blob: ee5f8be27981f19b63ddf8eb3029729cb147a7fa [file] [log] [blame]
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/interpreter/interpreter-assembler.h"
#include <limits>
#include <ostream>
#include "src/code-factory.h"
#include "src/frames.h"
#include "src/interface-descriptors.h"
#include "src/interpreter/bytecodes.h"
#include "src/interpreter/interpreter.h"
#include "src/machine-type.h"
#include "src/macro-assembler.h"
#include "src/zone.h"
namespace v8 {
namespace internal {
namespace interpreter {
using compiler::Node;
InterpreterAssembler::InterpreterAssembler(Isolate* isolate, Zone* zone,
Bytecode bytecode,
OperandScale operand_scale)
: CodeStubAssembler(isolate, zone, InterpreterDispatchDescriptor(isolate),
Code::ComputeFlags(Code::BYTECODE_HANDLER),
Bytecodes::ToString(bytecode),
Bytecodes::ReturnCount(bytecode)),
bytecode_(bytecode),
operand_scale_(operand_scale),
interpreted_frame_pointer_(this, MachineType::PointerRepresentation()),
accumulator_(this, MachineRepresentation::kTagged),
accumulator_use_(AccumulatorUse::kNone),
made_call_(false),
disable_stack_check_across_call_(false),
stack_pointer_before_call_(nullptr) {
accumulator_.Bind(
Parameter(InterpreterDispatchDescriptor::kAccumulatorParameter));
if (FLAG_trace_ignition) {
TraceBytecode(Runtime::kInterpreterTraceBytecodeEntry);
}
}
InterpreterAssembler::~InterpreterAssembler() {
// If the following check fails the handler does not use the
// accumulator in the way described in the bytecode definitions in
// bytecodes.h.
DCHECK_EQ(accumulator_use_, Bytecodes::GetAccumulatorUse(bytecode_));
}
Node* InterpreterAssembler::GetInterpretedFramePointer() {
if (!interpreted_frame_pointer_.IsBound()) {
interpreted_frame_pointer_.Bind(LoadParentFramePointer());
}
return interpreted_frame_pointer_.value();
}
Node* InterpreterAssembler::GetAccumulatorUnchecked() {
return accumulator_.value();
}
Node* InterpreterAssembler::GetAccumulator() {
DCHECK(Bytecodes::ReadsAccumulator(bytecode_));
accumulator_use_ = accumulator_use_ | AccumulatorUse::kRead;
return GetAccumulatorUnchecked();
}
void InterpreterAssembler::SetAccumulator(Node* value) {
DCHECK(Bytecodes::WritesAccumulator(bytecode_));
accumulator_use_ = accumulator_use_ | AccumulatorUse::kWrite;
accumulator_.Bind(value);
}
Node* InterpreterAssembler::GetContext() {
return LoadRegister(Register::current_context());
}
void InterpreterAssembler::SetContext(Node* value) {
StoreRegister(value, Register::current_context());
}
Node* InterpreterAssembler::BytecodeOffset() {
return Parameter(InterpreterDispatchDescriptor::kBytecodeOffsetParameter);
}
Node* InterpreterAssembler::BytecodeArrayTaggedPointer() {
if (made_call_) {
// If we have made a call, restore bytecode array from stack frame in case
// the debugger has swapped us to the patched debugger bytecode array.
return LoadRegister(Register::bytecode_array());
} else {
return Parameter(InterpreterDispatchDescriptor::kBytecodeArrayParameter);
}
}
Node* InterpreterAssembler::DispatchTableRawPointer() {
return Parameter(InterpreterDispatchDescriptor::kDispatchTableParameter);
}
Node* InterpreterAssembler::RegisterLocation(Node* reg_index) {
return IntPtrAdd(GetInterpretedFramePointer(),
RegisterFrameOffset(reg_index));
}
Node* InterpreterAssembler::RegisterFrameOffset(Node* index) {
return WordShl(index, kPointerSizeLog2);
}
Node* InterpreterAssembler::LoadRegister(Register reg) {
return Load(MachineType::AnyTagged(), GetInterpretedFramePointer(),
IntPtrConstant(reg.ToOperand() << kPointerSizeLog2));
}
Node* InterpreterAssembler::LoadRegister(Node* reg_index) {
return Load(MachineType::AnyTagged(), GetInterpretedFramePointer(),
RegisterFrameOffset(reg_index));
}
Node* InterpreterAssembler::StoreRegister(Node* value, Register reg) {
return StoreNoWriteBarrier(
MachineRepresentation::kTagged, GetInterpretedFramePointer(),
IntPtrConstant(reg.ToOperand() << kPointerSizeLog2), value);
}
Node* InterpreterAssembler::StoreRegister(Node* value, Node* reg_index) {
return StoreNoWriteBarrier(MachineRepresentation::kTagged,
GetInterpretedFramePointer(),
RegisterFrameOffset(reg_index), value);
}
Node* InterpreterAssembler::NextRegister(Node* reg_index) {
// Register indexes are negative, so the next index is minus one.
return IntPtrAdd(reg_index, IntPtrConstant(-1));
}
Node* InterpreterAssembler::OperandOffset(int operand_index) {
return IntPtrConstant(
Bytecodes::GetOperandOffset(bytecode_, operand_index, operand_scale()));
}
Node* InterpreterAssembler::BytecodeOperandUnsignedByte(int operand_index) {
DCHECK_LT(operand_index, Bytecodes::NumberOfOperands(bytecode_));
DCHECK_EQ(OperandSize::kByte, Bytecodes::GetOperandSize(
bytecode_, operand_index, operand_scale()));
Node* operand_offset = OperandOffset(operand_index);
return Load(MachineType::Uint8(), BytecodeArrayTaggedPointer(),
IntPtrAdd(BytecodeOffset(), operand_offset));
}
Node* InterpreterAssembler::BytecodeOperandSignedByte(int operand_index) {
DCHECK_LT(operand_index, Bytecodes::NumberOfOperands(bytecode_));
DCHECK_EQ(OperandSize::kByte, Bytecodes::GetOperandSize(
bytecode_, operand_index, operand_scale()));
Node* operand_offset = OperandOffset(operand_index);
Node* load = Load(MachineType::Int8(), BytecodeArrayTaggedPointer(),
IntPtrAdd(BytecodeOffset(), operand_offset));
// Ensure that we sign extend to full pointer size
if (kPointerSize == 8) {
load = ChangeInt32ToInt64(load);
}
return load;
}
compiler::Node* InterpreterAssembler::BytecodeOperandReadUnaligned(
int relative_offset, MachineType result_type) {
static const int kMaxCount = 4;
DCHECK(!TargetSupportsUnalignedAccess());
int count;
switch (result_type.representation()) {
case MachineRepresentation::kWord16:
count = 2;
break;
case MachineRepresentation::kWord32:
count = 4;
break;
default:
UNREACHABLE();
break;
}
MachineType msb_type =
result_type.IsSigned() ? MachineType::Int8() : MachineType::Uint8();
#if V8_TARGET_LITTLE_ENDIAN
const int kStep = -1;
int msb_offset = count - 1;
#elif V8_TARGET_BIG_ENDIAN
const int kStep = 1;
int msb_offset = 0;
#else
#error "Unknown Architecture"
#endif
// Read the most signicant bytecode into bytes[0] and then in order
// down to least significant in bytes[count - 1].
DCHECK(count <= kMaxCount);
compiler::Node* bytes[kMaxCount];
for (int i = 0; i < count; i++) {
MachineType machine_type = (i == 0) ? msb_type : MachineType::Uint8();
Node* offset = IntPtrConstant(relative_offset + msb_offset + i * kStep);
Node* array_offset = IntPtrAdd(BytecodeOffset(), offset);
bytes[i] = Load(machine_type, BytecodeArrayTaggedPointer(), array_offset);
}
// Pack LSB to MSB.
Node* result = bytes[--count];
for (int i = 1; --count >= 0; i++) {
Node* shift = Int32Constant(i * kBitsPerByte);
Node* value = Word32Shl(bytes[count], shift);
result = Word32Or(value, result);
}
return result;
}
Node* InterpreterAssembler::BytecodeOperandUnsignedShort(int operand_index) {
DCHECK_LT(operand_index, Bytecodes::NumberOfOperands(bytecode_));
DCHECK_EQ(
OperandSize::kShort,
Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale()));
int operand_offset =
Bytecodes::GetOperandOffset(bytecode_, operand_index, operand_scale());
if (TargetSupportsUnalignedAccess()) {
return Load(MachineType::Uint16(), BytecodeArrayTaggedPointer(),
IntPtrAdd(BytecodeOffset(), IntPtrConstant(operand_offset)));
} else {
return BytecodeOperandReadUnaligned(operand_offset, MachineType::Uint16());
}
}
Node* InterpreterAssembler::BytecodeOperandSignedShort(int operand_index) {
DCHECK_LT(operand_index, Bytecodes::NumberOfOperands(bytecode_));
DCHECK_EQ(
OperandSize::kShort,
Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale()));
int operand_offset =
Bytecodes::GetOperandOffset(bytecode_, operand_index, operand_scale());
Node* load;
if (TargetSupportsUnalignedAccess()) {
load = Load(MachineType::Int16(), BytecodeArrayTaggedPointer(),
IntPtrAdd(BytecodeOffset(), IntPtrConstant(operand_offset)));
} else {
load = BytecodeOperandReadUnaligned(operand_offset, MachineType::Int16());
}
// Ensure that we sign extend to full pointer size
if (kPointerSize == 8) {
load = ChangeInt32ToInt64(load);
}
return load;
}
Node* InterpreterAssembler::BytecodeOperandUnsignedQuad(int operand_index) {
DCHECK_LT(operand_index, Bytecodes::NumberOfOperands(bytecode_));
DCHECK_EQ(OperandSize::kQuad, Bytecodes::GetOperandSize(
bytecode_, operand_index, operand_scale()));
int operand_offset =
Bytecodes::GetOperandOffset(bytecode_, operand_index, operand_scale());
if (TargetSupportsUnalignedAccess()) {
return Load(MachineType::Uint32(), BytecodeArrayTaggedPointer(),
IntPtrAdd(BytecodeOffset(), IntPtrConstant(operand_offset)));
} else {
return BytecodeOperandReadUnaligned(operand_offset, MachineType::Uint32());
}
}
Node* InterpreterAssembler::BytecodeOperandSignedQuad(int operand_index) {
DCHECK_LT(operand_index, Bytecodes::NumberOfOperands(bytecode_));
DCHECK_EQ(OperandSize::kQuad, Bytecodes::GetOperandSize(
bytecode_, operand_index, operand_scale()));
int operand_offset =
Bytecodes::GetOperandOffset(bytecode_, operand_index, operand_scale());
Node* load;
if (TargetSupportsUnalignedAccess()) {
load = Load(MachineType::Int32(), BytecodeArrayTaggedPointer(),
IntPtrAdd(BytecodeOffset(), IntPtrConstant(operand_offset)));
} else {
load = BytecodeOperandReadUnaligned(operand_offset, MachineType::Int32());
}
// Ensure that we sign extend to full pointer size
if (kPointerSize == 8) {
load = ChangeInt32ToInt64(load);
}
return load;
}
Node* InterpreterAssembler::BytecodeSignedOperand(int operand_index,
OperandSize operand_size) {
DCHECK(!Bytecodes::IsUnsignedOperandType(
Bytecodes::GetOperandType(bytecode_, operand_index)));
switch (operand_size) {
case OperandSize::kByte:
return BytecodeOperandSignedByte(operand_index);
case OperandSize::kShort:
return BytecodeOperandSignedShort(operand_index);
case OperandSize::kQuad:
return BytecodeOperandSignedQuad(operand_index);
case OperandSize::kNone:
UNREACHABLE();
}
return nullptr;
}
Node* InterpreterAssembler::BytecodeUnsignedOperand(int operand_index,
OperandSize operand_size) {
DCHECK(Bytecodes::IsUnsignedOperandType(
Bytecodes::GetOperandType(bytecode_, operand_index)));
switch (operand_size) {
case OperandSize::kByte:
return BytecodeOperandUnsignedByte(operand_index);
case OperandSize::kShort:
return BytecodeOperandUnsignedShort(operand_index);
case OperandSize::kQuad:
return BytecodeOperandUnsignedQuad(operand_index);
case OperandSize::kNone:
UNREACHABLE();
}
return nullptr;
}
Node* InterpreterAssembler::BytecodeOperandCount(int operand_index) {
DCHECK_EQ(OperandType::kRegCount,
Bytecodes::GetOperandType(bytecode_, operand_index));
OperandSize operand_size =
Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale());
return BytecodeUnsignedOperand(operand_index, operand_size);
}
Node* InterpreterAssembler::BytecodeOperandFlag(int operand_index) {
DCHECK_EQ(OperandType::kFlag8,
Bytecodes::GetOperandType(bytecode_, operand_index));
OperandSize operand_size =
Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale());
DCHECK_EQ(operand_size, OperandSize::kByte);
return BytecodeUnsignedOperand(operand_index, operand_size);
}
Node* InterpreterAssembler::BytecodeOperandImm(int operand_index) {
DCHECK_EQ(OperandType::kImm,
Bytecodes::GetOperandType(bytecode_, operand_index));
OperandSize operand_size =
Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale());
return BytecodeSignedOperand(operand_index, operand_size);
}
Node* InterpreterAssembler::BytecodeOperandIdx(int operand_index) {
DCHECK(OperandType::kIdx ==
Bytecodes::GetOperandType(bytecode_, operand_index));
OperandSize operand_size =
Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale());
return BytecodeUnsignedOperand(operand_index, operand_size);
}
Node* InterpreterAssembler::BytecodeOperandReg(int operand_index) {
DCHECK(Bytecodes::IsRegisterOperandType(
Bytecodes::GetOperandType(bytecode_, operand_index)));
OperandSize operand_size =
Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale());
return BytecodeSignedOperand(operand_index, operand_size);
}
Node* InterpreterAssembler::BytecodeOperandRuntimeId(int operand_index) {
DCHECK(OperandType::kRuntimeId ==
Bytecodes::GetOperandType(bytecode_, operand_index));
OperandSize operand_size =
Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale());
DCHECK_EQ(operand_size, OperandSize::kShort);
return BytecodeUnsignedOperand(operand_index, operand_size);
}
Node* InterpreterAssembler::BytecodeOperandIntrinsicId(int operand_index) {
DCHECK(OperandType::kIntrinsicId ==
Bytecodes::GetOperandType(bytecode_, operand_index));
OperandSize operand_size =
Bytecodes::GetOperandSize(bytecode_, operand_index, operand_scale());
DCHECK_EQ(operand_size, OperandSize::kByte);
return BytecodeUnsignedOperand(operand_index, operand_size);
}
Node* InterpreterAssembler::LoadConstantPoolEntry(Node* index) {
Node* constant_pool = LoadObjectField(BytecodeArrayTaggedPointer(),
BytecodeArray::kConstantPoolOffset);
Node* entry_offset =
IntPtrAdd(IntPtrConstant(FixedArray::kHeaderSize - kHeapObjectTag),
WordShl(index, kPointerSizeLog2));
return Load(MachineType::AnyTagged(), constant_pool, entry_offset);
}
Node* InterpreterAssembler::LoadContextSlot(Node* context, int slot_index) {
return Load(MachineType::AnyTagged(), context,
IntPtrConstant(Context::SlotOffset(slot_index)));
}
Node* InterpreterAssembler::LoadContextSlot(Node* context, Node* slot_index) {
Node* offset =
IntPtrAdd(WordShl(slot_index, kPointerSizeLog2),
IntPtrConstant(Context::kHeaderSize - kHeapObjectTag));
return Load(MachineType::AnyTagged(), context, offset);
}
Node* InterpreterAssembler::StoreContextSlot(Node* context, Node* slot_index,
Node* value) {
Node* offset =
IntPtrAdd(WordShl(slot_index, kPointerSizeLog2),
IntPtrConstant(Context::kHeaderSize - kHeapObjectTag));
return Store(MachineRepresentation::kTagged, context, offset, value);
}
Node* InterpreterAssembler::LoadTypeFeedbackVector() {
Node* function = LoadRegister(Register::function_closure());
Node* literals = LoadObjectField(function, JSFunction::kLiteralsOffset);
Node* vector =
LoadObjectField(literals, LiteralsArray::kFeedbackVectorOffset);
return vector;
}
void InterpreterAssembler::CallPrologue() {
StoreRegister(SmiTag(BytecodeOffset()), Register::bytecode_offset());
if (FLAG_debug_code && !disable_stack_check_across_call_) {
DCHECK(stack_pointer_before_call_ == nullptr);
stack_pointer_before_call_ = LoadStackPointer();
}
made_call_ = true;
}
void InterpreterAssembler::CallEpilogue() {
if (FLAG_debug_code && !disable_stack_check_across_call_) {
Node* stack_pointer_after_call = LoadStackPointer();
Node* stack_pointer_before_call = stack_pointer_before_call_;
stack_pointer_before_call_ = nullptr;
AbortIfWordNotEqual(stack_pointer_before_call, stack_pointer_after_call,
kUnexpectedStackPointer);
}
}
Node* InterpreterAssembler::CallJS(Node* function, Node* context,
Node* first_arg, Node* arg_count,
TailCallMode tail_call_mode) {
Callable callable =
CodeFactory::InterpreterPushArgsAndCall(isolate(), tail_call_mode);
Node* code_target = HeapConstant(callable.code());
return CallStub(callable.descriptor(), code_target, context, arg_count,
first_arg, function);
}
Node* InterpreterAssembler::CallConstruct(Node* constructor, Node* context,
Node* new_target, Node* first_arg,
Node* arg_count) {
Callable callable = CodeFactory::InterpreterPushArgsAndConstruct(isolate());
Node* code_target = HeapConstant(callable.code());
return CallStub(callable.descriptor(), code_target, context, arg_count,
new_target, constructor, first_arg);
}
Node* InterpreterAssembler::CallRuntimeN(Node* function_id, Node* context,
Node* first_arg, Node* arg_count,
int result_size) {
Callable callable = CodeFactory::InterpreterCEntry(isolate(), result_size);
Node* code_target = HeapConstant(callable.code());
// Get the function entry from the function id.
Node* function_table = ExternalConstant(
ExternalReference::runtime_function_table_address(isolate()));
Node* function_offset =
Int32Mul(function_id, Int32Constant(sizeof(Runtime::Function)));
Node* function = IntPtrAdd(function_table, function_offset);
Node* function_entry =
Load(MachineType::Pointer(), function,
IntPtrConstant(offsetof(Runtime::Function, entry)));
return CallStub(callable.descriptor(), code_target, context, arg_count,
first_arg, function_entry, result_size);
}
void InterpreterAssembler::UpdateInterruptBudget(Node* weight) {
Label ok(this), interrupt_check(this, Label::kDeferred), end(this);
Node* budget_offset =
IntPtrConstant(BytecodeArray::kInterruptBudgetOffset - kHeapObjectTag);
// Update budget by |weight| and check if it reaches zero.
Variable new_budget(this, MachineRepresentation::kWord32);
Node* old_budget =
Load(MachineType::Int32(), BytecodeArrayTaggedPointer(), budget_offset);
new_budget.Bind(Int32Add(old_budget, weight));
Node* condition =
Int32GreaterThanOrEqual(new_budget.value(), Int32Constant(0));
Branch(condition, &ok, &interrupt_check);
// Perform interrupt and reset budget.
Bind(&interrupt_check);
{
CallRuntime(Runtime::kInterrupt, GetContext());
new_budget.Bind(Int32Constant(Interpreter::InterruptBudget()));
Goto(&ok);
}
// Update budget.
Bind(&ok);
StoreNoWriteBarrier(MachineRepresentation::kWord32,
BytecodeArrayTaggedPointer(), budget_offset,
new_budget.value());
}
Node* InterpreterAssembler::Advance(int delta) {
return IntPtrAdd(BytecodeOffset(), IntPtrConstant(delta));
}
Node* InterpreterAssembler::Advance(Node* delta) {
return IntPtrAdd(BytecodeOffset(), delta);
}
Node* InterpreterAssembler::Jump(Node* delta) {
UpdateInterruptBudget(delta);
return DispatchTo(Advance(delta));
}
void InterpreterAssembler::JumpConditional(Node* condition, Node* delta) {
Label match(this), no_match(this);
BranchIf(condition, &match, &no_match);
Bind(&match);
Jump(delta);
Bind(&no_match);
Dispatch();
}
void InterpreterAssembler::JumpIfWordEqual(Node* lhs, Node* rhs, Node* delta) {
JumpConditional(WordEqual(lhs, rhs), delta);
}
void InterpreterAssembler::JumpIfWordNotEqual(Node* lhs, Node* rhs,
Node* delta) {
JumpConditional(WordNotEqual(lhs, rhs), delta);
}
Node* InterpreterAssembler::Dispatch() {
return DispatchTo(Advance(Bytecodes::Size(bytecode_, operand_scale_)));
}
Node* InterpreterAssembler::DispatchTo(Node* new_bytecode_offset) {
Node* target_bytecode = Load(
MachineType::Uint8(), BytecodeArrayTaggedPointer(), new_bytecode_offset);
if (kPointerSize == 8) {
target_bytecode = ChangeUint32ToUint64(target_bytecode);
}
if (FLAG_trace_ignition_dispatches) {
TraceBytecodeDispatch(target_bytecode);
}
Node* target_code_entry =
Load(MachineType::Pointer(), DispatchTableRawPointer(),
WordShl(target_bytecode, IntPtrConstant(kPointerSizeLog2)));
return DispatchToBytecodeHandlerEntry(target_code_entry, new_bytecode_offset);
}
Node* InterpreterAssembler::DispatchToBytecodeHandler(Node* handler,
Node* bytecode_offset) {
Node* handler_entry =
IntPtrAdd(handler, IntPtrConstant(Code::kHeaderSize - kHeapObjectTag));
return DispatchToBytecodeHandlerEntry(handler_entry, bytecode_offset);
}
Node* InterpreterAssembler::DispatchToBytecodeHandlerEntry(
Node* handler_entry, Node* bytecode_offset) {
if (FLAG_trace_ignition) {
TraceBytecode(Runtime::kInterpreterTraceBytecodeExit);
}
InterpreterDispatchDescriptor descriptor(isolate());
Node* args[] = {GetAccumulatorUnchecked(), bytecode_offset,
BytecodeArrayTaggedPointer(), DispatchTableRawPointer()};
return TailCallBytecodeDispatch(descriptor, handler_entry, args);
}
void InterpreterAssembler::DispatchWide(OperandScale operand_scale) {
// Dispatching a wide bytecode requires treating the prefix
// bytecode a base pointer into the dispatch table and dispatching
// the bytecode that follows relative to this base.
//
// Indices 0-255 correspond to bytecodes with operand_scale == 0
// Indices 256-511 correspond to bytecodes with operand_scale == 1
// Indices 512-767 correspond to bytecodes with operand_scale == 2
Node* next_bytecode_offset = Advance(1);
Node* next_bytecode = Load(MachineType::Uint8(), BytecodeArrayTaggedPointer(),
next_bytecode_offset);
if (kPointerSize == 8) {
next_bytecode = ChangeUint32ToUint64(next_bytecode);
}
if (FLAG_trace_ignition_dispatches) {
TraceBytecodeDispatch(next_bytecode);
}
Node* base_index;
switch (operand_scale) {
case OperandScale::kDouble:
base_index = IntPtrConstant(1 << kBitsPerByte);
break;
case OperandScale::kQuadruple:
base_index = IntPtrConstant(2 << kBitsPerByte);
break;
default:
UNREACHABLE();
base_index = nullptr;
}
Node* target_index = IntPtrAdd(base_index, next_bytecode);
Node* target_code_entry =
Load(MachineType::Pointer(), DispatchTableRawPointer(),
WordShl(target_index, kPointerSizeLog2));
DispatchToBytecodeHandlerEntry(target_code_entry, next_bytecode_offset);
}
void InterpreterAssembler::UpdateInterruptBudgetOnReturn() {
// TODO(rmcilroy): Investigate whether it is worth supporting self
// optimization of primitive functions like FullCodegen.
// Update profiling count by -BytecodeOffset to simulate backedge to start of
// function.
Node* profiling_weight =
Int32Sub(Int32Constant(kHeapObjectTag + BytecodeArray::kHeaderSize),
BytecodeOffset());
UpdateInterruptBudget(profiling_weight);
}
Node* InterpreterAssembler::StackCheckTriggeredInterrupt() {
Node* sp = LoadStackPointer();
Node* stack_limit = Load(
MachineType::Pointer(),
ExternalConstant(ExternalReference::address_of_stack_limit(isolate())));
return UintPtrLessThan(sp, stack_limit);
}
void InterpreterAssembler::Abort(BailoutReason bailout_reason) {
disable_stack_check_across_call_ = true;
Node* abort_id = SmiTag(Int32Constant(bailout_reason));
CallRuntime(Runtime::kAbort, GetContext(), abort_id);
disable_stack_check_across_call_ = false;
}
void InterpreterAssembler::AbortIfWordNotEqual(Node* lhs, Node* rhs,
BailoutReason bailout_reason) {
Label ok(this), abort(this, Label::kDeferred);
BranchIfWordEqual(lhs, rhs, &ok, &abort);
Bind(&abort);
Abort(bailout_reason);
Goto(&ok);
Bind(&ok);
}
void InterpreterAssembler::TraceBytecode(Runtime::FunctionId function_id) {
CallRuntime(function_id, GetContext(), BytecodeArrayTaggedPointer(),
SmiTag(BytecodeOffset()), GetAccumulatorUnchecked());
}
void InterpreterAssembler::TraceBytecodeDispatch(Node* target_bytecode) {
Node* counters_table = ExternalConstant(
ExternalReference::interpreter_dispatch_counters(isolate()));
Node* source_bytecode_table_index = IntPtrConstant(
static_cast<int>(bytecode_) * (static_cast<int>(Bytecode::kLast) + 1));
Node* counter_offset =
WordShl(IntPtrAdd(source_bytecode_table_index, target_bytecode),
IntPtrConstant(kPointerSizeLog2));
Node* old_counter =
Load(MachineType::IntPtr(), counters_table, counter_offset);
Label counter_ok(this), counter_saturated(this, Label::kDeferred);
Node* counter_reached_max = WordEqual(
old_counter, IntPtrConstant(std::numeric_limits<uintptr_t>::max()));
BranchIf(counter_reached_max, &counter_saturated, &counter_ok);
Bind(&counter_ok);
{
Node* new_counter = IntPtrAdd(old_counter, IntPtrConstant(1));
StoreNoWriteBarrier(MachineType::PointerRepresentation(), counters_table,
counter_offset, new_counter);
Goto(&counter_saturated);
}
Bind(&counter_saturated);
}
// static
bool InterpreterAssembler::TargetSupportsUnalignedAccess() {
#if V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64
return false;
#elif V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_PPC
return CpuFeatures::IsSupported(UNALIGNED_ACCESSES);
#elif V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_X87 || \
V8_TARGET_ARCH_S390
return true;
#else
#error "Unknown Architecture"
#endif
}
Node* InterpreterAssembler::RegisterCount() {
Node* bytecode_array = LoadRegister(Register::bytecode_array());
Node* frame_size = LoadObjectField(
bytecode_array, BytecodeArray::kFrameSizeOffset, MachineType::Int32());
return Word32Sar(frame_size, Int32Constant(kPointerSizeLog2));
}
Node* InterpreterAssembler::ExportRegisterFile(Node* array) {
if (FLAG_debug_code) {
Node* array_size = SmiUntag(LoadFixedArrayBaseLength(array));
AbortIfWordNotEqual(
array_size, RegisterCount(), kInvalidRegisterFileInGenerator);
}
Variable var_index(this, MachineRepresentation::kWord32);
var_index.Bind(Int32Constant(0));
// Iterate over register file and write values into array.
// The mapping of register to array index must match that used in
// BytecodeGraphBuilder::VisitResumeGenerator.
Label loop(this, &var_index), done_loop(this);
Goto(&loop);
Bind(&loop);
{
Node* index = var_index.value();
Node* condition = Int32LessThan(index, RegisterCount());
GotoUnless(condition, &done_loop);
Node* reg_index =
Int32Sub(Int32Constant(Register(0).ToOperand()), index);
Node* value = LoadRegister(ChangeInt32ToIntPtr(reg_index));
StoreFixedArrayElement(array, index, value);
var_index.Bind(Int32Add(index, Int32Constant(1)));
Goto(&loop);
}
Bind(&done_loop);
return array;
}
Node* InterpreterAssembler::ImportRegisterFile(Node* array) {
if (FLAG_debug_code) {
Node* array_size = SmiUntag(LoadFixedArrayBaseLength(array));
AbortIfWordNotEqual(
array_size, RegisterCount(), kInvalidRegisterFileInGenerator);
}
Variable var_index(this, MachineRepresentation::kWord32);
var_index.Bind(Int32Constant(0));
// Iterate over array and write values into register file. Also erase the
// array contents to not keep them alive artificially.
Label loop(this, &var_index), done_loop(this);
Goto(&loop);
Bind(&loop);
{
Node* index = var_index.value();
Node* condition = Int32LessThan(index, RegisterCount());
GotoUnless(condition, &done_loop);
Node* value = LoadFixedArrayElement(array, index);
Node* reg_index =
Int32Sub(Int32Constant(Register(0).ToOperand()), index);
StoreRegister(value, ChangeInt32ToIntPtr(reg_index));
StoreFixedArrayElement(array, index, StaleRegisterConstant());
var_index.Bind(Int32Add(index, Int32Constant(1)));
Goto(&loop);
}
Bind(&done_loop);
return array;
}
} // namespace interpreter
} // namespace internal
} // namespace v8