blob: 9ffa9404892aa937e854d4e19ef76e66b0524c98 [file] [log] [blame]
Steve Blocka7e24c12009-10-30 11:49:00 +00001// Copyright 2006-2008 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef V8_SPACES_H_
29#define V8_SPACES_H_
30
31#include "list-inl.h"
32#include "log.h"
33
34namespace v8 {
35namespace internal {
36
37// -----------------------------------------------------------------------------
38// Heap structures:
39//
40// A JS heap consists of a young generation, an old generation, and a large
41// object space. The young generation is divided into two semispaces. A
42// scavenger implements Cheney's copying algorithm. The old generation is
43// separated into a map space and an old object space. The map space contains
44// all (and only) map objects, the rest of old objects go into the old space.
45// The old generation is collected by a mark-sweep-compact collector.
46//
47// The semispaces of the young generation are contiguous. The old and map
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +010048// spaces consists of a list of pages. A page has a page header and an object
49// area. A page size is deliberately chosen as 8K bytes.
50// The first word of a page is an opaque page header that has the
Steve Blocka7e24c12009-10-30 11:49:00 +000051// address of the next page and its ownership information. The second word may
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +010052// have the allocation top address of this page. Heap objects are aligned to the
53// pointer size.
Steve Blocka7e24c12009-10-30 11:49:00 +000054//
55// There is a separate large object space for objects larger than
56// Page::kMaxHeapObjectSize, so that they do not have to move during
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +010057// collection. The large object space is paged. Pages in large object space
58// may be larger than 8K.
Steve Blocka7e24c12009-10-30 11:49:00 +000059//
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +010060// A card marking write barrier is used to keep track of intergenerational
61// references. Old space pages are divided into regions of Page::kRegionSize
62// size. Each region has a corresponding dirty bit in the page header which is
63// set if the region might contain pointers to new space. For details about
64// dirty bits encoding see comments in the Page::GetRegionNumberForAddress()
65// method body.
66//
67// During scavenges and mark-sweep collections we iterate intergenerational
68// pointers without decoding heap object maps so if the page belongs to old
69// pointer space or large object space it is essential to guarantee that
70// the page does not contain any garbage pointers to new space: every pointer
71// aligned word which satisfies the Heap::InNewSpace() predicate must be a
72// pointer to a live heap object in new space. Thus objects in old pointer
73// and large object spaces should have a special layout (e.g. no bare integer
74// fields). This requirement does not apply to map space which is iterated in
75// a special fashion. However we still require pointer fields of dead maps to
76// be cleaned.
77//
78// To enable lazy cleaning of old space pages we use a notion of allocation
79// watermark. Every pointer under watermark is considered to be well formed.
80// Page allocation watermark is not necessarily equal to page allocation top but
81// all alive objects on page should reside under allocation watermark.
82// During scavenge allocation watermark might be bumped and invalid pointers
83// might appear below it. To avoid following them we store a valid watermark
84// into special field in the page header and set a page WATERMARK_INVALIDATED
85// flag. For details see comments in the Page::SetAllocationWatermark() method
86// body.
87//
Steve Blocka7e24c12009-10-30 11:49:00 +000088
89// Some assertion macros used in the debugging mode.
90
Leon Clarkee46be812010-01-19 14:06:41 +000091#define ASSERT_PAGE_ALIGNED(address) \
Steve Blocka7e24c12009-10-30 11:49:00 +000092 ASSERT((OffsetFrom(address) & Page::kPageAlignmentMask) == 0)
93
Leon Clarkee46be812010-01-19 14:06:41 +000094#define ASSERT_OBJECT_ALIGNED(address) \
Steve Blocka7e24c12009-10-30 11:49:00 +000095 ASSERT((OffsetFrom(address) & kObjectAlignmentMask) == 0)
96
Leon Clarkee46be812010-01-19 14:06:41 +000097#define ASSERT_MAP_ALIGNED(address) \
98 ASSERT((OffsetFrom(address) & kMapAlignmentMask) == 0)
99
100#define ASSERT_OBJECT_SIZE(size) \
Steve Blocka7e24c12009-10-30 11:49:00 +0000101 ASSERT((0 < size) && (size <= Page::kMaxHeapObjectSize))
102
Leon Clarkee46be812010-01-19 14:06:41 +0000103#define ASSERT_PAGE_OFFSET(offset) \
104 ASSERT((Page::kObjectStartOffset <= offset) \
Steve Blocka7e24c12009-10-30 11:49:00 +0000105 && (offset <= Page::kPageSize))
106
Leon Clarkee46be812010-01-19 14:06:41 +0000107#define ASSERT_MAP_PAGE_INDEX(index) \
Steve Blocka7e24c12009-10-30 11:49:00 +0000108 ASSERT((0 <= index) && (index <= MapSpace::kMaxMapPageIndex))
109
110
111class PagedSpace;
112class MemoryAllocator;
113class AllocationInfo;
114
115// -----------------------------------------------------------------------------
116// A page normally has 8K bytes. Large object pages may be larger. A page
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100117// address is always aligned to the 8K page size.
Steve Blocka7e24c12009-10-30 11:49:00 +0000118//
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100119// Each page starts with a header of Page::kPageHeaderSize size which contains
120// bookkeeping data.
Steve Blocka7e24c12009-10-30 11:49:00 +0000121//
122// The mark-compact collector transforms a map pointer into a page index and a
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100123// page offset. The exact encoding is described in the comments for
Leon Clarkee46be812010-01-19 14:06:41 +0000124// class MapWord in objects.h.
Steve Blocka7e24c12009-10-30 11:49:00 +0000125//
126// The only way to get a page pointer is by calling factory methods:
127// Page* p = Page::FromAddress(addr); or
128// Page* p = Page::FromAllocationTop(top);
129class Page {
130 public:
131 // Returns the page containing a given address. The address ranges
132 // from [page_addr .. page_addr + kPageSize[
133 //
134 // Note that this function only works for addresses in normal paged
135 // spaces and addresses in the first 8K of large object pages (i.e.,
136 // the start of large objects but not necessarily derived pointers
137 // within them).
138 INLINE(static Page* FromAddress(Address a)) {
139 return reinterpret_cast<Page*>(OffsetFrom(a) & ~kPageAlignmentMask);
140 }
141
142 // Returns the page containing an allocation top. Because an allocation
143 // top address can be the upper bound of the page, we need to subtract
144 // it with kPointerSize first. The address ranges from
145 // [page_addr + kObjectStartOffset .. page_addr + kPageSize].
146 INLINE(static Page* FromAllocationTop(Address top)) {
147 Page* p = FromAddress(top - kPointerSize);
148 ASSERT_PAGE_OFFSET(p->Offset(top));
149 return p;
150 }
151
152 // Returns the start address of this page.
153 Address address() { return reinterpret_cast<Address>(this); }
154
155 // Checks whether this is a valid page address.
156 bool is_valid() { return address() != NULL; }
157
158 // Returns the next page of this page.
159 inline Page* next_page();
160
161 // Return the end of allocation in this page. Undefined for unused pages.
162 inline Address AllocationTop();
163
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100164 // Return the allocation watermark for the page.
165 // For old space pages it is guaranteed that the area under the watermark
166 // does not contain any garbage pointers to new space.
167 inline Address AllocationWatermark();
168
169 // Return the allocation watermark offset from the beginning of the page.
170 inline uint32_t AllocationWatermarkOffset();
171
172 inline void SetAllocationWatermark(Address allocation_watermark);
173
174 inline void SetCachedAllocationWatermark(Address allocation_watermark);
175 inline Address CachedAllocationWatermark();
176
Steve Blocka7e24c12009-10-30 11:49:00 +0000177 // Returns the start address of the object area in this page.
178 Address ObjectAreaStart() { return address() + kObjectStartOffset; }
179
180 // Returns the end address (exclusive) of the object area in this page.
181 Address ObjectAreaEnd() { return address() + Page::kPageSize; }
182
Steve Blocka7e24c12009-10-30 11:49:00 +0000183 // Checks whether an address is page aligned.
184 static bool IsAlignedToPageSize(Address a) {
185 return 0 == (OffsetFrom(a) & kPageAlignmentMask);
186 }
187
Steve Block6ded16b2010-05-10 14:33:55 +0100188 // True if this page was in use before current compaction started.
189 // Result is valid only for pages owned by paged spaces and
190 // only after PagedSpace::PrepareForMarkCompact was called.
191 inline bool WasInUseBeforeMC();
192
193 inline void SetWasInUseBeforeMC(bool was_in_use);
194
Steve Blocka7e24c12009-10-30 11:49:00 +0000195 // True if this page is a large object page.
Steve Block6ded16b2010-05-10 14:33:55 +0100196 inline bool IsLargeObjectPage();
197
198 inline void SetIsLargeObjectPage(bool is_large_object_page);
Steve Blocka7e24c12009-10-30 11:49:00 +0000199
Steve Block791712a2010-08-27 10:21:07 +0100200 inline bool IsPageExecutable();
201
202 inline void SetIsPageExecutable(bool is_page_executable);
203
Steve Blocka7e24c12009-10-30 11:49:00 +0000204 // Returns the offset of a given address to this page.
205 INLINE(int Offset(Address a)) {
Steve Blockd0582a62009-12-15 09:54:21 +0000206 int offset = static_cast<int>(a - address());
Steve Blocka7e24c12009-10-30 11:49:00 +0000207 ASSERT_PAGE_OFFSET(offset);
208 return offset;
209 }
210
211 // Returns the address for a given offset to the this page.
212 Address OffsetToAddress(int offset) {
213 ASSERT_PAGE_OFFSET(offset);
214 return address() + offset;
215 }
216
217 // ---------------------------------------------------------------------
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100218 // Card marking support
Steve Blocka7e24c12009-10-30 11:49:00 +0000219
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100220 static const uint32_t kAllRegionsCleanMarks = 0x0;
221 static const uint32_t kAllRegionsDirtyMarks = 0xFFFFFFFF;
Steve Blocka7e24c12009-10-30 11:49:00 +0000222
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100223 inline uint32_t GetRegionMarks();
224 inline void SetRegionMarks(uint32_t dirty);
Steve Blocka7e24c12009-10-30 11:49:00 +0000225
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100226 inline uint32_t GetRegionMaskForAddress(Address addr);
227 inline uint32_t GetRegionMaskForSpan(Address start, int length_in_bytes);
228 inline int GetRegionNumberForAddress(Address addr);
Steve Blocka7e24c12009-10-30 11:49:00 +0000229
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100230 inline void MarkRegionDirty(Address addr);
231 inline bool IsRegionDirty(Address addr);
Steve Blocka7e24c12009-10-30 11:49:00 +0000232
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100233 inline void ClearRegionMarks(Address start,
234 Address end,
235 bool reaches_limit);
Steve Blocka7e24c12009-10-30 11:49:00 +0000236
Steve Blocka7e24c12009-10-30 11:49:00 +0000237 // Page size in bytes. This must be a multiple of the OS page size.
238 static const int kPageSize = 1 << kPageSizeBits;
239
240 // Page size mask.
241 static const intptr_t kPageAlignmentMask = (1 << kPageSizeBits) - 1;
242
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100243 static const int kPageHeaderSize = kPointerSize + kPointerSize + kIntSize +
244 kIntSize + kPointerSize;
Steve Blocka7e24c12009-10-30 11:49:00 +0000245
246 // The start offset of the object area in a page.
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100247 static const int kObjectStartOffset = MAP_POINTER_ALIGN(kPageHeaderSize);
Steve Blocka7e24c12009-10-30 11:49:00 +0000248
249 // Object area size in bytes.
250 static const int kObjectAreaSize = kPageSize - kObjectStartOffset;
251
252 // Maximum object size that fits in a page.
253 static const int kMaxHeapObjectSize = kObjectAreaSize;
254
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100255 static const int kDirtyFlagOffset = 2 * kPointerSize;
256 static const int kRegionSizeLog2 = 8;
257 static const int kRegionSize = 1 << kRegionSizeLog2;
258 static const intptr_t kRegionAlignmentMask = (kRegionSize - 1);
259
260 STATIC_CHECK(kRegionSize == kPageSize / kBitsPerInt);
261
Steve Block6ded16b2010-05-10 14:33:55 +0100262 enum PageFlag {
Steve Block791712a2010-08-27 10:21:07 +0100263 IS_NORMAL_PAGE = 0,
264 WAS_IN_USE_BEFORE_MC,
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100265
266 // Page allocation watermark was bumped by preallocation during scavenge.
267 // Correct watermark can be retrieved by CachedAllocationWatermark() method
Steve Block791712a2010-08-27 10:21:07 +0100268 WATERMARK_INVALIDATED,
269 IS_EXECUTABLE,
270 NUM_PAGE_FLAGS // Must be last
Steve Block6ded16b2010-05-10 14:33:55 +0100271 };
Steve Block791712a2010-08-27 10:21:07 +0100272 static const int kPageFlagMask = (1 << NUM_PAGE_FLAGS) - 1;
Steve Block6ded16b2010-05-10 14:33:55 +0100273
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100274 // To avoid an additional WATERMARK_INVALIDATED flag clearing pass during
275 // scavenge we just invalidate the watermark on each old space page after
276 // processing it. And then we flip the meaning of the WATERMARK_INVALIDATED
277 // flag at the beginning of the next scavenge and each page becomes marked as
278 // having a valid watermark.
279 //
280 // The following invariant must hold for pages in old pointer and map spaces:
281 // If page is in use then page is marked as having invalid watermark at
282 // the beginning and at the end of any GC.
283 //
284 // This invariant guarantees that after flipping flag meaning at the
285 // beginning of scavenge all pages in use will be marked as having valid
286 // watermark.
287 static inline void FlipMeaningOfInvalidatedWatermarkFlag();
288
289 // Returns true if the page allocation watermark was not altered during
290 // scavenge.
291 inline bool IsWatermarkValid();
292
293 inline void InvalidateWatermark(bool value);
294
Steve Block6ded16b2010-05-10 14:33:55 +0100295 inline bool GetPageFlag(PageFlag flag);
296 inline void SetPageFlag(PageFlag flag, bool value);
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100297 inline void ClearPageFlags();
298
299 inline void ClearGCFields();
300
Steve Block791712a2010-08-27 10:21:07 +0100301 static const int kAllocationWatermarkOffsetShift = WATERMARK_INVALIDATED + 1;
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100302 static const int kAllocationWatermarkOffsetBits = kPageSizeBits + 1;
303 static const uint32_t kAllocationWatermarkOffsetMask =
304 ((1 << kAllocationWatermarkOffsetBits) - 1) <<
305 kAllocationWatermarkOffsetShift;
306
307 static const uint32_t kFlagsMask =
308 ((1 << kAllocationWatermarkOffsetShift) - 1);
309
310 STATIC_CHECK(kBitsPerInt - kAllocationWatermarkOffsetShift >=
311 kAllocationWatermarkOffsetBits);
312
313 // This field contains the meaning of the WATERMARK_INVALIDATED flag.
314 // Instead of clearing this flag from all pages we just flip
315 // its meaning at the beginning of a scavenge.
316 static intptr_t watermark_invalidated_mark_;
Steve Block6ded16b2010-05-10 14:33:55 +0100317
Steve Blocka7e24c12009-10-30 11:49:00 +0000318 //---------------------------------------------------------------------------
319 // Page header description.
320 //
321 // If a page is not in the large object space, the first word,
322 // opaque_header, encodes the next page address (aligned to kPageSize 8K)
323 // and the chunk number (0 ~ 8K-1). Only MemoryAllocator should use
324 // opaque_header. The value range of the opaque_header is [0..kPageSize[,
325 // or [next_page_start, next_page_end[. It cannot point to a valid address
326 // in the current page. If a page is in the large object space, the first
327 // word *may* (if the page start and large object chunk start are the
328 // same) contain the address of the next large object chunk.
329 intptr_t opaque_header;
330
331 // If the page is not in the large object space, the low-order bit of the
332 // second word is set. If the page is in the large object space, the
333 // second word *may* (if the page start and large object chunk start are
334 // the same) contain the large object chunk size. In either case, the
335 // low-order bit for large object pages will be cleared.
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100336 // For normal pages this word is used to store page flags and
337 // offset of allocation top.
338 intptr_t flags_;
Steve Blocka7e24c12009-10-30 11:49:00 +0000339
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100340 // This field contains dirty marks for regions covering the page. Only dirty
341 // regions might contain intergenerational references.
342 // Only 32 dirty marks are supported so for large object pages several regions
343 // might be mapped to a single dirty mark.
344 uint32_t dirty_regions_;
Steve Blocka7e24c12009-10-30 11:49:00 +0000345
346 // The index of the page in its owner space.
347 int mc_page_index;
348
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100349 // During mark-compact collections this field contains the forwarding address
350 // of the first live object in this page.
351 // During scavenge collection this field is used to store allocation watermark
352 // if it is altered during scavenge.
Steve Blocka7e24c12009-10-30 11:49:00 +0000353 Address mc_first_forwarded;
Steve Blocka7e24c12009-10-30 11:49:00 +0000354};
355
356
357// ----------------------------------------------------------------------------
358// Space is the abstract superclass for all allocation spaces.
359class Space : public Malloced {
360 public:
361 Space(AllocationSpace id, Executability executable)
362 : id_(id), executable_(executable) {}
363
364 virtual ~Space() {}
365
366 // Does the space need executable memory?
367 Executability executable() { return executable_; }
368
369 // Identity used in error reporting.
370 AllocationSpace identity() { return id_; }
371
372 virtual int Size() = 0;
373
Steve Block6ded16b2010-05-10 14:33:55 +0100374#ifdef ENABLE_HEAP_PROTECTION
375 // Protect/unprotect the space by marking it read-only/writable.
376 virtual void Protect() = 0;
377 virtual void Unprotect() = 0;
378#endif
379
Steve Blocka7e24c12009-10-30 11:49:00 +0000380#ifdef DEBUG
381 virtual void Print() = 0;
382#endif
383
Leon Clarkee46be812010-01-19 14:06:41 +0000384 // After calling this we can allocate a certain number of bytes using only
385 // linear allocation (with a LinearAllocationScope and an AlwaysAllocateScope)
386 // without using freelists or causing a GC. This is used by partial
387 // snapshots. It returns true of space was reserved or false if a GC is
388 // needed. For paged spaces the space requested must include the space wasted
389 // at the end of each when allocating linearly.
390 virtual bool ReserveSpace(int bytes) = 0;
391
Steve Blocka7e24c12009-10-30 11:49:00 +0000392 private:
393 AllocationSpace id_;
394 Executability executable_;
395};
396
397
398// ----------------------------------------------------------------------------
399// All heap objects containing executable code (code objects) must be allocated
400// from a 2 GB range of memory, so that they can call each other using 32-bit
401// displacements. This happens automatically on 32-bit platforms, where 32-bit
402// displacements cover the entire 4GB virtual address space. On 64-bit
403// platforms, we support this using the CodeRange object, which reserves and
404// manages a range of virtual memory.
405class CodeRange : public AllStatic {
406 public:
407 // Reserves a range of virtual memory, but does not commit any of it.
408 // Can only be called once, at heap initialization time.
409 // Returns false on failure.
410 static bool Setup(const size_t requested_size);
411
412 // Frees the range of virtual memory, and frees the data structures used to
413 // manage it.
414 static void TearDown();
415
416 static bool exists() { return code_range_ != NULL; }
417 static bool contains(Address address) {
418 if (code_range_ == NULL) return false;
419 Address start = static_cast<Address>(code_range_->address());
420 return start <= address && address < start + code_range_->size();
421 }
422
423 // Allocates a chunk of memory from the large-object portion of
424 // the code range. On platforms with no separate code range, should
425 // not be called.
426 static void* AllocateRawMemory(const size_t requested, size_t* allocated);
427 static void FreeRawMemory(void* buf, size_t length);
428
429 private:
430 // The reserved range of virtual memory that all code objects are put in.
431 static VirtualMemory* code_range_;
432 // Plain old data class, just a struct plus a constructor.
433 class FreeBlock {
434 public:
435 FreeBlock(Address start_arg, size_t size_arg)
436 : start(start_arg), size(size_arg) {}
437 FreeBlock(void* start_arg, size_t size_arg)
438 : start(static_cast<Address>(start_arg)), size(size_arg) {}
439
440 Address start;
441 size_t size;
442 };
443
444 // Freed blocks of memory are added to the free list. When the allocation
445 // list is exhausted, the free list is sorted and merged to make the new
446 // allocation list.
447 static List<FreeBlock> free_list_;
448 // Memory is allocated from the free blocks on the allocation list.
449 // The block at current_allocation_block_index_ is the current block.
450 static List<FreeBlock> allocation_list_;
451 static int current_allocation_block_index_;
452
453 // Finds a block on the allocation list that contains at least the
454 // requested amount of memory. If none is found, sorts and merges
455 // the existing free memory blocks, and searches again.
456 // If none can be found, terminates V8 with FatalProcessOutOfMemory.
457 static void GetNextAllocationBlock(size_t requested);
458 // Compares the start addresses of two free blocks.
459 static int CompareFreeBlockAddress(const FreeBlock* left,
460 const FreeBlock* right);
461};
462
463
464// ----------------------------------------------------------------------------
465// A space acquires chunks of memory from the operating system. The memory
466// allocator manages chunks for the paged heap spaces (old space and map
467// space). A paged chunk consists of pages. Pages in a chunk have contiguous
468// addresses and are linked as a list.
469//
470// The allocator keeps an initial chunk which is used for the new space. The
471// leftover regions of the initial chunk are used for the initial chunks of
472// old space and map space if they are big enough to hold at least one page.
473// The allocator assumes that there is one old space and one map space, each
474// expands the space by allocating kPagesPerChunk pages except the last
475// expansion (before running out of space). The first chunk may contain fewer
476// than kPagesPerChunk pages as well.
477//
478// The memory allocator also allocates chunks for the large object space, but
479// they are managed by the space itself. The new space does not expand.
Steve Block6ded16b2010-05-10 14:33:55 +0100480//
481// The fact that pages for paged spaces are allocated and deallocated in chunks
482// induces a constraint on the order of pages in a linked lists. We say that
483// pages are linked in the chunk-order if and only if every two consecutive
484// pages from the same chunk are consecutive in the linked list.
485//
486
Steve Blocka7e24c12009-10-30 11:49:00 +0000487
488class MemoryAllocator : public AllStatic {
489 public:
490 // Initializes its internal bookkeeping structures.
491 // Max capacity of the total space.
492 static bool Setup(int max_capacity);
493
494 // Deletes valid chunks.
495 static void TearDown();
496
497 // Reserves an initial address range of virtual memory to be split between
498 // the two new space semispaces, the old space, and the map space. The
499 // memory is not yet committed or assigned to spaces and split into pages.
500 // The initial chunk is unmapped when the memory allocator is torn down.
501 // This function should only be called when there is not already a reserved
502 // initial chunk (initial_chunk_ should be NULL). It returns the start
503 // address of the initial chunk if successful, with the side effect of
504 // setting the initial chunk, or else NULL if unsuccessful and leaves the
505 // initial chunk NULL.
506 static void* ReserveInitialChunk(const size_t requested);
507
508 // Commits pages from an as-yet-unmanaged block of virtual memory into a
509 // paged space. The block should be part of the initial chunk reserved via
510 // a call to ReserveInitialChunk. The number of pages is always returned in
511 // the output parameter num_pages. This function assumes that the start
512 // address is non-null and that it is big enough to hold at least one
513 // page-aligned page. The call always succeeds, and num_pages is always
514 // greater than zero.
515 static Page* CommitPages(Address start, size_t size, PagedSpace* owner,
516 int* num_pages);
517
518 // Commit a contiguous block of memory from the initial chunk. Assumes that
519 // the address is not NULL, the size is greater than zero, and that the
520 // block is contained in the initial chunk. Returns true if it succeeded
521 // and false otherwise.
522 static bool CommitBlock(Address start, size_t size, Executability executable);
523
Steve Blocka7e24c12009-10-30 11:49:00 +0000524 // Uncommit a contiguous block of memory [start..(start+size)[.
525 // start is not NULL, the size is greater than zero, and the
526 // block is contained in the initial chunk. Returns true if it succeeded
527 // and false otherwise.
528 static bool UncommitBlock(Address start, size_t size);
529
Leon Clarke4515c472010-02-03 11:58:03 +0000530 // Zaps a contiguous block of memory [start..(start+size)[ thus
531 // filling it up with a recognizable non-NULL bit pattern.
532 static void ZapBlock(Address start, size_t size);
533
Steve Blocka7e24c12009-10-30 11:49:00 +0000534 // Attempts to allocate the requested (non-zero) number of pages from the
535 // OS. Fewer pages might be allocated than requested. If it fails to
536 // allocate memory for the OS or cannot allocate a single page, this
537 // function returns an invalid page pointer (NULL). The caller must check
538 // whether the returned page is valid (by calling Page::is_valid()). It is
539 // guaranteed that allocated pages have contiguous addresses. The actual
540 // number of allocated pages is returned in the output parameter
541 // allocated_pages. If the PagedSpace owner is executable and there is
542 // a code range, the pages are allocated from the code range.
543 static Page* AllocatePages(int requested_pages, int* allocated_pages,
544 PagedSpace* owner);
545
Steve Block6ded16b2010-05-10 14:33:55 +0100546 // Frees pages from a given page and after. Requires pages to be
547 // linked in chunk-order (see comment for class).
548 // If 'p' is the first page of a chunk, pages from 'p' are freed
549 // and this function returns an invalid page pointer.
550 // Otherwise, the function searches a page after 'p' that is
551 // the first page of a chunk. Pages after the found page
552 // are freed and the function returns 'p'.
Steve Blocka7e24c12009-10-30 11:49:00 +0000553 static Page* FreePages(Page* p);
554
Steve Block6ded16b2010-05-10 14:33:55 +0100555 // Frees all pages owned by given space.
556 static void FreeAllPages(PagedSpace* space);
557
Steve Blocka7e24c12009-10-30 11:49:00 +0000558 // Allocates and frees raw memory of certain size.
559 // These are just thin wrappers around OS::Allocate and OS::Free,
560 // but keep track of allocated bytes as part of heap.
561 // If the flag is EXECUTABLE and a code range exists, the requested
562 // memory is allocated from the code range. If a code range exists
563 // and the freed memory is in it, the code range manages the freed memory.
564 static void* AllocateRawMemory(const size_t requested,
565 size_t* allocated,
566 Executability executable);
Steve Block791712a2010-08-27 10:21:07 +0100567 static void FreeRawMemory(void* buf,
568 size_t length,
569 Executability executable);
Iain Merrick9ac36c92010-09-13 15:29:50 +0100570 static void PerformAllocationCallback(ObjectSpace space,
571 AllocationAction action,
572 size_t size);
573
574 static void AddMemoryAllocationCallback(MemoryAllocationCallback callback,
575 ObjectSpace space,
576 AllocationAction action);
577 static void RemoveMemoryAllocationCallback(
578 MemoryAllocationCallback callback);
579 static bool MemoryAllocationCallbackRegistered(
580 MemoryAllocationCallback callback);
Steve Blocka7e24c12009-10-30 11:49:00 +0000581
582 // Returns the maximum available bytes of heaps.
583 static int Available() { return capacity_ < size_ ? 0 : capacity_ - size_; }
584
585 // Returns allocated spaces in bytes.
586 static int Size() { return size_; }
587
Steve Block791712a2010-08-27 10:21:07 +0100588 // Returns allocated executable spaces in bytes.
589 static int SizeExecutable() { return size_executable_; }
590
Steve Blocka7e24c12009-10-30 11:49:00 +0000591 // Returns maximum available bytes that the old space can have.
592 static int MaxAvailable() {
593 return (Available() / Page::kPageSize) * Page::kObjectAreaSize;
594 }
595
596 // Links two pages.
597 static inline void SetNextPage(Page* prev, Page* next);
598
599 // Returns the next page of a given page.
600 static inline Page* GetNextPage(Page* p);
601
602 // Checks whether a page belongs to a space.
603 static inline bool IsPageInSpace(Page* p, PagedSpace* space);
604
605 // Returns the space that owns the given page.
606 static inline PagedSpace* PageOwner(Page* page);
607
608 // Finds the first/last page in the same chunk as a given page.
609 static Page* FindFirstPageInSameChunk(Page* p);
610 static Page* FindLastPageInSameChunk(Page* p);
611
Steve Block6ded16b2010-05-10 14:33:55 +0100612 // Relinks list of pages owned by space to make it chunk-ordered.
613 // Returns new first and last pages of space.
614 // Also returns last page in relinked list which has WasInUsedBeforeMC
615 // flag set.
616 static void RelinkPageListInChunkOrder(PagedSpace* space,
617 Page** first_page,
618 Page** last_page,
619 Page** last_page_in_use);
620
Steve Blocka7e24c12009-10-30 11:49:00 +0000621#ifdef ENABLE_HEAP_PROTECTION
622 // Protect/unprotect a block of memory by marking it read-only/writable.
623 static inline void Protect(Address start, size_t size);
624 static inline void Unprotect(Address start, size_t size,
625 Executability executable);
626
627 // Protect/unprotect a chunk given a page in the chunk.
628 static inline void ProtectChunkFromPage(Page* page);
629 static inline void UnprotectChunkFromPage(Page* page);
630#endif
631
632#ifdef DEBUG
633 // Reports statistic info of the space.
634 static void ReportStatistics();
635#endif
636
637 // Due to encoding limitation, we can only have 8K chunks.
Leon Clarkee46be812010-01-19 14:06:41 +0000638 static const int kMaxNofChunks = 1 << kPageSizeBits;
Steve Blocka7e24c12009-10-30 11:49:00 +0000639 // If a chunk has at least 16 pages, the maximum heap size is about
640 // 8K * 8K * 16 = 1G bytes.
641#ifdef V8_TARGET_ARCH_X64
642 static const int kPagesPerChunk = 32;
643#else
644 static const int kPagesPerChunk = 16;
645#endif
646 static const int kChunkSize = kPagesPerChunk * Page::kPageSize;
647
648 private:
649 // Maximum space size in bytes.
650 static int capacity_;
651
652 // Allocated space size in bytes.
653 static int size_;
Steve Block791712a2010-08-27 10:21:07 +0100654 // Allocated executable space size in bytes.
655 static int size_executable_;
Steve Blocka7e24c12009-10-30 11:49:00 +0000656
Iain Merrick9ac36c92010-09-13 15:29:50 +0100657 struct MemoryAllocationCallbackRegistration {
658 MemoryAllocationCallbackRegistration(MemoryAllocationCallback callback,
659 ObjectSpace space,
660 AllocationAction action)
661 : callback(callback), space(space), action(action) {
662 }
663 MemoryAllocationCallback callback;
664 ObjectSpace space;
665 AllocationAction action;
666 };
667 // A List of callback that are triggered when memory is allocated or free'd
668 static List<MemoryAllocationCallbackRegistration>
669 memory_allocation_callbacks_;
670
Steve Blocka7e24c12009-10-30 11:49:00 +0000671 // The initial chunk of virtual memory.
672 static VirtualMemory* initial_chunk_;
673
674 // Allocated chunk info: chunk start address, chunk size, and owning space.
675 class ChunkInfo BASE_EMBEDDED {
676 public:
Iain Merrick9ac36c92010-09-13 15:29:50 +0100677 ChunkInfo() : address_(NULL),
678 size_(0),
679 owner_(NULL),
680 executable_(NOT_EXECUTABLE) {}
681 inline void init(Address a, size_t s, PagedSpace* o);
Steve Blocka7e24c12009-10-30 11:49:00 +0000682 Address address() { return address_; }
683 size_t size() { return size_; }
684 PagedSpace* owner() { return owner_; }
Iain Merrick9ac36c92010-09-13 15:29:50 +0100685 // We save executability of the owner to allow using it
686 // when collecting stats after the owner has been destroyed.
687 Executability executable() const { return executable_; }
Steve Blocka7e24c12009-10-30 11:49:00 +0000688
689 private:
690 Address address_;
691 size_t size_;
692 PagedSpace* owner_;
Iain Merrick9ac36c92010-09-13 15:29:50 +0100693 Executability executable_;
Steve Blocka7e24c12009-10-30 11:49:00 +0000694 };
695
696 // Chunks_, free_chunk_ids_ and top_ act as a stack of free chunk ids.
697 static List<ChunkInfo> chunks_;
698 static List<int> free_chunk_ids_;
699 static int max_nof_chunks_;
700 static int top_;
701
702 // Push/pop a free chunk id onto/from the stack.
703 static void Push(int free_chunk_id);
704 static int Pop();
705 static bool OutOfChunkIds() { return top_ == 0; }
706
707 // Frees a chunk.
708 static void DeleteChunk(int chunk_id);
709
710 // Basic check whether a chunk id is in the valid range.
711 static inline bool IsValidChunkId(int chunk_id);
712
713 // Checks whether a chunk id identifies an allocated chunk.
714 static inline bool IsValidChunk(int chunk_id);
715
716 // Returns the chunk id that a page belongs to.
717 static inline int GetChunkId(Page* p);
718
719 // True if the address lies in the initial chunk.
720 static inline bool InInitialChunk(Address address);
721
722 // Initializes pages in a chunk. Returns the first page address.
723 // This function and GetChunkId() are provided for the mark-compact
724 // collector to rebuild page headers in the from space, which is
725 // used as a marking stack and its page headers are destroyed.
726 static Page* InitializePagesInChunk(int chunk_id, int pages_in_chunk,
727 PagedSpace* owner);
Steve Block6ded16b2010-05-10 14:33:55 +0100728
729 static Page* RelinkPagesInChunk(int chunk_id,
730 Address chunk_start,
731 size_t chunk_size,
732 Page* prev,
733 Page** last_page_in_use);
Steve Blocka7e24c12009-10-30 11:49:00 +0000734};
735
736
737// -----------------------------------------------------------------------------
738// Interface for heap object iterator to be implemented by all object space
739// object iterators.
740//
Leon Clarked91b9f72010-01-27 17:25:45 +0000741// NOTE: The space specific object iterators also implements the own next()
742// method which is used to avoid using virtual functions
Steve Blocka7e24c12009-10-30 11:49:00 +0000743// iterating a specific space.
744
745class ObjectIterator : public Malloced {
746 public:
747 virtual ~ObjectIterator() { }
748
Steve Blocka7e24c12009-10-30 11:49:00 +0000749 virtual HeapObject* next_object() = 0;
750};
751
752
753// -----------------------------------------------------------------------------
754// Heap object iterator in new/old/map spaces.
755//
756// A HeapObjectIterator iterates objects from a given address to the
757// top of a space. The given address must be below the current
758// allocation pointer (space top). There are some caveats.
759//
760// (1) If the space top changes upward during iteration (because of
761// allocating new objects), the iterator does not iterate objects
762// above the original space top. The caller must create a new
763// iterator starting from the old top in order to visit these new
764// objects.
765//
766// (2) If new objects are allocated below the original allocation top
767// (e.g., free-list allocation in paged spaces), the new objects
768// may or may not be iterated depending on their position with
769// respect to the current point of iteration.
770//
771// (3) The space top should not change downward during iteration,
772// otherwise the iterator will return not-necessarily-valid
773// objects.
774
775class HeapObjectIterator: public ObjectIterator {
776 public:
777 // Creates a new object iterator in a given space. If a start
778 // address is not given, the iterator starts from the space bottom.
779 // If the size function is not given, the iterator calls the default
780 // Object::Size().
781 explicit HeapObjectIterator(PagedSpace* space);
782 HeapObjectIterator(PagedSpace* space, HeapObjectCallback size_func);
783 HeapObjectIterator(PagedSpace* space, Address start);
784 HeapObjectIterator(PagedSpace* space,
785 Address start,
786 HeapObjectCallback size_func);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100787 HeapObjectIterator(Page* page, HeapObjectCallback size_func);
Steve Blocka7e24c12009-10-30 11:49:00 +0000788
Leon Clarked91b9f72010-01-27 17:25:45 +0000789 inline HeapObject* next() {
790 return (cur_addr_ < cur_limit_) ? FromCurrentPage() : FromNextPage();
791 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000792
793 // implementation of ObjectIterator.
Steve Blocka7e24c12009-10-30 11:49:00 +0000794 virtual HeapObject* next_object() { return next(); }
795
796 private:
797 Address cur_addr_; // current iteration point
798 Address end_addr_; // end iteration point
799 Address cur_limit_; // current page limit
800 HeapObjectCallback size_func_; // size function
801 Page* end_page_; // caches the page of the end address
802
Leon Clarked91b9f72010-01-27 17:25:45 +0000803 HeapObject* FromCurrentPage() {
804 ASSERT(cur_addr_ < cur_limit_);
805
806 HeapObject* obj = HeapObject::FromAddress(cur_addr_);
807 int obj_size = (size_func_ == NULL) ? obj->Size() : size_func_(obj);
808 ASSERT_OBJECT_SIZE(obj_size);
809
810 cur_addr_ += obj_size;
811 ASSERT(cur_addr_ <= cur_limit_);
812
813 return obj;
814 }
815
816 // Slow path of next, goes into the next page.
817 HeapObject* FromNextPage();
Steve Blocka7e24c12009-10-30 11:49:00 +0000818
819 // Initializes fields.
820 void Initialize(Address start, Address end, HeapObjectCallback size_func);
821
822#ifdef DEBUG
823 // Verifies whether fields have valid values.
824 void Verify();
825#endif
826};
827
828
829// -----------------------------------------------------------------------------
830// A PageIterator iterates the pages in a paged space.
831//
832// The PageIterator class provides three modes for iterating pages in a space:
833// PAGES_IN_USE iterates pages containing allocated objects.
834// PAGES_USED_BY_MC iterates pages that hold relocated objects during a
835// mark-compact collection.
836// ALL_PAGES iterates all pages in the space.
837//
838// There are some caveats.
839//
840// (1) If the space expands during iteration, new pages will not be
841// returned by the iterator in any mode.
842//
843// (2) If new objects are allocated during iteration, they will appear
844// in pages returned by the iterator. Allocation may cause the
845// allocation pointer or MC allocation pointer in the last page to
846// change between constructing the iterator and iterating the last
847// page.
848//
849// (3) The space should not shrink during iteration, otherwise the
850// iterator will return deallocated pages.
851
852class PageIterator BASE_EMBEDDED {
853 public:
854 enum Mode {
855 PAGES_IN_USE,
856 PAGES_USED_BY_MC,
857 ALL_PAGES
858 };
859
860 PageIterator(PagedSpace* space, Mode mode);
861
862 inline bool has_next();
863 inline Page* next();
864
865 private:
866 PagedSpace* space_;
867 Page* prev_page_; // Previous page returned.
868 Page* stop_page_; // Page to stop at (last page returned by the iterator).
869};
870
871
872// -----------------------------------------------------------------------------
873// A space has a list of pages. The next page can be accessed via
874// Page::next_page() call. The next page of the last page is an
875// invalid page pointer. A space can expand and shrink dynamically.
876
877// An abstraction of allocation and relocation pointers in a page-structured
878// space.
879class AllocationInfo {
880 public:
881 Address top; // current allocation top
882 Address limit; // current allocation limit
883
884#ifdef DEBUG
885 bool VerifyPagedAllocation() {
886 return (Page::FromAllocationTop(top) == Page::FromAllocationTop(limit))
887 && (top <= limit);
888 }
889#endif
890};
891
892
893// An abstraction of the accounting statistics of a page-structured space.
894// The 'capacity' of a space is the number of object-area bytes (ie, not
895// including page bookkeeping structures) currently in the space. The 'size'
896// of a space is the number of allocated bytes, the 'waste' in the space is
897// the number of bytes that are not allocated and not available to
898// allocation without reorganizing the space via a GC (eg, small blocks due
899// to internal fragmentation, top of page areas in map space), and the bytes
900// 'available' is the number of unallocated bytes that are not waste. The
901// capacity is the sum of size, waste, and available.
902//
903// The stats are only set by functions that ensure they stay balanced. These
904// functions increase or decrease one of the non-capacity stats in
905// conjunction with capacity, or else they always balance increases and
906// decreases to the non-capacity stats.
907class AllocationStats BASE_EMBEDDED {
908 public:
909 AllocationStats() { Clear(); }
910
911 // Zero out all the allocation statistics (ie, no capacity).
912 void Clear() {
913 capacity_ = 0;
914 available_ = 0;
915 size_ = 0;
916 waste_ = 0;
917 }
918
919 // Reset the allocation statistics (ie, available = capacity with no
920 // wasted or allocated bytes).
921 void Reset() {
922 available_ = capacity_;
923 size_ = 0;
924 waste_ = 0;
925 }
926
927 // Accessors for the allocation statistics.
928 int Capacity() { return capacity_; }
929 int Available() { return available_; }
930 int Size() { return size_; }
931 int Waste() { return waste_; }
932
933 // Grow the space by adding available bytes.
934 void ExpandSpace(int size_in_bytes) {
935 capacity_ += size_in_bytes;
936 available_ += size_in_bytes;
937 }
938
939 // Shrink the space by removing available bytes.
940 void ShrinkSpace(int size_in_bytes) {
941 capacity_ -= size_in_bytes;
942 available_ -= size_in_bytes;
943 }
944
945 // Allocate from available bytes (available -> size).
946 void AllocateBytes(int size_in_bytes) {
947 available_ -= size_in_bytes;
948 size_ += size_in_bytes;
949 }
950
951 // Free allocated bytes, making them available (size -> available).
952 void DeallocateBytes(int size_in_bytes) {
953 size_ -= size_in_bytes;
954 available_ += size_in_bytes;
955 }
956
957 // Waste free bytes (available -> waste).
958 void WasteBytes(int size_in_bytes) {
959 available_ -= size_in_bytes;
960 waste_ += size_in_bytes;
961 }
962
963 // Consider the wasted bytes to be allocated, as they contain filler
964 // objects (waste -> size).
965 void FillWastedBytes(int size_in_bytes) {
966 waste_ -= size_in_bytes;
967 size_ += size_in_bytes;
968 }
969
970 private:
971 int capacity_;
972 int available_;
973 int size_;
974 int waste_;
975};
976
977
978class PagedSpace : public Space {
979 public:
980 // Creates a space with a maximum capacity, and an id.
981 PagedSpace(int max_capacity, AllocationSpace id, Executability executable);
982
983 virtual ~PagedSpace() {}
984
985 // Set up the space using the given address range of virtual memory (from
986 // the memory allocator's initial chunk) if possible. If the block of
987 // addresses is not big enough to contain a single page-aligned page, a
988 // fresh chunk will be allocated.
989 bool Setup(Address start, size_t size);
990
991 // Returns true if the space has been successfully set up and not
992 // subsequently torn down.
993 bool HasBeenSetup();
994
995 // Cleans up the space, frees all pages in this space except those belonging
996 // to the initial chunk, uncommits addresses in the initial chunk.
997 void TearDown();
998
999 // Checks whether an object/address is in this space.
1000 inline bool Contains(Address a);
1001 bool Contains(HeapObject* o) { return Contains(o->address()); }
1002
1003 // Given an address occupied by a live object, return that object if it is
1004 // in this space, or Failure::Exception() if it is not. The implementation
1005 // iterates over objects in the page containing the address, the cost is
1006 // linear in the number of objects in the page. It may be slow.
1007 Object* FindObject(Address addr);
1008
1009 // Checks whether page is currently in use by this space.
1010 bool IsUsed(Page* page);
1011
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001012 void MarkAllPagesClean();
Steve Blocka7e24c12009-10-30 11:49:00 +00001013
1014 // Prepares for a mark-compact GC.
Steve Block6ded16b2010-05-10 14:33:55 +01001015 virtual void PrepareForMarkCompact(bool will_compact);
Steve Blocka7e24c12009-10-30 11:49:00 +00001016
Steve Block6ded16b2010-05-10 14:33:55 +01001017 // The top of allocation in a page in this space. Undefined if page is unused.
1018 Address PageAllocationTop(Page* page) {
1019 return page == TopPageOf(allocation_info_) ? top()
1020 : PageAllocationLimit(page);
1021 }
1022
1023 // The limit of allocation for a page in this space.
1024 virtual Address PageAllocationLimit(Page* page) = 0;
Steve Blocka7e24c12009-10-30 11:49:00 +00001025
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001026 void FlushTopPageWatermark() {
1027 AllocationTopPage()->SetCachedAllocationWatermark(top());
1028 AllocationTopPage()->InvalidateWatermark(true);
1029 }
1030
Steve Blocka7e24c12009-10-30 11:49:00 +00001031 // Current capacity without growing (Size() + Available() + Waste()).
1032 int Capacity() { return accounting_stats_.Capacity(); }
1033
Steve Block3ce2e202009-11-05 08:53:23 +00001034 // Total amount of memory committed for this space. For paged
1035 // spaces this equals the capacity.
1036 int CommittedMemory() { return Capacity(); }
1037
Steve Blocka7e24c12009-10-30 11:49:00 +00001038 // Available bytes without growing.
1039 int Available() { return accounting_stats_.Available(); }
1040
1041 // Allocated bytes in this space.
1042 virtual int Size() { return accounting_stats_.Size(); }
1043
1044 // Wasted bytes due to fragmentation and not recoverable until the
1045 // next GC of this space.
1046 int Waste() { return accounting_stats_.Waste(); }
1047
1048 // Returns the address of the first object in this space.
1049 Address bottom() { return first_page_->ObjectAreaStart(); }
1050
1051 // Returns the allocation pointer in this space.
1052 Address top() { return allocation_info_.top; }
1053
1054 // Allocate the requested number of bytes in the space if possible, return a
1055 // failure object if not.
1056 inline Object* AllocateRaw(int size_in_bytes);
1057
1058 // Allocate the requested number of bytes for relocation during mark-compact
1059 // collection.
1060 inline Object* MCAllocateRaw(int size_in_bytes);
1061
Leon Clarkee46be812010-01-19 14:06:41 +00001062 virtual bool ReserveSpace(int bytes);
1063
1064 // Used by ReserveSpace.
1065 virtual void PutRestOfCurrentPageOnFreeList(Page* current_page) = 0;
Steve Blocka7e24c12009-10-30 11:49:00 +00001066
Steve Block6ded16b2010-05-10 14:33:55 +01001067 // Free all pages in range from prev (exclusive) to last (inclusive).
1068 // Freed pages are moved to the end of page list.
1069 void FreePages(Page* prev, Page* last);
1070
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001071 // Deallocates a block.
1072 virtual void DeallocateBlock(Address start,
1073 int size_in_bytes,
1074 bool add_to_freelist) = 0;
1075
Steve Block6ded16b2010-05-10 14:33:55 +01001076 // Set space allocation info.
1077 void SetTop(Address top) {
1078 allocation_info_.top = top;
1079 allocation_info_.limit = PageAllocationLimit(Page::FromAllocationTop(top));
1080 }
1081
Steve Blocka7e24c12009-10-30 11:49:00 +00001082 // ---------------------------------------------------------------------------
1083 // Mark-compact collection support functions
1084
1085 // Set the relocation point to the beginning of the space.
1086 void MCResetRelocationInfo();
1087
1088 // Writes relocation info to the top page.
1089 void MCWriteRelocationInfoToPage() {
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001090 TopPageOf(mc_forwarding_info_)->
1091 SetAllocationWatermark(mc_forwarding_info_.top);
Steve Blocka7e24c12009-10-30 11:49:00 +00001092 }
1093
1094 // Computes the offset of a given address in this space to the beginning
1095 // of the space.
1096 int MCSpaceOffsetForAddress(Address addr);
1097
1098 // Updates the allocation pointer to the relocation top after a mark-compact
1099 // collection.
1100 virtual void MCCommitRelocationInfo() = 0;
1101
1102 // Releases half of unused pages.
1103 void Shrink();
1104
1105 // Ensures that the capacity is at least 'capacity'. Returns false on failure.
1106 bool EnsureCapacity(int capacity);
1107
1108#ifdef ENABLE_HEAP_PROTECTION
1109 // Protect/unprotect the space by marking it read-only/writable.
1110 void Protect();
1111 void Unprotect();
1112#endif
1113
1114#ifdef DEBUG
1115 // Print meta info and objects in this space.
1116 virtual void Print();
1117
1118 // Verify integrity of this space.
1119 virtual void Verify(ObjectVisitor* visitor);
1120
1121 // Overridden by subclasses to verify space-specific object
1122 // properties (e.g., only maps or free-list nodes are in map space).
1123 virtual void VerifyObject(HeapObject* obj) {}
1124
1125 // Report code object related statistics
1126 void CollectCodeStatistics();
1127 static void ReportCodeStatistics();
1128 static void ResetCodeStatistics();
1129#endif
1130
Steve Block6ded16b2010-05-10 14:33:55 +01001131 // Returns the page of the allocation pointer.
1132 Page* AllocationTopPage() { return TopPageOf(allocation_info_); }
1133
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001134 void RelinkPageListInChunkOrder(bool deallocate_blocks);
1135
Steve Blocka7e24c12009-10-30 11:49:00 +00001136 protected:
1137 // Maximum capacity of this space.
1138 int max_capacity_;
1139
1140 // Accounting information for this space.
1141 AllocationStats accounting_stats_;
1142
1143 // The first page in this space.
1144 Page* first_page_;
1145
1146 // The last page in this space. Initially set in Setup, updated in
1147 // Expand and Shrink.
1148 Page* last_page_;
1149
Steve Block6ded16b2010-05-10 14:33:55 +01001150 // True if pages owned by this space are linked in chunk-order.
1151 // See comment for class MemoryAllocator for definition of chunk-order.
1152 bool page_list_is_chunk_ordered_;
1153
Steve Blocka7e24c12009-10-30 11:49:00 +00001154 // Normal allocation information.
1155 AllocationInfo allocation_info_;
1156
1157 // Relocation information during mark-compact collections.
1158 AllocationInfo mc_forwarding_info_;
1159
1160 // Bytes of each page that cannot be allocated. Possibly non-zero
1161 // for pages in spaces with only fixed-size objects. Always zero
1162 // for pages in spaces with variable sized objects (those pages are
1163 // padded with free-list nodes).
1164 int page_extra_;
1165
1166 // Sets allocation pointer to a page bottom.
1167 static void SetAllocationInfo(AllocationInfo* alloc_info, Page* p);
1168
1169 // Returns the top page specified by an allocation info structure.
1170 static Page* TopPageOf(AllocationInfo alloc_info) {
1171 return Page::FromAllocationTop(alloc_info.limit);
1172 }
1173
Leon Clarked91b9f72010-01-27 17:25:45 +00001174 int CountPagesToTop() {
1175 Page* p = Page::FromAllocationTop(allocation_info_.top);
1176 PageIterator it(this, PageIterator::ALL_PAGES);
1177 int counter = 1;
1178 while (it.has_next()) {
1179 if (it.next() == p) return counter;
1180 counter++;
1181 }
1182 UNREACHABLE();
1183 return -1;
1184 }
1185
Steve Blocka7e24c12009-10-30 11:49:00 +00001186 // Expands the space by allocating a fixed number of pages. Returns false if
1187 // it cannot allocate requested number of pages from OS. Newly allocated
1188 // pages are append to the last_page;
1189 bool Expand(Page* last_page);
1190
1191 // Generic fast case allocation function that tries linear allocation in
1192 // the top page of 'alloc_info'. Returns NULL on failure.
1193 inline HeapObject* AllocateLinearly(AllocationInfo* alloc_info,
1194 int size_in_bytes);
1195
1196 // During normal allocation or deserialization, roll to the next page in
1197 // the space (there is assumed to be one) and allocate there. This
1198 // function is space-dependent.
1199 virtual HeapObject* AllocateInNextPage(Page* current_page,
1200 int size_in_bytes) = 0;
1201
1202 // Slow path of AllocateRaw. This function is space-dependent.
1203 virtual HeapObject* SlowAllocateRaw(int size_in_bytes) = 0;
1204
1205 // Slow path of MCAllocateRaw.
1206 HeapObject* SlowMCAllocateRaw(int size_in_bytes);
1207
1208#ifdef DEBUG
Leon Clarkee46be812010-01-19 14:06:41 +00001209 // Returns the number of total pages in this space.
1210 int CountTotalPages();
Steve Blocka7e24c12009-10-30 11:49:00 +00001211#endif
1212 private:
Steve Blocka7e24c12009-10-30 11:49:00 +00001213
1214 // Returns a pointer to the page of the relocation pointer.
1215 Page* MCRelocationTopPage() { return TopPageOf(mc_forwarding_info_); }
1216
Steve Blocka7e24c12009-10-30 11:49:00 +00001217 friend class PageIterator;
1218};
1219
1220
1221#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
1222class NumberAndSizeInfo BASE_EMBEDDED {
1223 public:
1224 NumberAndSizeInfo() : number_(0), bytes_(0) {}
1225
1226 int number() const { return number_; }
1227 void increment_number(int num) { number_ += num; }
1228
1229 int bytes() const { return bytes_; }
1230 void increment_bytes(int size) { bytes_ += size; }
1231
1232 void clear() {
1233 number_ = 0;
1234 bytes_ = 0;
1235 }
1236
1237 private:
1238 int number_;
1239 int bytes_;
1240};
1241
1242
1243// HistogramInfo class for recording a single "bar" of a histogram. This
1244// class is used for collecting statistics to print to stdout (when compiled
1245// with DEBUG) or to the log file (when compiled with
1246// ENABLE_LOGGING_AND_PROFILING).
1247class HistogramInfo: public NumberAndSizeInfo {
1248 public:
1249 HistogramInfo() : NumberAndSizeInfo() {}
1250
1251 const char* name() { return name_; }
1252 void set_name(const char* name) { name_ = name; }
1253
1254 private:
1255 const char* name_;
1256};
1257#endif
1258
1259
1260// -----------------------------------------------------------------------------
1261// SemiSpace in young generation
1262//
1263// A semispace is a contiguous chunk of memory. The mark-compact collector
1264// uses the memory in the from space as a marking stack when tracing live
1265// objects.
1266
1267class SemiSpace : public Space {
1268 public:
1269 // Constructor.
1270 SemiSpace() :Space(NEW_SPACE, NOT_EXECUTABLE) {
1271 start_ = NULL;
1272 age_mark_ = NULL;
1273 }
1274
1275 // Sets up the semispace using the given chunk.
1276 bool Setup(Address start, int initial_capacity, int maximum_capacity);
1277
1278 // Tear down the space. Heap memory was not allocated by the space, so it
1279 // is not deallocated here.
1280 void TearDown();
1281
1282 // True if the space has been set up but not torn down.
1283 bool HasBeenSetup() { return start_ != NULL; }
1284
1285 // Grow the size of the semispace by committing extra virtual memory.
1286 // Assumes that the caller has checked that the semispace has not reached
1287 // its maximum capacity (and thus there is space available in the reserved
1288 // address range to grow).
1289 bool Grow();
1290
1291 // Grow the semispace to the new capacity. The new capacity
1292 // requested must be larger than the current capacity.
1293 bool GrowTo(int new_capacity);
1294
1295 // Shrinks the semispace to the new capacity. The new capacity
1296 // requested must be more than the amount of used memory in the
1297 // semispace and less than the current capacity.
1298 bool ShrinkTo(int new_capacity);
1299
1300 // Returns the start address of the space.
1301 Address low() { return start_; }
1302 // Returns one past the end address of the space.
1303 Address high() { return low() + capacity_; }
1304
1305 // Age mark accessors.
1306 Address age_mark() { return age_mark_; }
1307 void set_age_mark(Address mark) { age_mark_ = mark; }
1308
1309 // True if the address is in the address range of this semispace (not
1310 // necessarily below the allocation pointer).
1311 bool Contains(Address a) {
1312 return (reinterpret_cast<uintptr_t>(a) & address_mask_)
1313 == reinterpret_cast<uintptr_t>(start_);
1314 }
1315
1316 // True if the object is a heap object in the address range of this
1317 // semispace (not necessarily below the allocation pointer).
1318 bool Contains(Object* o) {
1319 return (reinterpret_cast<uintptr_t>(o) & object_mask_) == object_expected_;
1320 }
1321
1322 // The offset of an address from the beginning of the space.
Steve Blockd0582a62009-12-15 09:54:21 +00001323 int SpaceOffsetForAddress(Address addr) {
1324 return static_cast<int>(addr - low());
1325 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001326
Leon Clarkee46be812010-01-19 14:06:41 +00001327 // If we don't have these here then SemiSpace will be abstract. However
1328 // they should never be called.
Steve Blocka7e24c12009-10-30 11:49:00 +00001329 virtual int Size() {
1330 UNREACHABLE();
1331 return 0;
1332 }
1333
Leon Clarkee46be812010-01-19 14:06:41 +00001334 virtual bool ReserveSpace(int bytes) {
1335 UNREACHABLE();
1336 return false;
1337 }
1338
Steve Blocka7e24c12009-10-30 11:49:00 +00001339 bool is_committed() { return committed_; }
1340 bool Commit();
1341 bool Uncommit();
1342
Steve Block6ded16b2010-05-10 14:33:55 +01001343#ifdef ENABLE_HEAP_PROTECTION
1344 // Protect/unprotect the space by marking it read-only/writable.
1345 virtual void Protect() {}
1346 virtual void Unprotect() {}
1347#endif
1348
Steve Blocka7e24c12009-10-30 11:49:00 +00001349#ifdef DEBUG
1350 virtual void Print();
1351 virtual void Verify();
1352#endif
1353
1354 // Returns the current capacity of the semi space.
1355 int Capacity() { return capacity_; }
1356
1357 // Returns the maximum capacity of the semi space.
1358 int MaximumCapacity() { return maximum_capacity_; }
1359
1360 // Returns the initial capacity of the semi space.
1361 int InitialCapacity() { return initial_capacity_; }
1362
1363 private:
1364 // The current and maximum capacity of the space.
1365 int capacity_;
1366 int maximum_capacity_;
1367 int initial_capacity_;
1368
1369 // The start address of the space.
1370 Address start_;
1371 // Used to govern object promotion during mark-compact collection.
1372 Address age_mark_;
1373
1374 // Masks and comparison values to test for containment in this semispace.
1375 uintptr_t address_mask_;
1376 uintptr_t object_mask_;
1377 uintptr_t object_expected_;
1378
1379 bool committed_;
1380
1381 public:
1382 TRACK_MEMORY("SemiSpace")
1383};
1384
1385
1386// A SemiSpaceIterator is an ObjectIterator that iterates over the active
1387// semispace of the heap's new space. It iterates over the objects in the
1388// semispace from a given start address (defaulting to the bottom of the
1389// semispace) to the top of the semispace. New objects allocated after the
1390// iterator is created are not iterated.
1391class SemiSpaceIterator : public ObjectIterator {
1392 public:
1393 // Create an iterator over the objects in the given space. If no start
1394 // address is given, the iterator starts from the bottom of the space. If
1395 // no size function is given, the iterator calls Object::Size().
1396 explicit SemiSpaceIterator(NewSpace* space);
1397 SemiSpaceIterator(NewSpace* space, HeapObjectCallback size_func);
1398 SemiSpaceIterator(NewSpace* space, Address start);
1399
Steve Blocka7e24c12009-10-30 11:49:00 +00001400 HeapObject* next() {
Leon Clarked91b9f72010-01-27 17:25:45 +00001401 if (current_ == limit_) return NULL;
Steve Blocka7e24c12009-10-30 11:49:00 +00001402
1403 HeapObject* object = HeapObject::FromAddress(current_);
1404 int size = (size_func_ == NULL) ? object->Size() : size_func_(object);
1405
1406 current_ += size;
1407 return object;
1408 }
1409
1410 // Implementation of the ObjectIterator functions.
Steve Blocka7e24c12009-10-30 11:49:00 +00001411 virtual HeapObject* next_object() { return next(); }
1412
1413 private:
1414 void Initialize(NewSpace* space, Address start, Address end,
1415 HeapObjectCallback size_func);
1416
1417 // The semispace.
1418 SemiSpace* space_;
1419 // The current iteration point.
1420 Address current_;
1421 // The end of iteration.
1422 Address limit_;
1423 // The callback function.
1424 HeapObjectCallback size_func_;
1425};
1426
1427
1428// -----------------------------------------------------------------------------
1429// The young generation space.
1430//
1431// The new space consists of a contiguous pair of semispaces. It simply
1432// forwards most functions to the appropriate semispace.
1433
1434class NewSpace : public Space {
1435 public:
1436 // Constructor.
1437 NewSpace() : Space(NEW_SPACE, NOT_EXECUTABLE) {}
1438
1439 // Sets up the new space using the given chunk.
1440 bool Setup(Address start, int size);
1441
1442 // Tears down the space. Heap memory was not allocated by the space, so it
1443 // is not deallocated here.
1444 void TearDown();
1445
1446 // True if the space has been set up but not torn down.
1447 bool HasBeenSetup() {
1448 return to_space_.HasBeenSetup() && from_space_.HasBeenSetup();
1449 }
1450
1451 // Flip the pair of spaces.
1452 void Flip();
1453
1454 // Grow the capacity of the semispaces. Assumes that they are not at
1455 // their maximum capacity.
1456 void Grow();
1457
1458 // Shrink the capacity of the semispaces.
1459 void Shrink();
1460
1461 // True if the address or object lies in the address range of either
1462 // semispace (not necessarily below the allocation pointer).
1463 bool Contains(Address a) {
1464 return (reinterpret_cast<uintptr_t>(a) & address_mask_)
1465 == reinterpret_cast<uintptr_t>(start_);
1466 }
1467 bool Contains(Object* o) {
1468 return (reinterpret_cast<uintptr_t>(o) & object_mask_) == object_expected_;
1469 }
1470
1471 // Return the allocated bytes in the active semispace.
Steve Blockd0582a62009-12-15 09:54:21 +00001472 virtual int Size() { return static_cast<int>(top() - bottom()); }
Steve Block3ce2e202009-11-05 08:53:23 +00001473
Steve Blocka7e24c12009-10-30 11:49:00 +00001474 // Return the current capacity of a semispace.
1475 int Capacity() {
1476 ASSERT(to_space_.Capacity() == from_space_.Capacity());
1477 return to_space_.Capacity();
1478 }
Steve Block3ce2e202009-11-05 08:53:23 +00001479
1480 // Return the total amount of memory committed for new space.
1481 int CommittedMemory() {
1482 if (from_space_.is_committed()) return 2 * Capacity();
1483 return Capacity();
1484 }
1485
Steve Blocka7e24c12009-10-30 11:49:00 +00001486 // Return the available bytes without growing in the active semispace.
1487 int Available() { return Capacity() - Size(); }
1488
1489 // Return the maximum capacity of a semispace.
1490 int MaximumCapacity() {
1491 ASSERT(to_space_.MaximumCapacity() == from_space_.MaximumCapacity());
1492 return to_space_.MaximumCapacity();
1493 }
1494
1495 // Returns the initial capacity of a semispace.
1496 int InitialCapacity() {
1497 ASSERT(to_space_.InitialCapacity() == from_space_.InitialCapacity());
1498 return to_space_.InitialCapacity();
1499 }
1500
1501 // Return the address of the allocation pointer in the active semispace.
1502 Address top() { return allocation_info_.top; }
1503 // Return the address of the first object in the active semispace.
1504 Address bottom() { return to_space_.low(); }
1505
1506 // Get the age mark of the inactive semispace.
1507 Address age_mark() { return from_space_.age_mark(); }
1508 // Set the age mark in the active semispace.
1509 void set_age_mark(Address mark) { to_space_.set_age_mark(mark); }
1510
1511 // The start address of the space and a bit mask. Anding an address in the
1512 // new space with the mask will result in the start address.
1513 Address start() { return start_; }
1514 uintptr_t mask() { return address_mask_; }
1515
1516 // The allocation top and limit addresses.
1517 Address* allocation_top_address() { return &allocation_info_.top; }
1518 Address* allocation_limit_address() { return &allocation_info_.limit; }
1519
1520 Object* AllocateRaw(int size_in_bytes) {
1521 return AllocateRawInternal(size_in_bytes, &allocation_info_);
1522 }
1523
1524 // Allocate the requested number of bytes for relocation during mark-compact
1525 // collection.
1526 Object* MCAllocateRaw(int size_in_bytes) {
1527 return AllocateRawInternal(size_in_bytes, &mc_forwarding_info_);
1528 }
1529
1530 // Reset the allocation pointer to the beginning of the active semispace.
1531 void ResetAllocationInfo();
1532 // Reset the reloction pointer to the bottom of the inactive semispace in
1533 // preparation for mark-compact collection.
1534 void MCResetRelocationInfo();
1535 // Update the allocation pointer in the active semispace after a
1536 // mark-compact collection.
1537 void MCCommitRelocationInfo();
1538
1539 // Get the extent of the inactive semispace (for use as a marking stack).
1540 Address FromSpaceLow() { return from_space_.low(); }
1541 Address FromSpaceHigh() { return from_space_.high(); }
1542
1543 // Get the extent of the active semispace (to sweep newly copied objects
1544 // during a scavenge collection).
1545 Address ToSpaceLow() { return to_space_.low(); }
1546 Address ToSpaceHigh() { return to_space_.high(); }
1547
1548 // Offsets from the beginning of the semispaces.
1549 int ToSpaceOffsetForAddress(Address a) {
1550 return to_space_.SpaceOffsetForAddress(a);
1551 }
1552 int FromSpaceOffsetForAddress(Address a) {
1553 return from_space_.SpaceOffsetForAddress(a);
1554 }
1555
1556 // True if the object is a heap object in the address range of the
1557 // respective semispace (not necessarily below the allocation pointer of the
1558 // semispace).
1559 bool ToSpaceContains(Object* o) { return to_space_.Contains(o); }
1560 bool FromSpaceContains(Object* o) { return from_space_.Contains(o); }
1561
1562 bool ToSpaceContains(Address a) { return to_space_.Contains(a); }
1563 bool FromSpaceContains(Address a) { return from_space_.Contains(a); }
1564
Leon Clarkee46be812010-01-19 14:06:41 +00001565 virtual bool ReserveSpace(int bytes);
1566
Steve Blocka7e24c12009-10-30 11:49:00 +00001567#ifdef ENABLE_HEAP_PROTECTION
1568 // Protect/unprotect the space by marking it read-only/writable.
1569 virtual void Protect();
1570 virtual void Unprotect();
1571#endif
1572
1573#ifdef DEBUG
1574 // Verify the active semispace.
1575 virtual void Verify();
1576 // Print the active semispace.
1577 virtual void Print() { to_space_.Print(); }
1578#endif
1579
1580#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
1581 // Iterates the active semispace to collect statistics.
1582 void CollectStatistics();
1583 // Reports previously collected statistics of the active semispace.
1584 void ReportStatistics();
1585 // Clears previously collected statistics.
1586 void ClearHistograms();
1587
1588 // Record the allocation or promotion of a heap object. Note that we don't
1589 // record every single allocation, but only those that happen in the
1590 // to space during a scavenge GC.
1591 void RecordAllocation(HeapObject* obj);
1592 void RecordPromotion(HeapObject* obj);
1593#endif
1594
1595 // Return whether the operation succeded.
1596 bool CommitFromSpaceIfNeeded() {
1597 if (from_space_.is_committed()) return true;
1598 return from_space_.Commit();
1599 }
1600
1601 bool UncommitFromSpace() {
1602 if (!from_space_.is_committed()) return true;
1603 return from_space_.Uncommit();
1604 }
1605
1606 private:
1607 // The semispaces.
1608 SemiSpace to_space_;
1609 SemiSpace from_space_;
1610
1611 // Start address and bit mask for containment testing.
1612 Address start_;
1613 uintptr_t address_mask_;
1614 uintptr_t object_mask_;
1615 uintptr_t object_expected_;
1616
1617 // Allocation pointer and limit for normal allocation and allocation during
1618 // mark-compact collection.
1619 AllocationInfo allocation_info_;
1620 AllocationInfo mc_forwarding_info_;
1621
1622#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
1623 HistogramInfo* allocated_histogram_;
1624 HistogramInfo* promoted_histogram_;
1625#endif
1626
1627 // Implementation of AllocateRaw and MCAllocateRaw.
1628 inline Object* AllocateRawInternal(int size_in_bytes,
1629 AllocationInfo* alloc_info);
1630
1631 friend class SemiSpaceIterator;
1632
1633 public:
1634 TRACK_MEMORY("NewSpace")
1635};
1636
1637
1638// -----------------------------------------------------------------------------
1639// Free lists for old object spaces
1640//
1641// Free-list nodes are free blocks in the heap. They look like heap objects
1642// (free-list node pointers have the heap object tag, and they have a map like
1643// a heap object). They have a size and a next pointer. The next pointer is
1644// the raw address of the next free list node (or NULL).
1645class FreeListNode: public HeapObject {
1646 public:
1647 // Obtain a free-list node from a raw address. This is not a cast because
1648 // it does not check nor require that the first word at the address is a map
1649 // pointer.
1650 static FreeListNode* FromAddress(Address address) {
1651 return reinterpret_cast<FreeListNode*>(HeapObject::FromAddress(address));
1652 }
1653
Steve Block3ce2e202009-11-05 08:53:23 +00001654 static inline bool IsFreeListNode(HeapObject* object);
1655
Steve Blocka7e24c12009-10-30 11:49:00 +00001656 // Set the size in bytes, which can be read with HeapObject::Size(). This
1657 // function also writes a map to the first word of the block so that it
1658 // looks like a heap object to the garbage collector and heap iteration
1659 // functions.
1660 void set_size(int size_in_bytes);
1661
1662 // Accessors for the next field.
1663 inline Address next();
1664 inline void set_next(Address next);
1665
1666 private:
1667 static const int kNextOffset = POINTER_SIZE_ALIGN(ByteArray::kHeaderSize);
1668
1669 DISALLOW_IMPLICIT_CONSTRUCTORS(FreeListNode);
1670};
1671
1672
1673// The free list for the old space.
1674class OldSpaceFreeList BASE_EMBEDDED {
1675 public:
1676 explicit OldSpaceFreeList(AllocationSpace owner);
1677
1678 // Clear the free list.
1679 void Reset();
1680
1681 // Return the number of bytes available on the free list.
1682 int available() { return available_; }
1683
1684 // Place a node on the free list. The block of size 'size_in_bytes'
1685 // starting at 'start' is placed on the free list. The return value is the
1686 // number of bytes that have been lost due to internal fragmentation by
1687 // freeing the block. Bookkeeping information will be written to the block,
1688 // ie, its contents will be destroyed. The start address should be word
1689 // aligned, and the size should be a non-zero multiple of the word size.
1690 int Free(Address start, int size_in_bytes);
1691
1692 // Allocate a block of size 'size_in_bytes' from the free list. The block
1693 // is unitialized. A failure is returned if no block is available. The
1694 // number of bytes lost to fragmentation is returned in the output parameter
1695 // 'wasted_bytes'. The size should be a non-zero multiple of the word size.
1696 Object* Allocate(int size_in_bytes, int* wasted_bytes);
1697
1698 private:
1699 // The size range of blocks, in bytes. (Smaller allocations are allowed, but
1700 // will always result in waste.)
1701 static const int kMinBlockSize = 2 * kPointerSize;
1702 static const int kMaxBlockSize = Page::kMaxHeapObjectSize;
1703
1704 // The identity of the owning space, for building allocation Failure
1705 // objects.
1706 AllocationSpace owner_;
1707
1708 // Total available bytes in all blocks on this free list.
1709 int available_;
1710
1711 // Blocks are put on exact free lists in an array, indexed by size in words.
1712 // The available sizes are kept in an increasingly ordered list. Entries
1713 // corresponding to sizes < kMinBlockSize always have an empty free list
1714 // (but index kHead is used for the head of the size list).
1715 struct SizeNode {
1716 // Address of the head FreeListNode of the implied block size or NULL.
1717 Address head_node_;
1718 // Size (words) of the next larger available size if head_node_ != NULL.
1719 int next_size_;
1720 };
1721 static const int kFreeListsLength = kMaxBlockSize / kPointerSize + 1;
1722 SizeNode free_[kFreeListsLength];
1723
1724 // Sentinel elements for the size list. Real elements are in ]kHead..kEnd[.
1725 static const int kHead = kMinBlockSize / kPointerSize - 1;
1726 static const int kEnd = kMaxInt;
1727
1728 // We keep a "finger" in the size list to speed up a common pattern:
1729 // repeated requests for the same or increasing sizes.
1730 int finger_;
1731
1732 // Starting from *prev, find and return the smallest size >= index (words),
1733 // or kEnd. Update *prev to be the largest size < index, or kHead.
1734 int FindSize(int index, int* prev) {
1735 int cur = free_[*prev].next_size_;
1736 while (cur < index) {
1737 *prev = cur;
1738 cur = free_[cur].next_size_;
1739 }
1740 return cur;
1741 }
1742
1743 // Remove an existing element from the size list.
1744 void RemoveSize(int index) {
1745 int prev = kHead;
1746 int cur = FindSize(index, &prev);
1747 ASSERT(cur == index);
1748 free_[prev].next_size_ = free_[cur].next_size_;
1749 finger_ = prev;
1750 }
1751
1752 // Insert a new element into the size list.
1753 void InsertSize(int index) {
1754 int prev = kHead;
1755 int cur = FindSize(index, &prev);
1756 ASSERT(cur != index);
1757 free_[prev].next_size_ = index;
1758 free_[index].next_size_ = cur;
1759 }
1760
1761 // The size list is not updated during a sequence of calls to Free, but is
1762 // rebuilt before the next allocation.
1763 void RebuildSizeList();
1764 bool needs_rebuild_;
1765
1766#ifdef DEBUG
1767 // Does this free list contain a free block located at the address of 'node'?
1768 bool Contains(FreeListNode* node);
1769#endif
1770
1771 DISALLOW_COPY_AND_ASSIGN(OldSpaceFreeList);
1772};
1773
1774
1775// The free list for the map space.
1776class FixedSizeFreeList BASE_EMBEDDED {
1777 public:
1778 FixedSizeFreeList(AllocationSpace owner, int object_size);
1779
1780 // Clear the free list.
1781 void Reset();
1782
1783 // Return the number of bytes available on the free list.
1784 int available() { return available_; }
1785
1786 // Place a node on the free list. The block starting at 'start' (assumed to
1787 // have size object_size_) is placed on the free list. Bookkeeping
1788 // information will be written to the block, ie, its contents will be
1789 // destroyed. The start address should be word aligned.
1790 void Free(Address start);
1791
1792 // Allocate a fixed sized block from the free list. The block is unitialized.
1793 // A failure is returned if no block is available.
1794 Object* Allocate();
1795
1796 private:
1797 // Available bytes on the free list.
1798 int available_;
1799
1800 // The head of the free list.
1801 Address head_;
1802
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001803 // The tail of the free list.
1804 Address tail_;
1805
Steve Blocka7e24c12009-10-30 11:49:00 +00001806 // The identity of the owning space, for building allocation Failure
1807 // objects.
1808 AllocationSpace owner_;
1809
1810 // The size of the objects in this space.
1811 int object_size_;
1812
1813 DISALLOW_COPY_AND_ASSIGN(FixedSizeFreeList);
1814};
1815
1816
1817// -----------------------------------------------------------------------------
1818// Old object space (excluding map objects)
1819
1820class OldSpace : public PagedSpace {
1821 public:
1822 // Creates an old space object with a given maximum capacity.
1823 // The constructor does not allocate pages from OS.
1824 explicit OldSpace(int max_capacity,
1825 AllocationSpace id,
1826 Executability executable)
1827 : PagedSpace(max_capacity, id, executable), free_list_(id) {
1828 page_extra_ = 0;
1829 }
1830
1831 // The bytes available on the free list (ie, not above the linear allocation
1832 // pointer).
1833 int AvailableFree() { return free_list_.available(); }
1834
Steve Block6ded16b2010-05-10 14:33:55 +01001835 // The limit of allocation for a page in this space.
1836 virtual Address PageAllocationLimit(Page* page) {
1837 return page->ObjectAreaEnd();
Steve Blocka7e24c12009-10-30 11:49:00 +00001838 }
1839
1840 // Give a block of memory to the space's free list. It might be added to
1841 // the free list or accounted as waste.
Steve Block6ded16b2010-05-10 14:33:55 +01001842 // If add_to_freelist is false then just accounting stats are updated and
1843 // no attempt to add area to free list is made.
1844 void Free(Address start, int size_in_bytes, bool add_to_freelist) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001845 accounting_stats_.DeallocateBytes(size_in_bytes);
Steve Block6ded16b2010-05-10 14:33:55 +01001846
1847 if (add_to_freelist) {
1848 int wasted_bytes = free_list_.Free(start, size_in_bytes);
1849 accounting_stats_.WasteBytes(wasted_bytes);
1850 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001851 }
1852
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001853 virtual void DeallocateBlock(Address start,
1854 int size_in_bytes,
1855 bool add_to_freelist);
1856
Steve Blocka7e24c12009-10-30 11:49:00 +00001857 // Prepare for full garbage collection. Resets the relocation pointer and
1858 // clears the free list.
1859 virtual void PrepareForMarkCompact(bool will_compact);
1860
1861 // Updates the allocation pointer to the relocation top after a mark-compact
1862 // collection.
1863 virtual void MCCommitRelocationInfo();
1864
Leon Clarkee46be812010-01-19 14:06:41 +00001865 virtual void PutRestOfCurrentPageOnFreeList(Page* current_page);
1866
Steve Blocka7e24c12009-10-30 11:49:00 +00001867#ifdef DEBUG
1868 // Reports statistics for the space
1869 void ReportStatistics();
Steve Blocka7e24c12009-10-30 11:49:00 +00001870#endif
1871
1872 protected:
1873 // Virtual function in the superclass. Slow path of AllocateRaw.
1874 HeapObject* SlowAllocateRaw(int size_in_bytes);
1875
1876 // Virtual function in the superclass. Allocate linearly at the start of
1877 // the page after current_page (there is assumed to be one).
1878 HeapObject* AllocateInNextPage(Page* current_page, int size_in_bytes);
1879
1880 private:
1881 // The space's free list.
1882 OldSpaceFreeList free_list_;
1883
1884 public:
1885 TRACK_MEMORY("OldSpace")
1886};
1887
1888
1889// -----------------------------------------------------------------------------
1890// Old space for objects of a fixed size
1891
1892class FixedSpace : public PagedSpace {
1893 public:
1894 FixedSpace(int max_capacity,
1895 AllocationSpace id,
1896 int object_size_in_bytes,
1897 const char* name)
1898 : PagedSpace(max_capacity, id, NOT_EXECUTABLE),
1899 object_size_in_bytes_(object_size_in_bytes),
1900 name_(name),
1901 free_list_(id, object_size_in_bytes) {
1902 page_extra_ = Page::kObjectAreaSize % object_size_in_bytes;
1903 }
1904
Steve Block6ded16b2010-05-10 14:33:55 +01001905 // The limit of allocation for a page in this space.
1906 virtual Address PageAllocationLimit(Page* page) {
1907 return page->ObjectAreaEnd() - page_extra_;
Steve Blocka7e24c12009-10-30 11:49:00 +00001908 }
1909
1910 int object_size_in_bytes() { return object_size_in_bytes_; }
1911
1912 // Give a fixed sized block of memory to the space's free list.
Steve Block6ded16b2010-05-10 14:33:55 +01001913 // If add_to_freelist is false then just accounting stats are updated and
1914 // no attempt to add area to free list is made.
1915 void Free(Address start, bool add_to_freelist) {
1916 if (add_to_freelist) {
1917 free_list_.Free(start);
1918 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001919 accounting_stats_.DeallocateBytes(object_size_in_bytes_);
1920 }
1921
1922 // Prepares for a mark-compact GC.
1923 virtual void PrepareForMarkCompact(bool will_compact);
1924
1925 // Updates the allocation pointer to the relocation top after a mark-compact
1926 // collection.
1927 virtual void MCCommitRelocationInfo();
1928
Leon Clarkee46be812010-01-19 14:06:41 +00001929 virtual void PutRestOfCurrentPageOnFreeList(Page* current_page);
1930
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001931 virtual void DeallocateBlock(Address start,
1932 int size_in_bytes,
1933 bool add_to_freelist);
Steve Blocka7e24c12009-10-30 11:49:00 +00001934#ifdef DEBUG
1935 // Reports statistic info of the space
1936 void ReportStatistics();
Steve Blocka7e24c12009-10-30 11:49:00 +00001937#endif
1938
1939 protected:
1940 // Virtual function in the superclass. Slow path of AllocateRaw.
1941 HeapObject* SlowAllocateRaw(int size_in_bytes);
1942
1943 // Virtual function in the superclass. Allocate linearly at the start of
1944 // the page after current_page (there is assumed to be one).
1945 HeapObject* AllocateInNextPage(Page* current_page, int size_in_bytes);
1946
Leon Clarkee46be812010-01-19 14:06:41 +00001947 void ResetFreeList() {
1948 free_list_.Reset();
1949 }
1950
Steve Blocka7e24c12009-10-30 11:49:00 +00001951 private:
1952 // The size of objects in this space.
1953 int object_size_in_bytes_;
1954
1955 // The name of this space.
1956 const char* name_;
1957
1958 // The space's free list.
1959 FixedSizeFreeList free_list_;
1960};
1961
1962
1963// -----------------------------------------------------------------------------
1964// Old space for all map objects
1965
1966class MapSpace : public FixedSpace {
1967 public:
1968 // Creates a map space object with a maximum capacity.
Leon Clarked91b9f72010-01-27 17:25:45 +00001969 MapSpace(int max_capacity, int max_map_space_pages, AllocationSpace id)
1970 : FixedSpace(max_capacity, id, Map::kSize, "map"),
1971 max_map_space_pages_(max_map_space_pages) {
1972 ASSERT(max_map_space_pages < kMaxMapPageIndex);
1973 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001974
1975 // Prepares for a mark-compact GC.
1976 virtual void PrepareForMarkCompact(bool will_compact);
1977
1978 // Given an index, returns the page address.
1979 Address PageAddress(int page_index) { return page_addresses_[page_index]; }
1980
Leon Clarked91b9f72010-01-27 17:25:45 +00001981 static const int kMaxMapPageIndex = 1 << MapWord::kMapPageIndexBits;
Steve Blocka7e24c12009-10-30 11:49:00 +00001982
Leon Clarkee46be812010-01-19 14:06:41 +00001983 // Are map pointers encodable into map word?
1984 bool MapPointersEncodable() {
1985 if (!FLAG_use_big_map_space) {
Leon Clarked91b9f72010-01-27 17:25:45 +00001986 ASSERT(CountPagesToTop() <= kMaxMapPageIndex);
Leon Clarkee46be812010-01-19 14:06:41 +00001987 return true;
1988 }
Leon Clarked91b9f72010-01-27 17:25:45 +00001989 return CountPagesToTop() <= max_map_space_pages_;
Leon Clarkee46be812010-01-19 14:06:41 +00001990 }
1991
1992 // Should be called after forced sweep to find out if map space needs
1993 // compaction.
1994 bool NeedsCompaction(int live_maps) {
Leon Clarked91b9f72010-01-27 17:25:45 +00001995 return !MapPointersEncodable() && live_maps <= CompactionThreshold();
Leon Clarkee46be812010-01-19 14:06:41 +00001996 }
1997
1998 Address TopAfterCompaction(int live_maps) {
1999 ASSERT(NeedsCompaction(live_maps));
2000
2001 int pages_left = live_maps / kMapsPerPage;
2002 PageIterator it(this, PageIterator::ALL_PAGES);
2003 while (pages_left-- > 0) {
2004 ASSERT(it.has_next());
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002005 it.next()->SetRegionMarks(Page::kAllRegionsCleanMarks);
Leon Clarkee46be812010-01-19 14:06:41 +00002006 }
2007 ASSERT(it.has_next());
2008 Page* top_page = it.next();
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002009 top_page->SetRegionMarks(Page::kAllRegionsCleanMarks);
Leon Clarkee46be812010-01-19 14:06:41 +00002010 ASSERT(top_page->is_valid());
2011
2012 int offset = live_maps % kMapsPerPage * Map::kSize;
2013 Address top = top_page->ObjectAreaStart() + offset;
2014 ASSERT(top < top_page->ObjectAreaEnd());
2015 ASSERT(Contains(top));
2016
2017 return top;
2018 }
2019
2020 void FinishCompaction(Address new_top, int live_maps) {
2021 Page* top_page = Page::FromAddress(new_top);
2022 ASSERT(top_page->is_valid());
2023
2024 SetAllocationInfo(&allocation_info_, top_page);
2025 allocation_info_.top = new_top;
2026
2027 int new_size = live_maps * Map::kSize;
2028 accounting_stats_.DeallocateBytes(accounting_stats_.Size());
2029 accounting_stats_.AllocateBytes(new_size);
2030
2031#ifdef DEBUG
2032 if (FLAG_enable_slow_asserts) {
Leon Clarked91b9f72010-01-27 17:25:45 +00002033 intptr_t actual_size = 0;
Leon Clarkee46be812010-01-19 14:06:41 +00002034 for (Page* p = first_page_; p != top_page; p = p->next_page())
2035 actual_size += kMapsPerPage * Map::kSize;
2036 actual_size += (new_top - top_page->ObjectAreaStart());
2037 ASSERT(accounting_stats_.Size() == actual_size);
2038 }
2039#endif
2040
2041 Shrink();
2042 ResetFreeList();
2043 }
2044
Steve Blocka7e24c12009-10-30 11:49:00 +00002045 protected:
2046#ifdef DEBUG
2047 virtual void VerifyObject(HeapObject* obj);
2048#endif
2049
2050 private:
Leon Clarkee46be812010-01-19 14:06:41 +00002051 static const int kMapsPerPage = Page::kObjectAreaSize / Map::kSize;
2052
2053 // Do map space compaction if there is a page gap.
Leon Clarked91b9f72010-01-27 17:25:45 +00002054 int CompactionThreshold() {
2055 return kMapsPerPage * (max_map_space_pages_ - 1);
2056 }
2057
2058 const int max_map_space_pages_;
Leon Clarkee46be812010-01-19 14:06:41 +00002059
Steve Blocka7e24c12009-10-30 11:49:00 +00002060 // An array of page start address in a map space.
Leon Clarked91b9f72010-01-27 17:25:45 +00002061 Address page_addresses_[kMaxMapPageIndex];
Steve Blocka7e24c12009-10-30 11:49:00 +00002062
2063 public:
2064 TRACK_MEMORY("MapSpace")
2065};
2066
2067
2068// -----------------------------------------------------------------------------
2069// Old space for all global object property cell objects
2070
2071class CellSpace : public FixedSpace {
2072 public:
2073 // Creates a property cell space object with a maximum capacity.
2074 CellSpace(int max_capacity, AllocationSpace id)
2075 : FixedSpace(max_capacity, id, JSGlobalPropertyCell::kSize, "cell") {}
2076
2077 protected:
2078#ifdef DEBUG
2079 virtual void VerifyObject(HeapObject* obj);
2080#endif
2081
2082 public:
2083 TRACK_MEMORY("CellSpace")
2084};
2085
2086
2087// -----------------------------------------------------------------------------
2088// Large objects ( > Page::kMaxHeapObjectSize ) are allocated and managed by
2089// the large object space. A large object is allocated from OS heap with
2090// extra padding bytes (Page::kPageSize + Page::kObjectStartOffset).
2091// A large object always starts at Page::kObjectStartOffset to a page.
2092// Large objects do not move during garbage collections.
2093
2094// A LargeObjectChunk holds exactly one large object page with exactly one
2095// large object.
2096class LargeObjectChunk {
2097 public:
2098 // Allocates a new LargeObjectChunk that contains a large object page
2099 // (Page::kPageSize aligned) that has at least size_in_bytes (for a large
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002100 // object) bytes after the object area start of that page.
2101 // The allocated chunk size is set in the output parameter chunk_size.
Steve Blocka7e24c12009-10-30 11:49:00 +00002102 static LargeObjectChunk* New(int size_in_bytes,
2103 size_t* chunk_size,
2104 Executability executable);
2105
2106 // Interpret a raw address as a large object chunk.
2107 static LargeObjectChunk* FromAddress(Address address) {
2108 return reinterpret_cast<LargeObjectChunk*>(address);
2109 }
2110
2111 // Returns the address of this chunk.
2112 Address address() { return reinterpret_cast<Address>(this); }
2113
2114 // Accessors for the fields of the chunk.
2115 LargeObjectChunk* next() { return next_; }
2116 void set_next(LargeObjectChunk* chunk) { next_ = chunk; }
2117
Steve Block791712a2010-08-27 10:21:07 +01002118 size_t size() { return size_ & ~Page::kPageFlagMask; }
Steve Blocka7e24c12009-10-30 11:49:00 +00002119 void set_size(size_t size_in_bytes) { size_ = size_in_bytes; }
2120
2121 // Returns the object in this chunk.
2122 inline HeapObject* GetObject();
2123
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002124 // Given a requested size returns the physical size of a chunk to be
2125 // allocated.
Steve Blocka7e24c12009-10-30 11:49:00 +00002126 static int ChunkSizeFor(int size_in_bytes);
2127
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002128 // Given a chunk size, returns the object size it can accommodate. Used by
2129 // LargeObjectSpace::Available.
Steve Blocka7e24c12009-10-30 11:49:00 +00002130 static int ObjectSizeFor(int chunk_size) {
2131 if (chunk_size <= (Page::kPageSize + Page::kObjectStartOffset)) return 0;
2132 return chunk_size - Page::kPageSize - Page::kObjectStartOffset;
2133 }
2134
2135 private:
2136 // A pointer to the next large object chunk in the space or NULL.
2137 LargeObjectChunk* next_;
2138
2139 // The size of this chunk.
2140 size_t size_;
2141
2142 public:
2143 TRACK_MEMORY("LargeObjectChunk")
2144};
2145
2146
2147class LargeObjectSpace : public Space {
2148 public:
2149 explicit LargeObjectSpace(AllocationSpace id);
2150 virtual ~LargeObjectSpace() {}
2151
2152 // Initializes internal data structures.
2153 bool Setup();
2154
2155 // Releases internal resources, frees objects in this space.
2156 void TearDown();
2157
2158 // Allocates a (non-FixedArray, non-Code) large object.
2159 Object* AllocateRaw(int size_in_bytes);
2160 // Allocates a large Code object.
2161 Object* AllocateRawCode(int size_in_bytes);
2162 // Allocates a large FixedArray.
2163 Object* AllocateRawFixedArray(int size_in_bytes);
2164
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002165 // Available bytes for objects in this space.
Steve Blocka7e24c12009-10-30 11:49:00 +00002166 int Available() {
2167 return LargeObjectChunk::ObjectSizeFor(MemoryAllocator::Available());
2168 }
2169
2170 virtual int Size() {
2171 return size_;
2172 }
2173
2174 int PageCount() {
2175 return page_count_;
2176 }
2177
2178 // Finds an object for a given address, returns Failure::Exception()
2179 // if it is not found. The function iterates through all objects in this
2180 // space, may be slow.
2181 Object* FindObject(Address a);
2182
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002183 // Finds a large object page containing the given pc, returns NULL
2184 // if such a page doesn't exist.
2185 LargeObjectChunk* FindChunkContainingPc(Address pc);
2186
2187
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002188 // Iterates objects covered by dirty regions.
2189 void IterateDirtyRegions(ObjectSlotCallback func);
Steve Blocka7e24c12009-10-30 11:49:00 +00002190
2191 // Frees unmarked objects.
2192 void FreeUnmarkedObjects();
2193
2194 // Checks whether a heap object is in this space; O(1).
2195 bool Contains(HeapObject* obj);
2196
2197 // Checks whether the space is empty.
2198 bool IsEmpty() { return first_chunk_ == NULL; }
2199
Leon Clarkee46be812010-01-19 14:06:41 +00002200 // See the comments for ReserveSpace in the Space class. This has to be
2201 // called after ReserveSpace has been called on the paged spaces, since they
2202 // may use some memory, leaving less for large objects.
2203 virtual bool ReserveSpace(int bytes);
2204
Steve Blocka7e24c12009-10-30 11:49:00 +00002205#ifdef ENABLE_HEAP_PROTECTION
2206 // Protect/unprotect the space by marking it read-only/writable.
2207 void Protect();
2208 void Unprotect();
2209#endif
2210
2211#ifdef DEBUG
2212 virtual void Verify();
2213 virtual void Print();
2214 void ReportStatistics();
2215 void CollectCodeStatistics();
Steve Blocka7e24c12009-10-30 11:49:00 +00002216#endif
2217 // Checks whether an address is in the object area in this space. It
2218 // iterates all objects in the space. May be slow.
2219 bool SlowContains(Address addr) { return !FindObject(addr)->IsFailure(); }
2220
2221 private:
2222 // The head of the linked list of large object chunks.
2223 LargeObjectChunk* first_chunk_;
2224 int size_; // allocated bytes
2225 int page_count_; // number of chunks
2226
2227
2228 // Shared implementation of AllocateRaw, AllocateRawCode and
2229 // AllocateRawFixedArray.
2230 Object* AllocateRawInternal(int requested_size,
2231 int object_size,
2232 Executability executable);
2233
Steve Blocka7e24c12009-10-30 11:49:00 +00002234 friend class LargeObjectIterator;
2235
2236 public:
2237 TRACK_MEMORY("LargeObjectSpace")
2238};
2239
2240
2241class LargeObjectIterator: public ObjectIterator {
2242 public:
2243 explicit LargeObjectIterator(LargeObjectSpace* space);
2244 LargeObjectIterator(LargeObjectSpace* space, HeapObjectCallback size_func);
2245
Steve Blocka7e24c12009-10-30 11:49:00 +00002246 HeapObject* next();
2247
2248 // implementation of ObjectIterator.
Steve Blocka7e24c12009-10-30 11:49:00 +00002249 virtual HeapObject* next_object() { return next(); }
2250
2251 private:
2252 LargeObjectChunk* current_;
2253 HeapObjectCallback size_func_;
2254};
2255
2256
2257} } // namespace v8::internal
2258
2259#endif // V8_SPACES_H_