blob: d9ca1df3124c8c660f2ac8a41524c02d6d23f228 [file] [log] [blame]
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#if V8_TARGET_ARCH_S390
#include "src/base/bits.h"
#include "src/code-stubs.h"
#include "src/log.h"
#include "src/macro-assembler.h"
#include "src/regexp/regexp-macro-assembler.h"
#include "src/regexp/regexp-stack.h"
#include "src/regexp/s390/regexp-macro-assembler-s390.h"
#include "src/unicode.h"
namespace v8 {
namespace internal {
#ifndef V8_INTERPRETED_REGEXP
/*
* This assembler uses the following register assignment convention
* - r6: Temporarily stores the index of capture start after a matching pass
* for a global regexp.
* - r7: Pointer to current code object (Code*) including heap object tag.
* - r8: Current position in input, as negative offset from end of string.
* Please notice that this is the byte offset, not the character offset!
* - r9: Currently loaded character. Must be loaded using
* LoadCurrentCharacter before using any of the dispatch methods.
* - r13: Points to tip of backtrack stack
* - r10: End of input (points to byte after last character in input).
* - r11: Frame pointer. Used to access arguments, local variables and
* RegExp registers.
* - r12: IP register, used by assembler. Very volatile.
* - r15/sp : Points to tip of C stack.
*
* The remaining registers are free for computations.
* Each call to a public method should retain this convention.
*
* The stack will have the following structure:
* - fp[112] Isolate* isolate (address of the current isolate)
* - fp[108] secondary link/return address used by native call.
* - fp[104] direct_call (if 1, direct call from JavaScript code,
* if 0, call through the runtime system).
* - fp[100] stack_area_base (high end of the memory area to use as
* backtracking stack).
* - fp[96] capture array size (may fit multiple sets of matches)
* - fp[0..96] zLinux ABI register saving area
* --- sp when called ---
* --- frame pointer ----
* - fp[-4] direct_call (if 1, direct call from JavaScript code,
* if 0, call through the runtime system).
* - fp[-8] stack_area_base (high end of the memory area to use as
* backtracking stack).
* - fp[-12] capture array size (may fit multiple sets of matches)
* - fp[-16] int* capture_array (int[num_saved_registers_], for output).
* - fp[-20] end of input (address of end of string).
* - fp[-24] start of input (address of first character in string).
* - fp[-28] start index (character index of start).
* - fp[-32] void* input_string (location of a handle containing the string).
* - fp[-36] success counter (only for global regexps to count matches).
* - fp[-40] Offset of location before start of input (effectively character
* string start - 1). Used to initialize capture registers to a
* non-position.
* - fp[-44] At start (if 1, we are starting at the start of the
* string, otherwise 0)
* - fp[-48] register 0 (Only positions must be stored in the first
* - register 1 num_saved_registers_ registers)
* - ...
* - register num_registers-1
* --- sp ---
*
* The first num_saved_registers_ registers are initialized to point to
* "character -1" in the string (i.e., char_size() bytes before the first
* character of the string). The remaining registers start out as garbage.
*
* The data up to the return address must be placed there by the calling
* code and the remaining arguments are passed in registers, e.g. by calling the
* code entry as cast to a function with the signature:
* int (*match)(String* input_string,
* int start_index,
* Address start,
* Address end,
* int* capture_output_array,
* byte* stack_area_base,
* Address secondary_return_address, // Only used by native call.
* bool direct_call = false)
* The call is performed by NativeRegExpMacroAssembler::Execute()
* (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro
* in s390/simulator-s390.h.
* When calling as a non-direct call (i.e., from C++ code), the return address
* area is overwritten with the LR register by the RegExp code. When doing a
* direct call from generated code, the return address is placed there by
* the calling code, as in a normal exit frame.
*/
#define __ ACCESS_MASM(masm_)
RegExpMacroAssemblerS390::RegExpMacroAssemblerS390(Isolate* isolate, Zone* zone,
Mode mode,
int registers_to_save)
: NativeRegExpMacroAssembler(isolate, zone),
masm_(new MacroAssembler(isolate, NULL, kRegExpCodeSize,
CodeObjectRequired::kYes)),
mode_(mode),
num_registers_(registers_to_save),
num_saved_registers_(registers_to_save),
entry_label_(),
start_label_(),
success_label_(),
backtrack_label_(),
exit_label_(),
internal_failure_label_() {
DCHECK_EQ(0, registers_to_save % 2);
__ b(&entry_label_); // We'll write the entry code later.
// If the code gets too big or corrupted, an internal exception will be
// raised, and we will exit right away.
__ bind(&internal_failure_label_);
__ LoadImmP(r2, Operand(FAILURE));
__ Ret();
__ bind(&start_label_); // And then continue from here.
}
RegExpMacroAssemblerS390::~RegExpMacroAssemblerS390() {
delete masm_;
// Unuse labels in case we throw away the assembler without calling GetCode.
entry_label_.Unuse();
start_label_.Unuse();
success_label_.Unuse();
backtrack_label_.Unuse();
exit_label_.Unuse();
check_preempt_label_.Unuse();
stack_overflow_label_.Unuse();
internal_failure_label_.Unuse();
}
int RegExpMacroAssemblerS390::stack_limit_slack() {
return RegExpStack::kStackLimitSlack;
}
void RegExpMacroAssemblerS390::AdvanceCurrentPosition(int by) {
if (by != 0) {
__ AddP(current_input_offset(), Operand(by * char_size()));
}
}
void RegExpMacroAssemblerS390::AdvanceRegister(int reg, int by) {
DCHECK(reg >= 0);
DCHECK(reg < num_registers_);
if (by != 0) {
if (CpuFeatures::IsSupported(GENERAL_INSTR_EXT) && is_int8(by)) {
__ AddMI(register_location(reg), Operand(by));
} else {
__ LoadP(r2, register_location(reg), r0);
__ mov(r0, Operand(by));
__ AddRR(r2, r0);
__ StoreP(r2, register_location(reg));
}
}
}
void RegExpMacroAssemblerS390::Backtrack() {
CheckPreemption();
// Pop Code* offset from backtrack stack, add Code* and jump to location.
Pop(r2);
__ AddP(r2, code_pointer());
__ b(r2);
}
void RegExpMacroAssemblerS390::Bind(Label* label) { __ bind(label); }
void RegExpMacroAssemblerS390::CheckCharacter(uint32_t c, Label* on_equal) {
__ CmpLogicalP(current_character(), Operand(c));
BranchOrBacktrack(eq, on_equal);
}
void RegExpMacroAssemblerS390::CheckCharacterGT(uc16 limit, Label* on_greater) {
__ CmpLogicalP(current_character(), Operand(limit));
BranchOrBacktrack(gt, on_greater);
}
void RegExpMacroAssemblerS390::CheckAtStart(Label* on_at_start) {
__ LoadP(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
__ AddP(r2, current_input_offset(), Operand(-char_size()));
__ CmpP(r2, r3);
BranchOrBacktrack(eq, on_at_start);
}
void RegExpMacroAssemblerS390::CheckNotAtStart(int cp_offset,
Label* on_not_at_start) {
__ LoadP(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
__ AddP(r2, current_input_offset(),
Operand(-char_size() + cp_offset * char_size()));
__ CmpP(r2, r3);
BranchOrBacktrack(ne, on_not_at_start);
}
void RegExpMacroAssemblerS390::CheckCharacterLT(uc16 limit, Label* on_less) {
__ CmpLogicalP(current_character(), Operand(limit));
BranchOrBacktrack(lt, on_less);
}
void RegExpMacroAssemblerS390::CheckGreedyLoop(Label* on_equal) {
Label backtrack_non_equal;
__ CmpP(current_input_offset(), MemOperand(backtrack_stackpointer(), 0));
__ bne(&backtrack_non_equal);
__ AddP(backtrack_stackpointer(), Operand(kPointerSize));
BranchOrBacktrack(al, on_equal);
__ bind(&backtrack_non_equal);
}
void RegExpMacroAssemblerS390::CheckNotBackReferenceIgnoreCase(
int start_reg, bool read_backward, bool unicode, Label* on_no_match) {
Label fallthrough;
__ LoadP(r2, register_location(start_reg)); // Index of start of
// capture
__ LoadP(r3, register_location(start_reg + 1)); // Index of end
__ SubP(r3, r3, r2);
// At this point, the capture registers are either both set or both cleared.
// If the capture length is zero, then the capture is either empty or cleared.
// Fall through in both cases.
__ beq(&fallthrough);
// Check that there are enough characters left in the input.
if (read_backward) {
__ LoadP(r5, MemOperand(frame_pointer(), kStringStartMinusOne));
__ AddP(r5, r5, r3);
__ CmpP(current_input_offset(), r5);
BranchOrBacktrack(le, on_no_match);
} else {
__ AddP(r0, r3, current_input_offset());
BranchOrBacktrack(gt, on_no_match);
}
if (mode_ == LATIN1) {
Label success;
Label fail;
Label loop_check;
// r2 - offset of start of capture
// r3 - length of capture
__ AddP(r2, end_of_input_address());
__ AddP(r4, current_input_offset(), end_of_input_address());
if (read_backward) {
__ SubP(r4, r4, r3); // Offset by length when matching backwards.
}
__ mov(r1, Operand::Zero());
// r1 - Loop index
// r2 - Address of start of capture.
// r4 - Address of current input position.
Label loop;
__ bind(&loop);
__ LoadlB(r5, MemOperand(r2, r1));
__ LoadlB(r6, MemOperand(r4, r1));
__ CmpP(r6, r5);
__ beq(&loop_check);
// Mismatch, try case-insensitive match (converting letters to lower-case).
__ Or(r5, Operand(0x20)); // Convert capture character to lower-case.
__ Or(r6, Operand(0x20)); // Also convert input character.
__ CmpP(r6, r5);
__ bne(&fail);
__ SubP(r5, Operand('a'));
__ CmpLogicalP(r5, Operand('z' - 'a')); // Is r5 a lowercase letter?
__ ble(&loop_check); // In range 'a'-'z'.
// Latin-1: Check for values in range [224,254] but not 247.
__ SubP(r5, Operand(224 - 'a'));
__ CmpLogicalP(r5, Operand(254 - 224));
__ bgt(&fail); // Weren't Latin-1 letters.
__ CmpLogicalP(r5, Operand(247 - 224)); // Check for 247.
__ beq(&fail);
__ bind(&loop_check);
__ la(r1, MemOperand(r1, char_size()));
__ CmpP(r1, r3);
__ blt(&loop);
__ b(&success);
__ bind(&fail);
BranchOrBacktrack(al, on_no_match);
__ bind(&success);
// Compute new value of character position after the matched part.
__ SubP(current_input_offset(), r4, end_of_input_address());
if (read_backward) {
__ LoadP(r2, register_location(start_reg)); // Index of start of capture
__ LoadP(r3,
register_location(start_reg + 1)); // Index of end of capture
__ AddP(current_input_offset(), current_input_offset(), r2);
__ SubP(current_input_offset(), current_input_offset(), r3);
}
__ AddP(current_input_offset(), r1);
} else {
DCHECK(mode_ == UC16);
int argument_count = 4;
__ PrepareCallCFunction(argument_count, r4);
// r2 - offset of start of capture
// r3 - length of capture
// Put arguments into arguments registers.
// Parameters are
// r2: Address byte_offset1 - Address captured substring's start.
// r3: Address byte_offset2 - Address of current character position.
// r4: size_t byte_length - length of capture in bytes(!)
// r5: Isolate* isolate or 0 if unicode flag.
// Address of start of capture.
__ AddP(r2, end_of_input_address());
// Length of capture.
__ LoadRR(r4, r3);
// Save length in callee-save register for use on return.
__ LoadRR(r6, r3);
// Address of current input position.
__ AddP(r3, current_input_offset(), end_of_input_address());
if (read_backward) {
__ SubP(r3, r3, r6);
}
// Isolate.
#ifdef V8_I18N_SUPPORT
if (unicode) {
__ LoadImmP(r5, Operand::Zero());
} else // NOLINT
#endif // V8_I18N_SUPPORT
{
__ mov(r5, Operand(ExternalReference::isolate_address(isolate())));
}
{
AllowExternalCallThatCantCauseGC scope(masm_);
ExternalReference function =
ExternalReference::re_case_insensitive_compare_uc16(isolate());
__ CallCFunction(function, argument_count);
}
// Check if function returned non-zero for success or zero for failure.
__ CmpP(r2, Operand::Zero());
BranchOrBacktrack(eq, on_no_match);
// On success, advance position by length of capture.
if (read_backward) {
__ SubP(current_input_offset(), current_input_offset(), r6);
} else {
__ AddP(current_input_offset(), current_input_offset(), r6);
}
}
__ bind(&fallthrough);
}
void RegExpMacroAssemblerS390::CheckNotBackReference(int start_reg,
bool read_backward,
Label* on_no_match) {
Label fallthrough;
Label success;
// Find length of back-referenced capture.
__ LoadP(r2, register_location(start_reg));
__ LoadP(r3, register_location(start_reg + 1));
__ SubP(r3, r3, r2); // Length to check.
// At this point, the capture registers are either both set or both cleared.
// If the capture length is zero, then the capture is either empty or cleared.
// Fall through in both cases.
__ beq(&fallthrough);
// Check that there are enough characters left in the input.
if (read_backward) {
__ LoadP(r5, MemOperand(frame_pointer(), kStringStartMinusOne));
__ AddP(r5, r5, r3);
__ CmpP(current_input_offset(), r5);
BranchOrBacktrack(lt, on_no_match);
} else {
__ AddP(r0, r3, current_input_offset());
BranchOrBacktrack(gt, on_no_match, cr0);
}
// r2 - offset of start of capture
// r3 - length of capture
__ la(r2, MemOperand(r2, end_of_input_address()));
__ la(r4, MemOperand(current_input_offset(), end_of_input_address()));
if (read_backward) {
__ SubP(r4, r4, r3); // Offset by length when matching backwards.
}
__ mov(r1, Operand::Zero());
Label loop;
__ bind(&loop);
if (mode_ == LATIN1) {
__ LoadlB(r5, MemOperand(r2, r1));
__ LoadlB(r6, MemOperand(r4, r1));
} else {
DCHECK(mode_ == UC16);
__ LoadLogicalHalfWordP(r5, MemOperand(r2, r1));
__ LoadLogicalHalfWordP(r6, MemOperand(r4, r1));
}
__ la(r1, MemOperand(r1, char_size()));
__ CmpP(r5, r6);
BranchOrBacktrack(ne, on_no_match);
__ CmpP(r1, r3);
__ blt(&loop);
// Move current character position to position after match.
__ SubP(current_input_offset(), r4, end_of_input_address());
if (read_backward) {
__ LoadP(r2, register_location(start_reg)); // Index of start of capture
__ LoadP(r3, register_location(start_reg + 1)); // Index of end of capture
__ AddP(current_input_offset(), current_input_offset(), r2);
__ SubP(current_input_offset(), current_input_offset(), r3);
}
__ AddP(current_input_offset(), r1);
__ bind(&fallthrough);
}
void RegExpMacroAssemblerS390::CheckNotCharacter(unsigned c,
Label* on_not_equal) {
__ CmpLogicalP(current_character(), Operand(c));
BranchOrBacktrack(ne, on_not_equal);
}
void RegExpMacroAssemblerS390::CheckCharacterAfterAnd(uint32_t c, uint32_t mask,
Label* on_equal) {
__ AndP(r2, current_character(), Operand(mask));
if (c != 0) {
__ CmpLogicalP(r2, Operand(c));
}
BranchOrBacktrack(eq, on_equal);
}
void RegExpMacroAssemblerS390::CheckNotCharacterAfterAnd(unsigned c,
unsigned mask,
Label* on_not_equal) {
__ AndP(r2, current_character(), Operand(mask));
if (c != 0) {
__ CmpLogicalP(r2, Operand(c));
}
BranchOrBacktrack(ne, on_not_equal);
}
void RegExpMacroAssemblerS390::CheckNotCharacterAfterMinusAnd(
uc16 c, uc16 minus, uc16 mask, Label* on_not_equal) {
DCHECK(minus < String::kMaxUtf16CodeUnit);
__ lay(r2, MemOperand(current_character(), -minus));
__ And(r2, Operand(mask));
if (c != 0) {
__ CmpLogicalP(r2, Operand(c));
}
BranchOrBacktrack(ne, on_not_equal);
}
void RegExpMacroAssemblerS390::CheckCharacterInRange(uc16 from, uc16 to,
Label* on_in_range) {
__ lay(r2, MemOperand(current_character(), -from));
__ CmpLogicalP(r2, Operand(to - from));
BranchOrBacktrack(le, on_in_range); // Unsigned lower-or-same condition.
}
void RegExpMacroAssemblerS390::CheckCharacterNotInRange(
uc16 from, uc16 to, Label* on_not_in_range) {
__ lay(r2, MemOperand(current_character(), -from));
__ CmpLogicalP(r2, Operand(to - from));
BranchOrBacktrack(gt, on_not_in_range); // Unsigned higher condition.
}
void RegExpMacroAssemblerS390::CheckBitInTable(Handle<ByteArray> table,
Label* on_bit_set) {
__ mov(r2, Operand(table));
Register index = current_character();
if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
__ AndP(r3, current_character(), Operand(kTableSize - 1));
index = r3;
}
__ LoadlB(r2,
MemOperand(r2, index, (ByteArray::kHeaderSize - kHeapObjectTag)));
__ CmpP(r2, Operand::Zero());
BranchOrBacktrack(ne, on_bit_set);
}
bool RegExpMacroAssemblerS390::CheckSpecialCharacterClass(uc16 type,
Label* on_no_match) {
// Range checks (c in min..max) are generally implemented by an unsigned
// (c - min) <= (max - min) check
switch (type) {
case 's':
// Match space-characters
if (mode_ == LATIN1) {
// One byte space characters are '\t'..'\r', ' ' and \u00a0.
Label success;
__ CmpP(current_character(), Operand(' '));
__ beq(&success);
// Check range 0x09..0x0d
__ SubP(r2, current_character(), Operand('\t'));
__ CmpLogicalP(r2, Operand('\r' - '\t'));
__ ble(&success);
// \u00a0 (NBSP).
__ CmpLogicalP(r2, Operand(0x00a0 - '\t'));
BranchOrBacktrack(ne, on_no_match);
__ bind(&success);
return true;
}
return false;
case 'S':
// The emitted code for generic character classes is good enough.
return false;
case 'd':
// Match ASCII digits ('0'..'9')
__ SubP(r2, current_character(), Operand('0'));
__ CmpLogicalP(r2, Operand('9' - '0'));
BranchOrBacktrack(gt, on_no_match);
return true;
case 'D':
// Match non ASCII-digits
__ SubP(r2, current_character(), Operand('0'));
__ CmpLogicalP(r2, Operand('9' - '0'));
BranchOrBacktrack(le, on_no_match);
return true;
case '.': {
// Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
__ XorP(r2, current_character(), Operand(0x01));
// See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
__ SubP(r2, Operand(0x0b));
__ CmpLogicalP(r2, Operand(0x0c - 0x0b));
BranchOrBacktrack(le, on_no_match);
if (mode_ == UC16) {
// Compare original value to 0x2028 and 0x2029, using the already
// computed (current_char ^ 0x01 - 0x0b). I.e., check for
// 0x201d (0x2028 - 0x0b) or 0x201e.
__ SubP(r2, Operand(0x2028 - 0x0b));
__ CmpLogicalP(r2, Operand(1));
BranchOrBacktrack(le, on_no_match);
}
return true;
}
case 'n': {
// Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
__ XorP(r2, current_character(), Operand(0x01));
// See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
__ SubP(r2, Operand(0x0b));
__ CmpLogicalP(r2, Operand(0x0c - 0x0b));
if (mode_ == LATIN1) {
BranchOrBacktrack(gt, on_no_match);
} else {
Label done;
__ ble(&done);
// Compare original value to 0x2028 and 0x2029, using the already
// computed (current_char ^ 0x01 - 0x0b). I.e., check for
// 0x201d (0x2028 - 0x0b) or 0x201e.
__ SubP(r2, Operand(0x2028 - 0x0b));
__ CmpLogicalP(r2, Operand(1));
BranchOrBacktrack(gt, on_no_match);
__ bind(&done);
}
return true;
}
case 'w': {
if (mode_ != LATIN1) {
// Table is 1256 entries, so all LATIN1 characters can be tested.
__ CmpP(current_character(), Operand('z'));
BranchOrBacktrack(gt, on_no_match);
}
ExternalReference map = ExternalReference::re_word_character_map();
__ mov(r2, Operand(map));
__ LoadlB(r2, MemOperand(r2, current_character()));
__ CmpLogicalP(r2, Operand::Zero());
BranchOrBacktrack(eq, on_no_match);
return true;
}
case 'W': {
Label done;
if (mode_ != LATIN1) {
// Table is 256 entries, so all LATIN characters can be tested.
__ CmpLogicalP(current_character(), Operand('z'));
__ bgt(&done);
}
ExternalReference map = ExternalReference::re_word_character_map();
__ mov(r2, Operand(map));
__ LoadlB(r2, MemOperand(r2, current_character()));
__ CmpLogicalP(r2, Operand::Zero());
BranchOrBacktrack(ne, on_no_match);
if (mode_ != LATIN1) {
__ bind(&done);
}
return true;
}
case '*':
// Match any character.
return true;
// No custom implementation (yet): s(UC16), S(UC16).
default:
return false;
}
}
void RegExpMacroAssemblerS390::Fail() {
__ LoadImmP(r2, Operand(FAILURE));
__ b(&exit_label_);
}
Handle<HeapObject> RegExpMacroAssemblerS390::GetCode(Handle<String> source) {
Label return_r2;
// Finalize code - write the entry point code now we know how many
// registers we need.
// Entry code:
__ bind(&entry_label_);
// Tell the system that we have a stack frame. Because the type
// is MANUAL, no is generated.
FrameScope scope(masm_, StackFrame::MANUAL);
// Ensure register assigments are consistent with callee save mask
DCHECK(r6.bit() & kRegExpCalleeSaved);
DCHECK(code_pointer().bit() & kRegExpCalleeSaved);
DCHECK(current_input_offset().bit() & kRegExpCalleeSaved);
DCHECK(current_character().bit() & kRegExpCalleeSaved);
DCHECK(backtrack_stackpointer().bit() & kRegExpCalleeSaved);
DCHECK(end_of_input_address().bit() & kRegExpCalleeSaved);
DCHECK(frame_pointer().bit() & kRegExpCalleeSaved);
// zLinux ABI
// Incoming parameters:
// r2: input_string
// r3: start_index
// r4: start addr
// r5: end addr
// r6: capture output arrray
// Requires us to save the callee-preserved registers r6-r13
// General convention is to also save r14 (return addr) and
// sp/r15 as well in a single STM/STMG
__ StoreMultipleP(r6, sp, MemOperand(sp, 6 * kPointerSize));
// Load stack parameters from caller stack frame
__ LoadMultipleP(r7, r9,
MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize));
// r7 = capture array size
// r8 = stack area base
// r9 = direct call
// Actually emit code to start a new stack frame.
// Push arguments
// Save callee-save registers.
// Start new stack frame.
// Store link register in existing stack-cell.
// Order here should correspond to order of offset constants in header file.
//
// Set frame pointer in space for it if this is not a direct call
// from generated code.
__ LoadRR(frame_pointer(), sp);
__ lay(sp, MemOperand(sp, -10 * kPointerSize));
__ mov(r1, Operand::Zero()); // success counter
__ LoadRR(r0, r1); // offset of location
__ StoreMultipleP(r0, r9, MemOperand(sp, 0));
// Check if we have space on the stack for registers.
Label stack_limit_hit;
Label stack_ok;
ExternalReference stack_limit =
ExternalReference::address_of_stack_limit(isolate());
__ mov(r2, Operand(stack_limit));
__ LoadP(r2, MemOperand(r2));
__ SubP(r2, sp, r2);
// Handle it if the stack pointer is already below the stack limit.
__ ble(&stack_limit_hit);
// Check if there is room for the variable number of registers above
// the stack limit.
__ CmpLogicalP(r2, Operand(num_registers_ * kPointerSize));
__ bge(&stack_ok);
// Exit with OutOfMemory exception. There is not enough space on the stack
// for our working registers.
__ mov(r2, Operand(EXCEPTION));
__ b(&return_r2);
__ bind(&stack_limit_hit);
CallCheckStackGuardState(r2);
__ CmpP(r2, Operand::Zero());
// If returned value is non-zero, we exit with the returned value as result.
__ bne(&return_r2);
__ bind(&stack_ok);
// Allocate space on stack for registers.
__ lay(sp, MemOperand(sp, (-num_registers_ * kPointerSize)));
// Load string end.
__ LoadP(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
// Load input start.
__ LoadP(r4, MemOperand(frame_pointer(), kInputStart));
// Find negative length (offset of start relative to end).
__ SubP(current_input_offset(), r4, end_of_input_address());
__ LoadP(r3, MemOperand(frame_pointer(), kStartIndex));
// Set r1 to address of char before start of the input string
// (effectively string position -1).
__ LoadRR(r1, r4);
__ SubP(r1, current_input_offset(), Operand(char_size()));
if (mode_ == UC16) {
__ ShiftLeftP(r0, r3, Operand(1));
__ SubP(r1, r1, r0);
} else {
__ SubP(r1, r1, r3);
}
// Store this value in a local variable, for use when clearing
// position registers.
__ StoreP(r1, MemOperand(frame_pointer(), kStringStartMinusOne));
// Initialize code pointer register
__ mov(code_pointer(), Operand(masm_->CodeObject()));
Label load_char_start_regexp, start_regexp;
// Load newline if index is at start, previous character otherwise.
__ CmpP(r3, Operand::Zero());
__ bne(&load_char_start_regexp);
__ mov(current_character(), Operand('\n'));
__ b(&start_regexp);
// Global regexp restarts matching here.
__ bind(&load_char_start_regexp);
// Load previous char as initial value of current character register.
LoadCurrentCharacterUnchecked(-1, 1);
__ bind(&start_regexp);
// Initialize on-stack registers.
if (num_saved_registers_ > 0) { // Always is, if generated from a regexp.
// Fill saved registers with initial value = start offset - 1
if (num_saved_registers_ > 8) {
// One slot beyond address of register 0.
__ lay(r3, MemOperand(frame_pointer(), kRegisterZero + kPointerSize));
__ LoadImmP(r4, Operand(num_saved_registers_));
Label init_loop;
__ bind(&init_loop);
__ StoreP(r1, MemOperand(r3, -kPointerSize));
__ lay(r3, MemOperand(r3, -kPointerSize));
__ BranchOnCount(r4, &init_loop);
} else {
for (int i = 0; i < num_saved_registers_; i++) {
__ StoreP(r1, register_location(i));
}
}
}
// Initialize backtrack stack pointer.
__ LoadP(backtrack_stackpointer(),
MemOperand(frame_pointer(), kStackHighEnd));
__ b(&start_label_);
// Exit code:
if (success_label_.is_linked()) {
// Save captures when successful.
__ bind(&success_label_);
if (num_saved_registers_ > 0) {
// copy captures to output
__ LoadP(r0, MemOperand(frame_pointer(), kInputStart));
__ LoadP(r2, MemOperand(frame_pointer(), kRegisterOutput));
__ LoadP(r4, MemOperand(frame_pointer(), kStartIndex));
__ SubP(r0, end_of_input_address(), r0);
// r0 is length of input in bytes.
if (mode_ == UC16) {
__ ShiftRightP(r0, r0, Operand(1));
}
// r0 is length of input in characters.
__ AddP(r0, r4);
// r0 is length of string in characters.
DCHECK_EQ(0, num_saved_registers_ % 2);
// Always an even number of capture registers. This allows us to
// unroll the loop once to add an operation between a load of a register
// and the following use of that register.
__ lay(r2, MemOperand(r2, num_saved_registers_ * kIntSize));
for (int i = 0; i < num_saved_registers_;) {
if (false && i < num_saved_registers_ - 4) {
// TODO(john.yan): Can be optimized by SIMD instructions
__ LoadMultipleP(r3, r6, register_location(i + 3));
if (mode_ == UC16) {
__ ShiftRightArithP(r3, r3, Operand(1));
__ ShiftRightArithP(r4, r4, Operand(1));
__ ShiftRightArithP(r5, r5, Operand(1));
__ ShiftRightArithP(r6, r6, Operand(1));
}
__ AddP(r3, r0);
__ AddP(r4, r0);
__ AddP(r5, r0);
__ AddP(r6, r0);
__ StoreW(r3,
MemOperand(r2, -(num_saved_registers_ - i - 3) * kIntSize));
__ StoreW(r4,
MemOperand(r2, -(num_saved_registers_ - i - 2) * kIntSize));
__ StoreW(r5,
MemOperand(r2, -(num_saved_registers_ - i - 1) * kIntSize));
__ StoreW(r6, MemOperand(r2, -(num_saved_registers_ - i) * kIntSize));
i += 4;
} else {
__ LoadMultipleP(r3, r4, register_location(i + 1));
if (mode_ == UC16) {
__ ShiftRightArithP(r3, r3, Operand(1));
__ ShiftRightArithP(r4, r4, Operand(1));
}
__ AddP(r3, r0);
__ AddP(r4, r0);
__ StoreW(r3,
MemOperand(r2, -(num_saved_registers_ - i - 1) * kIntSize));
__ StoreW(r4, MemOperand(r2, -(num_saved_registers_ - i) * kIntSize));
i += 2;
}
}
if (global_with_zero_length_check()) {
// Keep capture start in r6 for the zero-length check later.
__ LoadP(r6, register_location(0));
}
}
if (global()) {
// Restart matching if the regular expression is flagged as global.
__ LoadP(r2, MemOperand(frame_pointer(), kSuccessfulCaptures));
__ LoadP(r3, MemOperand(frame_pointer(), kNumOutputRegisters));
__ LoadP(r4, MemOperand(frame_pointer(), kRegisterOutput));
// Increment success counter.
__ AddP(r2, Operand(1));
__ StoreP(r2, MemOperand(frame_pointer(), kSuccessfulCaptures));
// Capture results have been stored, so the number of remaining global
// output registers is reduced by the number of stored captures.
__ SubP(r3, Operand(num_saved_registers_));
// Check whether we have enough room for another set of capture results.
__ CmpP(r3, Operand(num_saved_registers_));
__ blt(&return_r2);
__ StoreP(r3, MemOperand(frame_pointer(), kNumOutputRegisters));
// Advance the location for output.
__ AddP(r4, Operand(num_saved_registers_ * kIntSize));
__ StoreP(r4, MemOperand(frame_pointer(), kRegisterOutput));
// Prepare r2 to initialize registers with its value in the next run.
__ LoadP(r2, MemOperand(frame_pointer(), kStringStartMinusOne));
if (global_with_zero_length_check()) {
// Special case for zero-length matches.
// r6: capture start index
__ CmpP(current_input_offset(), r6);
// Not a zero-length match, restart.
__ bne(&load_char_start_regexp);
// Offset from the end is zero if we already reached the end.
__ CmpP(current_input_offset(), Operand::Zero());
__ beq(&exit_label_);
// Advance current position after a zero-length match.
Label advance;
__ bind(&advance);
__ AddP(current_input_offset(), Operand((mode_ == UC16) ? 2 : 1));
if (global_unicode()) CheckNotInSurrogatePair(0, &advance);
}
__ b(&load_char_start_regexp);
} else {
__ LoadImmP(r2, Operand(SUCCESS));
}
}
// Exit and return r2
__ bind(&exit_label_);
if (global()) {
__ LoadP(r2, MemOperand(frame_pointer(), kSuccessfulCaptures));
}
__ bind(&return_r2);
// Skip sp past regexp registers and local variables..
__ LoadRR(sp, frame_pointer());
// Restore registers r6..r15.
__ LoadMultipleP(r6, sp, MemOperand(sp, 6 * kPointerSize));
__ b(r14);
// Backtrack code (branch target for conditional backtracks).
if (backtrack_label_.is_linked()) {
__ bind(&backtrack_label_);
Backtrack();
}
Label exit_with_exception;
// Preempt-code
if (check_preempt_label_.is_linked()) {
SafeCallTarget(&check_preempt_label_);
CallCheckStackGuardState(r2);
__ CmpP(r2, Operand::Zero());
// If returning non-zero, we should end execution with the given
// result as return value.
__ bne(&return_r2);
// String might have moved: Reload end of string from frame.
__ LoadP(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
SafeReturn();
}
// Backtrack stack overflow code.
if (stack_overflow_label_.is_linked()) {
SafeCallTarget(&stack_overflow_label_);
// Reached if the backtrack-stack limit has been hit.
Label grow_failed;
// Call GrowStack(backtrack_stackpointer(), &stack_base)
static const int num_arguments = 3;
__ PrepareCallCFunction(num_arguments, r2);
__ LoadRR(r2, backtrack_stackpointer());
__ AddP(r3, frame_pointer(), Operand(kStackHighEnd));
__ mov(r4, Operand(ExternalReference::isolate_address(isolate())));
ExternalReference grow_stack = ExternalReference::re_grow_stack(isolate());
__ CallCFunction(grow_stack, num_arguments);
// If return NULL, we have failed to grow the stack, and
// must exit with a stack-overflow exception.
__ CmpP(r2, Operand::Zero());
__ beq(&exit_with_exception);
// Otherwise use return value as new stack pointer.
__ LoadRR(backtrack_stackpointer(), r2);
// Restore saved registers and continue.
SafeReturn();
}
if (exit_with_exception.is_linked()) {
// If any of the code above needed to exit with an exception.
__ bind(&exit_with_exception);
// Exit with Result EXCEPTION(-1) to signal thrown exception.
__ LoadImmP(r2, Operand(EXCEPTION));
__ b(&return_r2);
}
CodeDesc code_desc;
masm_->GetCode(&code_desc);
Handle<Code> code = isolate()->factory()->NewCode(
code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject());
PROFILE(masm_->isolate(),
RegExpCodeCreateEvent(AbstractCode::cast(*code), *source));
return Handle<HeapObject>::cast(code);
}
void RegExpMacroAssemblerS390::GoTo(Label* to) { BranchOrBacktrack(al, to); }
void RegExpMacroAssemblerS390::IfRegisterGE(int reg, int comparand,
Label* if_ge) {
__ LoadP(r2, register_location(reg), r0);
__ CmpP(r2, Operand(comparand));
BranchOrBacktrack(ge, if_ge);
}
void RegExpMacroAssemblerS390::IfRegisterLT(int reg, int comparand,
Label* if_lt) {
__ LoadP(r2, register_location(reg), r0);
__ CmpP(r2, Operand(comparand));
BranchOrBacktrack(lt, if_lt);
}
void RegExpMacroAssemblerS390::IfRegisterEqPos(int reg, Label* if_eq) {
__ LoadP(r2, register_location(reg), r0);
__ CmpP(r2, current_input_offset());
BranchOrBacktrack(eq, if_eq);
}
RegExpMacroAssembler::IrregexpImplementation
RegExpMacroAssemblerS390::Implementation() {
return kS390Implementation;
}
void RegExpMacroAssemblerS390::LoadCurrentCharacter(int cp_offset,
Label* on_end_of_input,
bool check_bounds,
int characters) {
DCHECK(cp_offset < (1 << 30)); // Be sane! (And ensure negation works)
if (check_bounds) {
if (cp_offset >= 0) {
CheckPosition(cp_offset + characters - 1, on_end_of_input);
} else {
CheckPosition(cp_offset, on_end_of_input);
}
}
LoadCurrentCharacterUnchecked(cp_offset, characters);
}
void RegExpMacroAssemblerS390::PopCurrentPosition() {
Pop(current_input_offset());
}
void RegExpMacroAssemblerS390::PopRegister(int register_index) {
Pop(r2);
__ StoreP(r2, register_location(register_index));
}
void RegExpMacroAssemblerS390::PushBacktrack(Label* label) {
if (label->is_bound()) {
int target = label->pos();
__ mov(r2, Operand(target + Code::kHeaderSize - kHeapObjectTag));
} else {
masm_->load_label_offset(r2, label);
}
Push(r2);
CheckStackLimit();
}
void RegExpMacroAssemblerS390::PushCurrentPosition() {
Push(current_input_offset());
}
void RegExpMacroAssemblerS390::PushRegister(int register_index,
StackCheckFlag check_stack_limit) {
__ LoadP(r2, register_location(register_index), r0);
Push(r2);
if (check_stack_limit) CheckStackLimit();
}
void RegExpMacroAssemblerS390::ReadCurrentPositionFromRegister(int reg) {
__ LoadP(current_input_offset(), register_location(reg), r0);
}
void RegExpMacroAssemblerS390::ReadStackPointerFromRegister(int reg) {
__ LoadP(backtrack_stackpointer(), register_location(reg), r0);
__ LoadP(r2, MemOperand(frame_pointer(), kStackHighEnd));
__ AddP(backtrack_stackpointer(), r2);
}
void RegExpMacroAssemblerS390::SetCurrentPositionFromEnd(int by) {
Label after_position;
__ CmpP(current_input_offset(), Operand(-by * char_size()));
__ bge(&after_position);
__ mov(current_input_offset(), Operand(-by * char_size()));
// On RegExp code entry (where this operation is used), the character before
// the current position is expected to be already loaded.
// We have advanced the position, so it's safe to read backwards.
LoadCurrentCharacterUnchecked(-1, 1);
__ bind(&after_position);
}
void RegExpMacroAssemblerS390::SetRegister(int register_index, int to) {
DCHECK(register_index >= num_saved_registers_); // Reserved for positions!
__ mov(r2, Operand(to));
__ StoreP(r2, register_location(register_index));
}
bool RegExpMacroAssemblerS390::Succeed() {
__ b(&success_label_);
return global();
}
void RegExpMacroAssemblerS390::WriteCurrentPositionToRegister(int reg,
int cp_offset) {
if (cp_offset == 0) {
__ StoreP(current_input_offset(), register_location(reg));
} else {
__ AddP(r2, current_input_offset(), Operand(cp_offset * char_size()));
__ StoreP(r2, register_location(reg));
}
}
void RegExpMacroAssemblerS390::ClearRegisters(int reg_from, int reg_to) {
DCHECK(reg_from <= reg_to);
__ LoadP(r2, MemOperand(frame_pointer(), kStringStartMinusOne));
for (int reg = reg_from; reg <= reg_to; reg++) {
__ StoreP(r2, register_location(reg));
}
}
void RegExpMacroAssemblerS390::WriteStackPointerToRegister(int reg) {
__ LoadP(r3, MemOperand(frame_pointer(), kStackHighEnd));
__ SubP(r2, backtrack_stackpointer(), r3);
__ StoreP(r2, register_location(reg));
}
// Private methods:
void RegExpMacroAssemblerS390::CallCheckStackGuardState(Register scratch) {
static const int num_arguments = 3;
__ PrepareCallCFunction(num_arguments, scratch);
// RegExp code frame pointer.
__ LoadRR(r4, frame_pointer());
// Code* of self.
__ mov(r3, Operand(masm_->CodeObject()));
// r2 becomes return address pointer.
__ lay(r2, MemOperand(sp, kStackFrameRASlot * kPointerSize));
ExternalReference stack_guard_check =
ExternalReference::re_check_stack_guard_state(isolate());
CallCFunctionUsingStub(stack_guard_check, num_arguments);
}
// Helper function for reading a value out of a stack frame.
template <typename T>
static T& frame_entry(Address re_frame, int frame_offset) {
DCHECK(sizeof(T) == kPointerSize);
#ifdef V8_TARGET_ARCH_S390X
return reinterpret_cast<T&>(Memory::uint64_at(re_frame + frame_offset));
#else
return reinterpret_cast<T&>(Memory::uint32_at(re_frame + frame_offset));
#endif
}
template <typename T>
static T* frame_entry_address(Address re_frame, int frame_offset) {
return reinterpret_cast<T*>(re_frame + frame_offset);
}
int RegExpMacroAssemblerS390::CheckStackGuardState(Address* return_address,
Code* re_code,
Address re_frame) {
return NativeRegExpMacroAssembler::CheckStackGuardState(
frame_entry<Isolate*>(re_frame, kIsolate),
frame_entry<intptr_t>(re_frame, kStartIndex),
frame_entry<intptr_t>(re_frame, kDirectCall) == 1, return_address,
re_code, frame_entry_address<String*>(re_frame, kInputString),
frame_entry_address<const byte*>(re_frame, kInputStart),
frame_entry_address<const byte*>(re_frame, kInputEnd));
}
MemOperand RegExpMacroAssemblerS390::register_location(int register_index) {
DCHECK(register_index < (1 << 30));
if (num_registers_ <= register_index) {
num_registers_ = register_index + 1;
}
return MemOperand(frame_pointer(),
kRegisterZero - register_index * kPointerSize);
}
void RegExpMacroAssemblerS390::CheckPosition(int cp_offset,
Label* on_outside_input) {
if (cp_offset >= 0) {
__ CmpP(current_input_offset(), Operand(-cp_offset * char_size()));
BranchOrBacktrack(ge, on_outside_input);
} else {
__ LoadP(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
__ AddP(r2, current_input_offset(), Operand(cp_offset * char_size()));
__ CmpP(r2, r3);
BranchOrBacktrack(le, on_outside_input);
}
}
void RegExpMacroAssemblerS390::BranchOrBacktrack(Condition condition, Label* to,
CRegister cr) {
if (condition == al) { // Unconditional.
if (to == NULL) {
Backtrack();
return;
}
__ b(to);
return;
}
if (to == NULL) {
__ b(condition, &backtrack_label_);
return;
}
__ b(condition, to);
}
void RegExpMacroAssemblerS390::SafeCall(Label* to, Condition cond,
CRegister cr) {
Label skip;
__ b(NegateCondition(cond), &skip);
__ b(r14, to);
__ bind(&skip);
}
void RegExpMacroAssemblerS390::SafeReturn() {
__ pop(r14);
__ mov(ip, Operand(masm_->CodeObject()));
__ AddP(r14, ip);
__ Ret();
}
void RegExpMacroAssemblerS390::SafeCallTarget(Label* name) {
__ bind(name);
__ CleanseP(r14);
__ LoadRR(r0, r14);
__ mov(ip, Operand(masm_->CodeObject()));
__ SubP(r0, r0, ip);
__ push(r0);
}
void RegExpMacroAssemblerS390::Push(Register source) {
DCHECK(!source.is(backtrack_stackpointer()));
__ lay(backtrack_stackpointer(),
MemOperand(backtrack_stackpointer(), -kPointerSize));
__ StoreP(source, MemOperand(backtrack_stackpointer()));
}
void RegExpMacroAssemblerS390::Pop(Register target) {
DCHECK(!target.is(backtrack_stackpointer()));
__ LoadP(target, MemOperand(backtrack_stackpointer()));
__ la(backtrack_stackpointer(),
MemOperand(backtrack_stackpointer(), kPointerSize));
}
void RegExpMacroAssemblerS390::CheckPreemption() {
// Check for preemption.
ExternalReference stack_limit =
ExternalReference::address_of_stack_limit(isolate());
__ mov(r2, Operand(stack_limit));
__ CmpLogicalP(sp, MemOperand(r2));
SafeCall(&check_preempt_label_, le);
}
void RegExpMacroAssemblerS390::CheckStackLimit() {
ExternalReference stack_limit =
ExternalReference::address_of_regexp_stack_limit(isolate());
__ mov(r2, Operand(stack_limit));
__ CmpLogicalP(backtrack_stackpointer(), MemOperand(r2));
SafeCall(&stack_overflow_label_, le);
}
void RegExpMacroAssemblerS390::CallCFunctionUsingStub(
ExternalReference function, int num_arguments) {
// Must pass all arguments in registers. The stub pushes on the stack.
DCHECK(num_arguments <= 8);
__ mov(code_pointer(), Operand(function));
Label ret;
__ larl(r14, &ret);
__ StoreP(r14, MemOperand(sp, kStackFrameRASlot * kPointerSize));
__ b(code_pointer());
__ bind(&ret);
if (base::OS::ActivationFrameAlignment() > kPointerSize) {
__ LoadP(sp, MemOperand(sp, (kNumRequiredStackFrameSlots * kPointerSize)));
} else {
__ la(sp, MemOperand(sp, (kNumRequiredStackFrameSlots * kPointerSize)));
}
__ mov(code_pointer(), Operand(masm_->CodeObject()));
}
bool RegExpMacroAssemblerS390::CanReadUnaligned() {
return CpuFeatures::IsSupported(UNALIGNED_ACCESSES) && !slow_safe();
}
void RegExpMacroAssemblerS390::LoadCurrentCharacterUnchecked(int cp_offset,
int characters) {
DCHECK(characters == 1);
if (mode_ == LATIN1) {
__ LoadlB(current_character(),
MemOperand(current_input_offset(), end_of_input_address(),
cp_offset * char_size()));
} else {
DCHECK(mode_ == UC16);
__ LoadLogicalHalfWordP(
current_character(),
MemOperand(current_input_offset(), end_of_input_address(),
cp_offset * char_size()));
}
}
#undef __
#endif // V8_INTERPRETED_REGEXP
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_S390