetCodeTracer());
OFStream os(trace_scope.file());
os << "Builtin: " << functions[i].s_name << "\n";
code->Disassemble(functions[i].s_name, os);
os << "\n";
}
#endif
} else {
// Deserializing. The values will be filled in during IterateBuiltins.
builtins_[i] = NULL;
}
names_[i] = functions[i].s_name;
}
// Mark as initialized.
initialized_ = true;
}
void Builtins::TearDown() {
initialized_ = false;
}
void Builtins::IterateBuiltins(ObjectVisitor* v) {
v->VisitPointers(&builtins_[0], &builtins_[0] + builtin_count);
}
const char* Builtins::Lookup(byte* pc) {
// may be called during initialization (disassembler!)
if (initialized_) {
for (int i = 0; i < builtin_count; i++) {
Code* entry = Code::cast(builtins_[i]);
if (entry->contains(pc)) {
return names_[i];
}
}
}
return NULL;
}
void Builtins::Generate_InterruptCheck(MacroAssembler* masm) {
masm->TailCallRuntime(Runtime::kInterrupt);
}
void Builtins::Generate_StackCheck(MacroAssembler* masm) {
masm->TailCallRuntime(Runtime::kStackGuard);
}
namespace {
void ValidateSharedTypedArray(CodeStubAssembler* a, compiler::Node* tagged,
compiler::Node* context,
compiler::Node** out_instance_type,
compiler::Node** out_backing_store) {
using namespace compiler;
CodeStubAssembler::Label is_smi(a), not_smi(a), is_typed_array(a),
not_typed_array(a), is_shared(a), not_shared(a), is_float_or_clamped(a),
not_float_or_clamped(a), invalid(a);
// Fail if it is not a heap object.
a->Branch(a->WordIsSmi(tagged), &is_smi, &not_smi);
a->Bind(&is_smi);
a->Goto(&invalid);
// Fail if the array's instance type is not JSTypedArray.
a->Bind(&not_smi);
a->Branch(a->WordEqual(a->LoadInstanceType(tagged),
a->Int32Constant(JS_TYPED_ARRAY_TYPE)),
&is_typed_array, &not_typed_array);
a->Bind(&not_typed_array);
a->Goto(&invalid);
// Fail if the array's JSArrayBuffer is not shared.
a->Bind(&is_typed_array);
Node* array_buffer = a->LoadObjectField(tagged, JSTypedArray::kBufferOffset);
Node* is_buffer_shared = a->BitFieldDecode<JSArrayBuffer::IsShared>(
a->LoadObjectField(array_buffer, JSArrayBuffer::kBitFieldSlot));
a->Branch(is_buffer_shared, &is_shared, &not_shared);
a->Bind(&not_shared);
a->Goto(&invalid);
// Fail if the array's element type is float32, float64 or clamped.
a->Bind(&is_shared);
Node* elements_instance_type = a->LoadInstanceType(
a->LoadObjectField(tagged, JSObject::kElementsOffset));
STATIC_ASSERT(FIXED_INT8_ARRAY_TYPE < FIXED_FLOAT32_ARRAY_TYPE);
STATIC_ASSERT(FIXED_INT16_ARRAY_TYPE < FIXED_FLOAT32_ARRAY_TYPE);
STATIC_ASSERT(FIXED_INT32_ARRAY_TYPE < FIXED_FLOAT32_ARRAY_TYPE);
STATIC_ASSERT(FIXED_UINT8_ARRAY_TYPE < FIXED_FLOAT32_ARRAY_TYPE);
STATIC_ASSERT(FIXED_UINT16_ARRAY_TYPE < FIXED_FLOAT32_ARRAY_TYPE);
STATIC_ASSERT(FIXED_UINT32_ARRAY_TYPE < FIXED_FLOAT32_ARRAY_TYPE);
a->Branch(a->Int32LessThan(elements_instance_type,
a->Int32Constant(FIXED_FLOAT32_ARRAY_TYPE)),
&not_float_or_clamped, &is_float_or_clamped);
a->Bind(&is_float_or_clamped);
a->Goto(&invalid);
a->Bind(&invalid);
a->CallRuntime(Runtime::kThrowNotIntegerSharedTypedArrayError, context,
tagged);
a->Return(a->UndefinedConstant());
a->Bind(&not_float_or_clamped);
*out_instance_type = elements_instance_type;
Node* backing_store =
a->LoadObjectField(array_buffer, JSArrayBuffer::kBackingStoreOffset);
Node* byte_offset = a->ChangeUint32ToWord(a->TruncateTaggedToWord32(
context,
a->LoadObjectField(tagged, JSArrayBufferView::kByteOffsetOffset)));
*out_backing_store = a->IntPtrAdd(backing_store, byte_offset);
}
// https://tc39.github.io/ecmascript_sharedmem/shmem.html#Atomics.ValidateAtomicAccess
compiler::Node* ConvertTaggedAtomicIndexToWord32(CodeStubAssembler* a,
compiler::Node* tagged,
compiler::Node* context) {
using namespace compiler;
CodeStubAssembler::Variable var_result(a, MachineRepresentation::kWord32);
Callable to_number = CodeFactory::ToNumber(a->isolate());
Node* number_index = a->CallStub(to_number, context, tagged);
CodeStubAssembler::Label done(a, &var_result);
CodeStubAssembler::Label if_numberissmi(a), if_numberisnotsmi(a);
a->Branch(a->WordIsSmi(number_index), &if_numberissmi, &if_numberisnotsmi);
a->Bind(&if_numberissmi);
{
var_result.Bind(a->SmiToWord32(number_index));
a->Goto(&done);
}
a->Bind(&if_numberisnotsmi);
{
Node* number_index_value = a->LoadHeapNumberValue(number_index);
Node* access_index = a->TruncateFloat64ToWord32(number_index_value);
Node* test_index = a->ChangeInt32ToFloat64(access_index);
CodeStubAssembler::Label if_indexesareequal(a), if_indexesarenotequal(a);
a->Branch(a->Float64Equal(number_index_value, test_index),
&if_indexesareequal, &if_indexesarenotequal);
a->Bind(&if_indexesareequal);
{
var_result.Bind(access_index);
a->Goto(&done);
}
a->Bind(&if_indexesarenotequal);
a->Return(
a->CallRuntime(Runtime::kThrowInvalidAtomicAccessIndexError, context));
}
a->Bind(&done);
return var_result.value();
}
void ValidateAtomicIndex(CodeStubAssembler* a, compiler::Node* index_word,
compiler::Node* array_length_word,
compiler::Node* context) {
using namespace compiler;
// Check if the index is in bounds. If not, throw RangeError.
CodeStubAssembler::Label if_inbounds(a), if_notinbounds(a);
a->Branch(
a->WordOr(a->Int32LessThan(index_word, a->Int32Constant(0)),
a->Int32GreaterThanOrEqual(index_word, array_length_word)),
&if_notinbounds, &if_inbounds);
a->Bind(&if_notinbounds);
a->Return(
a->CallRuntime(Runtime::kThrowInvalidAtomicAccessIndexError, context));
a->Bind(&if_inbounds);
}
} // anonymous namespace
void Builtins::Generate_AtomicsLoad(CodeStubAssembler* a) {
using namespace compiler;
Node* array = a->Parameter(1);
Node* index = a->Parameter(2);
Node* context = a->Parameter(3 + 2);
Node* instance_type;
Node* backing_store;
ValidateSharedTypedArray(a, array, context, &instance_type, &backing_store);
Node* index_word32 = ConvertTaggedAtomicIndexToWord32(a, index, context);
Node* array_length_word32 = a->TruncateTaggedToWord32(
context, a->LoadObjectField(array, JSTypedArray::kLengthOffset));
ValidateAtomicIndex(a, index_word32, array_length_word32, context);
Node* index_word = a->ChangeUint32ToWord(index_word32);
CodeStubAssembler::Label i8(a), u8(a), i16(a), u16(a), i32(a), u32(a),
other(a);
int32_t case_values[] = {
FIXED_INT8_ARRAY_TYPE, FIXED_UINT8_ARRAY_TYPE, FIXED_INT16_ARRAY_TYPE,
FIXED_UINT16_ARRAY_TYPE, FIXED_INT32_ARRAY_TYPE, FIXED_UINT32_ARRAY_TYPE,
};
CodeStubAssembler::Label* case_labels[] = {
&i8, &u8, &i16, &u16, &i32, &u32,
};
a->Switch(instance_type, &other, case_values, case_labels,
arraysize(case_labels));
a->Bind(&i8);
a->Return(
a->SmiTag(a->AtomicLoad(MachineType::Int8(), backing_store, index_word)));
a->Bind(&u8);
a->Return(a->SmiTag(
a->AtomicLoad(MachineType::Uint8(), backing_store, index_word)));
a->Bind(&i16);
a->Return(a->SmiTag(a->AtomicLoad(MachineType::Int16(), backing_store,
a->WordShl(index_word, 1))));
a->Bind(&u16);
a->Return(a->SmiTag(a->AtomicLoad(MachineType::Uint16(), backing_store,
a->WordShl(index_word, 1))));
a->Bind(&i32);
a->Return(a->ChangeInt32ToTagged(a->AtomicLoad(
MachineType::Int32(), backing_store, a->WordShl(index_word, 2))));
a->Bind(&u32);
a->Return(a->ChangeUint32ToTagged(a->AtomicLoad(
MachineType::Uint32(), backing_store, a->WordShl(index_word, 2))));
// This shouldn't happen, we've already validated the type.
a->Bind(&other);
a->Return(a->Int32Constant(0));
}
void Builtins::Generate_AtomicsStore(CodeStubAssembler* a) {
using namespace compiler;
Node* array = a->Parameter(1);
Node* index = a->Parameter(2);
Node* value = a->Parameter(3);
Node* context = a->Parameter(4 + 2);
Node* instance_type;
Node* backing_store;
ValidateSharedTypedArray(a, array, context, &instance_type, &backing_store);
Node* index_word32 = ConvertTaggedAtomicIndexToWord32(a, index, context);
Node* array_length_word32 = a->TruncateTaggedToWord32(
context, a->LoadObjectField(array, JSTypedArray::kLengthOffset));
ValidateAtomicIndex(a, index_word32, array_length_word32, context);
Node* index_word = a->ChangeUint32ToWord(index_word32);
Callable to_integer = CodeFactory::ToInteger(a->isolate());
Node* value_integer = a->CallStub(to_integer, context, value);
Node* value_word32 = a->TruncateTaggedToWord32(context, value_integer);
CodeStubAssembler::Label u8(a), u16(a), u32(a), other(a);
int32_t case_values[] = {
FIXED_INT8_ARRAY_TYPE, FIXED_UINT8_ARRAY_TYPE, FIXED_INT16_ARRAY_TYPE,
FIXED_UINT16_ARRAY_TYPE, FIXED_INT32_ARRAY_TYPE, FIXED_UINT32_ARRAY_TYPE,
};
CodeStubAssembler::Label* case_labels[] = {
&u8, &u8, &u16, &u16, &u32, &u32,
};
a->Switch(instance_type, &other, case_values, case_labels,
arraysize(case_labels));
a->Bind(&u8);
a->AtomicStore(MachineRepresentation::kWord8, backing_store, index_word,
value_word32);
a->Return(value_integer);
a->Bind(&u16);
a->SmiTag(a->AtomicStore(MachineRepresentation::kWord16, backing_store,
a->WordShl(index_word, 1), value_word32));
a->Return(value_integer);
a->Bind(&u32);
a->AtomicStore(MachineRepresentation::kWord32, backing_store,
a->WordShl(index_word, 2), value_word32);
a->Return(value_integer);
// This shouldn't happen, we've already validated the type.
a->Bind(&other);
a->Return(a->Int32Constant(0));
}
#define DEFINE_BUILTIN_ACCESSOR_C(name) \
Handle<Code> Builtins::name() { \
Code** code_address = reinterpret_cast<Code**>(builtin_address(k##name)); \
return Handle<Code>(code_address); \
}
#define DEFINE_BUILTIN_ACCESSOR_A(name, kind, extra) \
Handle<Code> Builtins::name() { \
Code** code_address = reinterpret_cast<Code**>(builtin_address(k##name)); \
return Handle<Code>(code_address); \
}
#define DEFINE_BUILTIN_ACCESSOR_T(name, argc) \
Handle<Code> Builtins::name() { \
Code** code_address = reinterpret_cast<Code**>(builtin_address(k##name)); \
return Handle<Code>(code_address); \
}
#define DEFINE_BUILTIN_ACCESSOR_S(name, kind, extra, interface_descriptor) \
Handle<Code> Builtins::name() { \
Code** code_address = reinterpret_cast<Code**>(builtin_address(k##name)); \
return Handle<Code>(code_address); \
}
#define DEFINE_BUILTIN_ACCESSOR_H(name, kind) \
Handle<Code> Builtins::name() { \
Code** code_address = \
reinterpret_cast<Code**>(builtin_address(k##name)); \
return Handle<Code>(code_address); \
}
BUILTIN_LIST_C(DEFINE_BUILTIN_ACCESSOR_C)
BUILTIN_LIST_A(DEFINE_BUILTIN_ACCESSOR_A)
BUILTIN_LIST_T(DEFINE_BUILTIN_ACCESSOR_T)
BUILTIN_LIST_S(DEFINE_BUILTIN_ACCESSOR_S)
BUILTIN_LIST_H(DEFINE_BUILTIN_ACCESSOR_H)
BUILTIN_LIST_DEBUG_A(DEFINE_BUILTIN_ACCESSOR_A)
#undef DEFINE_BUILTIN_ACCESSOR_C
#undef DEFINE_BUILTIN_ACCESSOR_A
#undef DEFINE_BUILTIN_ACCESSOR_T
#undef DEFINE_BUILTIN_ACCESSOR_S
#undef DEFINE_BUILTIN_ACCESSOR_H
} // namespace internal
} // namespace v8