blob: bc2f1c288bce149d7c9bb705fe74a714d5a07671 [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/type-feedback-vector.h"
#include "src/code-stubs.h"
#include "src/ic/ic.h"
#include "src/ic/ic-state.h"
#include "src/objects.h"
#include "src/type-feedback-vector-inl.h"
namespace v8 {
namespace internal {
static bool IsPropertyNameFeedback(Object* feedback) {
if (feedback->IsString()) return true;
if (!feedback->IsSymbol()) return false;
Symbol* symbol = Symbol::cast(feedback);
Heap* heap = symbol->GetHeap();
return symbol != heap->uninitialized_symbol() &&
symbol != heap->premonomorphic_symbol() &&
symbol != heap->megamorphic_symbol();
}
std::ostream& operator<<(std::ostream& os, FeedbackVectorSlotKind kind) {
return os << TypeFeedbackMetadata::Kind2String(kind);
}
FeedbackVectorSlotKind TypeFeedbackMetadata::GetKind(
FeedbackVectorSlot slot) const {
int index = VectorICComputer::index(kReservedIndexCount, slot.ToInt());
int data = Smi::cast(get(index))->value();
return VectorICComputer::decode(data, slot.ToInt());
}
String* TypeFeedbackMetadata::GetName(FeedbackVectorSlot slot) const {
DCHECK(SlotRequiresName(GetKind(slot)));
FixedArray* names = FixedArray::cast(get(kNamesTableIndex));
// TODO(ishell): consider using binary search here or even Dictionary when we
// have more ICs with names.
Smi* key = Smi::FromInt(slot.ToInt());
for (int entry = 0; entry < names->length(); entry += kNameTableEntrySize) {
Object* current_key = names->get(entry + kNameTableSlotIndex);
if (current_key == key) {
Object* name = names->get(entry + kNameTableNameIndex);
DCHECK(name->IsString());
return String::cast(name);
}
}
UNREACHABLE();
return nullptr;
}
void TypeFeedbackMetadata::SetKind(FeedbackVectorSlot slot,
FeedbackVectorSlotKind kind) {
int index = VectorICComputer::index(kReservedIndexCount, slot.ToInt());
int data = Smi::cast(get(index))->value();
int new_data = VectorICComputer::encode(data, slot.ToInt(), kind);
set(index, Smi::FromInt(new_data));
}
template Handle<TypeFeedbackMetadata> TypeFeedbackMetadata::New(
Isolate* isolate, const StaticFeedbackVectorSpec* spec);
template Handle<TypeFeedbackMetadata> TypeFeedbackMetadata::New(
Isolate* isolate, const FeedbackVectorSpec* spec);
// static
template <typename Spec>
Handle<TypeFeedbackMetadata> TypeFeedbackMetadata::New(Isolate* isolate,
const Spec* spec) {
Factory* factory = isolate->factory();
const int slot_count = spec->slots();
const int slot_kinds_length = VectorICComputer::word_count(slot_count);
const int length = slot_kinds_length + kReservedIndexCount;
if (length == kReservedIndexCount) {
return Handle<TypeFeedbackMetadata>::cast(factory->empty_fixed_array());
}
#ifdef DEBUG
for (int i = 0; i < slot_count;) {
FeedbackVectorSlotKind kind = spec->GetKind(i);
int entry_size = TypeFeedbackMetadata::GetSlotSize(kind);
for (int j = 1; j < entry_size; j++) {
FeedbackVectorSlotKind kind = spec->GetKind(i + j);
DCHECK_EQ(FeedbackVectorSlotKind::INVALID, kind);
}
i += entry_size;
}
#endif
Handle<FixedArray> array = factory->NewFixedArray(length, TENURED);
array->set(kSlotsCountIndex, Smi::FromInt(slot_count));
// Fill the bit-vector part with zeros.
for (int i = 0; i < slot_kinds_length; i++) {
array->set(kReservedIndexCount + i, Smi::FromInt(0));
}
Handle<TypeFeedbackMetadata> metadata =
Handle<TypeFeedbackMetadata>::cast(array);
// Add names to NamesTable.
const int name_count = spec->name_count();
Handle<FixedArray> names =
name_count == 0
? factory->empty_fixed_array()
: factory->NewFixedArray(name_count * kNameTableEntrySize);
int name_index = 0;
for (int i = 0; i < slot_count; i++) {
FeedbackVectorSlotKind kind = spec->GetKind(i);
metadata->SetKind(FeedbackVectorSlot(i), kind);
if (SlotRequiresName(kind)) {
Handle<String> name = spec->GetName(name_index);
DCHECK(!name.is_null());
int entry = name_index * kNameTableEntrySize;
names->set(entry + kNameTableSlotIndex, Smi::FromInt(i));
names->set(entry + kNameTableNameIndex, *name);
name_index++;
}
}
DCHECK_EQ(name_count, name_index);
metadata->set(kNamesTableIndex, *names);
// It's important that the TypeFeedbackMetadata have a COW map, since it's
// pointed to by both a SharedFunctionInfo and indirectly by closures through
// the TypeFeedbackVector. The serializer uses the COW map type to decide
// this object belongs in the startup snapshot and not the partial
// snapshot(s).
metadata->set_map(isolate->heap()->fixed_cow_array_map());
return metadata;
}
bool TypeFeedbackMetadata::SpecDiffersFrom(
const FeedbackVectorSpec* other_spec) const {
if (other_spec->slots() != slot_count()) {
return true;
}
int slots = slot_count();
int name_index = 0;
for (int i = 0; i < slots;) {
FeedbackVectorSlot slot(i);
FeedbackVectorSlotKind kind = GetKind(slot);
int entry_size = TypeFeedbackMetadata::GetSlotSize(kind);
if (kind != other_spec->GetKind(i)) {
return true;
}
if (SlotRequiresName(kind)) {
String* name = GetName(slot);
DCHECK(name != GetHeap()->empty_string());
String* other_name = *other_spec->GetName(name_index++);
if (name != other_name) {
return true;
}
}
i += entry_size;
}
return false;
}
bool TypeFeedbackMetadata::DiffersFrom(
const TypeFeedbackMetadata* other_metadata) const {
if (other_metadata->slot_count() != slot_count()) {
return true;
}
int slots = slot_count();
for (int i = 0; i < slots;) {
FeedbackVectorSlot slot(i);
FeedbackVectorSlotKind kind = GetKind(slot);
int entry_size = TypeFeedbackMetadata::GetSlotSize(kind);
if (GetKind(slot) != other_metadata->GetKind(slot)) {
return true;
}
if (SlotRequiresName(kind)) {
if (GetName(slot) != other_metadata->GetName(slot)) {
return true;
}
}
i += entry_size;
}
return false;
}
const char* TypeFeedbackMetadata::Kind2String(FeedbackVectorSlotKind kind) {
switch (kind) {
case FeedbackVectorSlotKind::INVALID:
return "INVALID";
case FeedbackVectorSlotKind::CALL_IC:
return "CALL_IC";
case FeedbackVectorSlotKind::LOAD_IC:
return "LOAD_IC";
case FeedbackVectorSlotKind::LOAD_GLOBAL_IC:
return "LOAD_GLOBAL_IC";
case FeedbackVectorSlotKind::KEYED_LOAD_IC:
return "KEYED_LOAD_IC";
case FeedbackVectorSlotKind::STORE_IC:
return "STORE_IC";
case FeedbackVectorSlotKind::KEYED_STORE_IC:
return "KEYED_STORE_IC";
case FeedbackVectorSlotKind::GENERAL:
return "STUB";
case FeedbackVectorSlotKind::KINDS_NUMBER:
break;
}
UNREACHABLE();
return "?";
}
FeedbackVectorSlotKind TypeFeedbackVector::GetKind(
FeedbackVectorSlot slot) const {
DCHECK(!is_empty());
return metadata()->GetKind(slot);
}
String* TypeFeedbackVector::GetName(FeedbackVectorSlot slot) const {
DCHECK(!is_empty());
return metadata()->GetName(slot);
}
// static
Handle<TypeFeedbackVector> TypeFeedbackVector::New(
Isolate* isolate, Handle<TypeFeedbackMetadata> metadata) {
Factory* factory = isolate->factory();
const int slot_count = metadata->slot_count();
const int length = slot_count + kReservedIndexCount;
if (length == kReservedIndexCount) {
return Handle<TypeFeedbackVector>::cast(factory->empty_fixed_array());
}
Handle<FixedArray> array = factory->NewFixedArray(length, TENURED);
array->set(kMetadataIndex, *metadata);
DisallowHeapAllocation no_gc;
// Ensure we can skip the write barrier
Handle<Object> uninitialized_sentinel = UninitializedSentinel(isolate);
DCHECK_EQ(*factory->uninitialized_symbol(), *uninitialized_sentinel);
for (int i = 0; i < slot_count;) {
FeedbackVectorSlot slot(i);
FeedbackVectorSlotKind kind = metadata->GetKind(slot);
int index = TypeFeedbackVector::GetIndex(slot);
int entry_size = TypeFeedbackMetadata::GetSlotSize(kind);
Object* value;
if (kind == FeedbackVectorSlotKind::LOAD_GLOBAL_IC) {
value = *factory->empty_weak_cell();
} else {
value = *uninitialized_sentinel;
}
array->set(index, value, SKIP_WRITE_BARRIER);
for (int j = 1; j < entry_size; j++) {
array->set(index + j, *uninitialized_sentinel, SKIP_WRITE_BARRIER);
}
i += entry_size;
}
return Handle<TypeFeedbackVector>::cast(array);
}
// static
int TypeFeedbackVector::GetIndexFromSpec(const FeedbackVectorSpec* spec,
FeedbackVectorSlot slot) {
return kReservedIndexCount + slot.ToInt();
}
// static
Handle<TypeFeedbackVector> TypeFeedbackVector::Copy(
Isolate* isolate, Handle<TypeFeedbackVector> vector) {
Handle<TypeFeedbackVector> result;
result = Handle<TypeFeedbackVector>::cast(
isolate->factory()->CopyFixedArray(Handle<FixedArray>::cast(vector)));
return result;
}
// This logic is copied from
// StaticMarkingVisitor<StaticVisitor>::VisitCodeTarget.
static bool ClearLogic(Isolate* isolate) {
return FLAG_cleanup_code_caches_at_gc && isolate->serializer_enabled();
}
void TypeFeedbackVector::ClearSlotsImpl(SharedFunctionInfo* shared,
bool force_clear) {
Isolate* isolate = GetIsolate();
if (!force_clear && !ClearLogic(isolate)) return;
Object* uninitialized_sentinel =
TypeFeedbackVector::RawUninitializedSentinel(isolate);
TypeFeedbackMetadataIterator iter(metadata());
while (iter.HasNext()) {
FeedbackVectorSlot slot = iter.Next();
FeedbackVectorSlotKind kind = iter.kind();
Object* obj = Get(slot);
if (obj != uninitialized_sentinel) {
switch (kind) {
case FeedbackVectorSlotKind::CALL_IC: {
CallICNexus nexus(this, slot);
nexus.Clear(shared->code());
break;
}
case FeedbackVectorSlotKind::LOAD_IC: {
LoadICNexus nexus(this, slot);
nexus.Clear(shared->code());
break;
}
case FeedbackVectorSlotKind::LOAD_GLOBAL_IC: {
LoadGlobalICNexus nexus(this, slot);
nexus.Clear(shared->code());
break;
}
case FeedbackVectorSlotKind::KEYED_LOAD_IC: {
KeyedLoadICNexus nexus(this, slot);
nexus.Clear(shared->code());
break;
}
case FeedbackVectorSlotKind::STORE_IC: {
StoreICNexus nexus(this, slot);
nexus.Clear(shared->code());
break;
}
case FeedbackVectorSlotKind::KEYED_STORE_IC: {
KeyedStoreICNexus nexus(this, slot);
nexus.Clear(shared->code());
break;
}
case FeedbackVectorSlotKind::GENERAL: {
if (obj->IsHeapObject()) {
InstanceType instance_type =
HeapObject::cast(obj)->map()->instance_type();
// AllocationSites are exempt from clearing. They don't store Maps
// or Code pointers which can cause memory leaks if not cleared
// regularly.
if (instance_type != ALLOCATION_SITE_TYPE) {
Set(slot, uninitialized_sentinel, SKIP_WRITE_BARRIER);
}
}
break;
}
case FeedbackVectorSlotKind::INVALID:
case FeedbackVectorSlotKind::KINDS_NUMBER:
UNREACHABLE();
break;
}
}
}
}
// static
void TypeFeedbackVector::ClearAllKeyedStoreICs(Isolate* isolate) {
SharedFunctionInfo::Iterator iterator(isolate);
SharedFunctionInfo* shared;
while ((shared = iterator.Next())) {
if (!shared->OptimizedCodeMapIsCleared()) {
FixedArray* optimized_code_map = shared->optimized_code_map();
int length = optimized_code_map->length();
for (int i = SharedFunctionInfo::kEntriesStart; i < length;
i += SharedFunctionInfo::kEntryLength) {
Object* lits =
optimized_code_map->get(i + SharedFunctionInfo::kLiteralsOffset);
TypeFeedbackVector* vector = nullptr;
if (lits->IsWeakCell()) {
WeakCell* cell = WeakCell::cast(lits);
if (cell->value()->IsLiteralsArray()) {
vector = LiteralsArray::cast(cell->value())->feedback_vector();
}
} else {
DCHECK(lits->IsLiteralsArray());
vector = LiteralsArray::cast(lits)->feedback_vector();
}
if (vector != nullptr) {
vector->ClearKeyedStoreICs(shared);
}
}
}
}
}
void TypeFeedbackVector::ClearKeyedStoreICs(SharedFunctionInfo* shared) {
Isolate* isolate = GetIsolate();
Code* host = shared->code();
Object* uninitialized_sentinel =
TypeFeedbackVector::RawUninitializedSentinel(isolate);
TypeFeedbackMetadataIterator iter(metadata());
while (iter.HasNext()) {
FeedbackVectorSlot slot = iter.Next();
FeedbackVectorSlotKind kind = iter.kind();
if (kind != FeedbackVectorSlotKind::KEYED_STORE_IC) continue;
Object* obj = Get(slot);
if (obj != uninitialized_sentinel) {
KeyedStoreICNexus nexus(this, slot);
nexus.Clear(host);
}
}
}
// static
Handle<TypeFeedbackVector> TypeFeedbackVector::DummyVector(Isolate* isolate) {
return isolate->factory()->dummy_vector();
}
Handle<FixedArray> FeedbackNexus::EnsureArrayOfSize(int length) {
Isolate* isolate = GetIsolate();
Handle<Object> feedback = handle(GetFeedback(), isolate);
if (!feedback->IsFixedArray() ||
FixedArray::cast(*feedback)->length() != length) {
Handle<FixedArray> array = isolate->factory()->NewFixedArray(length);
SetFeedback(*array);
return array;
}
return Handle<FixedArray>::cast(feedback);
}
Handle<FixedArray> FeedbackNexus::EnsureExtraArrayOfSize(int length) {
Isolate* isolate = GetIsolate();
Handle<Object> feedback_extra = handle(GetFeedbackExtra(), isolate);
if (!feedback_extra->IsFixedArray() ||
FixedArray::cast(*feedback_extra)->length() != length) {
Handle<FixedArray> array = isolate->factory()->NewFixedArray(length);
SetFeedbackExtra(*array);
return array;
}
return Handle<FixedArray>::cast(feedback_extra);
}
void FeedbackNexus::InstallHandlers(Handle<FixedArray> array,
MapHandleList* maps,
CodeHandleList* handlers) {
int receiver_count = maps->length();
for (int current = 0; current < receiver_count; ++current) {
Handle<Map> map = maps->at(current);
Handle<WeakCell> cell = Map::WeakCellForMap(map);
array->set(current * 2, *cell);
array->set(current * 2 + 1, *handlers->at(current));
}
}
void FeedbackNexus::ConfigureUninitialized() {
SetFeedback(*TypeFeedbackVector::UninitializedSentinel(GetIsolate()),
SKIP_WRITE_BARRIER);
SetFeedbackExtra(*TypeFeedbackVector::UninitializedSentinel(GetIsolate()),
SKIP_WRITE_BARRIER);
}
void FeedbackNexus::ConfigurePremonomorphic() {
SetFeedback(*TypeFeedbackVector::PremonomorphicSentinel(GetIsolate()),
SKIP_WRITE_BARRIER);
SetFeedbackExtra(*TypeFeedbackVector::UninitializedSentinel(GetIsolate()),
SKIP_WRITE_BARRIER);
}
void FeedbackNexus::ConfigureMegamorphic() {
// Keyed ICs must use ConfigureMegamorphicKeyed.
DCHECK_NE(FeedbackVectorSlotKind::KEYED_LOAD_IC, vector()->GetKind(slot()));
DCHECK_NE(FeedbackVectorSlotKind::KEYED_STORE_IC, vector()->GetKind(slot()));
Isolate* isolate = GetIsolate();
SetFeedback(*TypeFeedbackVector::MegamorphicSentinel(isolate),
SKIP_WRITE_BARRIER);
SetFeedbackExtra(*TypeFeedbackVector::UninitializedSentinel(isolate),
SKIP_WRITE_BARRIER);
}
void KeyedLoadICNexus::ConfigureMegamorphicKeyed(IcCheckType property_type) {
Isolate* isolate = GetIsolate();
SetFeedback(*TypeFeedbackVector::MegamorphicSentinel(isolate),
SKIP_WRITE_BARRIER);
SetFeedbackExtra(Smi::FromInt(static_cast<int>(property_type)),
SKIP_WRITE_BARRIER);
}
void KeyedStoreICNexus::ConfigureMegamorphicKeyed(IcCheckType property_type) {
Isolate* isolate = GetIsolate();
SetFeedback(*TypeFeedbackVector::MegamorphicSentinel(isolate),
SKIP_WRITE_BARRIER);
SetFeedbackExtra(Smi::FromInt(static_cast<int>(property_type)),
SKIP_WRITE_BARRIER);
}
InlineCacheState LoadICNexus::StateFromFeedback() const {
Isolate* isolate = GetIsolate();
Object* feedback = GetFeedback();
if (feedback == *TypeFeedbackVector::UninitializedSentinel(isolate)) {
return UNINITIALIZED;
} else if (feedback == *TypeFeedbackVector::MegamorphicSentinel(isolate)) {
return MEGAMORPHIC;
} else if (feedback == *TypeFeedbackVector::PremonomorphicSentinel(isolate)) {
return PREMONOMORPHIC;
} else if (feedback->IsFixedArray()) {
// Determine state purely by our structure, don't check if the maps are
// cleared.
return POLYMORPHIC;
} else if (feedback->IsWeakCell()) {
// Don't check if the map is cleared.
return MONOMORPHIC;
}
return UNINITIALIZED;
}
InlineCacheState LoadGlobalICNexus::StateFromFeedback() const {
Isolate* isolate = GetIsolate();
Object* feedback = GetFeedback();
Object* extra = GetFeedbackExtra();
if (!WeakCell::cast(feedback)->cleared() ||
extra != *TypeFeedbackVector::UninitializedSentinel(isolate)) {
return MONOMORPHIC;
}
return UNINITIALIZED;
}
InlineCacheState KeyedLoadICNexus::StateFromFeedback() const {
Isolate* isolate = GetIsolate();
Object* feedback = GetFeedback();
if (feedback == *TypeFeedbackVector::UninitializedSentinel(isolate)) {
return UNINITIALIZED;
} else if (feedback == *TypeFeedbackVector::PremonomorphicSentinel(isolate)) {
return PREMONOMORPHIC;
} else if (feedback == *TypeFeedbackVector::MegamorphicSentinel(isolate)) {
return MEGAMORPHIC;
} else if (feedback->IsFixedArray()) {
// Determine state purely by our structure, don't check if the maps are
// cleared.
return POLYMORPHIC;
} else if (feedback->IsWeakCell()) {
// Don't check if the map is cleared.
return MONOMORPHIC;
} else if (feedback->IsName()) {
Object* extra = GetFeedbackExtra();
FixedArray* extra_array = FixedArray::cast(extra);
return extra_array->length() > 2 ? POLYMORPHIC : MONOMORPHIC;
}
return UNINITIALIZED;
}
InlineCacheState StoreICNexus::StateFromFeedback() const {
Isolate* isolate = GetIsolate();
Object* feedback = GetFeedback();
if (feedback == *TypeFeedbackVector::UninitializedSentinel(isolate)) {
return UNINITIALIZED;
} else if (feedback == *TypeFeedbackVector::MegamorphicSentinel(isolate)) {
return MEGAMORPHIC;
} else if (feedback == *TypeFeedbackVector::PremonomorphicSentinel(isolate)) {
return PREMONOMORPHIC;
} else if (feedback->IsFixedArray()) {
// Determine state purely by our structure, don't check if the maps are
// cleared.
return POLYMORPHIC;
} else if (feedback->IsWeakCell()) {
// Don't check if the map is cleared.
return MONOMORPHIC;
}
return UNINITIALIZED;
}
InlineCacheState KeyedStoreICNexus::StateFromFeedback() const {
Isolate* isolate = GetIsolate();
Object* feedback = GetFeedback();
if (feedback == *TypeFeedbackVector::UninitializedSentinel(isolate)) {
return UNINITIALIZED;
} else if (feedback == *TypeFeedbackVector::PremonomorphicSentinel(isolate)) {
return PREMONOMORPHIC;
} else if (feedback == *TypeFeedbackVector::MegamorphicSentinel(isolate)) {
return MEGAMORPHIC;
} else if (feedback->IsFixedArray()) {
// Determine state purely by our structure, don't check if the maps are
// cleared.
return POLYMORPHIC;
} else if (feedback->IsWeakCell()) {
// Don't check if the map is cleared.
return MONOMORPHIC;
} else if (feedback->IsName()) {
Object* extra = GetFeedbackExtra();
FixedArray* extra_array = FixedArray::cast(extra);
return extra_array->length() > 2 ? POLYMORPHIC : MONOMORPHIC;
}
return UNINITIALIZED;
}
InlineCacheState CallICNexus::StateFromFeedback() const {
Isolate* isolate = GetIsolate();
Object* feedback = GetFeedback();
DCHECK(GetFeedbackExtra() ==
*TypeFeedbackVector::UninitializedSentinel(isolate) ||
GetFeedbackExtra()->IsSmi());
if (feedback == *TypeFeedbackVector::MegamorphicSentinel(isolate)) {
return GENERIC;
} else if (feedback->IsAllocationSite() || feedback->IsWeakCell()) {
return MONOMORPHIC;
}
CHECK(feedback == *TypeFeedbackVector::UninitializedSentinel(isolate));
return UNINITIALIZED;
}
int CallICNexus::ExtractCallCount() {
Object* call_count = GetFeedbackExtra();
if (call_count->IsSmi()) {
int value = Smi::cast(call_count)->value();
return value;
}
return -1;
}
void CallICNexus::Clear(Code* host) { CallIC::Clear(GetIsolate(), host, this); }
void CallICNexus::ConfigureMonomorphicArray() {
Object* feedback = GetFeedback();
if (!feedback->IsAllocationSite()) {
Handle<AllocationSite> new_site =
GetIsolate()->factory()->NewAllocationSite();
SetFeedback(*new_site);
}
SetFeedbackExtra(Smi::FromInt(1), SKIP_WRITE_BARRIER);
}
void CallICNexus::ConfigureMonomorphic(Handle<JSFunction> function) {
Handle<WeakCell> new_cell = GetIsolate()->factory()->NewWeakCell(function);
SetFeedback(*new_cell);
SetFeedbackExtra(Smi::FromInt(1), SKIP_WRITE_BARRIER);
}
void CallICNexus::ConfigureMegamorphic() {
FeedbackNexus::ConfigureMegamorphic();
}
void CallICNexus::ConfigureMegamorphic(int call_count) {
SetFeedback(*TypeFeedbackVector::MegamorphicSentinel(GetIsolate()),
SKIP_WRITE_BARRIER);
SetFeedbackExtra(Smi::FromInt(call_count), SKIP_WRITE_BARRIER);
}
void LoadICNexus::ConfigureMonomorphic(Handle<Map> receiver_map,
Handle<Code> handler) {
Handle<WeakCell> cell = Map::WeakCellForMap(receiver_map);
SetFeedback(*cell);
SetFeedbackExtra(*handler);
}
void LoadGlobalICNexus::ConfigureUninitialized() {
Isolate* isolate = GetIsolate();
SetFeedback(isolate->heap()->empty_weak_cell(), SKIP_WRITE_BARRIER);
SetFeedbackExtra(*TypeFeedbackVector::UninitializedSentinel(isolate),
SKIP_WRITE_BARRIER);
}
void LoadGlobalICNexus::ConfigurePropertyCellMode(Handle<PropertyCell> cell) {
Isolate* isolate = GetIsolate();
SetFeedback(*isolate->factory()->NewWeakCell(cell));
SetFeedbackExtra(*TypeFeedbackVector::UninitializedSentinel(isolate),
SKIP_WRITE_BARRIER);
}
void LoadGlobalICNexus::ConfigureHandlerMode(Handle<Code> handler) {
SetFeedback(GetIsolate()->heap()->empty_weak_cell());
SetFeedbackExtra(*handler);
}
void KeyedLoadICNexus::ConfigureMonomorphic(Handle<Name> name,
Handle<Map> receiver_map,
Handle<Code> handler) {
Handle<WeakCell> cell = Map::WeakCellForMap(receiver_map);
if (name.is_null()) {
SetFeedback(*cell);
SetFeedbackExtra(*handler);
} else {
Handle<FixedArray> array = EnsureExtraArrayOfSize(2);
SetFeedback(*name);
array->set(0, *cell);
array->set(1, *handler);
}
}
void StoreICNexus::ConfigureMonomorphic(Handle<Map> receiver_map,
Handle<Code> handler) {
Handle<WeakCell> cell = Map::WeakCellForMap(receiver_map);
SetFeedback(*cell);
SetFeedbackExtra(*handler);
}
void KeyedStoreICNexus::ConfigureMonomorphic(Handle<Name> name,
Handle<Map> receiver_map,
Handle<Code> handler) {
Handle<WeakCell> cell = Map::WeakCellForMap(receiver_map);
if (name.is_null()) {
SetFeedback(*cell);
SetFeedbackExtra(*handler);
} else {
Handle<FixedArray> array = EnsureExtraArrayOfSize(2);
SetFeedback(*name);
array->set(0, *cell);
array->set(1, *handler);
}
}
void LoadICNexus::ConfigurePolymorphic(MapHandleList* maps,
CodeHandleList* handlers) {
Isolate* isolate = GetIsolate();
int receiver_count = maps->length();
Handle<FixedArray> array = EnsureArrayOfSize(receiver_count * 2);
InstallHandlers(array, maps, handlers);
SetFeedbackExtra(*TypeFeedbackVector::UninitializedSentinel(isolate),
SKIP_WRITE_BARRIER);
}
void KeyedLoadICNexus::ConfigurePolymorphic(Handle<Name> name,
MapHandleList* maps,
CodeHandleList* handlers) {
int receiver_count = maps->length();
DCHECK(receiver_count > 1);
Handle<FixedArray> array;
if (name.is_null()) {
array = EnsureArrayOfSize(receiver_count * 2);
SetFeedbackExtra(*TypeFeedbackVector::UninitializedSentinel(GetIsolate()),
SKIP_WRITE_BARRIER);
} else {
array = EnsureExtraArrayOfSize(receiver_count * 2);
SetFeedback(*name);
}
InstallHandlers(array, maps, handlers);
}
void StoreICNexus::ConfigurePolymorphic(MapHandleList* maps,
CodeHandleList* handlers) {
Isolate* isolate = GetIsolate();
int receiver_count = maps->length();
Handle<FixedArray> array = EnsureArrayOfSize(receiver_count * 2);
InstallHandlers(array, maps, handlers);
SetFeedbackExtra(*TypeFeedbackVector::UninitializedSentinel(isolate),
SKIP_WRITE_BARRIER);
}
void KeyedStoreICNexus::ConfigurePolymorphic(Handle<Name> name,
MapHandleList* maps,
CodeHandleList* handlers) {
int receiver_count = maps->length();
DCHECK(receiver_count > 1);
Handle<FixedArray> array;
if (name.is_null()) {
array = EnsureArrayOfSize(receiver_count * 2);
SetFeedbackExtra(*TypeFeedbackVector::UninitializedSentinel(GetIsolate()),
SKIP_WRITE_BARRIER);
} else {
array = EnsureExtraArrayOfSize(receiver_count * 2);
SetFeedback(*name);
}
InstallHandlers(array, maps, handlers);
}
void KeyedStoreICNexus::ConfigurePolymorphic(MapHandleList* maps,
MapHandleList* transitioned_maps,
CodeHandleList* handlers) {
int receiver_count = maps->length();
DCHECK(receiver_count > 1);
Handle<FixedArray> array = EnsureArrayOfSize(receiver_count * 3);
SetFeedbackExtra(*TypeFeedbackVector::UninitializedSentinel(GetIsolate()),
SKIP_WRITE_BARRIER);
Handle<Oddball> undefined_value = GetIsolate()->factory()->undefined_value();
for (int i = 0; i < receiver_count; ++i) {
Handle<Map> map = maps->at(i);
Handle<WeakCell> cell = Map::WeakCellForMap(map);
array->set(i * 3, *cell);
if (!transitioned_maps->at(i).is_null()) {
Handle<Map> transitioned_map = transitioned_maps->at(i);
cell = Map::WeakCellForMap(transitioned_map);
array->set((i * 3) + 1, *cell);
} else {
array->set((i * 3) + 1, *undefined_value);
}
array->set((i * 3) + 2, *handlers->at(i));
}
}
int FeedbackNexus::ExtractMaps(MapHandleList* maps) const {
Isolate* isolate = GetIsolate();
Object* feedback = GetFeedback();
bool is_named_feedback = IsPropertyNameFeedback(feedback);
if (feedback->IsFixedArray() || is_named_feedback) {
int found = 0;
if (is_named_feedback) {
feedback = GetFeedbackExtra();
}
FixedArray* array = FixedArray::cast(feedback);
// The array should be of the form
// [map, handler, map, handler, ...]
// or
// [map, map, handler, map, map, handler, ...]
DCHECK(array->length() >= 2);
int increment = array->get(1)->IsCode() ? 2 : 3;
for (int i = 0; i < array->length(); i += increment) {
DCHECK(array->get(i)->IsWeakCell());
WeakCell* cell = WeakCell::cast(array->get(i));
if (!cell->cleared()) {
Map* map = Map::cast(cell->value());
maps->Add(handle(map, isolate));
found++;
}
}
return found;
} else if (feedback->IsWeakCell()) {
WeakCell* cell = WeakCell::cast(feedback);
if (!cell->cleared()) {
Map* map = Map::cast(cell->value());
maps->Add(handle(map, isolate));
return 1;
}
}
return 0;
}
MaybeHandle<Code> FeedbackNexus::FindHandlerForMap(Handle<Map> map) const {
Object* feedback = GetFeedback();
bool is_named_feedback = IsPropertyNameFeedback(feedback);
if (feedback->IsFixedArray() || is_named_feedback) {
if (is_named_feedback) {
feedback = GetFeedbackExtra();
}
FixedArray* array = FixedArray::cast(feedback);
DCHECK(array->length() >= 2);
int increment = array->get(1)->IsCode() ? 2 : 3;
for (int i = 0; i < array->length(); i += increment) {
DCHECK(array->get(i)->IsWeakCell());
WeakCell* cell = WeakCell::cast(array->get(i));
if (!cell->cleared()) {
Map* array_map = Map::cast(cell->value());
if (array_map == *map) {
Code* code = Code::cast(array->get(i + increment - 1));
DCHECK(code->kind() == Code::HANDLER);
return handle(code);
}
}
}
} else if (feedback->IsWeakCell()) {
WeakCell* cell = WeakCell::cast(feedback);
if (!cell->cleared()) {
Map* cell_map = Map::cast(cell->value());
if (cell_map == *map) {
Code* code = Code::cast(GetFeedbackExtra());
DCHECK(code->kind() == Code::HANDLER);
return handle(code);
}
}
}
return MaybeHandle<Code>();
}
bool FeedbackNexus::FindHandlers(CodeHandleList* code_list, int length) const {
Object* feedback = GetFeedback();
int count = 0;
bool is_named_feedback = IsPropertyNameFeedback(feedback);
if (feedback->IsFixedArray() || is_named_feedback) {
if (is_named_feedback) {
feedback = GetFeedbackExtra();
}
FixedArray* array = FixedArray::cast(feedback);
// The array should be of the form
// [map, handler, map, handler, ...]
// or
// [map, map, handler, map, map, handler, ...]
// Be sure to skip handlers whose maps have been cleared.
DCHECK(array->length() >= 2);
int increment = array->get(1)->IsCode() ? 2 : 3;
for (int i = 0; i < array->length(); i += increment) {
DCHECK(array->get(i)->IsWeakCell());
WeakCell* cell = WeakCell::cast(array->get(i));
if (!cell->cleared()) {
Code* code = Code::cast(array->get(i + increment - 1));
DCHECK(code->kind() == Code::HANDLER);
code_list->Add(handle(code));
count++;
}
}
} else if (feedback->IsWeakCell()) {
WeakCell* cell = WeakCell::cast(feedback);
if (!cell->cleared()) {
Code* code = Code::cast(GetFeedbackExtra());
DCHECK(code->kind() == Code::HANDLER);
code_list->Add(handle(code));
count++;
}
}
return count == length;
}
void LoadICNexus::Clear(Code* host) { LoadIC::Clear(GetIsolate(), host, this); }
void LoadGlobalICNexus::Clear(Code* host) {
LoadGlobalIC::Clear(GetIsolate(), host, this);
}
void KeyedLoadICNexus::Clear(Code* host) {
KeyedLoadIC::Clear(GetIsolate(), host, this);
}
Name* KeyedLoadICNexus::FindFirstName() const {
Object* feedback = GetFeedback();
if (IsPropertyNameFeedback(feedback)) {
return Name::cast(feedback);
}
return NULL;
}
Name* KeyedStoreICNexus::FindFirstName() const {
Object* feedback = GetFeedback();
if (IsPropertyNameFeedback(feedback)) {
return Name::cast(feedback);
}
return NULL;
}
void StoreICNexus::Clear(Code* host) {
StoreIC::Clear(GetIsolate(), host, this);
}
void KeyedStoreICNexus::Clear(Code* host) {
KeyedStoreIC::Clear(GetIsolate(), host, this);
}
KeyedAccessStoreMode KeyedStoreICNexus::GetKeyedAccessStoreMode() const {
KeyedAccessStoreMode mode = STANDARD_STORE;
MapHandleList maps;
CodeHandleList handlers;
if (GetKeyType() == PROPERTY) return mode;
ExtractMaps(&maps);
FindHandlers(&handlers, maps.length());
for (int i = 0; i < handlers.length(); i++) {
// The first handler that isn't the slow handler will have the bits we need.
Handle<Code> handler = handlers.at(i);
CodeStub::Major major_key = CodeStub::MajorKeyFromKey(handler->stub_key());
uint32_t minor_key = CodeStub::MinorKeyFromKey(handler->stub_key());
CHECK(major_key == CodeStub::KeyedStoreSloppyArguments ||
major_key == CodeStub::StoreFastElement ||
major_key == CodeStub::StoreElement ||
major_key == CodeStub::ElementsTransitionAndStore ||
major_key == CodeStub::NoCache);
if (major_key != CodeStub::NoCache) {
mode = CommonStoreModeBits::decode(minor_key);
break;
}
}
return mode;
}
IcCheckType KeyedLoadICNexus::GetKeyType() const {
Object* feedback = GetFeedback();
if (feedback == *TypeFeedbackVector::MegamorphicSentinel(GetIsolate())) {
return static_cast<IcCheckType>(Smi::cast(GetFeedbackExtra())->value());
}
return IsPropertyNameFeedback(feedback) ? PROPERTY : ELEMENT;
}
IcCheckType KeyedStoreICNexus::GetKeyType() const {
Object* feedback = GetFeedback();
if (feedback == *TypeFeedbackVector::MegamorphicSentinel(GetIsolate())) {
return static_cast<IcCheckType>(Smi::cast(GetFeedbackExtra())->value());
}
return IsPropertyNameFeedback(feedback) ? PROPERTY : ELEMENT;
}
} // namespace internal
} // namespace v8