blob: 53919486d667ff7c63f1965c635fb7d6c37dbbe5 [file] [log] [blame]
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001// Copyright (c) 1994-2006 Sun Microsystems Inc.
2// All Rights Reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions
6// are met:
7//
8// - Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10//
11// - Redistribution in binary form must reproduce the above copyright
12// notice, this list of conditions and the following disclaimer in the
13// documentation and/or other materials provided with the
14// distribution.
15//
16// - Neither the name of Sun Microsystems or the names of contributors may
17// be used to endorse or promote products derived from this software without
18// specific prior written permission.
19//
20// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31// OF THE POSSIBILITY OF SUCH DAMAGE.
32
33// The original source code covered by the above license above has been modified
34// significantly by Google Inc.
35// Copyright 2012 the V8 project authors. All rights reserved.
36
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000037#include "src/x87/assembler-x87.h"
Ben Murdochb8a8cc12014-11-26 15:28:44 +000038
39#if V8_TARGET_ARCH_X87
40
41#include "src/base/bits.h"
42#include "src/base/cpu.h"
43#include "src/disassembler.h"
44#include "src/macro-assembler.h"
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000045#include "src/v8.h"
Ben Murdochb8a8cc12014-11-26 15:28:44 +000046
47namespace v8 {
48namespace internal {
49
50// -----------------------------------------------------------------------------
51// Implementation of CpuFeatures
52
53void CpuFeatures::ProbeImpl(bool cross_compile) {
54 base::CPU cpu;
55
56 // Only use statically determined features for cross compile (snapshot).
57 if (cross_compile) return;
58}
59
60
61void CpuFeatures::PrintTarget() { }
62void CpuFeatures::PrintFeatures() { }
63
64
65// -----------------------------------------------------------------------------
66// Implementation of Displacement
67
68void Displacement::init(Label* L, Type type) {
69 DCHECK(!L->is_bound());
70 int next = 0;
71 if (L->is_linked()) {
72 next = L->pos();
73 DCHECK(next > 0); // Displacements must be at positions > 0
74 }
75 // Ensure that we _never_ overflow the next field.
76 DCHECK(NextField::is_valid(Assembler::kMaximalBufferSize));
77 data_ = NextField::encode(next) | TypeField::encode(type);
78}
79
80
81// -----------------------------------------------------------------------------
82// Implementation of RelocInfo
83
84
85const int RelocInfo::kApplyMask =
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000086 RelocInfo::kCodeTargetMask | 1 << RelocInfo::RUNTIME_ENTRY |
87 1 << RelocInfo::INTERNAL_REFERENCE | 1 << RelocInfo::CODE_AGE_SEQUENCE |
88 RelocInfo::kDebugBreakSlotMask;
Ben Murdochb8a8cc12014-11-26 15:28:44 +000089
90
91bool RelocInfo::IsCodedSpecially() {
92 // The deserializer needs to know whether a pointer is specially coded. Being
93 // specially coded on IA32 means that it is a relative address, as used by
94 // branch instructions. These are also the ones that need changing when a
95 // code object moves.
96 return (1 << rmode_) & kApplyMask;
97}
98
99
100bool RelocInfo::IsInConstantPool() {
101 return false;
102}
103
104
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000105// -----------------------------------------------------------------------------
106// Implementation of Operand
107
108Operand::Operand(Register base, int32_t disp, RelocInfo::Mode rmode) {
109 // [base + disp/r]
110 if (disp == 0 && RelocInfo::IsNone(rmode) && !base.is(ebp)) {
111 // [base]
112 set_modrm(0, base);
113 if (base.is(esp)) set_sib(times_1, esp, base);
114 } else if (is_int8(disp) && RelocInfo::IsNone(rmode)) {
115 // [base + disp8]
116 set_modrm(1, base);
117 if (base.is(esp)) set_sib(times_1, esp, base);
118 set_disp8(disp);
119 } else {
120 // [base + disp/r]
121 set_modrm(2, base);
122 if (base.is(esp)) set_sib(times_1, esp, base);
123 set_dispr(disp, rmode);
124 }
125}
126
127
128Operand::Operand(Register base,
129 Register index,
130 ScaleFactor scale,
131 int32_t disp,
132 RelocInfo::Mode rmode) {
133 DCHECK(!index.is(esp)); // illegal addressing mode
134 // [base + index*scale + disp/r]
135 if (disp == 0 && RelocInfo::IsNone(rmode) && !base.is(ebp)) {
136 // [base + index*scale]
137 set_modrm(0, esp);
138 set_sib(scale, index, base);
139 } else if (is_int8(disp) && RelocInfo::IsNone(rmode)) {
140 // [base + index*scale + disp8]
141 set_modrm(1, esp);
142 set_sib(scale, index, base);
143 set_disp8(disp);
144 } else {
145 // [base + index*scale + disp/r]
146 set_modrm(2, esp);
147 set_sib(scale, index, base);
148 set_dispr(disp, rmode);
149 }
150}
151
152
153Operand::Operand(Register index,
154 ScaleFactor scale,
155 int32_t disp,
156 RelocInfo::Mode rmode) {
157 DCHECK(!index.is(esp)); // illegal addressing mode
158 // [index*scale + disp/r]
159 set_modrm(0, esp);
160 set_sib(scale, index, ebp);
161 set_dispr(disp, rmode);
162}
163
164
165bool Operand::is_reg(Register reg) const {
166 return ((buf_[0] & 0xF8) == 0xC0) // addressing mode is register only.
167 && ((buf_[0] & 0x07) == reg.code()); // register codes match.
168}
169
170
171bool Operand::is_reg_only() const {
172 return (buf_[0] & 0xF8) == 0xC0; // Addressing mode is register only.
173}
174
175
176Register Operand::reg() const {
177 DCHECK(is_reg_only());
178 return Register::from_code(buf_[0] & 0x07);
179}
180
181
182// -----------------------------------------------------------------------------
183// Implementation of Assembler.
184
185// Emit a single byte. Must always be inlined.
186#define EMIT(x) \
187 *pc_++ = (x)
188
189
190#ifdef GENERATED_CODE_COVERAGE
191static void InitCoverageLog();
192#endif
193
194Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
195 : AssemblerBase(isolate, buffer, buffer_size),
196 positions_recorder_(this) {
197 // Clear the buffer in debug mode unless it was provided by the
198 // caller in which case we can't be sure it's okay to overwrite
199 // existing code in it; see CodePatcher::CodePatcher(...).
200#ifdef DEBUG
201 if (own_buffer_) {
202 memset(buffer_, 0xCC, buffer_size_); // int3
203 }
204#endif
205
206 reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_);
207
208#ifdef GENERATED_CODE_COVERAGE
209 InitCoverageLog();
210#endif
211}
212
213
214void Assembler::GetCode(CodeDesc* desc) {
215 // Finalize code (at this point overflow() may be true, but the gap ensures
216 // that we are still not overlapping instructions and relocation info).
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000217 reloc_info_writer.Finish();
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000218 DCHECK(pc_ <= reloc_info_writer.pos()); // No overlap.
219 // Set up code descriptor.
220 desc->buffer = buffer_;
221 desc->buffer_size = buffer_size_;
222 desc->instr_size = pc_offset();
223 desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
224 desc->origin = this;
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000225 desc->constant_pool_size = 0;
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000226}
227
228
229void Assembler::Align(int m) {
230 DCHECK(base::bits::IsPowerOfTwo32(m));
231 int mask = m - 1;
232 int addr = pc_offset();
233 Nop((m - (addr & mask)) & mask);
234}
235
236
237bool Assembler::IsNop(Address addr) {
238 Address a = addr;
239 while (*a == 0x66) a++;
240 if (*a == 0x90) return true;
241 if (a[0] == 0xf && a[1] == 0x1f) return true;
242 return false;
243}
244
245
246void Assembler::Nop(int bytes) {
247 EnsureSpace ensure_space(this);
248
249 // Older CPUs that do not support SSE2 may not support multibyte NOP
250 // instructions.
251 for (; bytes > 0; bytes--) {
252 EMIT(0x90);
253 }
254 return;
255}
256
257
258void Assembler::CodeTargetAlign() {
259 Align(16); // Preferred alignment of jump targets on ia32.
260}
261
262
263void Assembler::cpuid() {
264 EnsureSpace ensure_space(this);
265 EMIT(0x0F);
266 EMIT(0xA2);
267}
268
269
270void Assembler::pushad() {
271 EnsureSpace ensure_space(this);
272 EMIT(0x60);
273}
274
275
276void Assembler::popad() {
277 EnsureSpace ensure_space(this);
278 EMIT(0x61);
279}
280
281
282void Assembler::pushfd() {
283 EnsureSpace ensure_space(this);
284 EMIT(0x9C);
285}
286
287
288void Assembler::popfd() {
289 EnsureSpace ensure_space(this);
290 EMIT(0x9D);
291}
292
293
294void Assembler::push(const Immediate& x) {
295 EnsureSpace ensure_space(this);
296 if (x.is_int8()) {
297 EMIT(0x6a);
298 EMIT(x.x_);
299 } else {
300 EMIT(0x68);
301 emit(x);
302 }
303}
304
305
306void Assembler::push_imm32(int32_t imm32) {
307 EnsureSpace ensure_space(this);
308 EMIT(0x68);
309 emit(imm32);
310}
311
312
313void Assembler::push(Register src) {
314 EnsureSpace ensure_space(this);
315 EMIT(0x50 | src.code());
316}
317
318
319void Assembler::push(const Operand& src) {
320 EnsureSpace ensure_space(this);
321 EMIT(0xFF);
322 emit_operand(esi, src);
323}
324
325
326void Assembler::pop(Register dst) {
327 DCHECK(reloc_info_writer.last_pc() != NULL);
328 EnsureSpace ensure_space(this);
329 EMIT(0x58 | dst.code());
330}
331
332
333void Assembler::pop(const Operand& dst) {
334 EnsureSpace ensure_space(this);
335 EMIT(0x8F);
336 emit_operand(eax, dst);
337}
338
339
340void Assembler::enter(const Immediate& size) {
341 EnsureSpace ensure_space(this);
342 EMIT(0xC8);
343 emit_w(size);
344 EMIT(0);
345}
346
347
348void Assembler::leave() {
349 EnsureSpace ensure_space(this);
350 EMIT(0xC9);
351}
352
353
354void Assembler::mov_b(Register dst, const Operand& src) {
355 CHECK(dst.is_byte_register());
356 EnsureSpace ensure_space(this);
357 EMIT(0x8A);
358 emit_operand(dst, src);
359}
360
361
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000362void Assembler::mov_b(const Operand& dst, const Immediate& src) {
363 EnsureSpace ensure_space(this);
364 EMIT(0xC6);
365 emit_operand(eax, dst);
366 EMIT(static_cast<int8_t>(src.x_));
367}
368
369
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000370void Assembler::mov_b(const Operand& dst, int8_t imm8) {
371 EnsureSpace ensure_space(this);
372 EMIT(0xC6);
373 emit_operand(eax, dst);
374 EMIT(imm8);
375}
376
377
378void Assembler::mov_b(const Operand& dst, Register src) {
379 CHECK(src.is_byte_register());
380 EnsureSpace ensure_space(this);
381 EMIT(0x88);
382 emit_operand(src, dst);
383}
384
385
386void Assembler::mov_w(Register dst, const Operand& src) {
387 EnsureSpace ensure_space(this);
388 EMIT(0x66);
389 EMIT(0x8B);
390 emit_operand(dst, src);
391}
392
393
394void Assembler::mov_w(const Operand& dst, Register src) {
395 EnsureSpace ensure_space(this);
396 EMIT(0x66);
397 EMIT(0x89);
398 emit_operand(src, dst);
399}
400
401
402void Assembler::mov_w(const Operand& dst, int16_t imm16) {
403 EnsureSpace ensure_space(this);
404 EMIT(0x66);
405 EMIT(0xC7);
406 emit_operand(eax, dst);
407 EMIT(static_cast<int8_t>(imm16 & 0xff));
408 EMIT(static_cast<int8_t>(imm16 >> 8));
409}
410
411
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000412void Assembler::mov_w(const Operand& dst, const Immediate& src) {
413 EnsureSpace ensure_space(this);
414 EMIT(0x66);
415 EMIT(0xC7);
416 emit_operand(eax, dst);
417 EMIT(static_cast<int8_t>(src.x_ & 0xff));
418 EMIT(static_cast<int8_t>(src.x_ >> 8));
419}
420
421
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000422void Assembler::mov(Register dst, int32_t imm32) {
423 EnsureSpace ensure_space(this);
424 EMIT(0xB8 | dst.code());
425 emit(imm32);
426}
427
428
429void Assembler::mov(Register dst, const Immediate& x) {
430 EnsureSpace ensure_space(this);
431 EMIT(0xB8 | dst.code());
432 emit(x);
433}
434
435
436void Assembler::mov(Register dst, Handle<Object> handle) {
437 EnsureSpace ensure_space(this);
438 EMIT(0xB8 | dst.code());
439 emit(handle);
440}
441
442
443void Assembler::mov(Register dst, const Operand& src) {
444 EnsureSpace ensure_space(this);
445 EMIT(0x8B);
446 emit_operand(dst, src);
447}
448
449
450void Assembler::mov(Register dst, Register src) {
451 EnsureSpace ensure_space(this);
452 EMIT(0x89);
453 EMIT(0xC0 | src.code() << 3 | dst.code());
454}
455
456
457void Assembler::mov(const Operand& dst, const Immediate& x) {
458 EnsureSpace ensure_space(this);
459 EMIT(0xC7);
460 emit_operand(eax, dst);
461 emit(x);
462}
463
464
465void Assembler::mov(const Operand& dst, Handle<Object> handle) {
466 EnsureSpace ensure_space(this);
467 EMIT(0xC7);
468 emit_operand(eax, dst);
469 emit(handle);
470}
471
472
473void Assembler::mov(const Operand& dst, Register src) {
474 EnsureSpace ensure_space(this);
475 EMIT(0x89);
476 emit_operand(src, dst);
477}
478
479
480void Assembler::movsx_b(Register dst, const Operand& src) {
481 EnsureSpace ensure_space(this);
482 EMIT(0x0F);
483 EMIT(0xBE);
484 emit_operand(dst, src);
485}
486
487
488void Assembler::movsx_w(Register dst, const Operand& src) {
489 EnsureSpace ensure_space(this);
490 EMIT(0x0F);
491 EMIT(0xBF);
492 emit_operand(dst, src);
493}
494
495
496void Assembler::movzx_b(Register dst, const Operand& src) {
497 EnsureSpace ensure_space(this);
498 EMIT(0x0F);
499 EMIT(0xB6);
500 emit_operand(dst, src);
501}
502
503
504void Assembler::movzx_w(Register dst, const Operand& src) {
505 EnsureSpace ensure_space(this);
506 EMIT(0x0F);
507 EMIT(0xB7);
508 emit_operand(dst, src);
509}
510
511
512void Assembler::cld() {
513 EnsureSpace ensure_space(this);
514 EMIT(0xFC);
515}
516
517
518void Assembler::rep_movs() {
519 EnsureSpace ensure_space(this);
520 EMIT(0xF3);
521 EMIT(0xA5);
522}
523
524
525void Assembler::rep_stos() {
526 EnsureSpace ensure_space(this);
527 EMIT(0xF3);
528 EMIT(0xAB);
529}
530
531
532void Assembler::stos() {
533 EnsureSpace ensure_space(this);
534 EMIT(0xAB);
535}
536
537
538void Assembler::xchg(Register dst, Register src) {
539 EnsureSpace ensure_space(this);
540 if (src.is(eax) || dst.is(eax)) { // Single-byte encoding.
541 EMIT(0x90 | (src.is(eax) ? dst.code() : src.code()));
542 } else {
543 EMIT(0x87);
544 EMIT(0xC0 | src.code() << 3 | dst.code());
545 }
546}
547
548
549void Assembler::xchg(Register dst, const Operand& src) {
550 EnsureSpace ensure_space(this);
551 EMIT(0x87);
552 emit_operand(dst, src);
553}
554
555
556void Assembler::adc(Register dst, int32_t imm32) {
557 EnsureSpace ensure_space(this);
558 emit_arith(2, Operand(dst), Immediate(imm32));
559}
560
561
562void Assembler::adc(Register dst, const Operand& src) {
563 EnsureSpace ensure_space(this);
564 EMIT(0x13);
565 emit_operand(dst, src);
566}
567
568
569void Assembler::add(Register dst, const Operand& src) {
570 EnsureSpace ensure_space(this);
571 EMIT(0x03);
572 emit_operand(dst, src);
573}
574
575
576void Assembler::add(const Operand& dst, Register src) {
577 EnsureSpace ensure_space(this);
578 EMIT(0x01);
579 emit_operand(src, dst);
580}
581
582
583void Assembler::add(const Operand& dst, const Immediate& x) {
584 DCHECK(reloc_info_writer.last_pc() != NULL);
585 EnsureSpace ensure_space(this);
586 emit_arith(0, dst, x);
587}
588
589
590void Assembler::and_(Register dst, int32_t imm32) {
591 and_(dst, Immediate(imm32));
592}
593
594
595void Assembler::and_(Register dst, const Immediate& x) {
596 EnsureSpace ensure_space(this);
597 emit_arith(4, Operand(dst), x);
598}
599
600
601void Assembler::and_(Register dst, const Operand& src) {
602 EnsureSpace ensure_space(this);
603 EMIT(0x23);
604 emit_operand(dst, src);
605}
606
607
608void Assembler::and_(const Operand& dst, const Immediate& x) {
609 EnsureSpace ensure_space(this);
610 emit_arith(4, dst, x);
611}
612
613
614void Assembler::and_(const Operand& dst, Register src) {
615 EnsureSpace ensure_space(this);
616 EMIT(0x21);
617 emit_operand(src, dst);
618}
619
620
621void Assembler::cmpb(const Operand& op, int8_t imm8) {
622 EnsureSpace ensure_space(this);
623 if (op.is_reg(eax)) {
624 EMIT(0x3C);
625 } else {
626 EMIT(0x80);
627 emit_operand(edi, op); // edi == 7
628 }
629 EMIT(imm8);
630}
631
632
633void Assembler::cmpb(const Operand& op, Register reg) {
634 CHECK(reg.is_byte_register());
635 EnsureSpace ensure_space(this);
636 EMIT(0x38);
637 emit_operand(reg, op);
638}
639
640
641void Assembler::cmpb(Register reg, const Operand& op) {
642 CHECK(reg.is_byte_register());
643 EnsureSpace ensure_space(this);
644 EMIT(0x3A);
645 emit_operand(reg, op);
646}
647
648
649void Assembler::cmpw(const Operand& op, Immediate imm16) {
650 DCHECK(imm16.is_int16());
651 EnsureSpace ensure_space(this);
652 EMIT(0x66);
653 EMIT(0x81);
654 emit_operand(edi, op);
655 emit_w(imm16);
656}
657
658
659void Assembler::cmp(Register reg, int32_t imm32) {
660 EnsureSpace ensure_space(this);
661 emit_arith(7, Operand(reg), Immediate(imm32));
662}
663
664
665void Assembler::cmp(Register reg, Handle<Object> handle) {
666 EnsureSpace ensure_space(this);
667 emit_arith(7, Operand(reg), Immediate(handle));
668}
669
670
671void Assembler::cmp(Register reg, const Operand& op) {
672 EnsureSpace ensure_space(this);
673 EMIT(0x3B);
674 emit_operand(reg, op);
675}
676
677
678void Assembler::cmp(const Operand& op, const Immediate& imm) {
679 EnsureSpace ensure_space(this);
680 emit_arith(7, op, imm);
681}
682
683
684void Assembler::cmp(const Operand& op, Handle<Object> handle) {
685 EnsureSpace ensure_space(this);
686 emit_arith(7, op, Immediate(handle));
687}
688
689
690void Assembler::cmpb_al(const Operand& op) {
691 EnsureSpace ensure_space(this);
692 EMIT(0x38); // CMP r/m8, r8
693 emit_operand(eax, op); // eax has same code as register al.
694}
695
696
697void Assembler::cmpw_ax(const Operand& op) {
698 EnsureSpace ensure_space(this);
699 EMIT(0x66);
700 EMIT(0x39); // CMP r/m16, r16
701 emit_operand(eax, op); // eax has same code as register ax.
702}
703
704
705void Assembler::dec_b(Register dst) {
706 CHECK(dst.is_byte_register());
707 EnsureSpace ensure_space(this);
708 EMIT(0xFE);
709 EMIT(0xC8 | dst.code());
710}
711
712
713void Assembler::dec_b(const Operand& dst) {
714 EnsureSpace ensure_space(this);
715 EMIT(0xFE);
716 emit_operand(ecx, dst);
717}
718
719
720void Assembler::dec(Register dst) {
721 EnsureSpace ensure_space(this);
722 EMIT(0x48 | dst.code());
723}
724
725
726void Assembler::dec(const Operand& dst) {
727 EnsureSpace ensure_space(this);
728 EMIT(0xFF);
729 emit_operand(ecx, dst);
730}
731
732
733void Assembler::cdq() {
734 EnsureSpace ensure_space(this);
735 EMIT(0x99);
736}
737
738
739void Assembler::idiv(const Operand& src) {
740 EnsureSpace ensure_space(this);
741 EMIT(0xF7);
742 emit_operand(edi, src);
743}
744
745
746void Assembler::div(const Operand& src) {
747 EnsureSpace ensure_space(this);
748 EMIT(0xF7);
749 emit_operand(esi, src);
750}
751
752
753void Assembler::imul(Register reg) {
754 EnsureSpace ensure_space(this);
755 EMIT(0xF7);
756 EMIT(0xE8 | reg.code());
757}
758
759
760void Assembler::imul(Register dst, const Operand& src) {
761 EnsureSpace ensure_space(this);
762 EMIT(0x0F);
763 EMIT(0xAF);
764 emit_operand(dst, src);
765}
766
767
768void Assembler::imul(Register dst, Register src, int32_t imm32) {
769 imul(dst, Operand(src), imm32);
770}
771
772
773void Assembler::imul(Register dst, const Operand& src, int32_t imm32) {
774 EnsureSpace ensure_space(this);
775 if (is_int8(imm32)) {
776 EMIT(0x6B);
777 emit_operand(dst, src);
778 EMIT(imm32);
779 } else {
780 EMIT(0x69);
781 emit_operand(dst, src);
782 emit(imm32);
783 }
784}
785
786
787void Assembler::inc(Register dst) {
788 EnsureSpace ensure_space(this);
789 EMIT(0x40 | dst.code());
790}
791
792
793void Assembler::inc(const Operand& dst) {
794 EnsureSpace ensure_space(this);
795 EMIT(0xFF);
796 emit_operand(eax, dst);
797}
798
799
800void Assembler::lea(Register dst, const Operand& src) {
801 EnsureSpace ensure_space(this);
802 EMIT(0x8D);
803 emit_operand(dst, src);
804}
805
806
807void Assembler::mul(Register src) {
808 EnsureSpace ensure_space(this);
809 EMIT(0xF7);
810 EMIT(0xE0 | src.code());
811}
812
813
814void Assembler::neg(Register dst) {
815 EnsureSpace ensure_space(this);
816 EMIT(0xF7);
817 EMIT(0xD8 | dst.code());
818}
819
820
821void Assembler::neg(const Operand& dst) {
822 EnsureSpace ensure_space(this);
823 EMIT(0xF7);
824 emit_operand(ebx, dst);
825}
826
827
828void Assembler::not_(Register dst) {
829 EnsureSpace ensure_space(this);
830 EMIT(0xF7);
831 EMIT(0xD0 | dst.code());
832}
833
834
835void Assembler::not_(const Operand& dst) {
836 EnsureSpace ensure_space(this);
837 EMIT(0xF7);
838 emit_operand(edx, dst);
839}
840
841
842void Assembler::or_(Register dst, int32_t imm32) {
843 EnsureSpace ensure_space(this);
844 emit_arith(1, Operand(dst), Immediate(imm32));
845}
846
847
848void Assembler::or_(Register dst, const Operand& src) {
849 EnsureSpace ensure_space(this);
850 EMIT(0x0B);
851 emit_operand(dst, src);
852}
853
854
855void Assembler::or_(const Operand& dst, const Immediate& x) {
856 EnsureSpace ensure_space(this);
857 emit_arith(1, dst, x);
858}
859
860
861void Assembler::or_(const Operand& dst, Register src) {
862 EnsureSpace ensure_space(this);
863 EMIT(0x09);
864 emit_operand(src, dst);
865}
866
867
868void Assembler::rcl(Register dst, uint8_t imm8) {
869 EnsureSpace ensure_space(this);
870 DCHECK(is_uint5(imm8)); // illegal shift count
871 if (imm8 == 1) {
872 EMIT(0xD1);
873 EMIT(0xD0 | dst.code());
874 } else {
875 EMIT(0xC1);
876 EMIT(0xD0 | dst.code());
877 EMIT(imm8);
878 }
879}
880
881
882void Assembler::rcr(Register dst, uint8_t imm8) {
883 EnsureSpace ensure_space(this);
884 DCHECK(is_uint5(imm8)); // illegal shift count
885 if (imm8 == 1) {
886 EMIT(0xD1);
887 EMIT(0xD8 | dst.code());
888 } else {
889 EMIT(0xC1);
890 EMIT(0xD8 | dst.code());
891 EMIT(imm8);
892 }
893}
894
895
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400896void Assembler::ror(const Operand& dst, uint8_t imm8) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000897 EnsureSpace ensure_space(this);
898 DCHECK(is_uint5(imm8)); // illegal shift count
899 if (imm8 == 1) {
900 EMIT(0xD1);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400901 emit_operand(ecx, dst);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000902 } else {
903 EMIT(0xC1);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400904 emit_operand(ecx, dst);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000905 EMIT(imm8);
906 }
907}
908
909
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400910void Assembler::ror_cl(const Operand& dst) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000911 EnsureSpace ensure_space(this);
912 EMIT(0xD3);
Emily Bernierd0a1eb72015-03-24 16:35:39 -0400913 emit_operand(ecx, dst);
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000914}
915
916
917void Assembler::sar(const Operand& dst, uint8_t imm8) {
918 EnsureSpace ensure_space(this);
919 DCHECK(is_uint5(imm8)); // illegal shift count
920 if (imm8 == 1) {
921 EMIT(0xD1);
922 emit_operand(edi, dst);
923 } else {
924 EMIT(0xC1);
925 emit_operand(edi, dst);
926 EMIT(imm8);
927 }
928}
929
930
931void Assembler::sar_cl(const Operand& dst) {
932 EnsureSpace ensure_space(this);
933 EMIT(0xD3);
934 emit_operand(edi, dst);
935}
936
937
938void Assembler::sbb(Register dst, const Operand& src) {
939 EnsureSpace ensure_space(this);
940 EMIT(0x1B);
941 emit_operand(dst, src);
942}
943
944
945void Assembler::shld(Register dst, const Operand& src) {
946 EnsureSpace ensure_space(this);
947 EMIT(0x0F);
948 EMIT(0xA5);
949 emit_operand(dst, src);
950}
951
952
953void Assembler::shl(const Operand& dst, uint8_t imm8) {
954 EnsureSpace ensure_space(this);
955 DCHECK(is_uint5(imm8)); // illegal shift count
956 if (imm8 == 1) {
957 EMIT(0xD1);
958 emit_operand(esp, dst);
959 } else {
960 EMIT(0xC1);
961 emit_operand(esp, dst);
962 EMIT(imm8);
963 }
964}
965
966
967void Assembler::shl_cl(const Operand& dst) {
968 EnsureSpace ensure_space(this);
969 EMIT(0xD3);
970 emit_operand(esp, dst);
971}
972
973
974void Assembler::shrd(Register dst, const Operand& src) {
975 EnsureSpace ensure_space(this);
976 EMIT(0x0F);
977 EMIT(0xAD);
978 emit_operand(dst, src);
979}
980
981
982void Assembler::shr(const Operand& dst, uint8_t imm8) {
983 EnsureSpace ensure_space(this);
984 DCHECK(is_uint5(imm8)); // illegal shift count
985 if (imm8 == 1) {
986 EMIT(0xD1);
987 emit_operand(ebp, dst);
988 } else {
989 EMIT(0xC1);
990 emit_operand(ebp, dst);
991 EMIT(imm8);
992 }
993}
994
995
996void Assembler::shr_cl(const Operand& dst) {
997 EnsureSpace ensure_space(this);
998 EMIT(0xD3);
999 emit_operand(ebp, dst);
1000}
1001
1002
1003void Assembler::sub(const Operand& dst, const Immediate& x) {
1004 EnsureSpace ensure_space(this);
1005 emit_arith(5, dst, x);
1006}
1007
1008
1009void Assembler::sub(Register dst, const Operand& src) {
1010 EnsureSpace ensure_space(this);
1011 EMIT(0x2B);
1012 emit_operand(dst, src);
1013}
1014
1015
1016void Assembler::sub(const Operand& dst, Register src) {
1017 EnsureSpace ensure_space(this);
1018 EMIT(0x29);
1019 emit_operand(src, dst);
1020}
1021
1022
1023void Assembler::test(Register reg, const Immediate& imm) {
1024 if (RelocInfo::IsNone(imm.rmode_) && is_uint8(imm.x_)) {
1025 test_b(reg, imm.x_);
1026 return;
1027 }
1028
1029 EnsureSpace ensure_space(this);
1030 // This is not using emit_arith because test doesn't support
1031 // sign-extension of 8-bit operands.
1032 if (reg.is(eax)) {
1033 EMIT(0xA9);
1034 } else {
1035 EMIT(0xF7);
1036 EMIT(0xC0 | reg.code());
1037 }
1038 emit(imm);
1039}
1040
1041
1042void Assembler::test(Register reg, const Operand& op) {
1043 EnsureSpace ensure_space(this);
1044 EMIT(0x85);
1045 emit_operand(reg, op);
1046}
1047
1048
1049void Assembler::test_b(Register reg, const Operand& op) {
1050 CHECK(reg.is_byte_register());
1051 EnsureSpace ensure_space(this);
1052 EMIT(0x84);
1053 emit_operand(reg, op);
1054}
1055
1056
1057void Assembler::test(const Operand& op, const Immediate& imm) {
1058 if (op.is_reg_only()) {
1059 test(op.reg(), imm);
1060 return;
1061 }
1062 if (RelocInfo::IsNone(imm.rmode_) && is_uint8(imm.x_)) {
1063 return test_b(op, imm.x_);
1064 }
1065 EnsureSpace ensure_space(this);
1066 EMIT(0xF7);
1067 emit_operand(eax, op);
1068 emit(imm);
1069}
1070
1071
1072void Assembler::test_b(Register reg, uint8_t imm8) {
1073 EnsureSpace ensure_space(this);
1074 // Only use test against byte for registers that have a byte
1075 // variant: eax, ebx, ecx, and edx.
1076 if (reg.is(eax)) {
1077 EMIT(0xA8);
1078 EMIT(imm8);
1079 } else if (reg.is_byte_register()) {
1080 emit_arith_b(0xF6, 0xC0, reg, imm8);
1081 } else {
1082 EMIT(0xF7);
1083 EMIT(0xC0 | reg.code());
1084 emit(imm8);
1085 }
1086}
1087
1088
1089void Assembler::test_b(const Operand& op, uint8_t imm8) {
1090 if (op.is_reg_only()) {
1091 test_b(op.reg(), imm8);
1092 return;
1093 }
1094 EnsureSpace ensure_space(this);
1095 EMIT(0xF6);
1096 emit_operand(eax, op);
1097 EMIT(imm8);
1098}
1099
1100
1101void Assembler::xor_(Register dst, int32_t imm32) {
1102 EnsureSpace ensure_space(this);
1103 emit_arith(6, Operand(dst), Immediate(imm32));
1104}
1105
1106
1107void Assembler::xor_(Register dst, const Operand& src) {
1108 EnsureSpace ensure_space(this);
1109 EMIT(0x33);
1110 emit_operand(dst, src);
1111}
1112
1113
1114void Assembler::xor_(const Operand& dst, Register src) {
1115 EnsureSpace ensure_space(this);
1116 EMIT(0x31);
1117 emit_operand(src, dst);
1118}
1119
1120
1121void Assembler::xor_(const Operand& dst, const Immediate& x) {
1122 EnsureSpace ensure_space(this);
1123 emit_arith(6, dst, x);
1124}
1125
1126
1127void Assembler::bt(const Operand& dst, Register src) {
1128 EnsureSpace ensure_space(this);
1129 EMIT(0x0F);
1130 EMIT(0xA3);
1131 emit_operand(src, dst);
1132}
1133
1134
1135void Assembler::bts(const Operand& dst, Register src) {
1136 EnsureSpace ensure_space(this);
1137 EMIT(0x0F);
1138 EMIT(0xAB);
1139 emit_operand(src, dst);
1140}
1141
1142
1143void Assembler::bsr(Register dst, const Operand& src) {
1144 EnsureSpace ensure_space(this);
1145 EMIT(0x0F);
1146 EMIT(0xBD);
1147 emit_operand(dst, src);
1148}
1149
1150
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001151void Assembler::bsf(Register dst, const Operand& src) {
1152 EnsureSpace ensure_space(this);
1153 EMIT(0x0F);
1154 EMIT(0xBC);
1155 emit_operand(dst, src);
1156}
1157
1158
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001159void Assembler::hlt() {
1160 EnsureSpace ensure_space(this);
1161 EMIT(0xF4);
1162}
1163
1164
1165void Assembler::int3() {
1166 EnsureSpace ensure_space(this);
1167 EMIT(0xCC);
1168}
1169
1170
1171void Assembler::nop() {
1172 EnsureSpace ensure_space(this);
1173 EMIT(0x90);
1174}
1175
1176
1177void Assembler::ret(int imm16) {
1178 EnsureSpace ensure_space(this);
1179 DCHECK(is_uint16(imm16));
1180 if (imm16 == 0) {
1181 EMIT(0xC3);
1182 } else {
1183 EMIT(0xC2);
1184 EMIT(imm16 & 0xFF);
1185 EMIT((imm16 >> 8) & 0xFF);
1186 }
1187}
1188
1189
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001190void Assembler::ud2() {
1191 EnsureSpace ensure_space(this);
1192 EMIT(0x0F);
1193 EMIT(0x0B);
1194}
1195
1196
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001197// Labels refer to positions in the (to be) generated code.
1198// There are bound, linked, and unused labels.
1199//
1200// Bound labels refer to known positions in the already
1201// generated code. pos() is the position the label refers to.
1202//
1203// Linked labels refer to unknown positions in the code
1204// to be generated; pos() is the position of the 32bit
1205// Displacement of the last instruction using the label.
1206
1207
1208void Assembler::print(Label* L) {
1209 if (L->is_unused()) {
1210 PrintF("unused label\n");
1211 } else if (L->is_bound()) {
1212 PrintF("bound label to %d\n", L->pos());
1213 } else if (L->is_linked()) {
1214 Label l = *L;
1215 PrintF("unbound label");
1216 while (l.is_linked()) {
1217 Displacement disp = disp_at(&l);
1218 PrintF("@ %d ", l.pos());
1219 disp.print();
1220 PrintF("\n");
1221 disp.next(&l);
1222 }
1223 } else {
1224 PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
1225 }
1226}
1227
1228
1229void Assembler::bind_to(Label* L, int pos) {
1230 EnsureSpace ensure_space(this);
1231 DCHECK(0 <= pos && pos <= pc_offset()); // must have a valid binding position
1232 while (L->is_linked()) {
1233 Displacement disp = disp_at(L);
1234 int fixup_pos = L->pos();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001235 if (disp.type() == Displacement::CODE_ABSOLUTE) {
1236 long_at_put(fixup_pos, reinterpret_cast<int>(buffer_ + pos));
1237 internal_reference_positions_.push_back(fixup_pos);
1238 } else if (disp.type() == Displacement::CODE_RELATIVE) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001239 // Relative to Code* heap object pointer.
1240 long_at_put(fixup_pos, pos + Code::kHeaderSize - kHeapObjectTag);
1241 } else {
1242 if (disp.type() == Displacement::UNCONDITIONAL_JUMP) {
1243 DCHECK(byte_at(fixup_pos - 1) == 0xE9); // jmp expected
1244 }
1245 // Relative address, relative to point after address.
1246 int imm32 = pos - (fixup_pos + sizeof(int32_t));
1247 long_at_put(fixup_pos, imm32);
1248 }
1249 disp.next(L);
1250 }
1251 while (L->is_near_linked()) {
1252 int fixup_pos = L->near_link_pos();
1253 int offset_to_next =
1254 static_cast<int>(*reinterpret_cast<int8_t*>(addr_at(fixup_pos)));
1255 DCHECK(offset_to_next <= 0);
1256 // Relative address, relative to point after address.
1257 int disp = pos - fixup_pos - sizeof(int8_t);
1258 CHECK(0 <= disp && disp <= 127);
1259 set_byte_at(fixup_pos, disp);
1260 if (offset_to_next < 0) {
1261 L->link_to(fixup_pos + offset_to_next, Label::kNear);
1262 } else {
1263 L->UnuseNear();
1264 }
1265 }
1266 L->bind_to(pos);
1267}
1268
1269
1270void Assembler::bind(Label* L) {
1271 EnsureSpace ensure_space(this);
1272 DCHECK(!L->is_bound()); // label can only be bound once
1273 bind_to(L, pc_offset());
1274}
1275
1276
1277void Assembler::call(Label* L) {
1278 positions_recorder()->WriteRecordedPositions();
1279 EnsureSpace ensure_space(this);
1280 if (L->is_bound()) {
1281 const int long_size = 5;
1282 int offs = L->pos() - pc_offset();
1283 DCHECK(offs <= 0);
1284 // 1110 1000 #32-bit disp.
1285 EMIT(0xE8);
1286 emit(offs - long_size);
1287 } else {
1288 // 1110 1000 #32-bit disp.
1289 EMIT(0xE8);
1290 emit_disp(L, Displacement::OTHER);
1291 }
1292}
1293
1294
1295void Assembler::call(byte* entry, RelocInfo::Mode rmode) {
1296 positions_recorder()->WriteRecordedPositions();
1297 EnsureSpace ensure_space(this);
1298 DCHECK(!RelocInfo::IsCodeTarget(rmode));
1299 EMIT(0xE8);
1300 if (RelocInfo::IsRuntimeEntry(rmode)) {
1301 emit(reinterpret_cast<uint32_t>(entry), rmode);
1302 } else {
1303 emit(entry - (pc_ + sizeof(int32_t)), rmode);
1304 }
1305}
1306
1307
1308int Assembler::CallSize(const Operand& adr) {
1309 // Call size is 1 (opcode) + adr.len_ (operand).
1310 return 1 + adr.len_;
1311}
1312
1313
1314void Assembler::call(const Operand& adr) {
1315 positions_recorder()->WriteRecordedPositions();
1316 EnsureSpace ensure_space(this);
1317 EMIT(0xFF);
1318 emit_operand(edx, adr);
1319}
1320
1321
1322int Assembler::CallSize(Handle<Code> code, RelocInfo::Mode rmode) {
1323 return 1 /* EMIT */ + sizeof(uint32_t) /* emit */;
1324}
1325
1326
1327void Assembler::call(Handle<Code> code,
1328 RelocInfo::Mode rmode,
1329 TypeFeedbackId ast_id) {
1330 positions_recorder()->WriteRecordedPositions();
1331 EnsureSpace ensure_space(this);
1332 DCHECK(RelocInfo::IsCodeTarget(rmode)
1333 || rmode == RelocInfo::CODE_AGE_SEQUENCE);
1334 EMIT(0xE8);
1335 emit(code, rmode, ast_id);
1336}
1337
1338
1339void Assembler::jmp(Label* L, Label::Distance distance) {
1340 EnsureSpace ensure_space(this);
1341 if (L->is_bound()) {
1342 const int short_size = 2;
1343 const int long_size = 5;
1344 int offs = L->pos() - pc_offset();
1345 DCHECK(offs <= 0);
1346 if (is_int8(offs - short_size)) {
1347 // 1110 1011 #8-bit disp.
1348 EMIT(0xEB);
1349 EMIT((offs - short_size) & 0xFF);
1350 } else {
1351 // 1110 1001 #32-bit disp.
1352 EMIT(0xE9);
1353 emit(offs - long_size);
1354 }
1355 } else if (distance == Label::kNear) {
1356 EMIT(0xEB);
1357 emit_near_disp(L);
1358 } else {
1359 // 1110 1001 #32-bit disp.
1360 EMIT(0xE9);
1361 emit_disp(L, Displacement::UNCONDITIONAL_JUMP);
1362 }
1363}
1364
1365
1366void Assembler::jmp(byte* entry, RelocInfo::Mode rmode) {
1367 EnsureSpace ensure_space(this);
1368 DCHECK(!RelocInfo::IsCodeTarget(rmode));
1369 EMIT(0xE9);
1370 if (RelocInfo::IsRuntimeEntry(rmode)) {
1371 emit(reinterpret_cast<uint32_t>(entry), rmode);
1372 } else {
1373 emit(entry - (pc_ + sizeof(int32_t)), rmode);
1374 }
1375}
1376
1377
1378void Assembler::jmp(const Operand& adr) {
1379 EnsureSpace ensure_space(this);
1380 EMIT(0xFF);
1381 emit_operand(esp, adr);
1382}
1383
1384
1385void Assembler::jmp(Handle<Code> code, RelocInfo::Mode rmode) {
1386 EnsureSpace ensure_space(this);
1387 DCHECK(RelocInfo::IsCodeTarget(rmode));
1388 EMIT(0xE9);
1389 emit(code, rmode);
1390}
1391
1392
1393void Assembler::j(Condition cc, Label* L, Label::Distance distance) {
1394 EnsureSpace ensure_space(this);
1395 DCHECK(0 <= cc && static_cast<int>(cc) < 16);
1396 if (L->is_bound()) {
1397 const int short_size = 2;
1398 const int long_size = 6;
1399 int offs = L->pos() - pc_offset();
1400 DCHECK(offs <= 0);
1401 if (is_int8(offs - short_size)) {
1402 // 0111 tttn #8-bit disp
1403 EMIT(0x70 | cc);
1404 EMIT((offs - short_size) & 0xFF);
1405 } else {
1406 // 0000 1111 1000 tttn #32-bit disp
1407 EMIT(0x0F);
1408 EMIT(0x80 | cc);
1409 emit(offs - long_size);
1410 }
1411 } else if (distance == Label::kNear) {
1412 EMIT(0x70 | cc);
1413 emit_near_disp(L);
1414 } else {
1415 // 0000 1111 1000 tttn #32-bit disp
1416 // Note: could eliminate cond. jumps to this jump if condition
1417 // is the same however, seems to be rather unlikely case.
1418 EMIT(0x0F);
1419 EMIT(0x80 | cc);
1420 emit_disp(L, Displacement::OTHER);
1421 }
1422}
1423
1424
1425void Assembler::j(Condition cc, byte* entry, RelocInfo::Mode rmode) {
1426 EnsureSpace ensure_space(this);
1427 DCHECK((0 <= cc) && (static_cast<int>(cc) < 16));
1428 // 0000 1111 1000 tttn #32-bit disp.
1429 EMIT(0x0F);
1430 EMIT(0x80 | cc);
1431 if (RelocInfo::IsRuntimeEntry(rmode)) {
1432 emit(reinterpret_cast<uint32_t>(entry), rmode);
1433 } else {
1434 emit(entry - (pc_ + sizeof(int32_t)), rmode);
1435 }
1436}
1437
1438
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001439void Assembler::j(Condition cc, Handle<Code> code, RelocInfo::Mode rmode) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001440 EnsureSpace ensure_space(this);
1441 // 0000 1111 1000 tttn #32-bit disp
1442 EMIT(0x0F);
1443 EMIT(0x80 | cc);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001444 emit(code, rmode);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001445}
1446
1447
1448// FPU instructions.
1449
1450void Assembler::fld(int i) {
1451 EnsureSpace ensure_space(this);
1452 emit_farith(0xD9, 0xC0, i);
1453}
1454
1455
1456void Assembler::fstp(int i) {
1457 EnsureSpace ensure_space(this);
1458 emit_farith(0xDD, 0xD8, i);
1459}
1460
1461
1462void Assembler::fld1() {
1463 EnsureSpace ensure_space(this);
1464 EMIT(0xD9);
1465 EMIT(0xE8);
1466}
1467
1468
1469void Assembler::fldpi() {
1470 EnsureSpace ensure_space(this);
1471 EMIT(0xD9);
1472 EMIT(0xEB);
1473}
1474
1475
1476void Assembler::fldz() {
1477 EnsureSpace ensure_space(this);
1478 EMIT(0xD9);
1479 EMIT(0xEE);
1480}
1481
1482
1483void Assembler::fldln2() {
1484 EnsureSpace ensure_space(this);
1485 EMIT(0xD9);
1486 EMIT(0xED);
1487}
1488
1489
1490void Assembler::fld_s(const Operand& adr) {
1491 EnsureSpace ensure_space(this);
1492 EMIT(0xD9);
1493 emit_operand(eax, adr);
1494}
1495
1496
1497void Assembler::fld_d(const Operand& adr) {
1498 EnsureSpace ensure_space(this);
1499 EMIT(0xDD);
1500 emit_operand(eax, adr);
1501}
1502
1503
1504void Assembler::fstp_s(const Operand& adr) {
1505 EnsureSpace ensure_space(this);
1506 EMIT(0xD9);
1507 emit_operand(ebx, adr);
1508}
1509
1510
1511void Assembler::fst_s(const Operand& adr) {
1512 EnsureSpace ensure_space(this);
1513 EMIT(0xD9);
1514 emit_operand(edx, adr);
1515}
1516
1517
1518void Assembler::fldcw(const Operand& adr) {
1519 EnsureSpace ensure_space(this);
1520 EMIT(0xD9);
1521 emit_operand(ebp, adr);
1522}
1523
1524
1525void Assembler::fnstcw(const Operand& adr) {
1526 EnsureSpace ensure_space(this);
1527 EMIT(0xD9);
1528 emit_operand(edi, adr);
1529}
1530
1531
1532void Assembler::fstp_d(const Operand& adr) {
1533 EnsureSpace ensure_space(this);
1534 EMIT(0xDD);
1535 emit_operand(ebx, adr);
1536}
1537
1538
1539void Assembler::fst_d(const Operand& adr) {
1540 EnsureSpace ensure_space(this);
1541 EMIT(0xDD);
1542 emit_operand(edx, adr);
1543}
1544
1545
1546void Assembler::fild_s(const Operand& adr) {
1547 EnsureSpace ensure_space(this);
1548 EMIT(0xDB);
1549 emit_operand(eax, adr);
1550}
1551
1552
1553void Assembler::fild_d(const Operand& adr) {
1554 EnsureSpace ensure_space(this);
1555 EMIT(0xDF);
1556 emit_operand(ebp, adr);
1557}
1558
1559
1560void Assembler::fistp_s(const Operand& adr) {
1561 EnsureSpace ensure_space(this);
1562 EMIT(0xDB);
1563 emit_operand(ebx, adr);
1564}
1565
1566
1567void Assembler::fisttp_s(const Operand& adr) {
1568 DCHECK(IsEnabled(SSE3));
1569 EnsureSpace ensure_space(this);
1570 EMIT(0xDB);
1571 emit_operand(ecx, adr);
1572}
1573
1574
1575void Assembler::fisttp_d(const Operand& adr) {
1576 DCHECK(IsEnabled(SSE3));
1577 EnsureSpace ensure_space(this);
1578 EMIT(0xDD);
1579 emit_operand(ecx, adr);
1580}
1581
1582
1583void Assembler::fist_s(const Operand& adr) {
1584 EnsureSpace ensure_space(this);
1585 EMIT(0xDB);
1586 emit_operand(edx, adr);
1587}
1588
1589
1590void Assembler::fistp_d(const Operand& adr) {
1591 EnsureSpace ensure_space(this);
1592 EMIT(0xDF);
1593 emit_operand(edi, adr);
1594}
1595
1596
1597void Assembler::fabs() {
1598 EnsureSpace ensure_space(this);
1599 EMIT(0xD9);
1600 EMIT(0xE1);
1601}
1602
1603
1604void Assembler::fchs() {
1605 EnsureSpace ensure_space(this);
1606 EMIT(0xD9);
1607 EMIT(0xE0);
1608}
1609
1610
1611void Assembler::fsqrt() {
1612 EnsureSpace ensure_space(this);
1613 EMIT(0xD9);
1614 EMIT(0xFA);
1615}
1616
1617
1618void Assembler::fcos() {
1619 EnsureSpace ensure_space(this);
1620 EMIT(0xD9);
1621 EMIT(0xFF);
1622}
1623
1624
1625void Assembler::fsin() {
1626 EnsureSpace ensure_space(this);
1627 EMIT(0xD9);
1628 EMIT(0xFE);
1629}
1630
1631
1632void Assembler::fptan() {
1633 EnsureSpace ensure_space(this);
1634 EMIT(0xD9);
1635 EMIT(0xF2);
1636}
1637
1638
1639void Assembler::fyl2x() {
1640 EnsureSpace ensure_space(this);
1641 EMIT(0xD9);
1642 EMIT(0xF1);
1643}
1644
1645
1646void Assembler::f2xm1() {
1647 EnsureSpace ensure_space(this);
1648 EMIT(0xD9);
1649 EMIT(0xF0);
1650}
1651
1652
1653void Assembler::fscale() {
1654 EnsureSpace ensure_space(this);
1655 EMIT(0xD9);
1656 EMIT(0xFD);
1657}
1658
1659
1660void Assembler::fninit() {
1661 EnsureSpace ensure_space(this);
1662 EMIT(0xDB);
1663 EMIT(0xE3);
1664}
1665
1666
1667void Assembler::fadd(int i) {
1668 EnsureSpace ensure_space(this);
1669 emit_farith(0xDC, 0xC0, i);
1670}
1671
1672
1673void Assembler::fadd_i(int i) {
1674 EnsureSpace ensure_space(this);
1675 emit_farith(0xD8, 0xC0, i);
1676}
1677
1678
1679void Assembler::fadd_d(const Operand& adr) {
1680 EnsureSpace ensure_space(this);
1681 EMIT(0xDC);
1682 emit_operand(eax, adr);
1683}
1684
1685
1686void Assembler::fsub(int i) {
1687 EnsureSpace ensure_space(this);
1688 emit_farith(0xDC, 0xE8, i);
1689}
1690
1691
1692void Assembler::fsub_i(int i) {
1693 EnsureSpace ensure_space(this);
1694 emit_farith(0xD8, 0xE0, i);
1695}
1696
1697
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001698void Assembler::fsubr_d(const Operand& adr) {
1699 EnsureSpace ensure_space(this);
1700 EMIT(0xDC);
1701 emit_operand(ebp, adr);
1702}
1703
1704
1705void Assembler::fsub_d(const Operand& adr) {
1706 EnsureSpace ensure_space(this);
1707 EMIT(0xDC);
1708 emit_operand(esp, adr);
1709}
1710
1711
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001712void Assembler::fisub_s(const Operand& adr) {
1713 EnsureSpace ensure_space(this);
1714 EMIT(0xDA);
1715 emit_operand(esp, adr);
1716}
1717
1718
1719void Assembler::fmul_i(int i) {
1720 EnsureSpace ensure_space(this);
1721 emit_farith(0xD8, 0xC8, i);
1722}
1723
1724
1725void Assembler::fmul(int i) {
1726 EnsureSpace ensure_space(this);
1727 emit_farith(0xDC, 0xC8, i);
1728}
1729
1730
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001731void Assembler::fmul_d(const Operand& adr) {
1732 EnsureSpace ensure_space(this);
1733 EMIT(0xDC);
1734 emit_operand(ecx, adr);
1735}
1736
1737
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001738void Assembler::fdiv(int i) {
1739 EnsureSpace ensure_space(this);
1740 emit_farith(0xDC, 0xF8, i);
1741}
1742
1743
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001744void Assembler::fdiv_d(const Operand& adr) {
1745 EnsureSpace ensure_space(this);
1746 EMIT(0xDC);
1747 emit_operand(esi, adr);
1748}
1749
1750
1751void Assembler::fdivr_d(const Operand& adr) {
1752 EnsureSpace ensure_space(this);
1753 EMIT(0xDC);
1754 emit_operand(edi, adr);
1755}
1756
1757
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001758void Assembler::fdiv_i(int i) {
1759 EnsureSpace ensure_space(this);
1760 emit_farith(0xD8, 0xF0, i);
1761}
1762
1763
1764void Assembler::faddp(int i) {
1765 EnsureSpace ensure_space(this);
1766 emit_farith(0xDE, 0xC0, i);
1767}
1768
1769
1770void Assembler::fsubp(int i) {
1771 EnsureSpace ensure_space(this);
1772 emit_farith(0xDE, 0xE8, i);
1773}
1774
1775
1776void Assembler::fsubrp(int i) {
1777 EnsureSpace ensure_space(this);
1778 emit_farith(0xDE, 0xE0, i);
1779}
1780
1781
1782void Assembler::fmulp(int i) {
1783 EnsureSpace ensure_space(this);
1784 emit_farith(0xDE, 0xC8, i);
1785}
1786
1787
1788void Assembler::fdivp(int i) {
1789 EnsureSpace ensure_space(this);
1790 emit_farith(0xDE, 0xF8, i);
1791}
1792
1793
1794void Assembler::fprem() {
1795 EnsureSpace ensure_space(this);
1796 EMIT(0xD9);
1797 EMIT(0xF8);
1798}
1799
1800
1801void Assembler::fprem1() {
1802 EnsureSpace ensure_space(this);
1803 EMIT(0xD9);
1804 EMIT(0xF5);
1805}
1806
1807
1808void Assembler::fxch(int i) {
1809 EnsureSpace ensure_space(this);
1810 emit_farith(0xD9, 0xC8, i);
1811}
1812
1813
1814void Assembler::fincstp() {
1815 EnsureSpace ensure_space(this);
1816 EMIT(0xD9);
1817 EMIT(0xF7);
1818}
1819
1820
1821void Assembler::ffree(int i) {
1822 EnsureSpace ensure_space(this);
1823 emit_farith(0xDD, 0xC0, i);
1824}
1825
1826
1827void Assembler::ftst() {
1828 EnsureSpace ensure_space(this);
1829 EMIT(0xD9);
1830 EMIT(0xE4);
1831}
1832
1833
1834void Assembler::fxam() {
1835 EnsureSpace ensure_space(this);
1836 EMIT(0xD9);
1837 EMIT(0xE5);
1838}
1839
1840
1841void Assembler::fucomp(int i) {
1842 EnsureSpace ensure_space(this);
1843 emit_farith(0xDD, 0xE8, i);
1844}
1845
1846
1847void Assembler::fucompp() {
1848 EnsureSpace ensure_space(this);
1849 EMIT(0xDA);
1850 EMIT(0xE9);
1851}
1852
1853
1854void Assembler::fucomi(int i) {
1855 EnsureSpace ensure_space(this);
1856 EMIT(0xDB);
1857 EMIT(0xE8 + i);
1858}
1859
1860
1861void Assembler::fucomip() {
1862 EnsureSpace ensure_space(this);
1863 EMIT(0xDF);
1864 EMIT(0xE9);
1865}
1866
1867
1868void Assembler::fcompp() {
1869 EnsureSpace ensure_space(this);
1870 EMIT(0xDE);
1871 EMIT(0xD9);
1872}
1873
1874
1875void Assembler::fnstsw_ax() {
1876 EnsureSpace ensure_space(this);
1877 EMIT(0xDF);
1878 EMIT(0xE0);
1879}
1880
1881
1882void Assembler::fwait() {
1883 EnsureSpace ensure_space(this);
1884 EMIT(0x9B);
1885}
1886
1887
1888void Assembler::frndint() {
1889 EnsureSpace ensure_space(this);
1890 EMIT(0xD9);
1891 EMIT(0xFC);
1892}
1893
1894
1895void Assembler::fnclex() {
1896 EnsureSpace ensure_space(this);
1897 EMIT(0xDB);
1898 EMIT(0xE2);
1899}
1900
1901
1902void Assembler::fnsave(const Operand& adr) {
1903 EnsureSpace ensure_space(this);
1904 EMIT(0xDD);
1905 emit_operand(esi, adr);
1906}
1907
1908
1909void Assembler::frstor(const Operand& adr) {
1910 EnsureSpace ensure_space(this);
1911 EMIT(0xDD);
1912 emit_operand(esp, adr);
1913}
1914
1915
1916void Assembler::sahf() {
1917 EnsureSpace ensure_space(this);
1918 EMIT(0x9E);
1919}
1920
1921
1922void Assembler::setcc(Condition cc, Register reg) {
1923 DCHECK(reg.is_byte_register());
1924 EnsureSpace ensure_space(this);
1925 EMIT(0x0F);
1926 EMIT(0x90 | cc);
1927 EMIT(0xC0 | reg.code());
1928}
1929
1930
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001931void Assembler::GrowBuffer() {
1932 DCHECK(buffer_overflow());
1933 if (!own_buffer_) FATAL("external code buffer is too small");
1934
1935 // Compute new buffer size.
1936 CodeDesc desc; // the new buffer
1937 desc.buffer_size = 2 * buffer_size_;
1938
1939 // Some internal data structures overflow for very large buffers,
1940 // they must ensure that kMaximalBufferSize is not too large.
1941 if ((desc.buffer_size > kMaximalBufferSize) ||
1942 (desc.buffer_size > isolate()->heap()->MaxOldGenerationSize())) {
1943 V8::FatalProcessOutOfMemory("Assembler::GrowBuffer");
1944 }
1945
1946 // Set up new buffer.
1947 desc.buffer = NewArray<byte>(desc.buffer_size);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001948 desc.origin = this;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001949 desc.instr_size = pc_offset();
1950 desc.reloc_size = (buffer_ + buffer_size_) - (reloc_info_writer.pos());
1951
1952 // Clear the buffer in debug mode. Use 'int3' instructions to make
1953 // sure to get into problems if we ever run uninitialized code.
1954#ifdef DEBUG
1955 memset(desc.buffer, 0xCC, desc.buffer_size);
1956#endif
1957
1958 // Copy the data.
1959 int pc_delta = desc.buffer - buffer_;
1960 int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
1961 MemMove(desc.buffer, buffer_, desc.instr_size);
1962 MemMove(rc_delta + reloc_info_writer.pos(), reloc_info_writer.pos(),
1963 desc.reloc_size);
1964
1965 DeleteArray(buffer_);
1966 buffer_ = desc.buffer;
1967 buffer_size_ = desc.buffer_size;
1968 pc_ += pc_delta;
1969 reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
1970 reloc_info_writer.last_pc() + pc_delta);
1971
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001972 // Relocate internal references.
1973 for (auto pos : internal_reference_positions_) {
1974 int32_t* p = reinterpret_cast<int32_t*>(buffer_ + pos);
1975 *p += pc_delta;
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001976 }
1977
1978 DCHECK(!buffer_overflow());
1979}
1980
1981
1982void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
1983 DCHECK(is_uint8(op1) && is_uint8(op2)); // wrong opcode
1984 DCHECK(is_uint8(imm8));
1985 DCHECK((op1 & 0x01) == 0); // should be 8bit operation
1986 EMIT(op1);
1987 EMIT(op2 | dst.code());
1988 EMIT(imm8);
1989}
1990
1991
1992void Assembler::emit_arith(int sel, Operand dst, const Immediate& x) {
1993 DCHECK((0 <= sel) && (sel <= 7));
1994 Register ireg = { sel };
1995 if (x.is_int8()) {
1996 EMIT(0x83); // using a sign-extended 8-bit immediate.
1997 emit_operand(ireg, dst);
1998 EMIT(x.x_ & 0xFF);
1999 } else if (dst.is_reg(eax)) {
2000 EMIT((sel << 3) | 0x05); // short form if the destination is eax.
2001 emit(x);
2002 } else {
2003 EMIT(0x81); // using a literal 32-bit immediate.
2004 emit_operand(ireg, dst);
2005 emit(x);
2006 }
2007}
2008
2009
2010void Assembler::emit_operand(Register reg, const Operand& adr) {
2011 const unsigned length = adr.len_;
2012 DCHECK(length > 0);
2013
2014 // Emit updated ModRM byte containing the given register.
2015 pc_[0] = (adr.buf_[0] & ~0x38) | (reg.code() << 3);
2016
2017 // Emit the rest of the encoded operand.
2018 for (unsigned i = 1; i < length; i++) pc_[i] = adr.buf_[i];
2019 pc_ += length;
2020
2021 // Emit relocation information if necessary.
2022 if (length >= sizeof(int32_t) && !RelocInfo::IsNone(adr.rmode_)) {
2023 pc_ -= sizeof(int32_t); // pc_ must be *at* disp32
2024 RecordRelocInfo(adr.rmode_);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002025 if (adr.rmode_ == RelocInfo::INTERNAL_REFERENCE) { // Fixup for labels
2026 emit_label(*reinterpret_cast<Label**>(pc_));
2027 } else {
2028 pc_ += sizeof(int32_t);
2029 }
2030 }
2031}
2032
2033
2034void Assembler::emit_label(Label* label) {
2035 if (label->is_bound()) {
2036 internal_reference_positions_.push_back(pc_offset());
2037 emit(reinterpret_cast<uint32_t>(buffer_ + label->pos()));
2038 } else {
2039 emit_disp(label, Displacement::CODE_ABSOLUTE);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002040 }
2041}
2042
2043
2044void Assembler::emit_farith(int b1, int b2, int i) {
2045 DCHECK(is_uint8(b1) && is_uint8(b2)); // wrong opcode
2046 DCHECK(0 <= i && i < 8); // illegal stack offset
2047 EMIT(b1);
2048 EMIT(b2 + i);
2049}
2050
2051
2052void Assembler::db(uint8_t data) {
2053 EnsureSpace ensure_space(this);
2054 EMIT(data);
2055}
2056
2057
2058void Assembler::dd(uint32_t data) {
2059 EnsureSpace ensure_space(this);
2060 emit(data);
2061}
2062
2063
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002064void Assembler::dq(uint64_t data) {
2065 EnsureSpace ensure_space(this);
2066 emit_q(data);
2067}
2068
2069
2070void Assembler::dd(Label* label) {
2071 EnsureSpace ensure_space(this);
2072 RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
2073 emit_label(label);
2074}
2075
2076
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002077void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
2078 DCHECK(!RelocInfo::IsNone(rmode));
2079 // Don't record external references unless the heap will be serialized.
2080 if (rmode == RelocInfo::EXTERNAL_REFERENCE &&
2081 !serializer_enabled() && !emit_debug_code()) {
2082 return;
2083 }
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002084 RelocInfo rinfo(isolate(), pc_, rmode, data, NULL);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002085 reloc_info_writer.Write(&rinfo);
2086}
2087
2088
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002089#ifdef GENERATED_CODE_COVERAGE
2090static FILE* coverage_log = NULL;
2091
2092
2093static void InitCoverageLog() {
2094 char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG");
2095 if (file_name != NULL) {
2096 coverage_log = fopen(file_name, "aw+");
2097 }
2098}
2099
2100
2101void LogGeneratedCodeCoverage(const char* file_line) {
2102 const char* return_address = (&file_line)[-1];
2103 char* push_insn = const_cast<char*>(return_address - 12);
2104 push_insn[0] = 0xeb; // Relative branch insn.
2105 push_insn[1] = 13; // Skip over coverage insns.
2106 if (coverage_log != NULL) {
2107 fprintf(coverage_log, "%s\n", file_line);
2108 fflush(coverage_log);
2109 }
2110}
2111
2112#endif
2113
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002114} // namespace internal
2115} // namespace v8
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002116
2117#endif // V8_TARGET_ARCH_X87