blob: 68d34896f8b17deedff6214647d6b7c4c28cc75a [file] [log] [blame]
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/snapshot/deserializer.h"
#include "src/bootstrapper.h"
#include "src/external-reference-table.h"
#include "src/heap/heap.h"
#include "src/isolate.h"
#include "src/macro-assembler.h"
#include "src/snapshot/natives.h"
#include "src/v8.h"
namespace v8 {
namespace internal {
void Deserializer::DecodeReservation(
Vector<const SerializedData::Reservation> res) {
DCHECK_EQ(0, reservations_[NEW_SPACE].length());
STATIC_ASSERT(NEW_SPACE == 0);
int current_space = NEW_SPACE;
for (auto& r : res) {
reservations_[current_space].Add({r.chunk_size(), NULL, NULL});
if (r.is_last()) current_space++;
}
DCHECK_EQ(kNumberOfSpaces, current_space);
for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) current_chunk_[i] = 0;
}
void Deserializer::FlushICacheForNewIsolate() {
DCHECK(!deserializing_user_code_);
// The entire isolate is newly deserialized. Simply flush all code pages.
for (Page* p : *isolate_->heap()->code_space()) {
Assembler::FlushICache(isolate_, p->area_start(),
p->area_end() - p->area_start());
}
}
void Deserializer::FlushICacheForNewCodeObjects() {
DCHECK(deserializing_user_code_);
for (Code* code : new_code_objects_) {
if (FLAG_serialize_age_code) code->PreAge(isolate_);
Assembler::FlushICache(isolate_, code->instruction_start(),
code->instruction_size());
}
}
bool Deserializer::ReserveSpace() {
#ifdef DEBUG
for (int i = NEW_SPACE; i < kNumberOfSpaces; ++i) {
CHECK(reservations_[i].length() > 0);
}
#endif // DEBUG
if (!isolate_->heap()->ReserveSpace(reservations_)) return false;
for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
high_water_[i] = reservations_[i][0].start;
}
return true;
}
void Deserializer::Initialize(Isolate* isolate) {
DCHECK_NULL(isolate_);
DCHECK_NOT_NULL(isolate);
isolate_ = isolate;
DCHECK_NULL(external_reference_table_);
external_reference_table_ = ExternalReferenceTable::instance(isolate);
CHECK_EQ(magic_number_,
SerializedData::ComputeMagicNumber(external_reference_table_));
}
void Deserializer::Deserialize(Isolate* isolate) {
Initialize(isolate);
if (!ReserveSpace()) V8::FatalProcessOutOfMemory("deserializing context");
// No active threads.
DCHECK_NULL(isolate_->thread_manager()->FirstThreadStateInUse());
// No active handles.
DCHECK(isolate_->handle_scope_implementer()->blocks()->is_empty());
// Partial snapshot cache is not yet populated.
DCHECK(isolate_->partial_snapshot_cache()->is_empty());
{
DisallowHeapAllocation no_gc;
isolate_->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG_ROOT_LIST);
isolate_->heap()->IterateSmiRoots(this);
isolate_->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
isolate_->heap()->RepairFreeListsAfterDeserialization();
isolate_->heap()->IterateWeakRoots(this, VISIT_ALL);
DeserializeDeferredObjects();
FlushICacheForNewIsolate();
}
isolate_->heap()->set_native_contexts_list(
isolate_->heap()->undefined_value());
// The allocation site list is build during root iteration, but if no sites
// were encountered then it needs to be initialized to undefined.
if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) {
isolate_->heap()->set_allocation_sites_list(
isolate_->heap()->undefined_value());
}
// Issue code events for newly deserialized code objects.
LOG_CODE_EVENT(isolate_, LogCodeObjects());
LOG_CODE_EVENT(isolate_, LogBytecodeHandlers());
LOG_CODE_EVENT(isolate_, LogCompiledFunctions());
}
MaybeHandle<Object> Deserializer::DeserializePartial(
Isolate* isolate, Handle<JSGlobalProxy> global_proxy) {
Initialize(isolate);
if (!ReserveSpace()) {
V8::FatalProcessOutOfMemory("deserialize context");
return MaybeHandle<Object>();
}
AddAttachedObject(global_proxy);
DisallowHeapAllocation no_gc;
// Keep track of the code space start and end pointers in case new
// code objects were unserialized
OldSpace* code_space = isolate_->heap()->code_space();
Address start_address = code_space->top();
Object* root;
VisitPointer(&root);
DeserializeDeferredObjects();
isolate->heap()->RegisterReservationsForBlackAllocation(reservations_);
// There's no code deserialized here. If this assert fires then that's
// changed and logging should be added to notify the profiler et al of the
// new code, which also has to be flushed from instruction cache.
CHECK_EQ(start_address, code_space->top());
return Handle<Object>(root, isolate);
}
MaybeHandle<SharedFunctionInfo> Deserializer::DeserializeCode(
Isolate* isolate) {
Initialize(isolate);
if (!ReserveSpace()) {
return Handle<SharedFunctionInfo>();
} else {
deserializing_user_code_ = true;
HandleScope scope(isolate);
Handle<SharedFunctionInfo> result;
{
DisallowHeapAllocation no_gc;
Object* root;
VisitPointer(&root);
DeserializeDeferredObjects();
FlushICacheForNewCodeObjects();
result = Handle<SharedFunctionInfo>(SharedFunctionInfo::cast(root));
isolate->heap()->RegisterReservationsForBlackAllocation(reservations_);
}
CommitPostProcessedObjects(isolate);
return scope.CloseAndEscape(result);
}
}
Deserializer::~Deserializer() {
// TODO(svenpanne) Re-enable this assertion when v8 initialization is fixed.
// DCHECK(source_.AtEOF());
}
// This is called on the roots. It is the driver of the deserialization
// process. It is also called on the body of each function.
void Deserializer::VisitPointers(Object** start, Object** end) {
// The space must be new space. Any other space would cause ReadChunk to try
// to update the remembered using NULL as the address.
ReadData(start, end, NEW_SPACE, NULL);
}
void Deserializer::Synchronize(VisitorSynchronization::SyncTag tag) {
static const byte expected = kSynchronize;
CHECK_EQ(expected, source_.Get());
}
void Deserializer::DeserializeDeferredObjects() {
for (int code = source_.Get(); code != kSynchronize; code = source_.Get()) {
switch (code) {
case kAlignmentPrefix:
case kAlignmentPrefix + 1:
case kAlignmentPrefix + 2:
SetAlignment(code);
break;
default: {
int space = code & kSpaceMask;
DCHECK(space <= kNumberOfSpaces);
DCHECK(code - space == kNewObject);
HeapObject* object = GetBackReferencedObject(space);
int size = source_.GetInt() << kPointerSizeLog2;
Address obj_address = object->address();
Object** start = reinterpret_cast<Object**>(obj_address + kPointerSize);
Object** end = reinterpret_cast<Object**>(obj_address + size);
bool filled = ReadData(start, end, space, obj_address);
CHECK(filled);
DCHECK(CanBeDeferred(object));
PostProcessNewObject(object, space);
}
}
}
}
// Used to insert a deserialized internalized string into the string table.
class StringTableInsertionKey : public HashTableKey {
public:
explicit StringTableInsertionKey(String* string)
: string_(string), hash_(HashForObject(string)) {
DCHECK(string->IsInternalizedString());
}
bool IsMatch(Object* string) override {
// We know that all entries in a hash table had their hash keys created.
// Use that knowledge to have fast failure.
if (hash_ != HashForObject(string)) return false;
// We want to compare the content of two internalized strings here.
return string_->SlowEquals(String::cast(string));
}
uint32_t Hash() override { return hash_; }
uint32_t HashForObject(Object* key) override {
return String::cast(key)->Hash();
}
MUST_USE_RESULT Handle<Object> AsHandle(Isolate* isolate) override {
return handle(string_, isolate);
}
private:
String* string_;
uint32_t hash_;
DisallowHeapAllocation no_gc;
};
HeapObject* Deserializer::PostProcessNewObject(HeapObject* obj, int space) {
if (deserializing_user_code()) {
if (obj->IsString()) {
String* string = String::cast(obj);
// Uninitialize hash field as the hash seed may have changed.
string->set_hash_field(String::kEmptyHashField);
if (string->IsInternalizedString()) {
// Canonicalize the internalized string. If it already exists in the
// string table, set it to forward to the existing one.
StringTableInsertionKey key(string);
String* canonical = StringTable::LookupKeyIfExists(isolate_, &key);
if (canonical == NULL) {
new_internalized_strings_.Add(handle(string));
return string;
} else {
string->SetForwardedInternalizedString(canonical);
return canonical;
}
}
} else if (obj->IsScript()) {
new_scripts_.Add(handle(Script::cast(obj)));
} else {
DCHECK(CanBeDeferred(obj));
}
}
if (obj->IsAllocationSite()) {
DCHECK(obj->IsAllocationSite());
// Allocation sites are present in the snapshot, and must be linked into
// a list at deserialization time.
AllocationSite* site = AllocationSite::cast(obj);
// TODO(mvstanton): consider treating the heap()->allocation_sites_list()
// as a (weak) root. If this root is relocated correctly, this becomes
// unnecessary.
if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) {
site->set_weak_next(isolate_->heap()->undefined_value());
} else {
site->set_weak_next(isolate_->heap()->allocation_sites_list());
}
isolate_->heap()->set_allocation_sites_list(site);
} else if (obj->IsCode()) {
// We flush all code pages after deserializing the startup snapshot. In that
// case, we only need to remember code objects in the large object space.
// When deserializing user code, remember each individual code object.
if (deserializing_user_code() || space == LO_SPACE) {
new_code_objects_.Add(Code::cast(obj));
}
}
// Check alignment.
DCHECK_EQ(0, Heap::GetFillToAlign(obj->address(), obj->RequiredAlignment()));
return obj;
}
void Deserializer::CommitPostProcessedObjects(Isolate* isolate) {
StringTable::EnsureCapacityForDeserialization(
isolate, new_internalized_strings_.length());
for (Handle<String> string : new_internalized_strings_) {
StringTableInsertionKey key(*string);
DCHECK_NULL(StringTable::LookupKeyIfExists(isolate, &key));
StringTable::LookupKey(isolate, &key);
}
Heap* heap = isolate->heap();
Factory* factory = isolate->factory();
for (Handle<Script> script : new_scripts_) {
// Assign a new script id to avoid collision.
script->set_id(isolate_->heap()->NextScriptId());
// Add script to list.
Handle<Object> list = WeakFixedArray::Add(factory->script_list(), script);
heap->SetRootScriptList(*list);
}
}
HeapObject* Deserializer::GetBackReferencedObject(int space) {
HeapObject* obj;
SerializerReference back_reference =
SerializerReference::FromBitfield(source_.GetInt());
if (space == LO_SPACE) {
CHECK(back_reference.chunk_index() == 0);
uint32_t index = back_reference.large_object_index();
obj = deserialized_large_objects_[index];
} else {
DCHECK(space < kNumberOfPreallocatedSpaces);
uint32_t chunk_index = back_reference.chunk_index();
DCHECK_LE(chunk_index, current_chunk_[space]);
uint32_t chunk_offset = back_reference.chunk_offset();
Address address = reservations_[space][chunk_index].start + chunk_offset;
if (next_alignment_ != kWordAligned) {
int padding = Heap::GetFillToAlign(address, next_alignment_);
next_alignment_ = kWordAligned;
DCHECK(padding == 0 || HeapObject::FromAddress(address)->IsFiller());
address += padding;
}
obj = HeapObject::FromAddress(address);
}
if (deserializing_user_code() && obj->IsInternalizedString()) {
obj = String::cast(obj)->GetForwardedInternalizedString();
}
hot_objects_.Add(obj);
return obj;
}
// This routine writes the new object into the pointer provided and then
// returns true if the new object was in young space and false otherwise.
// The reason for this strange interface is that otherwise the object is
// written very late, which means the FreeSpace map is not set up by the
// time we need to use it to mark the space at the end of a page free.
void Deserializer::ReadObject(int space_number, Object** write_back) {
Address address;
HeapObject* obj;
int size = source_.GetInt() << kObjectAlignmentBits;
if (next_alignment_ != kWordAligned) {
int reserved = size + Heap::GetMaximumFillToAlign(next_alignment_);
address = Allocate(space_number, reserved);
obj = HeapObject::FromAddress(address);
// If one of the following assertions fails, then we are deserializing an
// aligned object when the filler maps have not been deserialized yet.
// We require filler maps as padding to align the object.
Heap* heap = isolate_->heap();
DCHECK(heap->free_space_map()->IsMap());
DCHECK(heap->one_pointer_filler_map()->IsMap());
DCHECK(heap->two_pointer_filler_map()->IsMap());
obj = heap->AlignWithFiller(obj, size, reserved, next_alignment_);
address = obj->address();
next_alignment_ = kWordAligned;
} else {
address = Allocate(space_number, size);
obj = HeapObject::FromAddress(address);
}
isolate_->heap()->OnAllocationEvent(obj, size);
Object** current = reinterpret_cast<Object**>(address);
Object** limit = current + (size >> kPointerSizeLog2);
if (ReadData(current, limit, space_number, address)) {
// Only post process if object content has not been deferred.
obj = PostProcessNewObject(obj, space_number);
}
Object* write_back_obj = obj;
UnalignedCopy(write_back, &write_back_obj);
#ifdef DEBUG
if (obj->IsCode()) {
DCHECK(space_number == CODE_SPACE || space_number == LO_SPACE);
} else {
DCHECK(space_number != CODE_SPACE);
}
#endif // DEBUG
}
// We know the space requirements before deserialization and can
// pre-allocate that reserved space. During deserialization, all we need
// to do is to bump up the pointer for each space in the reserved
// space. This is also used for fixing back references.
// We may have to split up the pre-allocation into several chunks
// because it would not fit onto a single page. We do not have to keep
// track of when to move to the next chunk. An opcode will signal this.
// Since multiple large objects cannot be folded into one large object
// space allocation, we have to do an actual allocation when deserializing
// each large object. Instead of tracking offset for back references, we
// reference large objects by index.
Address Deserializer::Allocate(int space_index, int size) {
if (space_index == LO_SPACE) {
AlwaysAllocateScope scope(isolate_);
LargeObjectSpace* lo_space = isolate_->heap()->lo_space();
Executability exec = static_cast<Executability>(source_.Get());
AllocationResult result = lo_space->AllocateRaw(size, exec);
HeapObject* obj = HeapObject::cast(result.ToObjectChecked());
deserialized_large_objects_.Add(obj);
return obj->address();
} else {
DCHECK(space_index < kNumberOfPreallocatedSpaces);
Address address = high_water_[space_index];
DCHECK_NOT_NULL(address);
high_water_[space_index] += size;
#ifdef DEBUG
// Assert that the current reserved chunk is still big enough.
const Heap::Reservation& reservation = reservations_[space_index];
int chunk_index = current_chunk_[space_index];
CHECK_LE(high_water_[space_index], reservation[chunk_index].end);
#endif
if (space_index == CODE_SPACE) SkipList::Update(address, size);
return address;
}
}
Object** Deserializer::CopyInNativesSource(Vector<const char> source_vector,
Object** current) {
DCHECK(!isolate_->heap()->deserialization_complete());
NativesExternalStringResource* resource = new NativesExternalStringResource(
source_vector.start(), source_vector.length());
Object* resource_obj = reinterpret_cast<Object*>(resource);
UnalignedCopy(current++, &resource_obj);
return current;
}
bool Deserializer::ReadData(Object** current, Object** limit, int source_space,
Address current_object_address) {
Isolate* const isolate = isolate_;
// Write barrier support costs around 1% in startup time. In fact there
// are no new space objects in current boot snapshots, so it's not needed,
// but that may change.
bool write_barrier_needed =
(current_object_address != NULL && source_space != NEW_SPACE &&
source_space != CODE_SPACE);
while (current < limit) {
byte data = source_.Get();
switch (data) {
#define CASE_STATEMENT(where, how, within, space_number) \
case where + how + within + space_number: \
STATIC_ASSERT((where & ~kWhereMask) == 0); \
STATIC_ASSERT((how & ~kHowToCodeMask) == 0); \
STATIC_ASSERT((within & ~kWhereToPointMask) == 0); \
STATIC_ASSERT((space_number & ~kSpaceMask) == 0);
#define CASE_BODY(where, how, within, space_number_if_any) \
{ \
bool emit_write_barrier = false; \
bool current_was_incremented = false; \
int space_number = space_number_if_any == kAnyOldSpace \
? (data & kSpaceMask) \
: space_number_if_any; \
if (where == kNewObject && how == kPlain && within == kStartOfObject) { \
ReadObject(space_number, current); \
emit_write_barrier = (space_number == NEW_SPACE); \
} else { \
Object* new_object = NULL; /* May not be a real Object pointer. */ \
if (where == kNewObject) { \
ReadObject(space_number, &new_object); \
} else if (where == kBackref) { \
emit_write_barrier = (space_number == NEW_SPACE); \
new_object = GetBackReferencedObject(data & kSpaceMask); \
} else if (where == kBackrefWithSkip) { \
int skip = source_.GetInt(); \
current = reinterpret_cast<Object**>( \
reinterpret_cast<Address>(current) + skip); \
emit_write_barrier = (space_number == NEW_SPACE); \
new_object = GetBackReferencedObject(data & kSpaceMask); \
} else if (where == kRootArray) { \
int id = source_.GetInt(); \
Heap::RootListIndex root_index = static_cast<Heap::RootListIndex>(id); \
new_object = isolate->heap()->root(root_index); \
emit_write_barrier = isolate->heap()->InNewSpace(new_object); \
hot_objects_.Add(HeapObject::cast(new_object)); \
} else if (where == kPartialSnapshotCache) { \
int cache_index = source_.GetInt(); \
new_object = isolate->partial_snapshot_cache()->at(cache_index); \
emit_write_barrier = isolate->heap()->InNewSpace(new_object); \
} else if (where == kExternalReference) { \
int skip = source_.GetInt(); \
current = reinterpret_cast<Object**>( \
reinterpret_cast<Address>(current) + skip); \
int reference_id = source_.GetInt(); \
Address address = external_reference_table_->address(reference_id); \
new_object = reinterpret_cast<Object*>(address); \
} else if (where == kAttachedReference) { \
int index = source_.GetInt(); \
new_object = *attached_objects_[index]; \
emit_write_barrier = isolate->heap()->InNewSpace(new_object); \
} else { \
DCHECK(where == kBuiltin); \
DCHECK(deserializing_user_code()); \
int builtin_id = source_.GetInt(); \
DCHECK_LE(0, builtin_id); \
DCHECK_LT(builtin_id, Builtins::builtin_count); \
Builtins::Name name = static_cast<Builtins::Name>(builtin_id); \
new_object = isolate->builtins()->builtin(name); \
emit_write_barrier = false; \
} \
if (within == kInnerPointer) { \
if (new_object->IsCode()) { \
Code* new_code_object = Code::cast(new_object); \
new_object = \
reinterpret_cast<Object*>(new_code_object->instruction_start()); \
} else { \
Cell* cell = Cell::cast(new_object); \
new_object = reinterpret_cast<Object*>(cell->ValueAddress()); \
} \
} \
if (how == kFromCode) { \
Address location_of_branch_data = reinterpret_cast<Address>(current); \
Assembler::deserialization_set_special_target_at( \
isolate, location_of_branch_data, \
Code::cast(HeapObject::FromAddress(current_object_address)), \
reinterpret_cast<Address>(new_object)); \
location_of_branch_data += Assembler::kSpecialTargetSize; \
current = reinterpret_cast<Object**>(location_of_branch_data); \
current_was_incremented = true; \
} else { \
UnalignedCopy(current, &new_object); \
} \
} \
if (emit_write_barrier && write_barrier_needed) { \
Address current_address = reinterpret_cast<Address>(current); \
SLOW_DCHECK(isolate->heap()->ContainsSlow(current_object_address)); \
isolate->heap()->RecordWrite( \
HeapObject::FromAddress(current_object_address), \
static_cast<int>(current_address - current_object_address), \
*reinterpret_cast<Object**>(current_address)); \
} \
if (!current_was_incremented) { \
current++; \
} \
break; \
}
// This generates a case and a body for the new space (which has to do extra
// write barrier handling) and handles the other spaces with fall-through cases
// and one body.
#define ALL_SPACES(where, how, within) \
CASE_STATEMENT(where, how, within, NEW_SPACE) \
CASE_BODY(where, how, within, NEW_SPACE) \
CASE_STATEMENT(where, how, within, OLD_SPACE) \
CASE_STATEMENT(where, how, within, CODE_SPACE) \
CASE_STATEMENT(where, how, within, MAP_SPACE) \
CASE_STATEMENT(where, how, within, LO_SPACE) \
CASE_BODY(where, how, within, kAnyOldSpace)
#define FOUR_CASES(byte_code) \
case byte_code: \
case byte_code + 1: \
case byte_code + 2: \
case byte_code + 3:
#define SIXTEEN_CASES(byte_code) \
FOUR_CASES(byte_code) \
FOUR_CASES(byte_code + 4) \
FOUR_CASES(byte_code + 8) \
FOUR_CASES(byte_code + 12)
#define SINGLE_CASE(where, how, within, space) \
CASE_STATEMENT(where, how, within, space) \
CASE_BODY(where, how, within, space)
// Deserialize a new object and write a pointer to it to the current
// object.
ALL_SPACES(kNewObject, kPlain, kStartOfObject)
// Support for direct instruction pointers in functions. It's an inner
// pointer because it points at the entry point, not at the start of the
// code object.
SINGLE_CASE(kNewObject, kPlain, kInnerPointer, CODE_SPACE)
// Support for pointers into a cell. It's an inner pointer because it
// points directly at the value field, not the start of the cell object.
SINGLE_CASE(kNewObject, kPlain, kInnerPointer, OLD_SPACE)
// Deserialize a new code object and write a pointer to its first
// instruction to the current code object.
ALL_SPACES(kNewObject, kFromCode, kInnerPointer)
// Find a recently deserialized object using its offset from the current
// allocation point and write a pointer to it to the current object.
ALL_SPACES(kBackref, kPlain, kStartOfObject)
ALL_SPACES(kBackrefWithSkip, kPlain, kStartOfObject)
#if V8_CODE_EMBEDS_OBJECT_POINTER
// Deserialize a new object from pointer found in code and write
// a pointer to it to the current object. Required only for MIPS, PPC, ARM
// or S390 with embedded constant pool, and omitted on the other
// architectures because it is fully unrolled and would cause bloat.
ALL_SPACES(kNewObject, kFromCode, kStartOfObject)
// Find a recently deserialized code object using its offset from the
// current allocation point and write a pointer to it to the current
// object. Required only for MIPS, PPC, ARM or S390 with embedded
// constant pool.
ALL_SPACES(kBackref, kFromCode, kStartOfObject)
ALL_SPACES(kBackrefWithSkip, kFromCode, kStartOfObject)
#endif
// Find a recently deserialized code object using its offset from the
// current allocation point and write a pointer to its first instruction
// to the current code object or the instruction pointer in a function
// object.
ALL_SPACES(kBackref, kFromCode, kInnerPointer)
ALL_SPACES(kBackrefWithSkip, kFromCode, kInnerPointer)
// Support for direct instruction pointers in functions.
SINGLE_CASE(kBackref, kPlain, kInnerPointer, CODE_SPACE)
SINGLE_CASE(kBackrefWithSkip, kPlain, kInnerPointer, CODE_SPACE)
// Support for pointers into a cell.
SINGLE_CASE(kBackref, kPlain, kInnerPointer, OLD_SPACE)
SINGLE_CASE(kBackrefWithSkip, kPlain, kInnerPointer, OLD_SPACE)
// Find an object in the roots array and write a pointer to it to the
// current object.
SINGLE_CASE(kRootArray, kPlain, kStartOfObject, 0)
#if V8_CODE_EMBEDS_OBJECT_POINTER
// Find an object in the roots array and write a pointer to it to in code.
SINGLE_CASE(kRootArray, kFromCode, kStartOfObject, 0)
#endif
// Find an object in the partial snapshots cache and write a pointer to it
// to the current object.
SINGLE_CASE(kPartialSnapshotCache, kPlain, kStartOfObject, 0)
// Find an code entry in the partial snapshots cache and
// write a pointer to it to the current object.
SINGLE_CASE(kPartialSnapshotCache, kPlain, kInnerPointer, 0)
// Find an external reference and write a pointer to it to the current
// object.
SINGLE_CASE(kExternalReference, kPlain, kStartOfObject, 0)
// Find an external reference and write a pointer to it in the current
// code object.
SINGLE_CASE(kExternalReference, kFromCode, kStartOfObject, 0)
// Find an object in the attached references and write a pointer to it to
// the current object.
SINGLE_CASE(kAttachedReference, kPlain, kStartOfObject, 0)
SINGLE_CASE(kAttachedReference, kPlain, kInnerPointer, 0)
SINGLE_CASE(kAttachedReference, kFromCode, kInnerPointer, 0)
// Find a builtin and write a pointer to it to the current object.
SINGLE_CASE(kBuiltin, kPlain, kStartOfObject, 0)
SINGLE_CASE(kBuiltin, kPlain, kInnerPointer, 0)
SINGLE_CASE(kBuiltin, kFromCode, kInnerPointer, 0)
#undef CASE_STATEMENT
#undef CASE_BODY
#undef ALL_SPACES
case kSkip: {
int size = source_.GetInt();
current = reinterpret_cast<Object**>(
reinterpret_cast<intptr_t>(current) + size);
break;
}
case kInternalReferenceEncoded:
case kInternalReference: {
// Internal reference address is not encoded via skip, but by offset
// from code entry.
int pc_offset = source_.GetInt();
int target_offset = source_.GetInt();
Code* code =
Code::cast(HeapObject::FromAddress(current_object_address));
DCHECK(0 <= pc_offset && pc_offset <= code->instruction_size());
DCHECK(0 <= target_offset && target_offset <= code->instruction_size());
Address pc = code->entry() + pc_offset;
Address target = code->entry() + target_offset;
Assembler::deserialization_set_target_internal_reference_at(
isolate, pc, target, data == kInternalReference
? RelocInfo::INTERNAL_REFERENCE
: RelocInfo::INTERNAL_REFERENCE_ENCODED);
break;
}
case kNop:
break;
case kNextChunk: {
int space = source_.Get();
DCHECK(space < kNumberOfPreallocatedSpaces);
int chunk_index = current_chunk_[space];
const Heap::Reservation& reservation = reservations_[space];
// Make sure the current chunk is indeed exhausted.
CHECK_EQ(reservation[chunk_index].end, high_water_[space]);
// Move to next reserved chunk.
chunk_index = ++current_chunk_[space];
CHECK_LT(chunk_index, reservation.length());
high_water_[space] = reservation[chunk_index].start;
break;
}
case kDeferred: {
// Deferred can only occur right after the heap object header.
DCHECK(current == reinterpret_cast<Object**>(current_object_address +
kPointerSize));
HeapObject* obj = HeapObject::FromAddress(current_object_address);
// If the deferred object is a map, its instance type may be used
// during deserialization. Initialize it with a temporary value.
if (obj->IsMap()) Map::cast(obj)->set_instance_type(FILLER_TYPE);
current = limit;
return false;
}
case kSynchronize:
// If we get here then that indicates that you have a mismatch between
// the number of GC roots when serializing and deserializing.
CHECK(false);
break;
case kNativesStringResource:
current = CopyInNativesSource(Natives::GetScriptSource(source_.Get()),
current);
break;
case kExtraNativesStringResource:
current = CopyInNativesSource(
ExtraNatives::GetScriptSource(source_.Get()), current);
break;
// Deserialize raw data of variable length.
case kVariableRawData: {
int size_in_bytes = source_.GetInt();
byte* raw_data_out = reinterpret_cast<byte*>(current);
source_.CopyRaw(raw_data_out, size_in_bytes);
break;
}
case kVariableRepeat: {
int repeats = source_.GetInt();
Object* object = current[-1];
DCHECK(!isolate->heap()->InNewSpace(object));
for (int i = 0; i < repeats; i++) UnalignedCopy(current++, &object);
break;
}
case kAlignmentPrefix:
case kAlignmentPrefix + 1:
case kAlignmentPrefix + 2:
SetAlignment(data);
break;
STATIC_ASSERT(kNumberOfRootArrayConstants == Heap::kOldSpaceRoots);
STATIC_ASSERT(kNumberOfRootArrayConstants == 32);
SIXTEEN_CASES(kRootArrayConstantsWithSkip)
SIXTEEN_CASES(kRootArrayConstantsWithSkip + 16) {
int skip = source_.GetInt();
current = reinterpret_cast<Object**>(
reinterpret_cast<intptr_t>(current) + skip);
// Fall through.
}
SIXTEEN_CASES(kRootArrayConstants)
SIXTEEN_CASES(kRootArrayConstants + 16) {
int id = data & kRootArrayConstantsMask;
Heap::RootListIndex root_index = static_cast<Heap::RootListIndex>(id);
Object* object = isolate->heap()->root(root_index);
DCHECK(!isolate->heap()->InNewSpace(object));
UnalignedCopy(current++, &object);
break;
}
STATIC_ASSERT(kNumberOfHotObjects == 8);
FOUR_CASES(kHotObjectWithSkip)
FOUR_CASES(kHotObjectWithSkip + 4) {
int skip = source_.GetInt();
current = reinterpret_cast<Object**>(
reinterpret_cast<Address>(current) + skip);
// Fall through.
}
FOUR_CASES(kHotObject)
FOUR_CASES(kHotObject + 4) {
int index = data & kHotObjectMask;
Object* hot_object = hot_objects_.Get(index);
UnalignedCopy(current, &hot_object);
if (write_barrier_needed && isolate->heap()->InNewSpace(hot_object)) {
Address current_address = reinterpret_cast<Address>(current);
isolate->heap()->RecordWrite(
HeapObject::FromAddress(current_object_address),
static_cast<int>(current_address - current_object_address),
hot_object);
}
current++;
break;
}
// Deserialize raw data of fixed length from 1 to 32 words.
STATIC_ASSERT(kNumberOfFixedRawData == 32);
SIXTEEN_CASES(kFixedRawData)
SIXTEEN_CASES(kFixedRawData + 16) {
byte* raw_data_out = reinterpret_cast<byte*>(current);
int size_in_bytes = (data - kFixedRawDataStart) << kPointerSizeLog2;
source_.CopyRaw(raw_data_out, size_in_bytes);
current = reinterpret_cast<Object**>(raw_data_out + size_in_bytes);
break;
}
STATIC_ASSERT(kNumberOfFixedRepeat == 16);
SIXTEEN_CASES(kFixedRepeat) {
int repeats = data - kFixedRepeatStart;
Object* object;
UnalignedCopy(&object, current - 1);
DCHECK(!isolate->heap()->InNewSpace(object));
for (int i = 0; i < repeats; i++) UnalignedCopy(current++, &object);
break;
}
#undef SIXTEEN_CASES
#undef FOUR_CASES
#undef SINGLE_CASE
default:
CHECK(false);
}
}
CHECK_EQ(limit, current);
return true;
}
} // namespace internal
} // namespace v8