blob: 5d32095fb880e200fc8f2bde455d70a2cb250fea [file] [log] [blame]
Steve Block1e0659c2011-05-24 12:43:12 +01001// Copyright 2011 the V8 project authors. All rights reserved.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#if defined(V8_TARGET_ARCH_IA32)
31
32#include "code-stubs.h"
33#include "bootstrapper.h"
34#include "jsregexp.h"
Steve Block44f0eee2011-05-26 01:26:41 +010035#include "isolate.h"
Kristian Monsen80d68ea2010-09-08 11:05:35 +010036#include "regexp-macro-assembler.h"
37
38namespace v8 {
39namespace internal {
40
41#define __ ACCESS_MASM(masm)
Steve Block1e0659c2011-05-24 12:43:12 +010042
43void ToNumberStub::Generate(MacroAssembler* masm) {
44 // The ToNumber stub takes one argument in eax.
45 NearLabel check_heap_number, call_builtin;
46 __ test(eax, Immediate(kSmiTagMask));
47 __ j(not_zero, &check_heap_number);
48 __ ret(0);
49
50 __ bind(&check_heap_number);
51 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
Steve Block44f0eee2011-05-26 01:26:41 +010052 Factory* factory = masm->isolate()->factory();
53 __ cmp(Operand(ebx), Immediate(factory->heap_number_map()));
Steve Block1e0659c2011-05-24 12:43:12 +010054 __ j(not_equal, &call_builtin);
55 __ ret(0);
56
57 __ bind(&call_builtin);
58 __ pop(ecx); // Pop return address.
59 __ push(eax);
60 __ push(ecx); // Push return address.
61 __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_FUNCTION);
62}
63
64
Kristian Monsen80d68ea2010-09-08 11:05:35 +010065void FastNewClosureStub::Generate(MacroAssembler* masm) {
66 // Create a new closure from the given function info in new
67 // space. Set the context to the current context in esi.
68 Label gc;
69 __ AllocateInNewSpace(JSFunction::kSize, eax, ebx, ecx, &gc, TAG_OBJECT);
70
71 // Get the function info from the stack.
72 __ mov(edx, Operand(esp, 1 * kPointerSize));
73
Steve Block44f0eee2011-05-26 01:26:41 +010074 int map_index = strict_mode_ == kStrictMode
75 ? Context::STRICT_MODE_FUNCTION_MAP_INDEX
76 : Context::FUNCTION_MAP_INDEX;
77
Kristian Monsen80d68ea2010-09-08 11:05:35 +010078 // Compute the function map in the current global context and set that
79 // as the map of the allocated object.
80 __ mov(ecx, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX)));
81 __ mov(ecx, FieldOperand(ecx, GlobalObject::kGlobalContextOffset));
Steve Block44f0eee2011-05-26 01:26:41 +010082 __ mov(ecx, Operand(ecx, Context::SlotOffset(map_index)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +010083 __ mov(FieldOperand(eax, JSObject::kMapOffset), ecx);
84
85 // Initialize the rest of the function. We don't have to update the
86 // write barrier because the allocated object is in new space.
Steve Block44f0eee2011-05-26 01:26:41 +010087 Factory* factory = masm->isolate()->factory();
88 __ mov(ebx, Immediate(factory->empty_fixed_array()));
Kristian Monsen80d68ea2010-09-08 11:05:35 +010089 __ mov(FieldOperand(eax, JSObject::kPropertiesOffset), ebx);
90 __ mov(FieldOperand(eax, JSObject::kElementsOffset), ebx);
91 __ mov(FieldOperand(eax, JSFunction::kPrototypeOrInitialMapOffset),
Steve Block44f0eee2011-05-26 01:26:41 +010092 Immediate(factory->the_hole_value()));
Kristian Monsen80d68ea2010-09-08 11:05:35 +010093 __ mov(FieldOperand(eax, JSFunction::kSharedFunctionInfoOffset), edx);
94 __ mov(FieldOperand(eax, JSFunction::kContextOffset), esi);
95 __ mov(FieldOperand(eax, JSFunction::kLiteralsOffset), ebx);
Ben Murdochb0fe1622011-05-05 13:52:32 +010096 __ mov(FieldOperand(eax, JSFunction::kNextFunctionLinkOffset),
Steve Block44f0eee2011-05-26 01:26:41 +010097 Immediate(factory->undefined_value()));
Kristian Monsen80d68ea2010-09-08 11:05:35 +010098
99 // Initialize the code pointer in the function to be the one
100 // found in the shared function info object.
101 __ mov(edx, FieldOperand(edx, SharedFunctionInfo::kCodeOffset));
102 __ lea(edx, FieldOperand(edx, Code::kHeaderSize));
103 __ mov(FieldOperand(eax, JSFunction::kCodeEntryOffset), edx);
104
105 // Return and remove the on-stack parameter.
106 __ ret(1 * kPointerSize);
107
108 // Create a new closure through the slower runtime call.
109 __ bind(&gc);
110 __ pop(ecx); // Temporarily remove return address.
111 __ pop(edx);
112 __ push(esi);
113 __ push(edx);
Steve Block44f0eee2011-05-26 01:26:41 +0100114 __ push(Immediate(factory->false_value()));
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100115 __ push(ecx); // Restore return address.
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -0800116 __ TailCallRuntime(Runtime::kNewClosure, 3, 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100117}
118
119
120void FastNewContextStub::Generate(MacroAssembler* masm) {
121 // Try to allocate the context in new space.
122 Label gc;
123 int length = slots_ + Context::MIN_CONTEXT_SLOTS;
124 __ AllocateInNewSpace((length * kPointerSize) + FixedArray::kHeaderSize,
125 eax, ebx, ecx, &gc, TAG_OBJECT);
126
127 // Get the function from the stack.
128 __ mov(ecx, Operand(esp, 1 * kPointerSize));
129
130 // Setup the object header.
Steve Block44f0eee2011-05-26 01:26:41 +0100131 Factory* factory = masm->isolate()->factory();
132 __ mov(FieldOperand(eax, HeapObject::kMapOffset), factory->context_map());
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100133 __ mov(FieldOperand(eax, Context::kLengthOffset),
134 Immediate(Smi::FromInt(length)));
135
136 // Setup the fixed slots.
Steve Block9fac8402011-05-12 15:51:54 +0100137 __ Set(ebx, Immediate(0)); // Set to NULL.
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100138 __ mov(Operand(eax, Context::SlotOffset(Context::CLOSURE_INDEX)), ecx);
139 __ mov(Operand(eax, Context::SlotOffset(Context::FCONTEXT_INDEX)), eax);
140 __ mov(Operand(eax, Context::SlotOffset(Context::PREVIOUS_INDEX)), ebx);
141 __ mov(Operand(eax, Context::SlotOffset(Context::EXTENSION_INDEX)), ebx);
142
143 // Copy the global object from the surrounding context. We go through the
144 // context in the function (ecx) to match the allocation behavior we have
145 // in the runtime system (see Heap::AllocateFunctionContext).
146 __ mov(ebx, FieldOperand(ecx, JSFunction::kContextOffset));
147 __ mov(ebx, Operand(ebx, Context::SlotOffset(Context::GLOBAL_INDEX)));
148 __ mov(Operand(eax, Context::SlotOffset(Context::GLOBAL_INDEX)), ebx);
149
150 // Initialize the rest of the slots to undefined.
Steve Block44f0eee2011-05-26 01:26:41 +0100151 __ mov(ebx, factory->undefined_value());
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100152 for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) {
153 __ mov(Operand(eax, Context::SlotOffset(i)), ebx);
154 }
155
156 // Return and remove the on-stack parameter.
157 __ mov(esi, Operand(eax));
158 __ ret(1 * kPointerSize);
159
160 // Need to collect. Call into runtime system.
161 __ bind(&gc);
162 __ TailCallRuntime(Runtime::kNewContext, 1, 1);
163}
164
165
166void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) {
167 // Stack layout on entry:
168 //
169 // [esp + kPointerSize]: constant elements.
170 // [esp + (2 * kPointerSize)]: literal index.
171 // [esp + (3 * kPointerSize)]: literals array.
172
173 // All sizes here are multiples of kPointerSize.
174 int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0;
175 int size = JSArray::kSize + elements_size;
176
177 // Load boilerplate object into ecx and check if we need to create a
178 // boilerplate.
179 Label slow_case;
180 __ mov(ecx, Operand(esp, 3 * kPointerSize));
181 __ mov(eax, Operand(esp, 2 * kPointerSize));
182 STATIC_ASSERT(kPointerSize == 4);
183 STATIC_ASSERT(kSmiTagSize == 1);
184 STATIC_ASSERT(kSmiTag == 0);
185 __ mov(ecx, FieldOperand(ecx, eax, times_half_pointer_size,
186 FixedArray::kHeaderSize));
Steve Block44f0eee2011-05-26 01:26:41 +0100187 Factory* factory = masm->isolate()->factory();
188 __ cmp(ecx, factory->undefined_value());
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100189 __ j(equal, &slow_case);
190
191 if (FLAG_debug_code) {
192 const char* message;
193 Handle<Map> expected_map;
194 if (mode_ == CLONE_ELEMENTS) {
195 message = "Expected (writable) fixed array";
Steve Block44f0eee2011-05-26 01:26:41 +0100196 expected_map = factory->fixed_array_map();
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100197 } else {
198 ASSERT(mode_ == COPY_ON_WRITE_ELEMENTS);
199 message = "Expected copy-on-write fixed array";
Steve Block44f0eee2011-05-26 01:26:41 +0100200 expected_map = factory->fixed_cow_array_map();
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100201 }
202 __ push(ecx);
203 __ mov(ecx, FieldOperand(ecx, JSArray::kElementsOffset));
204 __ cmp(FieldOperand(ecx, HeapObject::kMapOffset), expected_map);
205 __ Assert(equal, message);
206 __ pop(ecx);
207 }
208
209 // Allocate both the JS array and the elements array in one big
210 // allocation. This avoids multiple limit checks.
211 __ AllocateInNewSpace(size, eax, ebx, edx, &slow_case, TAG_OBJECT);
212
213 // Copy the JS array part.
214 for (int i = 0; i < JSArray::kSize; i += kPointerSize) {
215 if ((i != JSArray::kElementsOffset) || (length_ == 0)) {
216 __ mov(ebx, FieldOperand(ecx, i));
217 __ mov(FieldOperand(eax, i), ebx);
218 }
219 }
220
221 if (length_ > 0) {
222 // Get hold of the elements array of the boilerplate and setup the
223 // elements pointer in the resulting object.
224 __ mov(ecx, FieldOperand(ecx, JSArray::kElementsOffset));
225 __ lea(edx, Operand(eax, JSArray::kSize));
226 __ mov(FieldOperand(eax, JSArray::kElementsOffset), edx);
227
228 // Copy the elements array.
229 for (int i = 0; i < elements_size; i += kPointerSize) {
230 __ mov(ebx, FieldOperand(ecx, i));
231 __ mov(FieldOperand(edx, i), ebx);
232 }
233 }
234
235 // Return and remove the on-stack parameters.
236 __ ret(3 * kPointerSize);
237
238 __ bind(&slow_case);
239 __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1);
240}
241
242
243// NOTE: The stub does not handle the inlined cases (Smis, Booleans, undefined).
244void ToBooleanStub::Generate(MacroAssembler* masm) {
Kristian Monsen0d5e1162010-09-30 15:31:59 +0100245 NearLabel false_result, true_result, not_string;
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100246 __ mov(eax, Operand(esp, 1 * kPointerSize));
247
248 // 'null' => false.
Steve Block44f0eee2011-05-26 01:26:41 +0100249 Factory* factory = masm->isolate()->factory();
250 __ cmp(eax, factory->null_value());
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100251 __ j(equal, &false_result);
252
253 // Get the map and type of the heap object.
254 __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset));
255 __ movzx_b(ecx, FieldOperand(edx, Map::kInstanceTypeOffset));
256
257 // Undetectable => false.
258 __ test_b(FieldOperand(edx, Map::kBitFieldOffset),
259 1 << Map::kIsUndetectable);
260 __ j(not_zero, &false_result);
261
262 // JavaScript object => true.
263 __ CmpInstanceType(edx, FIRST_JS_OBJECT_TYPE);
264 __ j(above_equal, &true_result);
265
266 // String value => false iff empty.
267 __ CmpInstanceType(edx, FIRST_NONSTRING_TYPE);
268 __ j(above_equal, &not_string);
269 STATIC_ASSERT(kSmiTag == 0);
270 __ cmp(FieldOperand(eax, String::kLengthOffset), Immediate(0));
271 __ j(zero, &false_result);
272 __ jmp(&true_result);
273
274 __ bind(&not_string);
275 // HeapNumber => false iff +0, -0, or NaN.
Steve Block44f0eee2011-05-26 01:26:41 +0100276 __ cmp(edx, factory->heap_number_map());
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100277 __ j(not_equal, &true_result);
278 __ fldz();
279 __ fld_d(FieldOperand(eax, HeapNumber::kValueOffset));
280 __ FCmp();
281 __ j(zero, &false_result);
282 // Fall through to |true_result|.
283
284 // Return 1/0 for true/false in eax.
285 __ bind(&true_result);
286 __ mov(eax, 1);
287 __ ret(1 * kPointerSize);
288 __ bind(&false_result);
289 __ mov(eax, 0);
290 __ ret(1 * kPointerSize);
291}
292
293
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100294class FloatingPointHelper : public AllStatic {
295 public:
296
297 enum ArgLocation {
298 ARGS_ON_STACK,
299 ARGS_IN_REGISTERS
300 };
301
302 // Code pattern for loading a floating point value. Input value must
303 // be either a smi or a heap number object (fp value). Requirements:
304 // operand in register number. Returns operand as floating point number
305 // on FPU stack.
306 static void LoadFloatOperand(MacroAssembler* masm, Register number);
307
308 // Code pattern for loading floating point values. Input values must
309 // be either smi or heap number objects (fp values). Requirements:
310 // operand_1 on TOS+1 or in edx, operand_2 on TOS+2 or in eax.
311 // Returns operands as floating point numbers on FPU stack.
312 static void LoadFloatOperands(MacroAssembler* masm,
313 Register scratch,
314 ArgLocation arg_location = ARGS_ON_STACK);
315
316 // Similar to LoadFloatOperand but assumes that both operands are smis.
317 // Expects operands in edx, eax.
318 static void LoadFloatSmis(MacroAssembler* masm, Register scratch);
319
320 // Test if operands are smi or number objects (fp). Requirements:
321 // operand_1 in eax, operand_2 in edx; falls through on float
322 // operands, jumps to the non_float label otherwise.
323 static void CheckFloatOperands(MacroAssembler* masm,
324 Label* non_float,
325 Register scratch);
326
Ben Murdochb0fe1622011-05-05 13:52:32 +0100327 // Checks that the two floating point numbers on top of the FPU stack
328 // have int32 values.
329 static void CheckFloatOperandsAreInt32(MacroAssembler* masm,
330 Label* non_int32);
331
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100332 // Takes the operands in edx and eax and loads them as integers in eax
333 // and ecx.
334 static void LoadAsIntegers(MacroAssembler* masm,
335 TypeInfo type_info,
336 bool use_sse3,
337 Label* operand_conversion_failure);
338 static void LoadNumbersAsIntegers(MacroAssembler* masm,
339 TypeInfo type_info,
340 bool use_sse3,
341 Label* operand_conversion_failure);
342 static void LoadUnknownsAsIntegers(MacroAssembler* masm,
343 bool use_sse3,
344 Label* operand_conversion_failure);
345
Ben Murdochb0fe1622011-05-05 13:52:32 +0100346 // Must only be called after LoadUnknownsAsIntegers. Assumes that the
347 // operands are pushed on the stack, and that their conversions to int32
348 // are in eax and ecx. Checks that the original numbers were in the int32
349 // range.
350 static void CheckLoadedIntegersWereInt32(MacroAssembler* masm,
351 bool use_sse3,
352 Label* not_int32);
353
354 // Assumes that operands are smis or heap numbers and loads them
355 // into xmm0 and xmm1. Operands are in edx and eax.
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100356 // Leaves operands unchanged.
357 static void LoadSSE2Operands(MacroAssembler* masm);
358
359 // Test if operands are numbers (smi or HeapNumber objects), and load
360 // them into xmm0 and xmm1 if they are. Jump to label not_numbers if
361 // either operand is not a number. Operands are in edx and eax.
362 // Leaves operands unchanged.
363 static void LoadSSE2Operands(MacroAssembler* masm, Label* not_numbers);
364
365 // Similar to LoadSSE2Operands but assumes that both operands are smis.
366 // Expects operands in edx, eax.
367 static void LoadSSE2Smis(MacroAssembler* masm, Register scratch);
Ben Murdochb0fe1622011-05-05 13:52:32 +0100368
369 // Checks that the two floating point numbers loaded into xmm0 and xmm1
370 // have int32 values.
371 static void CheckSSE2OperandsAreInt32(MacroAssembler* masm,
372 Label* non_int32,
373 Register scratch);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100374};
375
376
Ben Murdochb0fe1622011-05-05 13:52:32 +0100377Handle<Code> GetTypeRecordingBinaryOpStub(int key,
378 TRBinaryOpIC::TypeInfo type_info,
379 TRBinaryOpIC::TypeInfo result_type_info) {
380 TypeRecordingBinaryOpStub stub(key, type_info, result_type_info);
381 return stub.GetCode();
382}
383
384
385void TypeRecordingBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
386 __ pop(ecx); // Save return address.
387 __ push(edx);
388 __ push(eax);
389 // Left and right arguments are now on top.
390 // Push this stub's key. Although the operation and the type info are
391 // encoded into the key, the encoding is opaque, so push them too.
392 __ push(Immediate(Smi::FromInt(MinorKey())));
393 __ push(Immediate(Smi::FromInt(op_)));
394 __ push(Immediate(Smi::FromInt(operands_type_)));
395
396 __ push(ecx); // Push return address.
397
398 // Patch the caller to an appropriate specialized stub and return the
399 // operation result to the caller of the stub.
400 __ TailCallExternalReference(
Steve Block44f0eee2011-05-26 01:26:41 +0100401 ExternalReference(IC_Utility(IC::kTypeRecordingBinaryOp_Patch),
402 masm->isolate()),
Ben Murdochb0fe1622011-05-05 13:52:32 +0100403 5,
404 1);
405}
406
407
408// Prepare for a type transition runtime call when the args are already on
409// the stack, under the return address.
410void TypeRecordingBinaryOpStub::GenerateTypeTransitionWithSavedArgs(
411 MacroAssembler* masm) {
412 __ pop(ecx); // Save return address.
413 // Left and right arguments are already on top of the stack.
414 // Push this stub's key. Although the operation and the type info are
415 // encoded into the key, the encoding is opaque, so push them too.
416 __ push(Immediate(Smi::FromInt(MinorKey())));
417 __ push(Immediate(Smi::FromInt(op_)));
418 __ push(Immediate(Smi::FromInt(operands_type_)));
419
420 __ push(ecx); // Push return address.
421
422 // Patch the caller to an appropriate specialized stub and return the
423 // operation result to the caller of the stub.
424 __ TailCallExternalReference(
Steve Block44f0eee2011-05-26 01:26:41 +0100425 ExternalReference(IC_Utility(IC::kTypeRecordingBinaryOp_Patch),
426 masm->isolate()),
Ben Murdochb0fe1622011-05-05 13:52:32 +0100427 5,
428 1);
429}
430
431
432void TypeRecordingBinaryOpStub::Generate(MacroAssembler* masm) {
433 switch (operands_type_) {
434 case TRBinaryOpIC::UNINITIALIZED:
435 GenerateTypeTransition(masm);
436 break;
437 case TRBinaryOpIC::SMI:
438 GenerateSmiStub(masm);
439 break;
440 case TRBinaryOpIC::INT32:
441 GenerateInt32Stub(masm);
442 break;
443 case TRBinaryOpIC::HEAP_NUMBER:
444 GenerateHeapNumberStub(masm);
445 break;
Steve Block44f0eee2011-05-26 01:26:41 +0100446 case TRBinaryOpIC::ODDBALL:
447 GenerateOddballStub(masm);
448 break;
Ben Murdochb0fe1622011-05-05 13:52:32 +0100449 case TRBinaryOpIC::STRING:
450 GenerateStringStub(masm);
451 break;
452 case TRBinaryOpIC::GENERIC:
453 GenerateGeneric(masm);
454 break;
455 default:
456 UNREACHABLE();
457 }
458}
459
460
461const char* TypeRecordingBinaryOpStub::GetName() {
462 if (name_ != NULL) return name_;
463 const int kMaxNameLength = 100;
Steve Block44f0eee2011-05-26 01:26:41 +0100464 name_ = Isolate::Current()->bootstrapper()->AllocateAutoDeletedArray(
465 kMaxNameLength);
Ben Murdochb0fe1622011-05-05 13:52:32 +0100466 if (name_ == NULL) return "OOM";
467 const char* op_name = Token::Name(op_);
468 const char* overwrite_name;
469 switch (mode_) {
470 case NO_OVERWRITE: overwrite_name = "Alloc"; break;
471 case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break;
472 case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break;
473 default: overwrite_name = "UnknownOverwrite"; break;
474 }
475
476 OS::SNPrintF(Vector<char>(name_, kMaxNameLength),
477 "TypeRecordingBinaryOpStub_%s_%s_%s",
478 op_name,
479 overwrite_name,
480 TRBinaryOpIC::GetName(operands_type_));
481 return name_;
482}
483
484
485void TypeRecordingBinaryOpStub::GenerateSmiCode(MacroAssembler* masm,
486 Label* slow,
487 SmiCodeGenerateHeapNumberResults allow_heapnumber_results) {
488 // 1. Move arguments into edx, eax except for DIV and MOD, which need the
489 // dividend in eax and edx free for the division. Use eax, ebx for those.
490 Comment load_comment(masm, "-- Load arguments");
491 Register left = edx;
492 Register right = eax;
493 if (op_ == Token::DIV || op_ == Token::MOD) {
494 left = eax;
495 right = ebx;
496 __ mov(ebx, eax);
497 __ mov(eax, edx);
498 }
499
500
501 // 2. Prepare the smi check of both operands by oring them together.
502 Comment smi_check_comment(masm, "-- Smi check arguments");
503 Label not_smis;
504 Register combined = ecx;
505 ASSERT(!left.is(combined) && !right.is(combined));
506 switch (op_) {
507 case Token::BIT_OR:
508 // Perform the operation into eax and smi check the result. Preserve
509 // eax in case the result is not a smi.
510 ASSERT(!left.is(ecx) && !right.is(ecx));
511 __ mov(ecx, right);
512 __ or_(right, Operand(left)); // Bitwise or is commutative.
513 combined = right;
514 break;
515
516 case Token::BIT_XOR:
517 case Token::BIT_AND:
518 case Token::ADD:
519 case Token::SUB:
520 case Token::MUL:
521 case Token::DIV:
522 case Token::MOD:
523 __ mov(combined, right);
524 __ or_(combined, Operand(left));
525 break;
526
527 case Token::SHL:
528 case Token::SAR:
529 case Token::SHR:
530 // Move the right operand into ecx for the shift operation, use eax
531 // for the smi check register.
532 ASSERT(!left.is(ecx) && !right.is(ecx));
533 __ mov(ecx, right);
534 __ or_(right, Operand(left));
535 combined = right;
536 break;
537
538 default:
539 break;
540 }
541
542 // 3. Perform the smi check of the operands.
543 STATIC_ASSERT(kSmiTag == 0); // Adjust zero check if not the case.
544 __ test(combined, Immediate(kSmiTagMask));
545 __ j(not_zero, &not_smis, not_taken);
546
547 // 4. Operands are both smis, perform the operation leaving the result in
548 // eax and check the result if necessary.
549 Comment perform_smi(masm, "-- Perform smi operation");
550 Label use_fp_on_smis;
551 switch (op_) {
552 case Token::BIT_OR:
553 // Nothing to do.
554 break;
555
556 case Token::BIT_XOR:
557 ASSERT(right.is(eax));
558 __ xor_(right, Operand(left)); // Bitwise xor is commutative.
559 break;
560
561 case Token::BIT_AND:
562 ASSERT(right.is(eax));
563 __ and_(right, Operand(left)); // Bitwise and is commutative.
564 break;
565
566 case Token::SHL:
567 // Remove tags from operands (but keep sign).
568 __ SmiUntag(left);
569 __ SmiUntag(ecx);
570 // Perform the operation.
571 __ shl_cl(left);
572 // Check that the *signed* result fits in a smi.
573 __ cmp(left, 0xc0000000);
574 __ j(sign, &use_fp_on_smis, not_taken);
575 // Tag the result and store it in register eax.
576 __ SmiTag(left);
577 __ mov(eax, left);
578 break;
579
580 case Token::SAR:
581 // Remove tags from operands (but keep sign).
582 __ SmiUntag(left);
583 __ SmiUntag(ecx);
584 // Perform the operation.
585 __ sar_cl(left);
586 // Tag the result and store it in register eax.
587 __ SmiTag(left);
588 __ mov(eax, left);
589 break;
590
591 case Token::SHR:
592 // Remove tags from operands (but keep sign).
593 __ SmiUntag(left);
594 __ SmiUntag(ecx);
595 // Perform the operation.
596 __ shr_cl(left);
597 // Check that the *unsigned* result fits in a smi.
598 // Neither of the two high-order bits can be set:
599 // - 0x80000000: high bit would be lost when smi tagging.
600 // - 0x40000000: this number would convert to negative when
601 // Smi tagging these two cases can only happen with shifts
602 // by 0 or 1 when handed a valid smi.
603 __ test(left, Immediate(0xc0000000));
604 __ j(not_zero, slow, not_taken);
605 // Tag the result and store it in register eax.
606 __ SmiTag(left);
607 __ mov(eax, left);
608 break;
609
610 case Token::ADD:
611 ASSERT(right.is(eax));
612 __ add(right, Operand(left)); // Addition is commutative.
613 __ j(overflow, &use_fp_on_smis, not_taken);
614 break;
615
616 case Token::SUB:
617 __ sub(left, Operand(right));
618 __ j(overflow, &use_fp_on_smis, not_taken);
619 __ mov(eax, left);
620 break;
621
622 case Token::MUL:
623 // If the smi tag is 0 we can just leave the tag on one operand.
624 STATIC_ASSERT(kSmiTag == 0); // Adjust code below if not the case.
625 // We can't revert the multiplication if the result is not a smi
626 // so save the right operand.
627 __ mov(ebx, right);
628 // Remove tag from one of the operands (but keep sign).
629 __ SmiUntag(right);
630 // Do multiplication.
631 __ imul(right, Operand(left)); // Multiplication is commutative.
632 __ j(overflow, &use_fp_on_smis, not_taken);
633 // Check for negative zero result. Use combined = left | right.
634 __ NegativeZeroTest(right, combined, &use_fp_on_smis);
635 break;
636
637 case Token::DIV:
638 // We can't revert the division if the result is not a smi so
639 // save the left operand.
640 __ mov(edi, left);
641 // Check for 0 divisor.
642 __ test(right, Operand(right));
643 __ j(zero, &use_fp_on_smis, not_taken);
644 // Sign extend left into edx:eax.
645 ASSERT(left.is(eax));
646 __ cdq();
647 // Divide edx:eax by right.
648 __ idiv(right);
649 // Check for the corner case of dividing the most negative smi by
650 // -1. We cannot use the overflow flag, since it is not set by idiv
651 // instruction.
652 STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
653 __ cmp(eax, 0x40000000);
654 __ j(equal, &use_fp_on_smis);
655 // Check for negative zero result. Use combined = left | right.
656 __ NegativeZeroTest(eax, combined, &use_fp_on_smis);
657 // Check that the remainder is zero.
658 __ test(edx, Operand(edx));
659 __ j(not_zero, &use_fp_on_smis);
660 // Tag the result and store it in register eax.
661 __ SmiTag(eax);
662 break;
663
664 case Token::MOD:
665 // Check for 0 divisor.
666 __ test(right, Operand(right));
667 __ j(zero, &not_smis, not_taken);
668
669 // Sign extend left into edx:eax.
670 ASSERT(left.is(eax));
671 __ cdq();
672 // Divide edx:eax by right.
673 __ idiv(right);
674 // Check for negative zero result. Use combined = left | right.
675 __ NegativeZeroTest(edx, combined, slow);
676 // Move remainder to register eax.
677 __ mov(eax, edx);
678 break;
679
680 default:
681 UNREACHABLE();
682 }
683
684 // 5. Emit return of result in eax. Some operations have registers pushed.
685 switch (op_) {
686 case Token::ADD:
687 case Token::SUB:
688 case Token::MUL:
689 case Token::DIV:
690 __ ret(0);
691 break;
692 case Token::MOD:
693 case Token::BIT_OR:
694 case Token::BIT_AND:
695 case Token::BIT_XOR:
696 case Token::SAR:
697 case Token::SHL:
698 case Token::SHR:
699 __ ret(2 * kPointerSize);
700 break;
701 default:
702 UNREACHABLE();
703 }
704
705 // 6. For some operations emit inline code to perform floating point
706 // operations on known smis (e.g., if the result of the operation
707 // overflowed the smi range).
708 if (allow_heapnumber_results == NO_HEAPNUMBER_RESULTS) {
709 __ bind(&use_fp_on_smis);
710 switch (op_) {
711 // Undo the effects of some operations, and some register moves.
712 case Token::SHL:
713 // The arguments are saved on the stack, and only used from there.
714 break;
715 case Token::ADD:
716 // Revert right = right + left.
717 __ sub(right, Operand(left));
718 break;
719 case Token::SUB:
720 // Revert left = left - right.
721 __ add(left, Operand(right));
722 break;
723 case Token::MUL:
724 // Right was clobbered but a copy is in ebx.
725 __ mov(right, ebx);
726 break;
727 case Token::DIV:
728 // Left was clobbered but a copy is in edi. Right is in ebx for
729 // division. They should be in eax, ebx for jump to not_smi.
730 __ mov(eax, edi);
731 break;
732 default:
733 // No other operators jump to use_fp_on_smis.
734 break;
735 }
736 __ jmp(&not_smis);
737 } else {
738 ASSERT(allow_heapnumber_results == ALLOW_HEAPNUMBER_RESULTS);
739 switch (op_) {
740 case Token::SHL: {
741 Comment perform_float(masm, "-- Perform float operation on smis");
742 __ bind(&use_fp_on_smis);
743 // Result we want is in left == edx, so we can put the allocated heap
744 // number in eax.
745 __ AllocateHeapNumber(eax, ecx, ebx, slow);
746 // Store the result in the HeapNumber and return.
Ben Murdoch8b112d22011-06-08 16:22:53 +0100747 if (CpuFeatures::IsSupported(SSE2)) {
Ben Murdochb0fe1622011-05-05 13:52:32 +0100748 CpuFeatures::Scope use_sse2(SSE2);
749 __ cvtsi2sd(xmm0, Operand(left));
750 __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
751 } else {
752 // It's OK to overwrite the right argument on the stack because we
753 // are about to return.
754 __ mov(Operand(esp, 1 * kPointerSize), left);
755 __ fild_s(Operand(esp, 1 * kPointerSize));
756 __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
757 }
758 __ ret(2 * kPointerSize);
759 break;
760 }
761
762 case Token::ADD:
763 case Token::SUB:
764 case Token::MUL:
765 case Token::DIV: {
766 Comment perform_float(masm, "-- Perform float operation on smis");
767 __ bind(&use_fp_on_smis);
768 // Restore arguments to edx, eax.
769 switch (op_) {
770 case Token::ADD:
771 // Revert right = right + left.
772 __ sub(right, Operand(left));
773 break;
774 case Token::SUB:
775 // Revert left = left - right.
776 __ add(left, Operand(right));
777 break;
778 case Token::MUL:
779 // Right was clobbered but a copy is in ebx.
780 __ mov(right, ebx);
781 break;
782 case Token::DIV:
783 // Left was clobbered but a copy is in edi. Right is in ebx for
784 // division.
785 __ mov(edx, edi);
786 __ mov(eax, right);
787 break;
788 default: UNREACHABLE();
789 break;
790 }
791 __ AllocateHeapNumber(ecx, ebx, no_reg, slow);
Ben Murdoch8b112d22011-06-08 16:22:53 +0100792 if (CpuFeatures::IsSupported(SSE2)) {
Ben Murdochb0fe1622011-05-05 13:52:32 +0100793 CpuFeatures::Scope use_sse2(SSE2);
794 FloatingPointHelper::LoadSSE2Smis(masm, ebx);
795 switch (op_) {
796 case Token::ADD: __ addsd(xmm0, xmm1); break;
797 case Token::SUB: __ subsd(xmm0, xmm1); break;
798 case Token::MUL: __ mulsd(xmm0, xmm1); break;
799 case Token::DIV: __ divsd(xmm0, xmm1); break;
800 default: UNREACHABLE();
801 }
802 __ movdbl(FieldOperand(ecx, HeapNumber::kValueOffset), xmm0);
803 } else { // SSE2 not available, use FPU.
804 FloatingPointHelper::LoadFloatSmis(masm, ebx);
805 switch (op_) {
806 case Token::ADD: __ faddp(1); break;
807 case Token::SUB: __ fsubp(1); break;
808 case Token::MUL: __ fmulp(1); break;
809 case Token::DIV: __ fdivp(1); break;
810 default: UNREACHABLE();
811 }
812 __ fstp_d(FieldOperand(ecx, HeapNumber::kValueOffset));
813 }
814 __ mov(eax, ecx);
815 __ ret(0);
816 break;
817 }
818
819 default:
820 break;
821 }
822 }
823
824 // 7. Non-smi operands, fall out to the non-smi code with the operands in
825 // edx and eax.
826 Comment done_comment(masm, "-- Enter non-smi code");
827 __ bind(&not_smis);
828 switch (op_) {
829 case Token::BIT_OR:
830 case Token::SHL:
831 case Token::SAR:
832 case Token::SHR:
833 // Right operand is saved in ecx and eax was destroyed by the smi
834 // check.
835 __ mov(eax, ecx);
836 break;
837
838 case Token::DIV:
839 case Token::MOD:
840 // Operands are in eax, ebx at this point.
841 __ mov(edx, eax);
842 __ mov(eax, ebx);
843 break;
844
845 default:
846 break;
847 }
848}
849
850
851void TypeRecordingBinaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
852 Label call_runtime;
853
854 switch (op_) {
855 case Token::ADD:
856 case Token::SUB:
857 case Token::MUL:
858 case Token::DIV:
859 break;
860 case Token::MOD:
861 case Token::BIT_OR:
862 case Token::BIT_AND:
863 case Token::BIT_XOR:
864 case Token::SAR:
865 case Token::SHL:
866 case Token::SHR:
867 GenerateRegisterArgsPush(masm);
868 break;
869 default:
870 UNREACHABLE();
871 }
872
873 if (result_type_ == TRBinaryOpIC::UNINITIALIZED ||
874 result_type_ == TRBinaryOpIC::SMI) {
875 GenerateSmiCode(masm, &call_runtime, NO_HEAPNUMBER_RESULTS);
876 } else {
877 GenerateSmiCode(masm, &call_runtime, ALLOW_HEAPNUMBER_RESULTS);
878 }
879 __ bind(&call_runtime);
880 switch (op_) {
881 case Token::ADD:
882 case Token::SUB:
883 case Token::MUL:
884 case Token::DIV:
885 GenerateTypeTransition(masm);
886 break;
887 case Token::MOD:
888 case Token::BIT_OR:
889 case Token::BIT_AND:
890 case Token::BIT_XOR:
891 case Token::SAR:
892 case Token::SHL:
893 case Token::SHR:
894 GenerateTypeTransitionWithSavedArgs(masm);
895 break;
896 default:
897 UNREACHABLE();
898 }
899}
900
901
Ben Murdochb0fe1622011-05-05 13:52:32 +0100902void TypeRecordingBinaryOpStub::GenerateStringStub(MacroAssembler* masm) {
Ben Murdochb0fe1622011-05-05 13:52:32 +0100903 ASSERT(operands_type_ == TRBinaryOpIC::STRING);
904 ASSERT(op_ == Token::ADD);
Steve Block1e0659c2011-05-24 12:43:12 +0100905 // Try to add arguments as strings, otherwise, transition to the generic
906 // TRBinaryOpIC type.
907 GenerateAddStrings(masm);
Ben Murdochb0fe1622011-05-05 13:52:32 +0100908 GenerateTypeTransition(masm);
909}
910
911
912void TypeRecordingBinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) {
913 Label call_runtime;
914 ASSERT(operands_type_ == TRBinaryOpIC::INT32);
915
916 // Floating point case.
917 switch (op_) {
918 case Token::ADD:
919 case Token::SUB:
920 case Token::MUL:
921 case Token::DIV: {
922 Label not_floats;
923 Label not_int32;
Ben Murdoch8b112d22011-06-08 16:22:53 +0100924 if (CpuFeatures::IsSupported(SSE2)) {
Ben Murdochb0fe1622011-05-05 13:52:32 +0100925 CpuFeatures::Scope use_sse2(SSE2);
926 FloatingPointHelper::LoadSSE2Operands(masm, &not_floats);
927 FloatingPointHelper::CheckSSE2OperandsAreInt32(masm, &not_int32, ecx);
928 switch (op_) {
929 case Token::ADD: __ addsd(xmm0, xmm1); break;
930 case Token::SUB: __ subsd(xmm0, xmm1); break;
931 case Token::MUL: __ mulsd(xmm0, xmm1); break;
932 case Token::DIV: __ divsd(xmm0, xmm1); break;
933 default: UNREACHABLE();
934 }
935 // Check result type if it is currently Int32.
936 if (result_type_ <= TRBinaryOpIC::INT32) {
937 __ cvttsd2si(ecx, Operand(xmm0));
938 __ cvtsi2sd(xmm2, Operand(ecx));
939 __ ucomisd(xmm0, xmm2);
940 __ j(not_zero, &not_int32);
941 __ j(carry, &not_int32);
942 }
943 GenerateHeapResultAllocation(masm, &call_runtime);
944 __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
945 __ ret(0);
946 } else { // SSE2 not available, use FPU.
947 FloatingPointHelper::CheckFloatOperands(masm, &not_floats, ebx);
948 FloatingPointHelper::LoadFloatOperands(
949 masm,
950 ecx,
951 FloatingPointHelper::ARGS_IN_REGISTERS);
952 FloatingPointHelper::CheckFloatOperandsAreInt32(masm, &not_int32);
953 switch (op_) {
954 case Token::ADD: __ faddp(1); break;
955 case Token::SUB: __ fsubp(1); break;
956 case Token::MUL: __ fmulp(1); break;
957 case Token::DIV: __ fdivp(1); break;
958 default: UNREACHABLE();
959 }
960 Label after_alloc_failure;
961 GenerateHeapResultAllocation(masm, &after_alloc_failure);
962 __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
963 __ ret(0);
964 __ bind(&after_alloc_failure);
965 __ ffree();
966 __ jmp(&call_runtime);
967 }
968
969 __ bind(&not_floats);
970 __ bind(&not_int32);
971 GenerateTypeTransition(masm);
972 break;
973 }
974
975 case Token::MOD: {
976 // For MOD we go directly to runtime in the non-smi case.
977 break;
978 }
979 case Token::BIT_OR:
980 case Token::BIT_AND:
981 case Token::BIT_XOR:
982 case Token::SAR:
983 case Token::SHL:
984 case Token::SHR: {
985 GenerateRegisterArgsPush(masm);
986 Label not_floats;
987 Label not_int32;
988 Label non_smi_result;
989 /* {
990 CpuFeatures::Scope use_sse2(SSE2);
991 FloatingPointHelper::LoadSSE2Operands(masm, &not_floats);
992 FloatingPointHelper::CheckSSE2OperandsAreInt32(masm, &not_int32, ecx);
993 }*/
994 FloatingPointHelper::LoadUnknownsAsIntegers(masm,
995 use_sse3_,
996 &not_floats);
997 FloatingPointHelper::CheckLoadedIntegersWereInt32(masm, use_sse3_,
998 &not_int32);
999 switch (op_) {
1000 case Token::BIT_OR: __ or_(eax, Operand(ecx)); break;
1001 case Token::BIT_AND: __ and_(eax, Operand(ecx)); break;
1002 case Token::BIT_XOR: __ xor_(eax, Operand(ecx)); break;
1003 case Token::SAR: __ sar_cl(eax); break;
1004 case Token::SHL: __ shl_cl(eax); break;
1005 case Token::SHR: __ shr_cl(eax); break;
1006 default: UNREACHABLE();
1007 }
1008 if (op_ == Token::SHR) {
1009 // Check if result is non-negative and fits in a smi.
1010 __ test(eax, Immediate(0xc0000000));
1011 __ j(not_zero, &call_runtime);
1012 } else {
1013 // Check if result fits in a smi.
1014 __ cmp(eax, 0xc0000000);
1015 __ j(negative, &non_smi_result);
1016 }
1017 // Tag smi result and return.
1018 __ SmiTag(eax);
1019 __ ret(2 * kPointerSize); // Drop two pushed arguments from the stack.
1020
1021 // All ops except SHR return a signed int32 that we load in
1022 // a HeapNumber.
1023 if (op_ != Token::SHR) {
1024 __ bind(&non_smi_result);
1025 // Allocate a heap number if needed.
1026 __ mov(ebx, Operand(eax)); // ebx: result
1027 NearLabel skip_allocation;
1028 switch (mode_) {
1029 case OVERWRITE_LEFT:
1030 case OVERWRITE_RIGHT:
1031 // If the operand was an object, we skip the
1032 // allocation of a heap number.
1033 __ mov(eax, Operand(esp, mode_ == OVERWRITE_RIGHT ?
1034 1 * kPointerSize : 2 * kPointerSize));
1035 __ test(eax, Immediate(kSmiTagMask));
1036 __ j(not_zero, &skip_allocation, not_taken);
1037 // Fall through!
1038 case NO_OVERWRITE:
1039 __ AllocateHeapNumber(eax, ecx, edx, &call_runtime);
1040 __ bind(&skip_allocation);
1041 break;
1042 default: UNREACHABLE();
1043 }
1044 // Store the result in the HeapNumber and return.
Ben Murdoch8b112d22011-06-08 16:22:53 +01001045 if (CpuFeatures::IsSupported(SSE2)) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001046 CpuFeatures::Scope use_sse2(SSE2);
1047 __ cvtsi2sd(xmm0, Operand(ebx));
1048 __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
1049 } else {
1050 __ mov(Operand(esp, 1 * kPointerSize), ebx);
1051 __ fild_s(Operand(esp, 1 * kPointerSize));
1052 __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
1053 }
1054 __ ret(2 * kPointerSize); // Drop two pushed arguments from the stack.
1055 }
1056
1057 __ bind(&not_floats);
1058 __ bind(&not_int32);
1059 GenerateTypeTransitionWithSavedArgs(masm);
1060 break;
1061 }
1062 default: UNREACHABLE(); break;
1063 }
1064
1065 // If an allocation fails, or SHR or MOD hit a hard case,
1066 // use the runtime system to get the correct result.
1067 __ bind(&call_runtime);
1068
1069 switch (op_) {
1070 case Token::ADD:
1071 GenerateRegisterArgsPush(masm);
1072 __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
1073 break;
1074 case Token::SUB:
1075 GenerateRegisterArgsPush(masm);
1076 __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
1077 break;
1078 case Token::MUL:
1079 GenerateRegisterArgsPush(masm);
1080 __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
1081 break;
1082 case Token::DIV:
1083 GenerateRegisterArgsPush(masm);
1084 __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
1085 break;
1086 case Token::MOD:
1087 GenerateRegisterArgsPush(masm);
1088 __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
1089 break;
1090 case Token::BIT_OR:
1091 __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
1092 break;
1093 case Token::BIT_AND:
1094 __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
1095 break;
1096 case Token::BIT_XOR:
1097 __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
1098 break;
1099 case Token::SAR:
1100 __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
1101 break;
1102 case Token::SHL:
1103 __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
1104 break;
1105 case Token::SHR:
1106 __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
1107 break;
1108 default:
1109 UNREACHABLE();
1110 }
1111}
1112
1113
Steve Block44f0eee2011-05-26 01:26:41 +01001114void TypeRecordingBinaryOpStub::GenerateOddballStub(MacroAssembler* masm) {
1115 Label call_runtime;
1116
1117 if (op_ == Token::ADD) {
1118 // Handle string addition here, because it is the only operation
1119 // that does not do a ToNumber conversion on the operands.
1120 GenerateAddStrings(masm);
1121 }
1122
1123 // Convert odd ball arguments to numbers.
1124 NearLabel check, done;
Steve Block053d10c2011-06-13 19:13:29 +01001125 __ cmp(edx, FACTORY->undefined_value());
Steve Block44f0eee2011-05-26 01:26:41 +01001126 __ j(not_equal, &check);
1127 if (Token::IsBitOp(op_)) {
1128 __ xor_(edx, Operand(edx));
1129 } else {
Steve Block053d10c2011-06-13 19:13:29 +01001130 __ mov(edx, Immediate(FACTORY->nan_value()));
Steve Block44f0eee2011-05-26 01:26:41 +01001131 }
1132 __ jmp(&done);
1133 __ bind(&check);
Steve Block053d10c2011-06-13 19:13:29 +01001134 __ cmp(eax, FACTORY->undefined_value());
Steve Block44f0eee2011-05-26 01:26:41 +01001135 __ j(not_equal, &done);
1136 if (Token::IsBitOp(op_)) {
1137 __ xor_(eax, Operand(eax));
1138 } else {
Steve Block053d10c2011-06-13 19:13:29 +01001139 __ mov(eax, Immediate(FACTORY->nan_value()));
Steve Block44f0eee2011-05-26 01:26:41 +01001140 }
1141 __ bind(&done);
1142
1143 GenerateHeapNumberStub(masm);
1144}
1145
1146
Ben Murdochb0fe1622011-05-05 13:52:32 +01001147void TypeRecordingBinaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) {
1148 Label call_runtime;
Ben Murdochb0fe1622011-05-05 13:52:32 +01001149
1150 // Floating point case.
1151 switch (op_) {
1152 case Token::ADD:
1153 case Token::SUB:
1154 case Token::MUL:
1155 case Token::DIV: {
1156 Label not_floats;
Ben Murdoch8b112d22011-06-08 16:22:53 +01001157 if (CpuFeatures::IsSupported(SSE2)) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001158 CpuFeatures::Scope use_sse2(SSE2);
1159 FloatingPointHelper::LoadSSE2Operands(masm, &not_floats);
1160
1161 switch (op_) {
1162 case Token::ADD: __ addsd(xmm0, xmm1); break;
1163 case Token::SUB: __ subsd(xmm0, xmm1); break;
1164 case Token::MUL: __ mulsd(xmm0, xmm1); break;
1165 case Token::DIV: __ divsd(xmm0, xmm1); break;
1166 default: UNREACHABLE();
1167 }
1168 GenerateHeapResultAllocation(masm, &call_runtime);
1169 __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
1170 __ ret(0);
1171 } else { // SSE2 not available, use FPU.
1172 FloatingPointHelper::CheckFloatOperands(masm, &not_floats, ebx);
1173 FloatingPointHelper::LoadFloatOperands(
1174 masm,
1175 ecx,
1176 FloatingPointHelper::ARGS_IN_REGISTERS);
1177 switch (op_) {
1178 case Token::ADD: __ faddp(1); break;
1179 case Token::SUB: __ fsubp(1); break;
1180 case Token::MUL: __ fmulp(1); break;
1181 case Token::DIV: __ fdivp(1); break;
1182 default: UNREACHABLE();
1183 }
1184 Label after_alloc_failure;
1185 GenerateHeapResultAllocation(masm, &after_alloc_failure);
1186 __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
1187 __ ret(0);
1188 __ bind(&after_alloc_failure);
1189 __ ffree();
1190 __ jmp(&call_runtime);
1191 }
1192
1193 __ bind(&not_floats);
1194 GenerateTypeTransition(masm);
1195 break;
1196 }
1197
1198 case Token::MOD: {
1199 // For MOD we go directly to runtime in the non-smi case.
1200 break;
1201 }
1202 case Token::BIT_OR:
1203 case Token::BIT_AND:
1204 case Token::BIT_XOR:
1205 case Token::SAR:
1206 case Token::SHL:
1207 case Token::SHR: {
1208 GenerateRegisterArgsPush(masm);
1209 Label not_floats;
1210 Label non_smi_result;
1211 FloatingPointHelper::LoadUnknownsAsIntegers(masm,
1212 use_sse3_,
1213 &not_floats);
1214 switch (op_) {
1215 case Token::BIT_OR: __ or_(eax, Operand(ecx)); break;
1216 case Token::BIT_AND: __ and_(eax, Operand(ecx)); break;
1217 case Token::BIT_XOR: __ xor_(eax, Operand(ecx)); break;
1218 case Token::SAR: __ sar_cl(eax); break;
1219 case Token::SHL: __ shl_cl(eax); break;
1220 case Token::SHR: __ shr_cl(eax); break;
1221 default: UNREACHABLE();
1222 }
1223 if (op_ == Token::SHR) {
1224 // Check if result is non-negative and fits in a smi.
1225 __ test(eax, Immediate(0xc0000000));
1226 __ j(not_zero, &call_runtime);
1227 } else {
1228 // Check if result fits in a smi.
1229 __ cmp(eax, 0xc0000000);
1230 __ j(negative, &non_smi_result);
1231 }
1232 // Tag smi result and return.
1233 __ SmiTag(eax);
1234 __ ret(2 * kPointerSize); // Drop two pushed arguments from the stack.
1235
1236 // All ops except SHR return a signed int32 that we load in
1237 // a HeapNumber.
1238 if (op_ != Token::SHR) {
1239 __ bind(&non_smi_result);
1240 // Allocate a heap number if needed.
1241 __ mov(ebx, Operand(eax)); // ebx: result
1242 NearLabel skip_allocation;
1243 switch (mode_) {
1244 case OVERWRITE_LEFT:
1245 case OVERWRITE_RIGHT:
1246 // If the operand was an object, we skip the
1247 // allocation of a heap number.
1248 __ mov(eax, Operand(esp, mode_ == OVERWRITE_RIGHT ?
1249 1 * kPointerSize : 2 * kPointerSize));
1250 __ test(eax, Immediate(kSmiTagMask));
1251 __ j(not_zero, &skip_allocation, not_taken);
1252 // Fall through!
1253 case NO_OVERWRITE:
1254 __ AllocateHeapNumber(eax, ecx, edx, &call_runtime);
1255 __ bind(&skip_allocation);
1256 break;
1257 default: UNREACHABLE();
1258 }
1259 // Store the result in the HeapNumber and return.
Ben Murdoch8b112d22011-06-08 16:22:53 +01001260 if (CpuFeatures::IsSupported(SSE2)) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001261 CpuFeatures::Scope use_sse2(SSE2);
1262 __ cvtsi2sd(xmm0, Operand(ebx));
1263 __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
1264 } else {
1265 __ mov(Operand(esp, 1 * kPointerSize), ebx);
1266 __ fild_s(Operand(esp, 1 * kPointerSize));
1267 __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
1268 }
1269 __ ret(2 * kPointerSize); // Drop two pushed arguments from the stack.
1270 }
1271
1272 __ bind(&not_floats);
1273 GenerateTypeTransitionWithSavedArgs(masm);
1274 break;
1275 }
1276 default: UNREACHABLE(); break;
1277 }
1278
1279 // If an allocation fails, or SHR or MOD hit a hard case,
1280 // use the runtime system to get the correct result.
1281 __ bind(&call_runtime);
1282
1283 switch (op_) {
1284 case Token::ADD:
1285 GenerateRegisterArgsPush(masm);
1286 __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
1287 break;
1288 case Token::SUB:
1289 GenerateRegisterArgsPush(masm);
1290 __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
1291 break;
1292 case Token::MUL:
1293 GenerateRegisterArgsPush(masm);
1294 __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
1295 break;
1296 case Token::DIV:
1297 GenerateRegisterArgsPush(masm);
1298 __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
1299 break;
1300 case Token::MOD:
1301 GenerateRegisterArgsPush(masm);
1302 __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
1303 break;
1304 case Token::BIT_OR:
1305 __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
1306 break;
1307 case Token::BIT_AND:
1308 __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
1309 break;
1310 case Token::BIT_XOR:
1311 __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
1312 break;
1313 case Token::SAR:
1314 __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
1315 break;
1316 case Token::SHL:
1317 __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
1318 break;
1319 case Token::SHR:
1320 __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
1321 break;
1322 default:
1323 UNREACHABLE();
1324 }
1325}
1326
1327
1328void TypeRecordingBinaryOpStub::GenerateGeneric(MacroAssembler* masm) {
1329 Label call_runtime;
1330
Steve Block44f0eee2011-05-26 01:26:41 +01001331 Counters* counters = masm->isolate()->counters();
1332 __ IncrementCounter(counters->generic_binary_stub_calls(), 1);
Ben Murdochb0fe1622011-05-05 13:52:32 +01001333
1334 switch (op_) {
1335 case Token::ADD:
1336 case Token::SUB:
1337 case Token::MUL:
1338 case Token::DIV:
1339 break;
1340 case Token::MOD:
1341 case Token::BIT_OR:
1342 case Token::BIT_AND:
1343 case Token::BIT_XOR:
1344 case Token::SAR:
1345 case Token::SHL:
1346 case Token::SHR:
1347 GenerateRegisterArgsPush(masm);
1348 break;
1349 default:
1350 UNREACHABLE();
1351 }
1352
1353 GenerateSmiCode(masm, &call_runtime, ALLOW_HEAPNUMBER_RESULTS);
1354
1355 // Floating point case.
1356 switch (op_) {
1357 case Token::ADD:
1358 case Token::SUB:
1359 case Token::MUL:
1360 case Token::DIV: {
1361 Label not_floats;
Ben Murdoch8b112d22011-06-08 16:22:53 +01001362 if (CpuFeatures::IsSupported(SSE2)) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001363 CpuFeatures::Scope use_sse2(SSE2);
1364 FloatingPointHelper::LoadSSE2Operands(masm, &not_floats);
1365
1366 switch (op_) {
1367 case Token::ADD: __ addsd(xmm0, xmm1); break;
1368 case Token::SUB: __ subsd(xmm0, xmm1); break;
1369 case Token::MUL: __ mulsd(xmm0, xmm1); break;
1370 case Token::DIV: __ divsd(xmm0, xmm1); break;
1371 default: UNREACHABLE();
1372 }
1373 GenerateHeapResultAllocation(masm, &call_runtime);
1374 __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
1375 __ ret(0);
1376 } else { // SSE2 not available, use FPU.
1377 FloatingPointHelper::CheckFloatOperands(masm, &not_floats, ebx);
1378 FloatingPointHelper::LoadFloatOperands(
1379 masm,
1380 ecx,
1381 FloatingPointHelper::ARGS_IN_REGISTERS);
1382 switch (op_) {
1383 case Token::ADD: __ faddp(1); break;
1384 case Token::SUB: __ fsubp(1); break;
1385 case Token::MUL: __ fmulp(1); break;
1386 case Token::DIV: __ fdivp(1); break;
1387 default: UNREACHABLE();
1388 }
1389 Label after_alloc_failure;
1390 GenerateHeapResultAllocation(masm, &after_alloc_failure);
1391 __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
1392 __ ret(0);
1393 __ bind(&after_alloc_failure);
1394 __ ffree();
1395 __ jmp(&call_runtime);
1396 }
1397 __ bind(&not_floats);
1398 break;
1399 }
1400 case Token::MOD: {
1401 // For MOD we go directly to runtime in the non-smi case.
1402 break;
1403 }
1404 case Token::BIT_OR:
1405 case Token::BIT_AND:
1406 case Token::BIT_XOR:
1407 case Token::SAR:
1408 case Token::SHL:
1409 case Token::SHR: {
1410 Label non_smi_result;
1411 FloatingPointHelper::LoadUnknownsAsIntegers(masm,
1412 use_sse3_,
1413 &call_runtime);
1414 switch (op_) {
1415 case Token::BIT_OR: __ or_(eax, Operand(ecx)); break;
1416 case Token::BIT_AND: __ and_(eax, Operand(ecx)); break;
1417 case Token::BIT_XOR: __ xor_(eax, Operand(ecx)); break;
1418 case Token::SAR: __ sar_cl(eax); break;
1419 case Token::SHL: __ shl_cl(eax); break;
1420 case Token::SHR: __ shr_cl(eax); break;
1421 default: UNREACHABLE();
1422 }
1423 if (op_ == Token::SHR) {
1424 // Check if result is non-negative and fits in a smi.
1425 __ test(eax, Immediate(0xc0000000));
1426 __ j(not_zero, &call_runtime);
1427 } else {
1428 // Check if result fits in a smi.
1429 __ cmp(eax, 0xc0000000);
1430 __ j(negative, &non_smi_result);
1431 }
1432 // Tag smi result and return.
1433 __ SmiTag(eax);
1434 __ ret(2 * kPointerSize); // Drop the arguments from the stack.
1435
1436 // All ops except SHR return a signed int32 that we load in
1437 // a HeapNumber.
1438 if (op_ != Token::SHR) {
1439 __ bind(&non_smi_result);
1440 // Allocate a heap number if needed.
1441 __ mov(ebx, Operand(eax)); // ebx: result
1442 NearLabel skip_allocation;
1443 switch (mode_) {
1444 case OVERWRITE_LEFT:
1445 case OVERWRITE_RIGHT:
1446 // If the operand was an object, we skip the
1447 // allocation of a heap number.
1448 __ mov(eax, Operand(esp, mode_ == OVERWRITE_RIGHT ?
1449 1 * kPointerSize : 2 * kPointerSize));
1450 __ test(eax, Immediate(kSmiTagMask));
1451 __ j(not_zero, &skip_allocation, not_taken);
1452 // Fall through!
1453 case NO_OVERWRITE:
1454 __ AllocateHeapNumber(eax, ecx, edx, &call_runtime);
1455 __ bind(&skip_allocation);
1456 break;
1457 default: UNREACHABLE();
1458 }
1459 // Store the result in the HeapNumber and return.
Ben Murdoch8b112d22011-06-08 16:22:53 +01001460 if (CpuFeatures::IsSupported(SSE2)) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001461 CpuFeatures::Scope use_sse2(SSE2);
1462 __ cvtsi2sd(xmm0, Operand(ebx));
1463 __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
1464 } else {
1465 __ mov(Operand(esp, 1 * kPointerSize), ebx);
1466 __ fild_s(Operand(esp, 1 * kPointerSize));
1467 __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
1468 }
1469 __ ret(2 * kPointerSize);
1470 }
1471 break;
1472 }
1473 default: UNREACHABLE(); break;
1474 }
1475
1476 // If all else fails, use the runtime system to get the correct
1477 // result.
1478 __ bind(&call_runtime);
1479 switch (op_) {
1480 case Token::ADD: {
Steve Block1e0659c2011-05-24 12:43:12 +01001481 GenerateAddStrings(masm);
Ben Murdochb0fe1622011-05-05 13:52:32 +01001482 GenerateRegisterArgsPush(masm);
Ben Murdochb0fe1622011-05-05 13:52:32 +01001483 __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
1484 break;
1485 }
1486 case Token::SUB:
1487 GenerateRegisterArgsPush(masm);
1488 __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
1489 break;
1490 case Token::MUL:
1491 GenerateRegisterArgsPush(masm);
1492 __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
1493 break;
1494 case Token::DIV:
1495 GenerateRegisterArgsPush(masm);
1496 __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
1497 break;
1498 case Token::MOD:
1499 __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
1500 break;
1501 case Token::BIT_OR:
1502 __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
1503 break;
1504 case Token::BIT_AND:
1505 __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
1506 break;
1507 case Token::BIT_XOR:
1508 __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
1509 break;
1510 case Token::SAR:
1511 __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
1512 break;
1513 case Token::SHL:
1514 __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
1515 break;
1516 case Token::SHR:
1517 __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
1518 break;
1519 default:
1520 UNREACHABLE();
1521 }
1522}
1523
1524
Steve Block1e0659c2011-05-24 12:43:12 +01001525void TypeRecordingBinaryOpStub::GenerateAddStrings(MacroAssembler* masm) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001526 ASSERT(op_ == Token::ADD);
1527 NearLabel left_not_string, call_runtime;
Steve Block1e0659c2011-05-24 12:43:12 +01001528
1529 // Registers containing left and right operands respectively.
1530 Register left = edx;
1531 Register right = eax;
1532
1533 // Test if left operand is a string.
Steve Block1e0659c2011-05-24 12:43:12 +01001534 __ test(left, Immediate(kSmiTagMask));
1535 __ j(zero, &left_not_string);
1536 __ CmpObjectType(left, FIRST_NONSTRING_TYPE, ecx);
1537 __ j(above_equal, &left_not_string);
1538
1539 StringAddStub string_add_left_stub(NO_STRING_CHECK_LEFT_IN_STUB);
1540 GenerateRegisterArgsPush(masm);
1541 __ TailCallStub(&string_add_left_stub);
1542
1543 // Left operand is not a string, test right.
1544 __ bind(&left_not_string);
1545 __ test(right, Immediate(kSmiTagMask));
1546 __ j(zero, &call_runtime);
1547 __ CmpObjectType(right, FIRST_NONSTRING_TYPE, ecx);
1548 __ j(above_equal, &call_runtime);
1549
1550 StringAddStub string_add_right_stub(NO_STRING_CHECK_RIGHT_IN_STUB);
1551 GenerateRegisterArgsPush(masm);
1552 __ TailCallStub(&string_add_right_stub);
1553
1554 // Neither argument is a string.
1555 __ bind(&call_runtime);
1556}
1557
1558
Ben Murdochb0fe1622011-05-05 13:52:32 +01001559void TypeRecordingBinaryOpStub::GenerateHeapResultAllocation(
1560 MacroAssembler* masm,
1561 Label* alloc_failure) {
1562 Label skip_allocation;
1563 OverwriteMode mode = mode_;
1564 switch (mode) {
1565 case OVERWRITE_LEFT: {
1566 // If the argument in edx is already an object, we skip the
1567 // allocation of a heap number.
1568 __ test(edx, Immediate(kSmiTagMask));
1569 __ j(not_zero, &skip_allocation, not_taken);
1570 // Allocate a heap number for the result. Keep eax and edx intact
1571 // for the possible runtime call.
1572 __ AllocateHeapNumber(ebx, ecx, no_reg, alloc_failure);
1573 // Now edx can be overwritten losing one of the arguments as we are
1574 // now done and will not need it any more.
1575 __ mov(edx, Operand(ebx));
1576 __ bind(&skip_allocation);
1577 // Use object in edx as a result holder
1578 __ mov(eax, Operand(edx));
1579 break;
1580 }
1581 case OVERWRITE_RIGHT:
1582 // If the argument in eax is already an object, we skip the
1583 // allocation of a heap number.
1584 __ test(eax, Immediate(kSmiTagMask));
1585 __ j(not_zero, &skip_allocation, not_taken);
1586 // Fall through!
1587 case NO_OVERWRITE:
1588 // Allocate a heap number for the result. Keep eax and edx intact
1589 // for the possible runtime call.
1590 __ AllocateHeapNumber(ebx, ecx, no_reg, alloc_failure);
1591 // Now eax can be overwritten losing one of the arguments as we are
1592 // now done and will not need it any more.
1593 __ mov(eax, ebx);
1594 __ bind(&skip_allocation);
1595 break;
1596 default: UNREACHABLE();
1597 }
1598}
1599
1600
1601void TypeRecordingBinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) {
1602 __ pop(ecx);
1603 __ push(edx);
1604 __ push(eax);
1605 __ push(ecx);
1606}
1607
1608
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001609void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001610 // TAGGED case:
1611 // Input:
1612 // esp[4]: tagged number input argument (should be number).
1613 // esp[0]: return address.
1614 // Output:
1615 // eax: tagged double result.
1616 // UNTAGGED case:
1617 // Input::
1618 // esp[0]: return address.
1619 // xmm1: untagged double input argument
1620 // Output:
1621 // xmm1: untagged double result.
1622
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001623 Label runtime_call;
1624 Label runtime_call_clear_stack;
Ben Murdochb0fe1622011-05-05 13:52:32 +01001625 Label skip_cache;
1626 const bool tagged = (argument_type_ == TAGGED);
1627 if (tagged) {
1628 // Test that eax is a number.
1629 NearLabel input_not_smi;
1630 NearLabel loaded;
1631 __ mov(eax, Operand(esp, kPointerSize));
1632 __ test(eax, Immediate(kSmiTagMask));
1633 __ j(not_zero, &input_not_smi);
1634 // Input is a smi. Untag and load it onto the FPU stack.
1635 // Then load the low and high words of the double into ebx, edx.
1636 STATIC_ASSERT(kSmiTagSize == 1);
1637 __ sar(eax, 1);
1638 __ sub(Operand(esp), Immediate(2 * kPointerSize));
1639 __ mov(Operand(esp, 0), eax);
1640 __ fild_s(Operand(esp, 0));
1641 __ fst_d(Operand(esp, 0));
1642 __ pop(edx);
1643 __ pop(ebx);
1644 __ jmp(&loaded);
1645 __ bind(&input_not_smi);
1646 // Check if input is a HeapNumber.
1647 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
Steve Block44f0eee2011-05-26 01:26:41 +01001648 Factory* factory = masm->isolate()->factory();
1649 __ cmp(Operand(ebx), Immediate(factory->heap_number_map()));
Ben Murdochb0fe1622011-05-05 13:52:32 +01001650 __ j(not_equal, &runtime_call);
1651 // Input is a HeapNumber. Push it on the FPU stack and load its
1652 // low and high words into ebx, edx.
1653 __ fld_d(FieldOperand(eax, HeapNumber::kValueOffset));
1654 __ mov(edx, FieldOperand(eax, HeapNumber::kExponentOffset));
1655 __ mov(ebx, FieldOperand(eax, HeapNumber::kMantissaOffset));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001656
Ben Murdochb0fe1622011-05-05 13:52:32 +01001657 __ bind(&loaded);
1658 } else { // UNTAGGED.
Ben Murdoch8b112d22011-06-08 16:22:53 +01001659 if (CpuFeatures::IsSupported(SSE4_1)) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001660 CpuFeatures::Scope sse4_scope(SSE4_1);
1661 __ pextrd(Operand(edx), xmm1, 0x1); // copy xmm1[63..32] to edx.
1662 } else {
1663 __ pshufd(xmm0, xmm1, 0x1);
1664 __ movd(Operand(edx), xmm0);
1665 }
1666 __ movd(Operand(ebx), xmm1);
1667 }
1668
1669 // ST[0] or xmm1 == double value
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001670 // ebx = low 32 bits of double value
1671 // edx = high 32 bits of double value
1672 // Compute hash (the shifts are arithmetic):
1673 // h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1);
1674 __ mov(ecx, ebx);
1675 __ xor_(ecx, Operand(edx));
1676 __ mov(eax, ecx);
1677 __ sar(eax, 16);
1678 __ xor_(ecx, Operand(eax));
1679 __ mov(eax, ecx);
1680 __ sar(eax, 8);
1681 __ xor_(ecx, Operand(eax));
Steve Block44f0eee2011-05-26 01:26:41 +01001682 ASSERT(IsPowerOf2(TranscendentalCache::SubCache::kCacheSize));
1683 __ and_(Operand(ecx),
1684 Immediate(TranscendentalCache::SubCache::kCacheSize - 1));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001685
Ben Murdochb0fe1622011-05-05 13:52:32 +01001686 // ST[0] or xmm1 == double value.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001687 // ebx = low 32 bits of double value.
1688 // edx = high 32 bits of double value.
1689 // ecx = TranscendentalCache::hash(double value).
Steve Block44f0eee2011-05-26 01:26:41 +01001690 ExternalReference cache_array =
1691 ExternalReference::transcendental_cache_array_address(masm->isolate());
1692 __ mov(eax, Immediate(cache_array));
1693 int cache_array_index =
1694 type_ * sizeof(masm->isolate()->transcendental_cache()->caches_[0]);
1695 __ mov(eax, Operand(eax, cache_array_index));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001696 // Eax points to the cache for the type type_.
1697 // If NULL, the cache hasn't been initialized yet, so go through runtime.
1698 __ test(eax, Operand(eax));
1699 __ j(zero, &runtime_call_clear_stack);
1700#ifdef DEBUG
1701 // Check that the layout of cache elements match expectations.
Steve Block44f0eee2011-05-26 01:26:41 +01001702 { TranscendentalCache::SubCache::Element test_elem[2];
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001703 char* elem_start = reinterpret_cast<char*>(&test_elem[0]);
1704 char* elem2_start = reinterpret_cast<char*>(&test_elem[1]);
1705 char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0]));
1706 char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1]));
1707 char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output));
1708 CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer.
1709 CHECK_EQ(0, elem_in0 - elem_start);
1710 CHECK_EQ(kIntSize, elem_in1 - elem_start);
1711 CHECK_EQ(2 * kIntSize, elem_out - elem_start);
1712 }
1713#endif
1714 // Find the address of the ecx'th entry in the cache, i.e., &eax[ecx*12].
1715 __ lea(ecx, Operand(ecx, ecx, times_2, 0));
1716 __ lea(ecx, Operand(eax, ecx, times_4, 0));
1717 // Check if cache matches: Double value is stored in uint32_t[2] array.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01001718 NearLabel cache_miss;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001719 __ cmp(ebx, Operand(ecx, 0));
1720 __ j(not_equal, &cache_miss);
1721 __ cmp(edx, Operand(ecx, kIntSize));
1722 __ j(not_equal, &cache_miss);
1723 // Cache hit!
1724 __ mov(eax, Operand(ecx, 2 * kIntSize));
Ben Murdochb0fe1622011-05-05 13:52:32 +01001725 if (tagged) {
1726 __ fstp(0);
1727 __ ret(kPointerSize);
1728 } else { // UNTAGGED.
1729 __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
1730 __ Ret();
1731 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001732
1733 __ bind(&cache_miss);
1734 // Update cache with new value.
1735 // We are short on registers, so use no_reg as scratch.
1736 // This gives slightly larger code.
Ben Murdochb0fe1622011-05-05 13:52:32 +01001737 if (tagged) {
1738 __ AllocateHeapNumber(eax, edi, no_reg, &runtime_call_clear_stack);
1739 } else { // UNTAGGED.
1740 __ AllocateHeapNumber(eax, edi, no_reg, &skip_cache);
1741 __ sub(Operand(esp), Immediate(kDoubleSize));
1742 __ movdbl(Operand(esp, 0), xmm1);
1743 __ fld_d(Operand(esp, 0));
1744 __ add(Operand(esp), Immediate(kDoubleSize));
1745 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001746 GenerateOperation(masm);
1747 __ mov(Operand(ecx, 0), ebx);
1748 __ mov(Operand(ecx, kIntSize), edx);
1749 __ mov(Operand(ecx, 2 * kIntSize), eax);
1750 __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
Ben Murdochb0fe1622011-05-05 13:52:32 +01001751 if (tagged) {
1752 __ ret(kPointerSize);
1753 } else { // UNTAGGED.
1754 __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
1755 __ Ret();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001756
Ben Murdochb0fe1622011-05-05 13:52:32 +01001757 // Skip cache and return answer directly, only in untagged case.
1758 __ bind(&skip_cache);
1759 __ sub(Operand(esp), Immediate(kDoubleSize));
1760 __ movdbl(Operand(esp, 0), xmm1);
1761 __ fld_d(Operand(esp, 0));
1762 GenerateOperation(masm);
1763 __ fstp_d(Operand(esp, 0));
1764 __ movdbl(xmm1, Operand(esp, 0));
1765 __ add(Operand(esp), Immediate(kDoubleSize));
1766 // We return the value in xmm1 without adding it to the cache, but
1767 // we cause a scavenging GC so that future allocations will succeed.
1768 __ EnterInternalFrame();
1769 // Allocate an unused object bigger than a HeapNumber.
1770 __ push(Immediate(Smi::FromInt(2 * kDoubleSize)));
1771 __ CallRuntimeSaveDoubles(Runtime::kAllocateInNewSpace);
1772 __ LeaveInternalFrame();
1773 __ Ret();
1774 }
1775
1776 // Call runtime, doing whatever allocation and cleanup is necessary.
1777 if (tagged) {
1778 __ bind(&runtime_call_clear_stack);
1779 __ fstp(0);
1780 __ bind(&runtime_call);
Steve Block44f0eee2011-05-26 01:26:41 +01001781 ExternalReference runtime =
1782 ExternalReference(RuntimeFunction(), masm->isolate());
1783 __ TailCallExternalReference(runtime, 1, 1);
Ben Murdochb0fe1622011-05-05 13:52:32 +01001784 } else { // UNTAGGED.
1785 __ bind(&runtime_call_clear_stack);
1786 __ bind(&runtime_call);
1787 __ AllocateHeapNumber(eax, edi, no_reg, &skip_cache);
1788 __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm1);
1789 __ EnterInternalFrame();
1790 __ push(eax);
1791 __ CallRuntime(RuntimeFunction(), 1);
1792 __ LeaveInternalFrame();
1793 __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
1794 __ Ret();
1795 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001796}
1797
1798
1799Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() {
1800 switch (type_) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001801 case TranscendentalCache::SIN: return Runtime::kMath_sin;
1802 case TranscendentalCache::COS: return Runtime::kMath_cos;
Ben Murdochb0fe1622011-05-05 13:52:32 +01001803 case TranscendentalCache::LOG: return Runtime::kMath_log;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001804 default:
1805 UNIMPLEMENTED();
1806 return Runtime::kAbort;
1807 }
1808}
1809
1810
1811void TranscendentalCacheStub::GenerateOperation(MacroAssembler* masm) {
1812 // Only free register is edi.
Ben Murdochb0fe1622011-05-05 13:52:32 +01001813 // Input value is on FP stack, and also in ebx/edx.
1814 // Input value is possibly in xmm1.
1815 // Address of result (a newly allocated HeapNumber) may be in eax.
1816 if (type_ == TranscendentalCache::SIN || type_ == TranscendentalCache::COS) {
1817 // Both fsin and fcos require arguments in the range +/-2^63 and
1818 // return NaN for infinities and NaN. They can share all code except
1819 // the actual fsin/fcos operation.
1820 NearLabel in_range, done;
1821 // If argument is outside the range -2^63..2^63, fsin/cos doesn't
1822 // work. We must reduce it to the appropriate range.
1823 __ mov(edi, edx);
1824 __ and_(Operand(edi), Immediate(0x7ff00000)); // Exponent only.
1825 int supported_exponent_limit =
1826 (63 + HeapNumber::kExponentBias) << HeapNumber::kExponentShift;
1827 __ cmp(Operand(edi), Immediate(supported_exponent_limit));
1828 __ j(below, &in_range, taken);
1829 // Check for infinity and NaN. Both return NaN for sin.
1830 __ cmp(Operand(edi), Immediate(0x7ff00000));
1831 NearLabel non_nan_result;
1832 __ j(not_equal, &non_nan_result, taken);
1833 // Input is +/-Infinity or NaN. Result is NaN.
1834 __ fstp(0);
1835 // NaN is represented by 0x7ff8000000000000.
1836 __ push(Immediate(0x7ff80000));
1837 __ push(Immediate(0));
1838 __ fld_d(Operand(esp, 0));
1839 __ add(Operand(esp), Immediate(2 * kPointerSize));
1840 __ jmp(&done);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001841
Ben Murdochb0fe1622011-05-05 13:52:32 +01001842 __ bind(&non_nan_result);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001843
Ben Murdochb0fe1622011-05-05 13:52:32 +01001844 // Use fpmod to restrict argument to the range +/-2*PI.
1845 __ mov(edi, eax); // Save eax before using fnstsw_ax.
1846 __ fldpi();
1847 __ fadd(0);
1848 __ fld(1);
1849 // FPU Stack: input, 2*pi, input.
1850 {
1851 NearLabel no_exceptions;
1852 __ fwait();
1853 __ fnstsw_ax();
1854 // Clear if Illegal Operand or Zero Division exceptions are set.
1855 __ test(Operand(eax), Immediate(5));
1856 __ j(zero, &no_exceptions);
1857 __ fnclex();
1858 __ bind(&no_exceptions);
1859 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001860
Ben Murdochb0fe1622011-05-05 13:52:32 +01001861 // Compute st(0) % st(1)
1862 {
1863 NearLabel partial_remainder_loop;
1864 __ bind(&partial_remainder_loop);
1865 __ fprem1();
1866 __ fwait();
1867 __ fnstsw_ax();
1868 __ test(Operand(eax), Immediate(0x400 /* C2 */));
1869 // If C2 is set, computation only has partial result. Loop to
1870 // continue computation.
1871 __ j(not_zero, &partial_remainder_loop);
1872 }
1873 // FPU Stack: input, 2*pi, input % 2*pi
1874 __ fstp(2);
1875 __ fstp(0);
1876 __ mov(eax, edi); // Restore eax (allocated HeapNumber pointer).
1877
1878 // FPU Stack: input % 2*pi
1879 __ bind(&in_range);
1880 switch (type_) {
1881 case TranscendentalCache::SIN:
1882 __ fsin();
1883 break;
1884 case TranscendentalCache::COS:
1885 __ fcos();
1886 break;
1887 default:
1888 UNREACHABLE();
1889 }
1890 __ bind(&done);
1891 } else {
1892 ASSERT(type_ == TranscendentalCache::LOG);
1893 __ fldln2();
1894 __ fxch();
1895 __ fyl2x();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001896 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001897}
1898
1899
1900// Get the integer part of a heap number. Surprisingly, all this bit twiddling
1901// is faster than using the built-in instructions on floating point registers.
1902// Trashes edi and ebx. Dest is ecx. Source cannot be ecx or one of the
1903// trashed registers.
1904void IntegerConvert(MacroAssembler* masm,
1905 Register source,
1906 TypeInfo type_info,
1907 bool use_sse3,
1908 Label* conversion_failure) {
1909 ASSERT(!source.is(ecx) && !source.is(edi) && !source.is(ebx));
1910 Label done, right_exponent, normal_exponent;
1911 Register scratch = ebx;
1912 Register scratch2 = edi;
Ben Murdoch8b112d22011-06-08 16:22:53 +01001913 if (type_info.IsInteger32() && CpuFeatures::IsSupported(SSE2)) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001914 CpuFeatures::Scope scope(SSE2);
1915 __ cvttsd2si(ecx, FieldOperand(source, HeapNumber::kValueOffset));
1916 return;
1917 }
1918 if (!type_info.IsInteger32() || !use_sse3) {
1919 // Get exponent word.
1920 __ mov(scratch, FieldOperand(source, HeapNumber::kExponentOffset));
1921 // Get exponent alone in scratch2.
1922 __ mov(scratch2, scratch);
1923 __ and_(scratch2, HeapNumber::kExponentMask);
1924 }
1925 if (use_sse3) {
1926 CpuFeatures::Scope scope(SSE3);
1927 if (!type_info.IsInteger32()) {
1928 // Check whether the exponent is too big for a 64 bit signed integer.
1929 static const uint32_t kTooBigExponent =
1930 (HeapNumber::kExponentBias + 63) << HeapNumber::kExponentShift;
1931 __ cmp(Operand(scratch2), Immediate(kTooBigExponent));
1932 __ j(greater_equal, conversion_failure);
1933 }
1934 // Load x87 register with heap number.
1935 __ fld_d(FieldOperand(source, HeapNumber::kValueOffset));
1936 // Reserve space for 64 bit answer.
1937 __ sub(Operand(esp), Immediate(sizeof(uint64_t))); // Nolint.
1938 // Do conversion, which cannot fail because we checked the exponent.
1939 __ fisttp_d(Operand(esp, 0));
1940 __ mov(ecx, Operand(esp, 0)); // Load low word of answer into ecx.
1941 __ add(Operand(esp), Immediate(sizeof(uint64_t))); // Nolint.
1942 } else {
1943 // Load ecx with zero. We use this either for the final shift or
1944 // for the answer.
1945 __ xor_(ecx, Operand(ecx));
1946 // Check whether the exponent matches a 32 bit signed int that cannot be
1947 // represented by a Smi. A non-smi 32 bit integer is 1.xxx * 2^30 so the
1948 // exponent is 30 (biased). This is the exponent that we are fastest at and
1949 // also the highest exponent we can handle here.
1950 const uint32_t non_smi_exponent =
1951 (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
1952 __ cmp(Operand(scratch2), Immediate(non_smi_exponent));
1953 // If we have a match of the int32-but-not-Smi exponent then skip some
1954 // logic.
1955 __ j(equal, &right_exponent);
1956 // If the exponent is higher than that then go to slow case. This catches
1957 // numbers that don't fit in a signed int32, infinities and NaNs.
1958 __ j(less, &normal_exponent);
1959
1960 {
1961 // Handle a big exponent. The only reason we have this code is that the
1962 // >>> operator has a tendency to generate numbers with an exponent of 31.
1963 const uint32_t big_non_smi_exponent =
1964 (HeapNumber::kExponentBias + 31) << HeapNumber::kExponentShift;
1965 __ cmp(Operand(scratch2), Immediate(big_non_smi_exponent));
1966 __ j(not_equal, conversion_failure);
1967 // We have the big exponent, typically from >>>. This means the number is
1968 // in the range 2^31 to 2^32 - 1. Get the top bits of the mantissa.
1969 __ mov(scratch2, scratch);
1970 __ and_(scratch2, HeapNumber::kMantissaMask);
1971 // Put back the implicit 1.
1972 __ or_(scratch2, 1 << HeapNumber::kExponentShift);
1973 // Shift up the mantissa bits to take up the space the exponent used to
1974 // take. We just orred in the implicit bit so that took care of one and
1975 // we want to use the full unsigned range so we subtract 1 bit from the
1976 // shift distance.
1977 const int big_shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 1;
1978 __ shl(scratch2, big_shift_distance);
1979 // Get the second half of the double.
1980 __ mov(ecx, FieldOperand(source, HeapNumber::kMantissaOffset));
1981 // Shift down 21 bits to get the most significant 11 bits or the low
1982 // mantissa word.
1983 __ shr(ecx, 32 - big_shift_distance);
1984 __ or_(ecx, Operand(scratch2));
1985 // We have the answer in ecx, but we may need to negate it.
1986 __ test(scratch, Operand(scratch));
1987 __ j(positive, &done);
1988 __ neg(ecx);
1989 __ jmp(&done);
1990 }
1991
1992 __ bind(&normal_exponent);
1993 // Exponent word in scratch, exponent part of exponent word in scratch2.
1994 // Zero in ecx.
1995 // We know the exponent is smaller than 30 (biased). If it is less than
1996 // 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, ie
1997 // it rounds to zero.
1998 const uint32_t zero_exponent =
1999 (HeapNumber::kExponentBias + 0) << HeapNumber::kExponentShift;
2000 __ sub(Operand(scratch2), Immediate(zero_exponent));
2001 // ecx already has a Smi zero.
2002 __ j(less, &done);
2003
2004 // We have a shifted exponent between 0 and 30 in scratch2.
2005 __ shr(scratch2, HeapNumber::kExponentShift);
2006 __ mov(ecx, Immediate(30));
2007 __ sub(ecx, Operand(scratch2));
2008
2009 __ bind(&right_exponent);
2010 // Here ecx is the shift, scratch is the exponent word.
2011 // Get the top bits of the mantissa.
2012 __ and_(scratch, HeapNumber::kMantissaMask);
2013 // Put back the implicit 1.
2014 __ or_(scratch, 1 << HeapNumber::kExponentShift);
2015 // Shift up the mantissa bits to take up the space the exponent used to
2016 // take. We have kExponentShift + 1 significant bits int he low end of the
2017 // word. Shift them to the top bits.
2018 const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
2019 __ shl(scratch, shift_distance);
2020 // Get the second half of the double. For some exponents we don't
2021 // actually need this because the bits get shifted out again, but
2022 // it's probably slower to test than just to do it.
2023 __ mov(scratch2, FieldOperand(source, HeapNumber::kMantissaOffset));
2024 // Shift down 22 bits to get the most significant 10 bits or the low
2025 // mantissa word.
2026 __ shr(scratch2, 32 - shift_distance);
2027 __ or_(scratch2, Operand(scratch));
2028 // Move down according to the exponent.
2029 __ shr_cl(scratch2);
2030 // Now the unsigned answer is in scratch2. We need to move it to ecx and
2031 // we may need to fix the sign.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01002032 NearLabel negative;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002033 __ xor_(ecx, Operand(ecx));
2034 __ cmp(ecx, FieldOperand(source, HeapNumber::kExponentOffset));
2035 __ j(greater, &negative);
2036 __ mov(ecx, scratch2);
2037 __ jmp(&done);
2038 __ bind(&negative);
2039 __ sub(ecx, Operand(scratch2));
2040 __ bind(&done);
2041 }
2042}
2043
2044
2045// Input: edx, eax are the left and right objects of a bit op.
2046// Output: eax, ecx are left and right integers for a bit op.
2047void FloatingPointHelper::LoadNumbersAsIntegers(MacroAssembler* masm,
2048 TypeInfo type_info,
2049 bool use_sse3,
2050 Label* conversion_failure) {
2051 // Check float operands.
2052 Label arg1_is_object, check_undefined_arg1;
2053 Label arg2_is_object, check_undefined_arg2;
2054 Label load_arg2, done;
2055
2056 if (!type_info.IsDouble()) {
2057 if (!type_info.IsSmi()) {
2058 __ test(edx, Immediate(kSmiTagMask));
2059 __ j(not_zero, &arg1_is_object);
2060 } else {
2061 if (FLAG_debug_code) __ AbortIfNotSmi(edx);
2062 }
2063 __ SmiUntag(edx);
2064 __ jmp(&load_arg2);
2065 }
2066
2067 __ bind(&arg1_is_object);
2068
2069 // Get the untagged integer version of the edx heap number in ecx.
2070 IntegerConvert(masm, edx, type_info, use_sse3, conversion_failure);
2071 __ mov(edx, ecx);
2072
2073 // Here edx has the untagged integer, eax has a Smi or a heap number.
2074 __ bind(&load_arg2);
2075 if (!type_info.IsDouble()) {
2076 // Test if arg2 is a Smi.
2077 if (!type_info.IsSmi()) {
2078 __ test(eax, Immediate(kSmiTagMask));
2079 __ j(not_zero, &arg2_is_object);
2080 } else {
2081 if (FLAG_debug_code) __ AbortIfNotSmi(eax);
2082 }
2083 __ SmiUntag(eax);
2084 __ mov(ecx, eax);
2085 __ jmp(&done);
2086 }
2087
2088 __ bind(&arg2_is_object);
2089
2090 // Get the untagged integer version of the eax heap number in ecx.
2091 IntegerConvert(masm, eax, type_info, use_sse3, conversion_failure);
2092 __ bind(&done);
2093 __ mov(eax, edx);
2094}
2095
2096
2097// Input: edx, eax are the left and right objects of a bit op.
2098// Output: eax, ecx are left and right integers for a bit op.
2099void FloatingPointHelper::LoadUnknownsAsIntegers(MacroAssembler* masm,
2100 bool use_sse3,
2101 Label* conversion_failure) {
2102 // Check float operands.
2103 Label arg1_is_object, check_undefined_arg1;
2104 Label arg2_is_object, check_undefined_arg2;
2105 Label load_arg2, done;
2106
2107 // Test if arg1 is a Smi.
2108 __ test(edx, Immediate(kSmiTagMask));
2109 __ j(not_zero, &arg1_is_object);
2110
2111 __ SmiUntag(edx);
2112 __ jmp(&load_arg2);
2113
2114 // If the argument is undefined it converts to zero (ECMA-262, section 9.5).
2115 __ bind(&check_undefined_arg1);
Steve Block44f0eee2011-05-26 01:26:41 +01002116 Factory* factory = masm->isolate()->factory();
2117 __ cmp(edx, factory->undefined_value());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002118 __ j(not_equal, conversion_failure);
2119 __ mov(edx, Immediate(0));
2120 __ jmp(&load_arg2);
2121
2122 __ bind(&arg1_is_object);
2123 __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset));
Steve Block44f0eee2011-05-26 01:26:41 +01002124 __ cmp(ebx, factory->heap_number_map());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002125 __ j(not_equal, &check_undefined_arg1);
2126
2127 // Get the untagged integer version of the edx heap number in ecx.
2128 IntegerConvert(masm,
2129 edx,
2130 TypeInfo::Unknown(),
2131 use_sse3,
2132 conversion_failure);
2133 __ mov(edx, ecx);
2134
2135 // Here edx has the untagged integer, eax has a Smi or a heap number.
2136 __ bind(&load_arg2);
2137
2138 // Test if arg2 is a Smi.
2139 __ test(eax, Immediate(kSmiTagMask));
2140 __ j(not_zero, &arg2_is_object);
2141
2142 __ SmiUntag(eax);
2143 __ mov(ecx, eax);
2144 __ jmp(&done);
2145
2146 // If the argument is undefined it converts to zero (ECMA-262, section 9.5).
2147 __ bind(&check_undefined_arg2);
Steve Block44f0eee2011-05-26 01:26:41 +01002148 __ cmp(eax, factory->undefined_value());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002149 __ j(not_equal, conversion_failure);
2150 __ mov(ecx, Immediate(0));
2151 __ jmp(&done);
2152
2153 __ bind(&arg2_is_object);
2154 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
Steve Block44f0eee2011-05-26 01:26:41 +01002155 __ cmp(ebx, factory->heap_number_map());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002156 __ j(not_equal, &check_undefined_arg2);
2157
2158 // Get the untagged integer version of the eax heap number in ecx.
2159 IntegerConvert(masm,
2160 eax,
2161 TypeInfo::Unknown(),
2162 use_sse3,
2163 conversion_failure);
2164 __ bind(&done);
2165 __ mov(eax, edx);
2166}
2167
2168
2169void FloatingPointHelper::LoadAsIntegers(MacroAssembler* masm,
2170 TypeInfo type_info,
2171 bool use_sse3,
2172 Label* conversion_failure) {
2173 if (type_info.IsNumber()) {
2174 LoadNumbersAsIntegers(masm, type_info, use_sse3, conversion_failure);
2175 } else {
2176 LoadUnknownsAsIntegers(masm, use_sse3, conversion_failure);
2177 }
2178}
2179
2180
Ben Murdochb0fe1622011-05-05 13:52:32 +01002181void FloatingPointHelper::CheckLoadedIntegersWereInt32(MacroAssembler* masm,
2182 bool use_sse3,
2183 Label* not_int32) {
2184 return;
2185}
2186
2187
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002188void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm,
2189 Register number) {
Kristian Monsen0d5e1162010-09-30 15:31:59 +01002190 NearLabel load_smi, done;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002191
2192 __ test(number, Immediate(kSmiTagMask));
2193 __ j(zero, &load_smi, not_taken);
2194 __ fld_d(FieldOperand(number, HeapNumber::kValueOffset));
2195 __ jmp(&done);
2196
2197 __ bind(&load_smi);
2198 __ SmiUntag(number);
2199 __ push(number);
2200 __ fild_s(Operand(esp, 0));
2201 __ pop(number);
2202
2203 __ bind(&done);
2204}
2205
2206
2207void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm) {
Kristian Monsen0d5e1162010-09-30 15:31:59 +01002208 NearLabel load_smi_edx, load_eax, load_smi_eax, done;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002209 // Load operand in edx into xmm0.
2210 __ test(edx, Immediate(kSmiTagMask));
2211 __ j(zero, &load_smi_edx, not_taken); // Argument in edx is a smi.
2212 __ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
2213
2214 __ bind(&load_eax);
2215 // Load operand in eax into xmm1.
2216 __ test(eax, Immediate(kSmiTagMask));
2217 __ j(zero, &load_smi_eax, not_taken); // Argument in eax is a smi.
2218 __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
2219 __ jmp(&done);
2220
2221 __ bind(&load_smi_edx);
2222 __ SmiUntag(edx); // Untag smi before converting to float.
2223 __ cvtsi2sd(xmm0, Operand(edx));
2224 __ SmiTag(edx); // Retag smi for heap number overwriting test.
2225 __ jmp(&load_eax);
2226
2227 __ bind(&load_smi_eax);
2228 __ SmiUntag(eax); // Untag smi before converting to float.
2229 __ cvtsi2sd(xmm1, Operand(eax));
2230 __ SmiTag(eax); // Retag smi for heap number overwriting test.
2231
2232 __ bind(&done);
2233}
2234
2235
2236void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm,
2237 Label* not_numbers) {
Kristian Monsen0d5e1162010-09-30 15:31:59 +01002238 NearLabel load_smi_edx, load_eax, load_smi_eax, load_float_eax, done;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002239 // Load operand in edx into xmm0, or branch to not_numbers.
2240 __ test(edx, Immediate(kSmiTagMask));
2241 __ j(zero, &load_smi_edx, not_taken); // Argument in edx is a smi.
Steve Block44f0eee2011-05-26 01:26:41 +01002242 Factory* factory = masm->isolate()->factory();
2243 __ cmp(FieldOperand(edx, HeapObject::kMapOffset), factory->heap_number_map());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002244 __ j(not_equal, not_numbers); // Argument in edx is not a number.
2245 __ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
2246 __ bind(&load_eax);
2247 // Load operand in eax into xmm1, or branch to not_numbers.
2248 __ test(eax, Immediate(kSmiTagMask));
2249 __ j(zero, &load_smi_eax, not_taken); // Argument in eax is a smi.
Steve Block44f0eee2011-05-26 01:26:41 +01002250 __ cmp(FieldOperand(eax, HeapObject::kMapOffset), factory->heap_number_map());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002251 __ j(equal, &load_float_eax);
2252 __ jmp(not_numbers); // Argument in eax is not a number.
2253 __ bind(&load_smi_edx);
2254 __ SmiUntag(edx); // Untag smi before converting to float.
2255 __ cvtsi2sd(xmm0, Operand(edx));
2256 __ SmiTag(edx); // Retag smi for heap number overwriting test.
2257 __ jmp(&load_eax);
2258 __ bind(&load_smi_eax);
2259 __ SmiUntag(eax); // Untag smi before converting to float.
2260 __ cvtsi2sd(xmm1, Operand(eax));
2261 __ SmiTag(eax); // Retag smi for heap number overwriting test.
2262 __ jmp(&done);
2263 __ bind(&load_float_eax);
2264 __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
2265 __ bind(&done);
2266}
2267
2268
2269void FloatingPointHelper::LoadSSE2Smis(MacroAssembler* masm,
2270 Register scratch) {
2271 const Register left = edx;
2272 const Register right = eax;
2273 __ mov(scratch, left);
2274 ASSERT(!scratch.is(right)); // We're about to clobber scratch.
2275 __ SmiUntag(scratch);
2276 __ cvtsi2sd(xmm0, Operand(scratch));
2277
2278 __ mov(scratch, right);
2279 __ SmiUntag(scratch);
2280 __ cvtsi2sd(xmm1, Operand(scratch));
2281}
2282
2283
Ben Murdochb0fe1622011-05-05 13:52:32 +01002284void FloatingPointHelper::CheckSSE2OperandsAreInt32(MacroAssembler* masm,
2285 Label* non_int32,
2286 Register scratch) {
2287 __ cvttsd2si(scratch, Operand(xmm0));
2288 __ cvtsi2sd(xmm2, Operand(scratch));
2289 __ ucomisd(xmm0, xmm2);
2290 __ j(not_zero, non_int32);
2291 __ j(carry, non_int32);
2292 __ cvttsd2si(scratch, Operand(xmm1));
2293 __ cvtsi2sd(xmm2, Operand(scratch));
2294 __ ucomisd(xmm1, xmm2);
2295 __ j(not_zero, non_int32);
2296 __ j(carry, non_int32);
2297}
2298
2299
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002300void FloatingPointHelper::LoadFloatOperands(MacroAssembler* masm,
2301 Register scratch,
2302 ArgLocation arg_location) {
Kristian Monsen0d5e1162010-09-30 15:31:59 +01002303 NearLabel load_smi_1, load_smi_2, done_load_1, done;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002304 if (arg_location == ARGS_IN_REGISTERS) {
2305 __ mov(scratch, edx);
2306 } else {
2307 __ mov(scratch, Operand(esp, 2 * kPointerSize));
2308 }
2309 __ test(scratch, Immediate(kSmiTagMask));
2310 __ j(zero, &load_smi_1, not_taken);
2311 __ fld_d(FieldOperand(scratch, HeapNumber::kValueOffset));
2312 __ bind(&done_load_1);
2313
2314 if (arg_location == ARGS_IN_REGISTERS) {
2315 __ mov(scratch, eax);
2316 } else {
2317 __ mov(scratch, Operand(esp, 1 * kPointerSize));
2318 }
2319 __ test(scratch, Immediate(kSmiTagMask));
2320 __ j(zero, &load_smi_2, not_taken);
2321 __ fld_d(FieldOperand(scratch, HeapNumber::kValueOffset));
2322 __ jmp(&done);
2323
2324 __ bind(&load_smi_1);
2325 __ SmiUntag(scratch);
2326 __ push(scratch);
2327 __ fild_s(Operand(esp, 0));
2328 __ pop(scratch);
2329 __ jmp(&done_load_1);
2330
2331 __ bind(&load_smi_2);
2332 __ SmiUntag(scratch);
2333 __ push(scratch);
2334 __ fild_s(Operand(esp, 0));
2335 __ pop(scratch);
2336
2337 __ bind(&done);
2338}
2339
2340
2341void FloatingPointHelper::LoadFloatSmis(MacroAssembler* masm,
2342 Register scratch) {
2343 const Register left = edx;
2344 const Register right = eax;
2345 __ mov(scratch, left);
2346 ASSERT(!scratch.is(right)); // We're about to clobber scratch.
2347 __ SmiUntag(scratch);
2348 __ push(scratch);
2349 __ fild_s(Operand(esp, 0));
2350
2351 __ mov(scratch, right);
2352 __ SmiUntag(scratch);
2353 __ mov(Operand(esp, 0), scratch);
2354 __ fild_s(Operand(esp, 0));
2355 __ pop(scratch);
2356}
2357
2358
2359void FloatingPointHelper::CheckFloatOperands(MacroAssembler* masm,
2360 Label* non_float,
2361 Register scratch) {
Kristian Monsen0d5e1162010-09-30 15:31:59 +01002362 NearLabel test_other, done;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002363 // Test if both operands are floats or smi -> scratch=k_is_float;
2364 // Otherwise scratch = k_not_float.
2365 __ test(edx, Immediate(kSmiTagMask));
2366 __ j(zero, &test_other, not_taken); // argument in edx is OK
2367 __ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset));
Steve Block44f0eee2011-05-26 01:26:41 +01002368 Factory* factory = masm->isolate()->factory();
2369 __ cmp(scratch, factory->heap_number_map());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002370 __ j(not_equal, non_float); // argument in edx is not a number -> NaN
2371
2372 __ bind(&test_other);
2373 __ test(eax, Immediate(kSmiTagMask));
2374 __ j(zero, &done); // argument in eax is OK
2375 __ mov(scratch, FieldOperand(eax, HeapObject::kMapOffset));
Steve Block44f0eee2011-05-26 01:26:41 +01002376 __ cmp(scratch, factory->heap_number_map());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002377 __ j(not_equal, non_float); // argument in eax is not a number -> NaN
2378
2379 // Fall-through: Both operands are numbers.
2380 __ bind(&done);
2381}
2382
2383
Ben Murdochb0fe1622011-05-05 13:52:32 +01002384void FloatingPointHelper::CheckFloatOperandsAreInt32(MacroAssembler* masm,
2385 Label* non_int32) {
2386 return;
2387}
2388
2389
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002390void GenericUnaryOpStub::Generate(MacroAssembler* masm) {
Kristian Monsen0d5e1162010-09-30 15:31:59 +01002391 Label slow, done, undo;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002392
2393 if (op_ == Token::SUB) {
Kristian Monsen0d5e1162010-09-30 15:31:59 +01002394 if (include_smi_code_) {
2395 // Check whether the value is a smi.
2396 NearLabel try_float;
2397 __ test(eax, Immediate(kSmiTagMask));
2398 __ j(not_zero, &try_float, not_taken);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002399
Kristian Monsen0d5e1162010-09-30 15:31:59 +01002400 if (negative_zero_ == kStrictNegativeZero) {
2401 // Go slow case if the value of the expression is zero
2402 // to make sure that we switch between 0 and -0.
2403 __ test(eax, Operand(eax));
2404 __ j(zero, &slow, not_taken);
2405 }
2406
2407 // The value of the expression is a smi that is not zero. Try
2408 // optimistic subtraction '0 - value'.
2409 __ mov(edx, Operand(eax));
2410 __ Set(eax, Immediate(0));
2411 __ sub(eax, Operand(edx));
2412 __ j(overflow, &undo, not_taken);
2413 __ StubReturn(1);
2414
2415 // Try floating point case.
2416 __ bind(&try_float);
2417 } else if (FLAG_debug_code) {
2418 __ AbortIfSmi(eax);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002419 }
2420
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002421 __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset));
Steve Block44f0eee2011-05-26 01:26:41 +01002422 __ cmp(edx, masm->isolate()->factory()->heap_number_map());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002423 __ j(not_equal, &slow);
2424 if (overwrite_ == UNARY_OVERWRITE) {
2425 __ mov(edx, FieldOperand(eax, HeapNumber::kExponentOffset));
2426 __ xor_(edx, HeapNumber::kSignMask); // Flip sign.
2427 __ mov(FieldOperand(eax, HeapNumber::kExponentOffset), edx);
2428 } else {
2429 __ mov(edx, Operand(eax));
2430 // edx: operand
2431 __ AllocateHeapNumber(eax, ebx, ecx, &undo);
2432 // eax: allocated 'empty' number
2433 __ mov(ecx, FieldOperand(edx, HeapNumber::kExponentOffset));
2434 __ xor_(ecx, HeapNumber::kSignMask); // Flip sign.
2435 __ mov(FieldOperand(eax, HeapNumber::kExponentOffset), ecx);
2436 __ mov(ecx, FieldOperand(edx, HeapNumber::kMantissaOffset));
2437 __ mov(FieldOperand(eax, HeapNumber::kMantissaOffset), ecx);
2438 }
2439 } else if (op_ == Token::BIT_NOT) {
Kristian Monsen0d5e1162010-09-30 15:31:59 +01002440 if (include_smi_code_) {
2441 Label non_smi;
2442 __ test(eax, Immediate(kSmiTagMask));
2443 __ j(not_zero, &non_smi);
2444 __ not_(eax);
2445 __ and_(eax, ~kSmiTagMask); // Remove inverted smi-tag.
2446 __ ret(0);
2447 __ bind(&non_smi);
2448 } else if (FLAG_debug_code) {
2449 __ AbortIfSmi(eax);
2450 }
2451
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002452 // Check if the operand is a heap number.
2453 __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset));
Steve Block44f0eee2011-05-26 01:26:41 +01002454 __ cmp(edx, masm->isolate()->factory()->heap_number_map());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002455 __ j(not_equal, &slow, not_taken);
2456
2457 // Convert the heap number in eax to an untagged integer in ecx.
2458 IntegerConvert(masm,
2459 eax,
2460 TypeInfo::Unknown(),
Ben Murdoch8b112d22011-06-08 16:22:53 +01002461 CpuFeatures::IsSupported(SSE3),
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002462 &slow);
2463
2464 // Do the bitwise operation and check if the result fits in a smi.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01002465 NearLabel try_float;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002466 __ not_(ecx);
2467 __ cmp(ecx, 0xc0000000);
2468 __ j(sign, &try_float, not_taken);
2469
2470 // Tag the result as a smi and we're done.
2471 STATIC_ASSERT(kSmiTagSize == 1);
2472 __ lea(eax, Operand(ecx, times_2, kSmiTag));
2473 __ jmp(&done);
2474
2475 // Try to store the result in a heap number.
2476 __ bind(&try_float);
2477 if (overwrite_ == UNARY_NO_OVERWRITE) {
2478 // Allocate a fresh heap number, but don't overwrite eax until
2479 // we're sure we can do it without going through the slow case
2480 // that needs the value in eax.
2481 __ AllocateHeapNumber(ebx, edx, edi, &slow);
2482 __ mov(eax, Operand(ebx));
2483 }
Ben Murdoch8b112d22011-06-08 16:22:53 +01002484 if (CpuFeatures::IsSupported(SSE2)) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002485 CpuFeatures::Scope use_sse2(SSE2);
2486 __ cvtsi2sd(xmm0, Operand(ecx));
2487 __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
2488 } else {
2489 __ push(ecx);
2490 __ fild_s(Operand(esp, 0));
2491 __ pop(ecx);
2492 __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
2493 }
2494 } else {
2495 UNIMPLEMENTED();
2496 }
2497
2498 // Return from the stub.
2499 __ bind(&done);
2500 __ StubReturn(1);
2501
Kristian Monsen0d5e1162010-09-30 15:31:59 +01002502 // Restore eax and go slow case.
2503 __ bind(&undo);
2504 __ mov(eax, Operand(edx));
2505
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002506 // Handle the slow case by jumping to the JavaScript builtin.
2507 __ bind(&slow);
2508 __ pop(ecx); // pop return address.
2509 __ push(eax);
2510 __ push(ecx); // push return address
2511 switch (op_) {
2512 case Token::SUB:
2513 __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION);
2514 break;
2515 case Token::BIT_NOT:
2516 __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION);
2517 break;
2518 default:
2519 UNREACHABLE();
2520 }
2521}
2522
2523
Ben Murdochb0fe1622011-05-05 13:52:32 +01002524void MathPowStub::Generate(MacroAssembler* masm) {
2525 // Registers are used as follows:
2526 // edx = base
2527 // eax = exponent
2528 // ecx = temporary, result
2529
2530 CpuFeatures::Scope use_sse2(SSE2);
2531 Label allocate_return, call_runtime;
2532
2533 // Load input parameters.
2534 __ mov(edx, Operand(esp, 2 * kPointerSize));
2535 __ mov(eax, Operand(esp, 1 * kPointerSize));
2536
2537 // Save 1 in xmm3 - we need this several times later on.
2538 __ mov(ecx, Immediate(1));
2539 __ cvtsi2sd(xmm3, Operand(ecx));
2540
2541 Label exponent_nonsmi;
2542 Label base_nonsmi;
2543 // If the exponent is a heap number go to that specific case.
2544 __ test(eax, Immediate(kSmiTagMask));
2545 __ j(not_zero, &exponent_nonsmi);
2546 __ test(edx, Immediate(kSmiTagMask));
2547 __ j(not_zero, &base_nonsmi);
2548
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002549 // Optimized version when both exponent and base are smis.
Ben Murdochb0fe1622011-05-05 13:52:32 +01002550 Label powi;
2551 __ SmiUntag(edx);
2552 __ cvtsi2sd(xmm0, Operand(edx));
2553 __ jmp(&powi);
2554 // exponent is smi and base is a heapnumber.
2555 __ bind(&base_nonsmi);
Steve Block44f0eee2011-05-26 01:26:41 +01002556 Factory* factory = masm->isolate()->factory();
Ben Murdochb0fe1622011-05-05 13:52:32 +01002557 __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
Steve Block44f0eee2011-05-26 01:26:41 +01002558 factory->heap_number_map());
Ben Murdochb0fe1622011-05-05 13:52:32 +01002559 __ j(not_equal, &call_runtime);
2560
2561 __ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
2562
2563 // Optimized version of pow if exponent is a smi.
2564 // xmm0 contains the base.
2565 __ bind(&powi);
2566 __ SmiUntag(eax);
2567
2568 // Save exponent in base as we need to check if exponent is negative later.
2569 // We know that base and exponent are in different registers.
2570 __ mov(edx, eax);
2571
2572 // Get absolute value of exponent.
2573 NearLabel no_neg;
2574 __ cmp(eax, 0);
2575 __ j(greater_equal, &no_neg);
2576 __ neg(eax);
2577 __ bind(&no_neg);
2578
2579 // Load xmm1 with 1.
2580 __ movsd(xmm1, xmm3);
2581 NearLabel while_true;
2582 NearLabel no_multiply;
2583
2584 __ bind(&while_true);
2585 __ shr(eax, 1);
2586 __ j(not_carry, &no_multiply);
2587 __ mulsd(xmm1, xmm0);
2588 __ bind(&no_multiply);
Ben Murdochb0fe1622011-05-05 13:52:32 +01002589 __ mulsd(xmm0, xmm0);
2590 __ j(not_zero, &while_true);
2591
2592 // base has the original value of the exponent - if the exponent is
2593 // negative return 1/result.
2594 __ test(edx, Operand(edx));
2595 __ j(positive, &allocate_return);
2596 // Special case if xmm1 has reached infinity.
2597 __ mov(ecx, Immediate(0x7FB00000));
2598 __ movd(xmm0, Operand(ecx));
2599 __ cvtss2sd(xmm0, xmm0);
2600 __ ucomisd(xmm0, xmm1);
2601 __ j(equal, &call_runtime);
2602 __ divsd(xmm3, xmm1);
2603 __ movsd(xmm1, xmm3);
2604 __ jmp(&allocate_return);
2605
2606 // exponent (or both) is a heapnumber - no matter what we should now work
2607 // on doubles.
2608 __ bind(&exponent_nonsmi);
2609 __ cmp(FieldOperand(eax, HeapObject::kMapOffset),
Steve Block44f0eee2011-05-26 01:26:41 +01002610 factory->heap_number_map());
Ben Murdochb0fe1622011-05-05 13:52:32 +01002611 __ j(not_equal, &call_runtime);
2612 __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
2613 // Test if exponent is nan.
2614 __ ucomisd(xmm1, xmm1);
2615 __ j(parity_even, &call_runtime);
2616
2617 NearLabel base_not_smi;
2618 NearLabel handle_special_cases;
2619 __ test(edx, Immediate(kSmiTagMask));
2620 __ j(not_zero, &base_not_smi);
2621 __ SmiUntag(edx);
2622 __ cvtsi2sd(xmm0, Operand(edx));
2623 __ jmp(&handle_special_cases);
2624
2625 __ bind(&base_not_smi);
2626 __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
Steve Block44f0eee2011-05-26 01:26:41 +01002627 factory->heap_number_map());
Ben Murdochb0fe1622011-05-05 13:52:32 +01002628 __ j(not_equal, &call_runtime);
2629 __ mov(ecx, FieldOperand(edx, HeapNumber::kExponentOffset));
2630 __ and_(ecx, HeapNumber::kExponentMask);
2631 __ cmp(Operand(ecx), Immediate(HeapNumber::kExponentMask));
2632 // base is NaN or +/-Infinity
2633 __ j(greater_equal, &call_runtime);
2634 __ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
2635
2636 // base is in xmm0 and exponent is in xmm1.
2637 __ bind(&handle_special_cases);
2638 NearLabel not_minus_half;
2639 // Test for -0.5.
2640 // Load xmm2 with -0.5.
2641 __ mov(ecx, Immediate(0xBF000000));
2642 __ movd(xmm2, Operand(ecx));
2643 __ cvtss2sd(xmm2, xmm2);
2644 // xmm2 now has -0.5.
2645 __ ucomisd(xmm2, xmm1);
2646 __ j(not_equal, &not_minus_half);
2647
2648 // Calculates reciprocal of square root.
Steve Block1e0659c2011-05-24 12:43:12 +01002649 // sqrtsd returns -0 when input is -0. ECMA spec requires +0.
2650 __ xorpd(xmm1, xmm1);
2651 __ addsd(xmm1, xmm0);
Ben Murdochb0fe1622011-05-05 13:52:32 +01002652 __ sqrtsd(xmm1, xmm1);
Steve Block1e0659c2011-05-24 12:43:12 +01002653 __ divsd(xmm3, xmm1);
2654 __ movsd(xmm1, xmm3);
Ben Murdochb0fe1622011-05-05 13:52:32 +01002655 __ jmp(&allocate_return);
2656
2657 // Test for 0.5.
2658 __ bind(&not_minus_half);
2659 // Load xmm2 with 0.5.
2660 // Since xmm3 is 1 and xmm2 is -0.5 this is simply xmm2 + xmm3.
2661 __ addsd(xmm2, xmm3);
2662 // xmm2 now has 0.5.
2663 __ ucomisd(xmm2, xmm1);
2664 __ j(not_equal, &call_runtime);
2665 // Calculates square root.
Steve Block1e0659c2011-05-24 12:43:12 +01002666 // sqrtsd returns -0 when input is -0. ECMA spec requires +0.
2667 __ xorpd(xmm1, xmm1);
2668 __ addsd(xmm1, xmm0);
Ben Murdochb0fe1622011-05-05 13:52:32 +01002669 __ sqrtsd(xmm1, xmm1);
2670
2671 __ bind(&allocate_return);
2672 __ AllocateHeapNumber(ecx, eax, edx, &call_runtime);
2673 __ movdbl(FieldOperand(ecx, HeapNumber::kValueOffset), xmm1);
2674 __ mov(eax, ecx);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002675 __ ret(2 * kPointerSize);
Ben Murdochb0fe1622011-05-05 13:52:32 +01002676
2677 __ bind(&call_runtime);
2678 __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1);
2679}
2680
2681
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002682void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
2683 // The key is in edx and the parameter count is in eax.
2684
2685 // The displacement is used for skipping the frame pointer on the
2686 // stack. It is the offset of the last parameter (if any) relative
2687 // to the frame pointer.
2688 static const int kDisplacement = 1 * kPointerSize;
2689
2690 // Check that the key is a smi.
2691 Label slow;
2692 __ test(edx, Immediate(kSmiTagMask));
2693 __ j(not_zero, &slow, not_taken);
2694
2695 // Check if the calling frame is an arguments adaptor frame.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01002696 NearLabel adaptor;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002697 __ mov(ebx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
2698 __ mov(ecx, Operand(ebx, StandardFrameConstants::kContextOffset));
2699 __ cmp(Operand(ecx), Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
2700 __ j(equal, &adaptor);
2701
2702 // Check index against formal parameters count limit passed in
2703 // through register eax. Use unsigned comparison to get negative
2704 // check for free.
2705 __ cmp(edx, Operand(eax));
2706 __ j(above_equal, &slow, not_taken);
2707
2708 // Read the argument from the stack and return it.
2709 STATIC_ASSERT(kSmiTagSize == 1);
2710 STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these.
2711 __ lea(ebx, Operand(ebp, eax, times_2, 0));
2712 __ neg(edx);
2713 __ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
2714 __ ret(0);
2715
2716 // Arguments adaptor case: Check index against actual arguments
2717 // limit found in the arguments adaptor frame. Use unsigned
2718 // comparison to get negative check for free.
2719 __ bind(&adaptor);
2720 __ mov(ecx, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset));
2721 __ cmp(edx, Operand(ecx));
2722 __ j(above_equal, &slow, not_taken);
2723
2724 // Read the argument from the stack and return it.
2725 STATIC_ASSERT(kSmiTagSize == 1);
2726 STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these.
2727 __ lea(ebx, Operand(ebx, ecx, times_2, 0));
2728 __ neg(edx);
2729 __ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
2730 __ ret(0);
2731
2732 // Slow-case: Handle non-smi or out-of-bounds access to arguments
2733 // by calling the runtime system.
2734 __ bind(&slow);
2735 __ pop(ebx); // Return address.
2736 __ push(edx);
2737 __ push(ebx);
2738 __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
2739}
2740
2741
2742void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) {
2743 // esp[0] : return address
2744 // esp[4] : number of parameters
2745 // esp[8] : receiver displacement
2746 // esp[16] : function
2747
2748 // The displacement is used for skipping the return address and the
2749 // frame pointer on the stack. It is the offset of the last
2750 // parameter (if any) relative to the frame pointer.
2751 static const int kDisplacement = 2 * kPointerSize;
2752
2753 // Check if the calling frame is an arguments adaptor frame.
2754 Label adaptor_frame, try_allocate, runtime;
2755 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
2756 __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
2757 __ cmp(Operand(ecx), Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
2758 __ j(equal, &adaptor_frame);
2759
2760 // Get the length from the frame.
2761 __ mov(ecx, Operand(esp, 1 * kPointerSize));
2762 __ jmp(&try_allocate);
2763
2764 // Patch the arguments.length and the parameters pointer.
2765 __ bind(&adaptor_frame);
2766 __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
2767 __ mov(Operand(esp, 1 * kPointerSize), ecx);
2768 __ lea(edx, Operand(edx, ecx, times_2, kDisplacement));
2769 __ mov(Operand(esp, 2 * kPointerSize), edx);
2770
2771 // Try the new space allocation. Start out with computing the size of
2772 // the arguments object and the elements array.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01002773 NearLabel add_arguments_object;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002774 __ bind(&try_allocate);
2775 __ test(ecx, Operand(ecx));
2776 __ j(zero, &add_arguments_object);
2777 __ lea(ecx, Operand(ecx, times_2, FixedArray::kHeaderSize));
2778 __ bind(&add_arguments_object);
Steve Block44f0eee2011-05-26 01:26:41 +01002779 __ add(Operand(ecx), Immediate(GetArgumentsObjectSize()));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002780
2781 // Do the allocation of both objects in one go.
2782 __ AllocateInNewSpace(ecx, eax, edx, ebx, &runtime, TAG_OBJECT);
2783
2784 // Get the arguments boilerplate from the current (global) context.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002785 __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX)));
2786 __ mov(edi, FieldOperand(edi, GlobalObject::kGlobalContextOffset));
Steve Block44f0eee2011-05-26 01:26:41 +01002787 __ mov(edi, Operand(edi,
2788 Context::SlotOffset(GetArgumentsBoilerplateIndex())));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002789
2790 // Copy the JS object part.
2791 for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) {
2792 __ mov(ebx, FieldOperand(edi, i));
2793 __ mov(FieldOperand(eax, i), ebx);
2794 }
2795
Steve Block44f0eee2011-05-26 01:26:41 +01002796 if (type_ == NEW_NON_STRICT) {
2797 // Setup the callee in-object property.
2798 STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
2799 __ mov(ebx, Operand(esp, 3 * kPointerSize));
2800 __ mov(FieldOperand(eax, JSObject::kHeaderSize +
2801 Heap::kArgumentsCalleeIndex * kPointerSize),
2802 ebx);
2803 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002804
2805 // Get the length (smi tagged) and set that as an in-object property too.
Steve Block44f0eee2011-05-26 01:26:41 +01002806 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002807 __ mov(ecx, Operand(esp, 1 * kPointerSize));
Steve Block44f0eee2011-05-26 01:26:41 +01002808 __ mov(FieldOperand(eax, JSObject::kHeaderSize +
2809 Heap::kArgumentsLengthIndex * kPointerSize),
2810 ecx);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002811
2812 // If there are no actual arguments, we're done.
2813 Label done;
2814 __ test(ecx, Operand(ecx));
2815 __ j(zero, &done);
2816
2817 // Get the parameters pointer from the stack.
2818 __ mov(edx, Operand(esp, 2 * kPointerSize));
2819
2820 // Setup the elements pointer in the allocated arguments object and
2821 // initialize the header in the elements fixed array.
Steve Block44f0eee2011-05-26 01:26:41 +01002822 __ lea(edi, Operand(eax, GetArgumentsObjectSize()));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002823 __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi);
2824 __ mov(FieldOperand(edi, FixedArray::kMapOffset),
Steve Block44f0eee2011-05-26 01:26:41 +01002825 Immediate(masm->isolate()->factory()->fixed_array_map()));
2826
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002827 __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx);
2828 // Untag the length for the loop below.
2829 __ SmiUntag(ecx);
2830
2831 // Copy the fixed array slots.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01002832 NearLabel loop;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002833 __ bind(&loop);
2834 __ mov(ebx, Operand(edx, -1 * kPointerSize)); // Skip receiver.
2835 __ mov(FieldOperand(edi, FixedArray::kHeaderSize), ebx);
2836 __ add(Operand(edi), Immediate(kPointerSize));
2837 __ sub(Operand(edx), Immediate(kPointerSize));
2838 __ dec(ecx);
2839 __ j(not_zero, &loop);
2840
2841 // Return and remove the on-stack parameters.
2842 __ bind(&done);
2843 __ ret(3 * kPointerSize);
2844
2845 // Do the runtime call to allocate the arguments object.
2846 __ bind(&runtime);
2847 __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
2848}
2849
2850
2851void RegExpExecStub::Generate(MacroAssembler* masm) {
2852 // Just jump directly to runtime if native RegExp is not selected at compile
2853 // time or if regexp entry in generated code is turned off runtime switch or
2854 // at compilation.
2855#ifdef V8_INTERPRETED_REGEXP
2856 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
2857#else // V8_INTERPRETED_REGEXP
2858 if (!FLAG_regexp_entry_native) {
2859 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
2860 return;
2861 }
2862
2863 // Stack frame on entry.
2864 // esp[0]: return address
2865 // esp[4]: last_match_info (expected JSArray)
2866 // esp[8]: previous index
2867 // esp[12]: subject string
2868 // esp[16]: JSRegExp object
2869
2870 static const int kLastMatchInfoOffset = 1 * kPointerSize;
2871 static const int kPreviousIndexOffset = 2 * kPointerSize;
2872 static const int kSubjectOffset = 3 * kPointerSize;
2873 static const int kJSRegExpOffset = 4 * kPointerSize;
2874
2875 Label runtime, invoke_regexp;
2876
2877 // Ensure that a RegExp stack is allocated.
2878 ExternalReference address_of_regexp_stack_memory_address =
Steve Block44f0eee2011-05-26 01:26:41 +01002879 ExternalReference::address_of_regexp_stack_memory_address(
2880 masm->isolate());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002881 ExternalReference address_of_regexp_stack_memory_size =
Steve Block44f0eee2011-05-26 01:26:41 +01002882 ExternalReference::address_of_regexp_stack_memory_size(masm->isolate());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002883 __ mov(ebx, Operand::StaticVariable(address_of_regexp_stack_memory_size));
2884 __ test(ebx, Operand(ebx));
2885 __ j(zero, &runtime, not_taken);
2886
2887 // Check that the first argument is a JSRegExp object.
2888 __ mov(eax, Operand(esp, kJSRegExpOffset));
2889 STATIC_ASSERT(kSmiTag == 0);
2890 __ test(eax, Immediate(kSmiTagMask));
2891 __ j(zero, &runtime);
2892 __ CmpObjectType(eax, JS_REGEXP_TYPE, ecx);
2893 __ j(not_equal, &runtime);
2894 // Check that the RegExp has been compiled (data contains a fixed array).
2895 __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
2896 if (FLAG_debug_code) {
2897 __ test(ecx, Immediate(kSmiTagMask));
2898 __ Check(not_zero, "Unexpected type for RegExp data, FixedArray expected");
2899 __ CmpObjectType(ecx, FIXED_ARRAY_TYPE, ebx);
2900 __ Check(equal, "Unexpected type for RegExp data, FixedArray expected");
2901 }
2902
2903 // ecx: RegExp data (FixedArray)
2904 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
2905 __ mov(ebx, FieldOperand(ecx, JSRegExp::kDataTagOffset));
2906 __ cmp(Operand(ebx), Immediate(Smi::FromInt(JSRegExp::IRREGEXP)));
2907 __ j(not_equal, &runtime);
2908
2909 // ecx: RegExp data (FixedArray)
2910 // Check that the number of captures fit in the static offsets vector buffer.
2911 __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
2912 // Calculate number of capture registers (number_of_captures + 1) * 2. This
2913 // uses the asumption that smis are 2 * their untagged value.
2914 STATIC_ASSERT(kSmiTag == 0);
2915 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
2916 __ add(Operand(edx), Immediate(2)); // edx was a smi.
2917 // Check that the static offsets vector buffer is large enough.
2918 __ cmp(edx, OffsetsVector::kStaticOffsetsVectorSize);
2919 __ j(above, &runtime);
2920
2921 // ecx: RegExp data (FixedArray)
2922 // edx: Number of capture registers
2923 // Check that the second argument is a string.
2924 __ mov(eax, Operand(esp, kSubjectOffset));
2925 __ test(eax, Immediate(kSmiTagMask));
2926 __ j(zero, &runtime);
2927 Condition is_string = masm->IsObjectStringType(eax, ebx, ebx);
2928 __ j(NegateCondition(is_string), &runtime);
2929 // Get the length of the string to ebx.
2930 __ mov(ebx, FieldOperand(eax, String::kLengthOffset));
2931
2932 // ebx: Length of subject string as a smi
2933 // ecx: RegExp data (FixedArray)
2934 // edx: Number of capture registers
2935 // Check that the third argument is a positive smi less than the subject
2936 // string length. A negative value will be greater (unsigned comparison).
2937 __ mov(eax, Operand(esp, kPreviousIndexOffset));
2938 __ test(eax, Immediate(kSmiTagMask));
2939 __ j(not_zero, &runtime);
2940 __ cmp(eax, Operand(ebx));
2941 __ j(above_equal, &runtime);
2942
2943 // ecx: RegExp data (FixedArray)
2944 // edx: Number of capture registers
2945 // Check that the fourth object is a JSArray object.
2946 __ mov(eax, Operand(esp, kLastMatchInfoOffset));
2947 __ test(eax, Immediate(kSmiTagMask));
2948 __ j(zero, &runtime);
2949 __ CmpObjectType(eax, JS_ARRAY_TYPE, ebx);
2950 __ j(not_equal, &runtime);
2951 // Check that the JSArray is in fast case.
2952 __ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset));
2953 __ mov(eax, FieldOperand(ebx, HeapObject::kMapOffset));
Steve Block44f0eee2011-05-26 01:26:41 +01002954 Factory* factory = masm->isolate()->factory();
2955 __ cmp(eax, factory->fixed_array_map());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002956 __ j(not_equal, &runtime);
2957 // Check that the last match info has space for the capture registers and the
2958 // additional information.
2959 __ mov(eax, FieldOperand(ebx, FixedArray::kLengthOffset));
2960 __ SmiUntag(eax);
2961 __ add(Operand(edx), Immediate(RegExpImpl::kLastMatchOverhead));
2962 __ cmp(edx, Operand(eax));
2963 __ j(greater, &runtime);
2964
2965 // ecx: RegExp data (FixedArray)
2966 // Check the representation and encoding of the subject string.
2967 Label seq_ascii_string, seq_two_byte_string, check_code;
2968 __ mov(eax, Operand(esp, kSubjectOffset));
2969 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
2970 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
2971 // First check for flat two byte string.
2972 __ and_(ebx,
2973 kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask);
2974 STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
2975 __ j(zero, &seq_two_byte_string);
2976 // Any other flat string must be a flat ascii string.
2977 __ test(Operand(ebx),
2978 Immediate(kIsNotStringMask | kStringRepresentationMask));
2979 __ j(zero, &seq_ascii_string);
2980
2981 // Check for flat cons string.
2982 // A flat cons string is a cons string where the second part is the empty
2983 // string. In that case the subject string is just the first part of the cons
2984 // string. Also in this case the first part of the cons string is known to be
2985 // a sequential string or an external string.
2986 STATIC_ASSERT(kExternalStringTag != 0);
2987 STATIC_ASSERT((kConsStringTag & kExternalStringTag) == 0);
2988 __ test(Operand(ebx),
2989 Immediate(kIsNotStringMask | kExternalStringTag));
2990 __ j(not_zero, &runtime);
2991 // String is a cons string.
2992 __ mov(edx, FieldOperand(eax, ConsString::kSecondOffset));
Steve Block44f0eee2011-05-26 01:26:41 +01002993 __ cmp(Operand(edx), factory->empty_string());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002994 __ j(not_equal, &runtime);
2995 __ mov(eax, FieldOperand(eax, ConsString::kFirstOffset));
2996 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
2997 // String is a cons string with empty second part.
2998 // eax: first part of cons string.
2999 // ebx: map of first part of cons string.
3000 // Is first part a flat two byte string?
3001 __ test_b(FieldOperand(ebx, Map::kInstanceTypeOffset),
3002 kStringRepresentationMask | kStringEncodingMask);
3003 STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0);
3004 __ j(zero, &seq_two_byte_string);
3005 // Any other flat string must be ascii.
3006 __ test_b(FieldOperand(ebx, Map::kInstanceTypeOffset),
3007 kStringRepresentationMask);
3008 __ j(not_zero, &runtime);
3009
3010 __ bind(&seq_ascii_string);
3011 // eax: subject string (flat ascii)
3012 // ecx: RegExp data (FixedArray)
3013 __ mov(edx, FieldOperand(ecx, JSRegExp::kDataAsciiCodeOffset));
3014 __ Set(edi, Immediate(1)); // Type is ascii.
3015 __ jmp(&check_code);
3016
3017 __ bind(&seq_two_byte_string);
3018 // eax: subject string (flat two byte)
3019 // ecx: RegExp data (FixedArray)
3020 __ mov(edx, FieldOperand(ecx, JSRegExp::kDataUC16CodeOffset));
3021 __ Set(edi, Immediate(0)); // Type is two byte.
3022
3023 __ bind(&check_code);
3024 // Check that the irregexp code has been generated for the actual string
3025 // encoding. If it has, the field contains a code object otherwise it contains
3026 // the hole.
3027 __ CmpObjectType(edx, CODE_TYPE, ebx);
3028 __ j(not_equal, &runtime);
3029
3030 // eax: subject string
3031 // edx: code
3032 // edi: encoding of subject string (1 if ascii, 0 if two_byte);
3033 // Load used arguments before starting to push arguments for call to native
3034 // RegExp code to avoid handling changing stack height.
3035 __ mov(ebx, Operand(esp, kPreviousIndexOffset));
3036 __ SmiUntag(ebx); // Previous index from smi.
3037
3038 // eax: subject string
3039 // ebx: previous index
3040 // edx: code
3041 // edi: encoding of subject string (1 if ascii 0 if two_byte);
3042 // All checks done. Now push arguments for native regexp code.
Steve Block44f0eee2011-05-26 01:26:41 +01003043 Counters* counters = masm->isolate()->counters();
3044 __ IncrementCounter(counters->regexp_entry_native(), 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003045
Steve Block44f0eee2011-05-26 01:26:41 +01003046 // Isolates: note we add an additional parameter here (isolate pointer).
3047 static const int kRegExpExecuteArguments = 8;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003048 __ EnterApiExitFrame(kRegExpExecuteArguments);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003049
Steve Block44f0eee2011-05-26 01:26:41 +01003050 // Argument 8: Pass current isolate address.
3051 __ mov(Operand(esp, 7 * kPointerSize),
3052 Immediate(ExternalReference::isolate_address()));
3053
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003054 // Argument 7: Indicate that this is a direct call from JavaScript.
3055 __ mov(Operand(esp, 6 * kPointerSize), Immediate(1));
3056
3057 // Argument 6: Start (high end) of backtracking stack memory area.
3058 __ mov(ecx, Operand::StaticVariable(address_of_regexp_stack_memory_address));
3059 __ add(ecx, Operand::StaticVariable(address_of_regexp_stack_memory_size));
3060 __ mov(Operand(esp, 5 * kPointerSize), ecx);
3061
3062 // Argument 5: static offsets vector buffer.
3063 __ mov(Operand(esp, 4 * kPointerSize),
Steve Block44f0eee2011-05-26 01:26:41 +01003064 Immediate(ExternalReference::address_of_static_offsets_vector(
3065 masm->isolate())));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003066
3067 // Argument 4: End of string data
3068 // Argument 3: Start of string data
Kristian Monsen0d5e1162010-09-30 15:31:59 +01003069 NearLabel setup_two_byte, setup_rest;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003070 __ test(edi, Operand(edi));
3071 __ mov(edi, FieldOperand(eax, String::kLengthOffset));
3072 __ j(zero, &setup_two_byte);
3073 __ SmiUntag(edi);
3074 __ lea(ecx, FieldOperand(eax, edi, times_1, SeqAsciiString::kHeaderSize));
3075 __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4.
3076 __ lea(ecx, FieldOperand(eax, ebx, times_1, SeqAsciiString::kHeaderSize));
3077 __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3.
3078 __ jmp(&setup_rest);
3079
3080 __ bind(&setup_two_byte);
3081 STATIC_ASSERT(kSmiTag == 0);
3082 STATIC_ASSERT(kSmiTagSize == 1); // edi is smi (powered by 2).
3083 __ lea(ecx, FieldOperand(eax, edi, times_1, SeqTwoByteString::kHeaderSize));
3084 __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4.
3085 __ lea(ecx, FieldOperand(eax, ebx, times_2, SeqTwoByteString::kHeaderSize));
3086 __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3.
3087
3088 __ bind(&setup_rest);
3089
3090 // Argument 2: Previous index.
3091 __ mov(Operand(esp, 1 * kPointerSize), ebx);
3092
3093 // Argument 1: Subject string.
3094 __ mov(Operand(esp, 0 * kPointerSize), eax);
3095
3096 // Locate the code entry and call it.
3097 __ add(Operand(edx), Immediate(Code::kHeaderSize - kHeapObjectTag));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003098 __ call(Operand(edx));
3099
3100 // Drop arguments and come back to JS mode.
3101 __ LeaveApiExitFrame();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003102
3103 // Check the result.
3104 Label success;
3105 __ cmp(eax, NativeRegExpMacroAssembler::SUCCESS);
3106 __ j(equal, &success, taken);
3107 Label failure;
3108 __ cmp(eax, NativeRegExpMacroAssembler::FAILURE);
3109 __ j(equal, &failure, taken);
3110 __ cmp(eax, NativeRegExpMacroAssembler::EXCEPTION);
3111 // If not exception it can only be retry. Handle that in the runtime system.
3112 __ j(not_equal, &runtime);
3113 // Result must now be exception. If there is no pending exception already a
3114 // stack overflow (on the backtrack stack) was detected in RegExp code but
3115 // haven't created the exception yet. Handle that in the runtime system.
3116 // TODO(592): Rerunning the RegExp to get the stack overflow exception.
Steve Block44f0eee2011-05-26 01:26:41 +01003117 ExternalReference pending_exception(Isolate::k_pending_exception_address,
3118 masm->isolate());
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003119 __ mov(edx,
Steve Block44f0eee2011-05-26 01:26:41 +01003120 Operand::StaticVariable(ExternalReference::the_hole_value_location(
3121 masm->isolate())));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003122 __ mov(eax, Operand::StaticVariable(pending_exception));
3123 __ cmp(edx, Operand(eax));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003124 __ j(equal, &runtime);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003125 // For exception, throw the exception again.
3126
3127 // Clear the pending exception variable.
3128 __ mov(Operand::StaticVariable(pending_exception), edx);
3129
3130 // Special handling of termination exceptions which are uncatchable
3131 // by javascript code.
Steve Block44f0eee2011-05-26 01:26:41 +01003132 __ cmp(eax, factory->termination_exception());
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003133 Label throw_termination_exception;
3134 __ j(equal, &throw_termination_exception);
3135
3136 // Handle normal exception by following handler chain.
3137 __ Throw(eax);
3138
3139 __ bind(&throw_termination_exception);
3140 __ ThrowUncatchable(TERMINATION, eax);
3141
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003142 __ bind(&failure);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003143 // For failure to match, return null.
Steve Block44f0eee2011-05-26 01:26:41 +01003144 __ mov(Operand(eax), factory->null_value());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003145 __ ret(4 * kPointerSize);
3146
3147 // Load RegExp data.
3148 __ bind(&success);
3149 __ mov(eax, Operand(esp, kJSRegExpOffset));
3150 __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
3151 __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
3152 // Calculate number of capture registers (number_of_captures + 1) * 2.
3153 STATIC_ASSERT(kSmiTag == 0);
3154 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
3155 __ add(Operand(edx), Immediate(2)); // edx was a smi.
3156
3157 // edx: Number of capture registers
3158 // Load last_match_info which is still known to be a fast case JSArray.
3159 __ mov(eax, Operand(esp, kLastMatchInfoOffset));
3160 __ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset));
3161
3162 // ebx: last_match_info backing store (FixedArray)
3163 // edx: number of capture registers
3164 // Store the capture count.
3165 __ SmiTag(edx); // Number of capture registers to smi.
3166 __ mov(FieldOperand(ebx, RegExpImpl::kLastCaptureCountOffset), edx);
3167 __ SmiUntag(edx); // Number of capture registers back from smi.
3168 // Store last subject and last input.
3169 __ mov(eax, Operand(esp, kSubjectOffset));
3170 __ mov(FieldOperand(ebx, RegExpImpl::kLastSubjectOffset), eax);
3171 __ mov(ecx, ebx);
3172 __ RecordWrite(ecx, RegExpImpl::kLastSubjectOffset, eax, edi);
3173 __ mov(eax, Operand(esp, kSubjectOffset));
3174 __ mov(FieldOperand(ebx, RegExpImpl::kLastInputOffset), eax);
3175 __ mov(ecx, ebx);
3176 __ RecordWrite(ecx, RegExpImpl::kLastInputOffset, eax, edi);
3177
3178 // Get the static offsets vector filled by the native regexp code.
3179 ExternalReference address_of_static_offsets_vector =
Steve Block44f0eee2011-05-26 01:26:41 +01003180 ExternalReference::address_of_static_offsets_vector(masm->isolate());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003181 __ mov(ecx, Immediate(address_of_static_offsets_vector));
3182
3183 // ebx: last_match_info backing store (FixedArray)
3184 // ecx: offsets vector
3185 // edx: number of capture registers
Kristian Monsen0d5e1162010-09-30 15:31:59 +01003186 NearLabel next_capture, done;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003187 // Capture register counter starts from number of capture registers and
3188 // counts down until wraping after zero.
3189 __ bind(&next_capture);
3190 __ sub(Operand(edx), Immediate(1));
3191 __ j(negative, &done);
3192 // Read the value from the static offsets vector buffer.
3193 __ mov(edi, Operand(ecx, edx, times_int_size, 0));
3194 __ SmiTag(edi);
3195 // Store the smi value in the last match info.
3196 __ mov(FieldOperand(ebx,
3197 edx,
3198 times_pointer_size,
3199 RegExpImpl::kFirstCaptureOffset),
3200 edi);
3201 __ jmp(&next_capture);
3202 __ bind(&done);
3203
3204 // Return last match info.
3205 __ mov(eax, Operand(esp, kLastMatchInfoOffset));
3206 __ ret(4 * kPointerSize);
3207
3208 // Do the runtime call to execute the regexp.
3209 __ bind(&runtime);
3210 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
3211#endif // V8_INTERPRETED_REGEXP
3212}
3213
3214
Ben Murdochb0fe1622011-05-05 13:52:32 +01003215void RegExpConstructResultStub::Generate(MacroAssembler* masm) {
3216 const int kMaxInlineLength = 100;
3217 Label slowcase;
3218 NearLabel done;
3219 __ mov(ebx, Operand(esp, kPointerSize * 3));
3220 __ test(ebx, Immediate(kSmiTagMask));
3221 __ j(not_zero, &slowcase);
3222 __ cmp(Operand(ebx), Immediate(Smi::FromInt(kMaxInlineLength)));
3223 __ j(above, &slowcase);
3224 // Smi-tagging is equivalent to multiplying by 2.
3225 STATIC_ASSERT(kSmiTag == 0);
3226 STATIC_ASSERT(kSmiTagSize == 1);
3227 // Allocate RegExpResult followed by FixedArray with size in ebx.
3228 // JSArray: [Map][empty properties][Elements][Length-smi][index][input]
3229 // Elements: [Map][Length][..elements..]
3230 __ AllocateInNewSpace(JSRegExpResult::kSize + FixedArray::kHeaderSize,
3231 times_half_pointer_size,
3232 ebx, // In: Number of elements (times 2, being a smi)
3233 eax, // Out: Start of allocation (tagged).
3234 ecx, // Out: End of allocation.
3235 edx, // Scratch register
3236 &slowcase,
3237 TAG_OBJECT);
3238 // eax: Start of allocated area, object-tagged.
3239
3240 // Set JSArray map to global.regexp_result_map().
3241 // Set empty properties FixedArray.
3242 // Set elements to point to FixedArray allocated right after the JSArray.
3243 // Interleave operations for better latency.
3244 __ mov(edx, ContextOperand(esi, Context::GLOBAL_INDEX));
Steve Block44f0eee2011-05-26 01:26:41 +01003245 Factory* factory = masm->isolate()->factory();
3246 __ mov(ecx, Immediate(factory->empty_fixed_array()));
Ben Murdochb0fe1622011-05-05 13:52:32 +01003247 __ lea(ebx, Operand(eax, JSRegExpResult::kSize));
3248 __ mov(edx, FieldOperand(edx, GlobalObject::kGlobalContextOffset));
3249 __ mov(FieldOperand(eax, JSObject::kElementsOffset), ebx);
3250 __ mov(FieldOperand(eax, JSObject::kPropertiesOffset), ecx);
3251 __ mov(edx, ContextOperand(edx, Context::REGEXP_RESULT_MAP_INDEX));
3252 __ mov(FieldOperand(eax, HeapObject::kMapOffset), edx);
3253
3254 // Set input, index and length fields from arguments.
3255 __ mov(ecx, Operand(esp, kPointerSize * 1));
3256 __ mov(FieldOperand(eax, JSRegExpResult::kInputOffset), ecx);
3257 __ mov(ecx, Operand(esp, kPointerSize * 2));
3258 __ mov(FieldOperand(eax, JSRegExpResult::kIndexOffset), ecx);
3259 __ mov(ecx, Operand(esp, kPointerSize * 3));
3260 __ mov(FieldOperand(eax, JSArray::kLengthOffset), ecx);
3261
3262 // Fill out the elements FixedArray.
3263 // eax: JSArray.
3264 // ebx: FixedArray.
3265 // ecx: Number of elements in array, as smi.
3266
3267 // Set map.
3268 __ mov(FieldOperand(ebx, HeapObject::kMapOffset),
Steve Block44f0eee2011-05-26 01:26:41 +01003269 Immediate(factory->fixed_array_map()));
Ben Murdochb0fe1622011-05-05 13:52:32 +01003270 // Set length.
3271 __ mov(FieldOperand(ebx, FixedArray::kLengthOffset), ecx);
3272 // Fill contents of fixed-array with the-hole.
3273 __ SmiUntag(ecx);
Steve Block44f0eee2011-05-26 01:26:41 +01003274 __ mov(edx, Immediate(factory->the_hole_value()));
Ben Murdochb0fe1622011-05-05 13:52:32 +01003275 __ lea(ebx, FieldOperand(ebx, FixedArray::kHeaderSize));
3276 // Fill fixed array elements with hole.
3277 // eax: JSArray.
3278 // ecx: Number of elements to fill.
3279 // ebx: Start of elements in FixedArray.
3280 // edx: the hole.
3281 Label loop;
3282 __ test(ecx, Operand(ecx));
3283 __ bind(&loop);
3284 __ j(less_equal, &done); // Jump if ecx is negative or zero.
3285 __ sub(Operand(ecx), Immediate(1));
3286 __ mov(Operand(ebx, ecx, times_pointer_size, 0), edx);
3287 __ jmp(&loop);
3288
3289 __ bind(&done);
3290 __ ret(3 * kPointerSize);
3291
3292 __ bind(&slowcase);
3293 __ TailCallRuntime(Runtime::kRegExpConstructResult, 3, 1);
3294}
3295
3296
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003297void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
3298 Register object,
3299 Register result,
3300 Register scratch1,
3301 Register scratch2,
3302 bool object_is_smi,
3303 Label* not_found) {
3304 // Use of registers. Register result is used as a temporary.
3305 Register number_string_cache = result;
3306 Register mask = scratch1;
3307 Register scratch = scratch2;
3308
3309 // Load the number string cache.
Steve Block44f0eee2011-05-26 01:26:41 +01003310 ExternalReference roots_address =
3311 ExternalReference::roots_address(masm->isolate());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003312 __ mov(scratch, Immediate(Heap::kNumberStringCacheRootIndex));
3313 __ mov(number_string_cache,
3314 Operand::StaticArray(scratch, times_pointer_size, roots_address));
3315 // Make the hash mask from the length of the number string cache. It
3316 // contains two elements (number and string) for each cache entry.
3317 __ mov(mask, FieldOperand(number_string_cache, FixedArray::kLengthOffset));
3318 __ shr(mask, kSmiTagSize + 1); // Untag length and divide it by two.
3319 __ sub(Operand(mask), Immediate(1)); // Make mask.
3320
3321 // Calculate the entry in the number string cache. The hash value in the
3322 // number string cache for smis is just the smi value, and the hash for
3323 // doubles is the xor of the upper and lower words. See
3324 // Heap::GetNumberStringCache.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01003325 NearLabel smi_hash_calculated;
3326 NearLabel load_result_from_cache;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003327 if (object_is_smi) {
3328 __ mov(scratch, object);
3329 __ SmiUntag(scratch);
3330 } else {
Kristian Monsen0d5e1162010-09-30 15:31:59 +01003331 NearLabel not_smi, hash_calculated;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003332 STATIC_ASSERT(kSmiTag == 0);
3333 __ test(object, Immediate(kSmiTagMask));
3334 __ j(not_zero, &not_smi);
3335 __ mov(scratch, object);
3336 __ SmiUntag(scratch);
3337 __ jmp(&smi_hash_calculated);
3338 __ bind(&not_smi);
3339 __ cmp(FieldOperand(object, HeapObject::kMapOffset),
Steve Block44f0eee2011-05-26 01:26:41 +01003340 masm->isolate()->factory()->heap_number_map());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003341 __ j(not_equal, not_found);
3342 STATIC_ASSERT(8 == kDoubleSize);
3343 __ mov(scratch, FieldOperand(object, HeapNumber::kValueOffset));
3344 __ xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4));
3345 // Object is heap number and hash is now in scratch. Calculate cache index.
3346 __ and_(scratch, Operand(mask));
3347 Register index = scratch;
3348 Register probe = mask;
3349 __ mov(probe,
3350 FieldOperand(number_string_cache,
3351 index,
3352 times_twice_pointer_size,
3353 FixedArray::kHeaderSize));
3354 __ test(probe, Immediate(kSmiTagMask));
3355 __ j(zero, not_found);
Ben Murdoch8b112d22011-06-08 16:22:53 +01003356 if (CpuFeatures::IsSupported(SSE2)) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003357 CpuFeatures::Scope fscope(SSE2);
3358 __ movdbl(xmm0, FieldOperand(object, HeapNumber::kValueOffset));
3359 __ movdbl(xmm1, FieldOperand(probe, HeapNumber::kValueOffset));
3360 __ ucomisd(xmm0, xmm1);
3361 } else {
3362 __ fld_d(FieldOperand(object, HeapNumber::kValueOffset));
3363 __ fld_d(FieldOperand(probe, HeapNumber::kValueOffset));
3364 __ FCmp();
3365 }
3366 __ j(parity_even, not_found); // Bail out if NaN is involved.
3367 __ j(not_equal, not_found); // The cache did not contain this value.
3368 __ jmp(&load_result_from_cache);
3369 }
3370
3371 __ bind(&smi_hash_calculated);
3372 // Object is smi and hash is now in scratch. Calculate cache index.
3373 __ and_(scratch, Operand(mask));
3374 Register index = scratch;
3375 // Check if the entry is the smi we are looking for.
3376 __ cmp(object,
3377 FieldOperand(number_string_cache,
3378 index,
3379 times_twice_pointer_size,
3380 FixedArray::kHeaderSize));
3381 __ j(not_equal, not_found);
3382
3383 // Get the result from the cache.
3384 __ bind(&load_result_from_cache);
3385 __ mov(result,
3386 FieldOperand(number_string_cache,
3387 index,
3388 times_twice_pointer_size,
3389 FixedArray::kHeaderSize + kPointerSize));
Steve Block44f0eee2011-05-26 01:26:41 +01003390 Counters* counters = masm->isolate()->counters();
3391 __ IncrementCounter(counters->number_to_string_native(), 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003392}
3393
3394
3395void NumberToStringStub::Generate(MacroAssembler* masm) {
3396 Label runtime;
3397
3398 __ mov(ebx, Operand(esp, kPointerSize));
3399
3400 // Generate code to lookup number in the number string cache.
3401 GenerateLookupNumberStringCache(masm, ebx, eax, ecx, edx, false, &runtime);
3402 __ ret(1 * kPointerSize);
3403
3404 __ bind(&runtime);
3405 // Handle number to string in the runtime system if not found in the cache.
3406 __ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1);
3407}
3408
3409
3410static int NegativeComparisonResult(Condition cc) {
3411 ASSERT(cc != equal);
3412 ASSERT((cc == less) || (cc == less_equal)
3413 || (cc == greater) || (cc == greater_equal));
3414 return (cc == greater || cc == greater_equal) ? LESS : GREATER;
3415}
3416
3417void CompareStub::Generate(MacroAssembler* masm) {
3418 ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg));
3419
3420 Label check_unequal_objects, done;
3421
Kristian Monsen0d5e1162010-09-30 15:31:59 +01003422 // Compare two smis if required.
3423 if (include_smi_compare_) {
3424 Label non_smi, smi_done;
3425 __ mov(ecx, Operand(edx));
3426 __ or_(ecx, Operand(eax));
3427 __ test(ecx, Immediate(kSmiTagMask));
3428 __ j(not_zero, &non_smi, not_taken);
3429 __ sub(edx, Operand(eax)); // Return on the result of the subtraction.
3430 __ j(no_overflow, &smi_done);
Ben Murdochf87a2032010-10-22 12:50:53 +01003431 __ not_(edx); // Correct sign in case of overflow. edx is never 0 here.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01003432 __ bind(&smi_done);
3433 __ mov(eax, edx);
3434 __ ret(0);
3435 __ bind(&non_smi);
3436 } else if (FLAG_debug_code) {
3437 __ mov(ecx, Operand(edx));
3438 __ or_(ecx, Operand(eax));
3439 __ test(ecx, Immediate(kSmiTagMask));
3440 __ Assert(not_zero, "Unexpected smi operands.");
3441 }
3442
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003443 // NOTICE! This code is only reached after a smi-fast-case check, so
3444 // it is certain that at least one operand isn't a smi.
3445
3446 // Identical objects can be compared fast, but there are some tricky cases
3447 // for NaN and undefined.
3448 {
3449 Label not_identical;
3450 __ cmp(eax, Operand(edx));
3451 __ j(not_equal, &not_identical);
3452
3453 if (cc_ != equal) {
3454 // Check for undefined. undefined OP undefined is false even though
3455 // undefined == undefined.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01003456 NearLabel check_for_nan;
Steve Block44f0eee2011-05-26 01:26:41 +01003457 __ cmp(edx, masm->isolate()->factory()->undefined_value());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003458 __ j(not_equal, &check_for_nan);
3459 __ Set(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc_))));
3460 __ ret(0);
3461 __ bind(&check_for_nan);
3462 }
3463
Steve Block44f0eee2011-05-26 01:26:41 +01003464 // Test for NaN. Sadly, we can't just compare to factory->nan_value(),
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003465 // so we do the second best thing - test it ourselves.
3466 // Note: if cc_ != equal, never_nan_nan_ is not used.
3467 if (never_nan_nan_ && (cc_ == equal)) {
3468 __ Set(eax, Immediate(Smi::FromInt(EQUAL)));
3469 __ ret(0);
3470 } else {
Kristian Monsen0d5e1162010-09-30 15:31:59 +01003471 NearLabel heap_number;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003472 __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
Steve Block44f0eee2011-05-26 01:26:41 +01003473 Immediate(masm->isolate()->factory()->heap_number_map()));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003474 __ j(equal, &heap_number);
3475 if (cc_ != equal) {
3476 // Call runtime on identical JSObjects. Otherwise return equal.
3477 __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx);
3478 __ j(above_equal, &not_identical);
3479 }
3480 __ Set(eax, Immediate(Smi::FromInt(EQUAL)));
3481 __ ret(0);
3482
3483 __ bind(&heap_number);
3484 // It is a heap number, so return non-equal if it's NaN and equal if
3485 // it's not NaN.
3486 // The representation of NaN values has all exponent bits (52..62) set,
3487 // and not all mantissa bits (0..51) clear.
3488 // We only accept QNaNs, which have bit 51 set.
3489 // Read top bits of double representation (second word of value).
3490
3491 // Value is a QNaN if value & kQuietNaNMask == kQuietNaNMask, i.e.,
3492 // all bits in the mask are set. We only need to check the word
3493 // that contains the exponent and high bit of the mantissa.
3494 STATIC_ASSERT(((kQuietNaNHighBitsMask << 1) & 0x80000000u) != 0);
3495 __ mov(edx, FieldOperand(edx, HeapNumber::kExponentOffset));
Steve Block9fac8402011-05-12 15:51:54 +01003496 __ Set(eax, Immediate(0));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003497 // Shift value and mask so kQuietNaNHighBitsMask applies to topmost
3498 // bits.
3499 __ add(edx, Operand(edx));
3500 __ cmp(edx, kQuietNaNHighBitsMask << 1);
3501 if (cc_ == equal) {
3502 STATIC_ASSERT(EQUAL != 1);
3503 __ setcc(above_equal, eax);
3504 __ ret(0);
3505 } else {
Kristian Monsen0d5e1162010-09-30 15:31:59 +01003506 NearLabel nan;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003507 __ j(above_equal, &nan);
3508 __ Set(eax, Immediate(Smi::FromInt(EQUAL)));
3509 __ ret(0);
3510 __ bind(&nan);
3511 __ Set(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc_))));
3512 __ ret(0);
3513 }
3514 }
3515
3516 __ bind(&not_identical);
3517 }
3518
3519 // Strict equality can quickly decide whether objects are equal.
3520 // Non-strict object equality is slower, so it is handled later in the stub.
3521 if (cc_ == equal && strict_) {
3522 Label slow; // Fallthrough label.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01003523 NearLabel not_smis;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003524 // If we're doing a strict equality comparison, we don't have to do
3525 // type conversion, so we generate code to do fast comparison for objects
3526 // and oddballs. Non-smi numbers and strings still go through the usual
3527 // slow-case code.
3528 // If either is a Smi (we know that not both are), then they can only
3529 // be equal if the other is a HeapNumber. If so, use the slow case.
3530 STATIC_ASSERT(kSmiTag == 0);
3531 ASSERT_EQ(0, Smi::FromInt(0));
3532 __ mov(ecx, Immediate(kSmiTagMask));
3533 __ and_(ecx, Operand(eax));
3534 __ test(ecx, Operand(edx));
3535 __ j(not_zero, &not_smis);
3536 // One operand is a smi.
3537
3538 // Check whether the non-smi is a heap number.
3539 STATIC_ASSERT(kSmiTagMask == 1);
3540 // ecx still holds eax & kSmiTag, which is either zero or one.
3541 __ sub(Operand(ecx), Immediate(0x01));
3542 __ mov(ebx, edx);
3543 __ xor_(ebx, Operand(eax));
3544 __ and_(ebx, Operand(ecx)); // ebx holds either 0 or eax ^ edx.
3545 __ xor_(ebx, Operand(eax));
3546 // if eax was smi, ebx is now edx, else eax.
3547
3548 // Check if the non-smi operand is a heap number.
3549 __ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
Steve Block44f0eee2011-05-26 01:26:41 +01003550 Immediate(masm->isolate()->factory()->heap_number_map()));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003551 // If heap number, handle it in the slow case.
3552 __ j(equal, &slow);
3553 // Return non-equal (ebx is not zero)
3554 __ mov(eax, ebx);
3555 __ ret(0);
3556
3557 __ bind(&not_smis);
3558 // If either operand is a JSObject or an oddball value, then they are not
3559 // equal since their pointers are different
3560 // There is no test for undetectability in strict equality.
3561
3562 // Get the type of the first operand.
3563 // If the first object is a JS object, we have done pointer comparison.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01003564 NearLabel first_non_object;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003565 STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
3566 __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx);
3567 __ j(below, &first_non_object);
3568
3569 // Return non-zero (eax is not zero)
Kristian Monsen0d5e1162010-09-30 15:31:59 +01003570 NearLabel return_not_equal;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003571 STATIC_ASSERT(kHeapObjectTag != 0);
3572 __ bind(&return_not_equal);
3573 __ ret(0);
3574
3575 __ bind(&first_non_object);
3576 // Check for oddballs: true, false, null, undefined.
3577 __ CmpInstanceType(ecx, ODDBALL_TYPE);
3578 __ j(equal, &return_not_equal);
3579
3580 __ CmpObjectType(edx, FIRST_JS_OBJECT_TYPE, ecx);
3581 __ j(above_equal, &return_not_equal);
3582
3583 // Check for oddballs: true, false, null, undefined.
3584 __ CmpInstanceType(ecx, ODDBALL_TYPE);
3585 __ j(equal, &return_not_equal);
3586
3587 // Fall through to the general case.
3588 __ bind(&slow);
3589 }
3590
3591 // Generate the number comparison code.
3592 if (include_number_compare_) {
3593 Label non_number_comparison;
3594 Label unordered;
Ben Murdoch8b112d22011-06-08 16:22:53 +01003595 if (CpuFeatures::IsSupported(SSE2)) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003596 CpuFeatures::Scope use_sse2(SSE2);
3597 CpuFeatures::Scope use_cmov(CMOV);
3598
3599 FloatingPointHelper::LoadSSE2Operands(masm, &non_number_comparison);
3600 __ ucomisd(xmm0, xmm1);
3601
3602 // Don't base result on EFLAGS when a NaN is involved.
3603 __ j(parity_even, &unordered, not_taken);
3604 // Return a result of -1, 0, or 1, based on EFLAGS.
3605 __ mov(eax, 0); // equal
3606 __ mov(ecx, Immediate(Smi::FromInt(1)));
3607 __ cmov(above, eax, Operand(ecx));
3608 __ mov(ecx, Immediate(Smi::FromInt(-1)));
3609 __ cmov(below, eax, Operand(ecx));
3610 __ ret(0);
3611 } else {
3612 FloatingPointHelper::CheckFloatOperands(
3613 masm, &non_number_comparison, ebx);
3614 FloatingPointHelper::LoadFloatOperand(masm, eax);
3615 FloatingPointHelper::LoadFloatOperand(masm, edx);
3616 __ FCmp();
3617
3618 // Don't base result on EFLAGS when a NaN is involved.
3619 __ j(parity_even, &unordered, not_taken);
3620
Kristian Monsen0d5e1162010-09-30 15:31:59 +01003621 NearLabel below_label, above_label;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003622 // Return a result of -1, 0, or 1, based on EFLAGS.
3623 __ j(below, &below_label, not_taken);
3624 __ j(above, &above_label, not_taken);
3625
Steve Block9fac8402011-05-12 15:51:54 +01003626 __ Set(eax, Immediate(0));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003627 __ ret(0);
3628
3629 __ bind(&below_label);
3630 __ mov(eax, Immediate(Smi::FromInt(-1)));
3631 __ ret(0);
3632
3633 __ bind(&above_label);
3634 __ mov(eax, Immediate(Smi::FromInt(1)));
3635 __ ret(0);
3636 }
3637
3638 // If one of the numbers was NaN, then the result is always false.
3639 // The cc is never not-equal.
3640 __ bind(&unordered);
3641 ASSERT(cc_ != not_equal);
3642 if (cc_ == less || cc_ == less_equal) {
3643 __ mov(eax, Immediate(Smi::FromInt(1)));
3644 } else {
3645 __ mov(eax, Immediate(Smi::FromInt(-1)));
3646 }
3647 __ ret(0);
3648
3649 // The number comparison code did not provide a valid result.
3650 __ bind(&non_number_comparison);
3651 }
3652
3653 // Fast negative check for symbol-to-symbol equality.
3654 Label check_for_strings;
3655 if (cc_ == equal) {
3656 BranchIfNonSymbol(masm, &check_for_strings, eax, ecx);
3657 BranchIfNonSymbol(masm, &check_for_strings, edx, ecx);
3658
3659 // We've already checked for object identity, so if both operands
3660 // are symbols they aren't equal. Register eax already holds a
3661 // non-zero value, which indicates not equal, so just return.
3662 __ ret(0);
3663 }
3664
3665 __ bind(&check_for_strings);
3666
3667 __ JumpIfNotBothSequentialAsciiStrings(edx, eax, ecx, ebx,
3668 &check_unequal_objects);
3669
3670 // Inline comparison of ascii strings.
3671 StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
3672 edx,
3673 eax,
3674 ecx,
3675 ebx,
3676 edi);
3677#ifdef DEBUG
3678 __ Abort("Unexpected fall-through from string comparison");
3679#endif
3680
3681 __ bind(&check_unequal_objects);
3682 if (cc_ == equal && !strict_) {
3683 // Non-strict equality. Objects are unequal if
3684 // they are both JSObjects and not undetectable,
3685 // and their pointers are different.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01003686 NearLabel not_both_objects;
3687 NearLabel return_unequal;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003688 // At most one is a smi, so we can test for smi by adding the two.
3689 // A smi plus a heap object has the low bit set, a heap object plus
3690 // a heap object has the low bit clear.
3691 STATIC_ASSERT(kSmiTag == 0);
3692 STATIC_ASSERT(kSmiTagMask == 1);
3693 __ lea(ecx, Operand(eax, edx, times_1, 0));
3694 __ test(ecx, Immediate(kSmiTagMask));
3695 __ j(not_zero, &not_both_objects);
3696 __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx);
3697 __ j(below, &not_both_objects);
3698 __ CmpObjectType(edx, FIRST_JS_OBJECT_TYPE, ebx);
3699 __ j(below, &not_both_objects);
3700 // We do not bail out after this point. Both are JSObjects, and
3701 // they are equal if and only if both are undetectable.
3702 // The and of the undetectable flags is 1 if and only if they are equal.
3703 __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
3704 1 << Map::kIsUndetectable);
3705 __ j(zero, &return_unequal);
3706 __ test_b(FieldOperand(ebx, Map::kBitFieldOffset),
3707 1 << Map::kIsUndetectable);
3708 __ j(zero, &return_unequal);
3709 // The objects are both undetectable, so they both compare as the value
3710 // undefined, and are equal.
3711 __ Set(eax, Immediate(EQUAL));
3712 __ bind(&return_unequal);
3713 // Return non-equal by returning the non-zero object pointer in eax,
3714 // or return equal if we fell through to here.
3715 __ ret(0); // rax, rdx were pushed
3716 __ bind(&not_both_objects);
3717 }
3718
3719 // Push arguments below the return address.
3720 __ pop(ecx);
3721 __ push(edx);
3722 __ push(eax);
3723
3724 // Figure out which native to call and setup the arguments.
3725 Builtins::JavaScript builtin;
3726 if (cc_ == equal) {
3727 builtin = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
3728 } else {
3729 builtin = Builtins::COMPARE;
3730 __ push(Immediate(Smi::FromInt(NegativeComparisonResult(cc_))));
3731 }
3732
3733 // Restore return address on the stack.
3734 __ push(ecx);
3735
3736 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
3737 // tagged as a small integer.
3738 __ InvokeBuiltin(builtin, JUMP_FUNCTION);
3739}
3740
3741
3742void CompareStub::BranchIfNonSymbol(MacroAssembler* masm,
3743 Label* label,
3744 Register object,
3745 Register scratch) {
3746 __ test(object, Immediate(kSmiTagMask));
3747 __ j(zero, label);
3748 __ mov(scratch, FieldOperand(object, HeapObject::kMapOffset));
3749 __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
3750 __ and_(scratch, kIsSymbolMask | kIsNotStringMask);
3751 __ cmp(scratch, kSymbolTag | kStringTag);
3752 __ j(not_equal, label);
3753}
3754
3755
3756void StackCheckStub::Generate(MacroAssembler* masm) {
Ben Murdochf87a2032010-10-22 12:50:53 +01003757 __ TailCallRuntime(Runtime::kStackGuard, 0, 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003758}
3759
3760
3761void CallFunctionStub::Generate(MacroAssembler* masm) {
3762 Label slow;
3763
3764 // If the receiver might be a value (string, number or boolean) check for this
3765 // and box it if it is.
3766 if (ReceiverMightBeValue()) {
3767 // Get the receiver from the stack.
3768 // +1 ~ return address
3769 Label receiver_is_value, receiver_is_js_object;
3770 __ mov(eax, Operand(esp, (argc_ + 1) * kPointerSize));
3771
3772 // Check if receiver is a smi (which is a number value).
3773 __ test(eax, Immediate(kSmiTagMask));
3774 __ j(zero, &receiver_is_value, not_taken);
3775
3776 // Check if the receiver is a valid JS object.
3777 __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, edi);
3778 __ j(above_equal, &receiver_is_js_object);
3779
3780 // Call the runtime to box the value.
3781 __ bind(&receiver_is_value);
3782 __ EnterInternalFrame();
3783 __ push(eax);
3784 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
3785 __ LeaveInternalFrame();
3786 __ mov(Operand(esp, (argc_ + 1) * kPointerSize), eax);
3787
3788 __ bind(&receiver_is_js_object);
3789 }
3790
3791 // Get the function to call from the stack.
3792 // +2 ~ receiver, return address
3793 __ mov(edi, Operand(esp, (argc_ + 2) * kPointerSize));
3794
3795 // Check that the function really is a JavaScript function.
3796 __ test(edi, Immediate(kSmiTagMask));
3797 __ j(zero, &slow, not_taken);
3798 // Goto slow case if we do not have a function.
3799 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
3800 __ j(not_equal, &slow, not_taken);
3801
3802 // Fast-case: Just invoke the function.
3803 ParameterCount actual(argc_);
3804 __ InvokeFunction(edi, actual, JUMP_FUNCTION);
3805
3806 // Slow-case: Non-function called.
3807 __ bind(&slow);
3808 // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
3809 // of the original receiver from the call site).
3810 __ mov(Operand(esp, (argc_ + 1) * kPointerSize), edi);
3811 __ Set(eax, Immediate(argc_));
3812 __ Set(ebx, Immediate(0));
3813 __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION);
Steve Block44f0eee2011-05-26 01:26:41 +01003814 Handle<Code> adaptor =
3815 masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003816 __ jmp(adaptor, RelocInfo::CODE_TARGET);
3817}
3818
3819
Steve Block44f0eee2011-05-26 01:26:41 +01003820bool CEntryStub::NeedsImmovableCode() {
3821 return false;
3822}
3823
3824
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003825void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003826 __ Throw(eax);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003827}
3828
3829
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003830void CEntryStub::GenerateCore(MacroAssembler* masm,
3831 Label* throw_normal_exception,
3832 Label* throw_termination_exception,
3833 Label* throw_out_of_memory_exception,
3834 bool do_gc,
Steve Block1e0659c2011-05-24 12:43:12 +01003835 bool always_allocate_scope) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003836 // eax: result parameter for PerformGC, if any
3837 // ebx: pointer to C function (C callee-saved)
3838 // ebp: frame pointer (restored after C call)
3839 // esp: stack pointer (restored after C call)
3840 // edi: number of arguments including receiver (C callee-saved)
3841 // esi: pointer to the first argument (C callee-saved)
3842
3843 // Result returned in eax, or eax+edx if result_size_ is 2.
3844
3845 // Check stack alignment.
3846 if (FLAG_debug_code) {
3847 __ CheckStackAlignment();
3848 }
3849
3850 if (do_gc) {
3851 // Pass failure code returned from last attempt as first argument to
3852 // PerformGC. No need to use PrepareCallCFunction/CallCFunction here as the
3853 // stack alignment is known to be correct. This function takes one argument
3854 // which is passed on the stack, and we know that the stack has been
3855 // prepared to pass at least one argument.
3856 __ mov(Operand(esp, 0 * kPointerSize), eax); // Result.
3857 __ call(FUNCTION_ADDR(Runtime::PerformGC), RelocInfo::RUNTIME_ENTRY);
3858 }
3859
3860 ExternalReference scope_depth =
Steve Block44f0eee2011-05-26 01:26:41 +01003861 ExternalReference::heap_always_allocate_scope_depth(masm->isolate());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003862 if (always_allocate_scope) {
3863 __ inc(Operand::StaticVariable(scope_depth));
3864 }
3865
3866 // Call C function.
3867 __ mov(Operand(esp, 0 * kPointerSize), edi); // argc.
3868 __ mov(Operand(esp, 1 * kPointerSize), esi); // argv.
Steve Block44f0eee2011-05-26 01:26:41 +01003869 __ mov(Operand(esp, 2 * kPointerSize),
3870 Immediate(ExternalReference::isolate_address()));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003871 __ call(Operand(ebx));
3872 // Result is in eax or edx:eax - do not destroy these registers!
3873
3874 if (always_allocate_scope) {
3875 __ dec(Operand::StaticVariable(scope_depth));
3876 }
3877
3878 // Make sure we're not trying to return 'the hole' from the runtime
3879 // call as this may lead to crashes in the IC code later.
3880 if (FLAG_debug_code) {
Kristian Monsen0d5e1162010-09-30 15:31:59 +01003881 NearLabel okay;
Steve Block44f0eee2011-05-26 01:26:41 +01003882 __ cmp(eax, masm->isolate()->factory()->the_hole_value());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003883 __ j(not_equal, &okay);
3884 __ int3();
3885 __ bind(&okay);
3886 }
3887
3888 // Check for failure result.
3889 Label failure_returned;
3890 STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
3891 __ lea(ecx, Operand(eax, 1));
3892 // Lower 2 bits of ecx are 0 iff eax has failure tag.
3893 __ test(ecx, Immediate(kFailureTagMask));
3894 __ j(zero, &failure_returned, not_taken);
3895
Steve Block44f0eee2011-05-26 01:26:41 +01003896 ExternalReference pending_exception_address(
3897 Isolate::k_pending_exception_address, masm->isolate());
Steve Block1e0659c2011-05-24 12:43:12 +01003898
3899 // Check that there is no pending exception, otherwise we
3900 // should have returned some failure value.
3901 if (FLAG_debug_code) {
3902 __ push(edx);
3903 __ mov(edx, Operand::StaticVariable(
Steve Block44f0eee2011-05-26 01:26:41 +01003904 ExternalReference::the_hole_value_location(masm->isolate())));
Steve Block1e0659c2011-05-24 12:43:12 +01003905 NearLabel okay;
3906 __ cmp(edx, Operand::StaticVariable(pending_exception_address));
3907 // Cannot use check here as it attempts to generate call into runtime.
3908 __ j(equal, &okay);
3909 __ int3();
3910 __ bind(&okay);
3911 __ pop(edx);
3912 }
3913
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003914 // Exit the JavaScript to C++ exit frame.
Ben Murdochb0fe1622011-05-05 13:52:32 +01003915 __ LeaveExitFrame(save_doubles_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003916 __ ret(0);
3917
3918 // Handling of failure.
3919 __ bind(&failure_returned);
3920
3921 Label retry;
3922 // If the returned exception is RETRY_AFTER_GC continue at retry label
3923 STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0);
3924 __ test(eax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
3925 __ j(zero, &retry, taken);
3926
3927 // Special handling of out of memory exceptions.
3928 __ cmp(eax, reinterpret_cast<int32_t>(Failure::OutOfMemoryException()));
3929 __ j(equal, throw_out_of_memory_exception);
3930
3931 // Retrieve the pending exception and clear the variable.
Steve Block44f0eee2011-05-26 01:26:41 +01003932 ExternalReference the_hole_location =
3933 ExternalReference::the_hole_value_location(masm->isolate());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003934 __ mov(eax, Operand::StaticVariable(pending_exception_address));
Steve Block44f0eee2011-05-26 01:26:41 +01003935 __ mov(edx, Operand::StaticVariable(the_hole_location));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003936 __ mov(Operand::StaticVariable(pending_exception_address), edx);
3937
3938 // Special handling of termination exceptions which are uncatchable
3939 // by javascript code.
Steve Block44f0eee2011-05-26 01:26:41 +01003940 __ cmp(eax, masm->isolate()->factory()->termination_exception());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003941 __ j(equal, throw_termination_exception);
3942
3943 // Handle normal exception.
3944 __ jmp(throw_normal_exception);
3945
3946 // Retry.
3947 __ bind(&retry);
3948}
3949
3950
3951void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
3952 UncatchableExceptionType type) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003953 __ ThrowUncatchable(type, eax);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003954}
3955
3956
3957void CEntryStub::Generate(MacroAssembler* masm) {
3958 // eax: number of arguments including receiver
3959 // ebx: pointer to C function (C callee-saved)
3960 // ebp: frame pointer (restored after C call)
3961 // esp: stack pointer (restored after C call)
3962 // esi: current context (C callee-saved)
3963 // edi: JS function of the caller (C callee-saved)
3964
3965 // NOTE: Invocations of builtins may return failure objects instead
3966 // of a proper result. The builtin entry handles this by performing
3967 // a garbage collection and retrying the builtin (twice).
3968
3969 // Enter the exit frame that transitions from JavaScript to C++.
Ben Murdochb0fe1622011-05-05 13:52:32 +01003970 __ EnterExitFrame(save_doubles_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003971
3972 // eax: result parameter for PerformGC, if any (setup below)
3973 // ebx: pointer to builtin function (C callee-saved)
3974 // ebp: frame pointer (restored after C call)
3975 // esp: stack pointer (restored after C call)
3976 // edi: number of arguments including receiver (C callee-saved)
3977 // esi: argv pointer (C callee-saved)
3978
3979 Label throw_normal_exception;
3980 Label throw_termination_exception;
3981 Label throw_out_of_memory_exception;
3982
3983 // Call into the runtime system.
3984 GenerateCore(masm,
3985 &throw_normal_exception,
3986 &throw_termination_exception,
3987 &throw_out_of_memory_exception,
3988 false,
3989 false);
3990
3991 // Do space-specific GC and retry runtime call.
3992 GenerateCore(masm,
3993 &throw_normal_exception,
3994 &throw_termination_exception,
3995 &throw_out_of_memory_exception,
3996 true,
3997 false);
3998
3999 // Do full GC and retry runtime call one final time.
4000 Failure* failure = Failure::InternalError();
4001 __ mov(eax, Immediate(reinterpret_cast<int32_t>(failure)));
4002 GenerateCore(masm,
4003 &throw_normal_exception,
4004 &throw_termination_exception,
4005 &throw_out_of_memory_exception,
4006 true,
4007 true);
4008
4009 __ bind(&throw_out_of_memory_exception);
4010 GenerateThrowUncatchable(masm, OUT_OF_MEMORY);
4011
4012 __ bind(&throw_termination_exception);
4013 GenerateThrowUncatchable(masm, TERMINATION);
4014
4015 __ bind(&throw_normal_exception);
4016 GenerateThrowTOS(masm);
4017}
4018
4019
4020void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
4021 Label invoke, exit;
4022#ifdef ENABLE_LOGGING_AND_PROFILING
4023 Label not_outermost_js, not_outermost_js_2;
4024#endif
4025
4026 // Setup frame.
4027 __ push(ebp);
4028 __ mov(ebp, Operand(esp));
4029
4030 // Push marker in two places.
4031 int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
4032 __ push(Immediate(Smi::FromInt(marker))); // context slot
4033 __ push(Immediate(Smi::FromInt(marker))); // function slot
4034 // Save callee-saved registers (C calling conventions).
4035 __ push(edi);
4036 __ push(esi);
4037 __ push(ebx);
4038
4039 // Save copies of the top frame descriptor on the stack.
Steve Block44f0eee2011-05-26 01:26:41 +01004040 ExternalReference c_entry_fp(Isolate::k_c_entry_fp_address, masm->isolate());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004041 __ push(Operand::StaticVariable(c_entry_fp));
4042
4043#ifdef ENABLE_LOGGING_AND_PROFILING
4044 // If this is the outermost JS call, set js_entry_sp value.
Steve Block44f0eee2011-05-26 01:26:41 +01004045 ExternalReference js_entry_sp(Isolate::k_js_entry_sp_address,
4046 masm->isolate());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004047 __ cmp(Operand::StaticVariable(js_entry_sp), Immediate(0));
4048 __ j(not_equal, &not_outermost_js);
4049 __ mov(Operand::StaticVariable(js_entry_sp), ebp);
Steve Block053d10c2011-06-13 19:13:29 +01004050 __ push(Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
4051 Label cont;
4052 __ jmp(&cont);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004053 __ bind(&not_outermost_js);
Steve Block053d10c2011-06-13 19:13:29 +01004054 __ push(Immediate(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
4055 __ bind(&cont);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004056#endif
4057
4058 // Call a faked try-block that does the invoke.
4059 __ call(&invoke);
4060
4061 // Caught exception: Store result (exception) in the pending
4062 // exception field in the JSEnv and return a failure sentinel.
Steve Block44f0eee2011-05-26 01:26:41 +01004063 ExternalReference pending_exception(Isolate::k_pending_exception_address,
4064 masm->isolate());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004065 __ mov(Operand::StaticVariable(pending_exception), eax);
4066 __ mov(eax, reinterpret_cast<int32_t>(Failure::Exception()));
4067 __ jmp(&exit);
4068
4069 // Invoke: Link this frame into the handler chain.
4070 __ bind(&invoke);
4071 __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER);
4072
4073 // Clear any pending exceptions.
Steve Block44f0eee2011-05-26 01:26:41 +01004074 ExternalReference the_hole_location =
4075 ExternalReference::the_hole_value_location(masm->isolate());
4076 __ mov(edx, Operand::StaticVariable(the_hole_location));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004077 __ mov(Operand::StaticVariable(pending_exception), edx);
4078
4079 // Fake a receiver (NULL).
4080 __ push(Immediate(0)); // receiver
4081
4082 // Invoke the function by calling through JS entry trampoline
4083 // builtin and pop the faked function when we return. Notice that we
4084 // cannot store a reference to the trampoline code directly in this
4085 // stub, because the builtin stubs may not have been generated yet.
4086 if (is_construct) {
Steve Block44f0eee2011-05-26 01:26:41 +01004087 ExternalReference construct_entry(
4088 Builtins::kJSConstructEntryTrampoline,
4089 masm->isolate());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004090 __ mov(edx, Immediate(construct_entry));
4091 } else {
Steve Block44f0eee2011-05-26 01:26:41 +01004092 ExternalReference entry(Builtins::kJSEntryTrampoline,
4093 masm->isolate());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004094 __ mov(edx, Immediate(entry));
4095 }
4096 __ mov(edx, Operand(edx, 0)); // deref address
4097 __ lea(edx, FieldOperand(edx, Code::kHeaderSize));
4098 __ call(Operand(edx));
4099
4100 // Unlink this frame from the handler chain.
Steve Block053d10c2011-06-13 19:13:29 +01004101 __ PopTryHandler();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004102
Steve Block053d10c2011-06-13 19:13:29 +01004103 __ bind(&exit);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004104#ifdef ENABLE_LOGGING_AND_PROFILING
Steve Block053d10c2011-06-13 19:13:29 +01004105 // Check if the current stack frame is marked as the outermost JS frame.
4106 __ pop(ebx);
4107 __ cmp(Operand(ebx),
4108 Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004109 __ j(not_equal, &not_outermost_js_2);
4110 __ mov(Operand::StaticVariable(js_entry_sp), Immediate(0));
4111 __ bind(&not_outermost_js_2);
4112#endif
4113
4114 // Restore the top frame descriptor from the stack.
Steve Block44f0eee2011-05-26 01:26:41 +01004115 __ pop(Operand::StaticVariable(ExternalReference(
4116 Isolate::k_c_entry_fp_address,
4117 masm->isolate())));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004118
4119 // Restore callee-saved registers (C calling conventions).
4120 __ pop(ebx);
4121 __ pop(esi);
4122 __ pop(edi);
4123 __ add(Operand(esp), Immediate(2 * kPointerSize)); // remove markers
4124
4125 // Restore frame pointer and return.
4126 __ pop(ebp);
4127 __ ret(0);
4128}
4129
4130
Ben Murdoch086aeea2011-05-13 15:57:08 +01004131// Generate stub code for instanceof.
4132// This code can patch a call site inlined cache of the instance of check,
4133// which looks like this.
4134//
4135// 81 ff XX XX XX XX cmp edi, <the hole, patched to a map>
4136// 75 0a jne <some near label>
4137// b8 XX XX XX XX mov eax, <the hole, patched to either true or false>
4138//
4139// If call site patching is requested the stack will have the delta from the
4140// return address to the cmp instruction just below the return address. This
4141// also means that call site patching can only take place with arguments in
4142// registers. TOS looks like this when call site patching is requested
4143//
4144// esp[0] : return address
4145// esp[4] : delta from return address to cmp instruction
4146//
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004147void InstanceofStub::Generate(MacroAssembler* masm) {
Ben Murdoch086aeea2011-05-13 15:57:08 +01004148 // Call site inlining and patching implies arguments in registers.
4149 ASSERT(HasArgsInRegisters() || !HasCallSiteInlineCheck());
4150
Ben Murdochb0fe1622011-05-05 13:52:32 +01004151 // Fixed register usage throughout the stub.
4152 Register object = eax; // Object (lhs).
4153 Register map = ebx; // Map of the object.
4154 Register function = edx; // Function (rhs).
4155 Register prototype = edi; // Prototype of the function.
4156 Register scratch = ecx;
4157
Ben Murdoch086aeea2011-05-13 15:57:08 +01004158 // Constants describing the call site code to patch.
4159 static const int kDeltaToCmpImmediate = 2;
4160 static const int kDeltaToMov = 8;
4161 static const int kDeltaToMovImmediate = 9;
4162 static const int8_t kCmpEdiImmediateByte1 = BitCast<int8_t, uint8_t>(0x81);
4163 static const int8_t kCmpEdiImmediateByte2 = BitCast<int8_t, uint8_t>(0xff);
4164 static const int8_t kMovEaxImmediateByte = BitCast<int8_t, uint8_t>(0xb8);
4165
Steve Block44f0eee2011-05-26 01:26:41 +01004166 ExternalReference roots_address =
4167 ExternalReference::roots_address(masm->isolate());
Ben Murdoch086aeea2011-05-13 15:57:08 +01004168
4169 ASSERT_EQ(object.code(), InstanceofStub::left().code());
4170 ASSERT_EQ(function.code(), InstanceofStub::right().code());
4171
Ben Murdochb0fe1622011-05-05 13:52:32 +01004172 // Get the object and function - they are always both needed.
4173 Label slow, not_js_object;
Ben Murdoch086aeea2011-05-13 15:57:08 +01004174 if (!HasArgsInRegisters()) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01004175 __ mov(object, Operand(esp, 2 * kPointerSize));
4176 __ mov(function, Operand(esp, 1 * kPointerSize));
4177 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004178
4179 // Check that the left hand is a JS object.
Ben Murdochb0fe1622011-05-05 13:52:32 +01004180 __ test(object, Immediate(kSmiTagMask));
4181 __ j(zero, &not_js_object, not_taken);
4182 __ IsObjectJSObjectType(object, map, scratch, &not_js_object);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004183
Ben Murdoch086aeea2011-05-13 15:57:08 +01004184 // If there is a call site cache don't look in the global cache, but do the
4185 // real lookup and update the call site cache.
4186 if (!HasCallSiteInlineCheck()) {
4187 // Look up the function and the map in the instanceof cache.
4188 NearLabel miss;
4189 __ mov(scratch, Immediate(Heap::kInstanceofCacheFunctionRootIndex));
4190 __ cmp(function,
4191 Operand::StaticArray(scratch, times_pointer_size, roots_address));
4192 __ j(not_equal, &miss);
4193 __ mov(scratch, Immediate(Heap::kInstanceofCacheMapRootIndex));
4194 __ cmp(map, Operand::StaticArray(
4195 scratch, times_pointer_size, roots_address));
4196 __ j(not_equal, &miss);
4197 __ mov(scratch, Immediate(Heap::kInstanceofCacheAnswerRootIndex));
4198 __ mov(eax, Operand::StaticArray(
4199 scratch, times_pointer_size, roots_address));
4200 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
4201 __ bind(&miss);
4202 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004203
Ben Murdochb0fe1622011-05-05 13:52:32 +01004204 // Get the prototype of the function.
4205 __ TryGetFunctionPrototype(function, prototype, scratch, &slow);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004206
4207 // Check that the function prototype is a JS object.
Ben Murdochb0fe1622011-05-05 13:52:32 +01004208 __ test(prototype, Immediate(kSmiTagMask));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004209 __ j(zero, &slow, not_taken);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004210 __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004211
Ben Murdoch086aeea2011-05-13 15:57:08 +01004212 // Update the global instanceof or call site inlined cache with the current
4213 // map and function. The cached answer will be set when it is known below.
4214 if (!HasCallSiteInlineCheck()) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01004215 __ mov(scratch, Immediate(Heap::kInstanceofCacheMapRootIndex));
4216 __ mov(Operand::StaticArray(scratch, times_pointer_size, roots_address), map);
4217 __ mov(scratch, Immediate(Heap::kInstanceofCacheFunctionRootIndex));
4218 __ mov(Operand::StaticArray(scratch, times_pointer_size, roots_address),
4219 function);
Ben Murdoch086aeea2011-05-13 15:57:08 +01004220 } else {
4221 // The constants for the code patching are based on no push instructions
4222 // at the call site.
4223 ASSERT(HasArgsInRegisters());
4224 // Get return address and delta to inlined map check.
4225 __ mov(scratch, Operand(esp, 0 * kPointerSize));
4226 __ sub(scratch, Operand(esp, 1 * kPointerSize));
4227 if (FLAG_debug_code) {
4228 __ cmpb(Operand(scratch, 0), kCmpEdiImmediateByte1);
4229 __ Assert(equal, "InstanceofStub unexpected call site cache (cmp 1)");
4230 __ cmpb(Operand(scratch, 1), kCmpEdiImmediateByte2);
4231 __ Assert(equal, "InstanceofStub unexpected call site cache (cmp 2)");
4232 }
4233 __ mov(Operand(scratch, kDeltaToCmpImmediate), map);
4234 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004235
Ben Murdochb0fe1622011-05-05 13:52:32 +01004236 // Loop through the prototype chain of the object looking for the function
4237 // prototype.
4238 __ mov(scratch, FieldOperand(map, Map::kPrototypeOffset));
Kristian Monsen0d5e1162010-09-30 15:31:59 +01004239 NearLabel loop, is_instance, is_not_instance;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004240 __ bind(&loop);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004241 __ cmp(scratch, Operand(prototype));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004242 __ j(equal, &is_instance);
Steve Block44f0eee2011-05-26 01:26:41 +01004243 Factory* factory = masm->isolate()->factory();
4244 __ cmp(Operand(scratch), Immediate(factory->null_value()));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004245 __ j(equal, &is_not_instance);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004246 __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
4247 __ mov(scratch, FieldOperand(scratch, Map::kPrototypeOffset));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004248 __ jmp(&loop);
4249
4250 __ bind(&is_instance);
Ben Murdoch086aeea2011-05-13 15:57:08 +01004251 if (!HasCallSiteInlineCheck()) {
4252 __ Set(eax, Immediate(0));
4253 __ mov(scratch, Immediate(Heap::kInstanceofCacheAnswerRootIndex));
4254 __ mov(Operand::StaticArray(scratch,
4255 times_pointer_size, roots_address), eax);
4256 } else {
4257 // Get return address and delta to inlined map check.
Steve Block44f0eee2011-05-26 01:26:41 +01004258 __ mov(eax, factory->true_value());
Ben Murdoch086aeea2011-05-13 15:57:08 +01004259 __ mov(scratch, Operand(esp, 0 * kPointerSize));
4260 __ sub(scratch, Operand(esp, 1 * kPointerSize));
4261 if (FLAG_debug_code) {
4262 __ cmpb(Operand(scratch, kDeltaToMov), kMovEaxImmediateByte);
4263 __ Assert(equal, "InstanceofStub unexpected call site cache (mov)");
4264 }
4265 __ mov(Operand(scratch, kDeltaToMovImmediate), eax);
4266 if (!ReturnTrueFalseObject()) {
4267 __ Set(eax, Immediate(0));
4268 }
4269 }
4270 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004271
4272 __ bind(&is_not_instance);
Ben Murdoch086aeea2011-05-13 15:57:08 +01004273 if (!HasCallSiteInlineCheck()) {
4274 __ Set(eax, Immediate(Smi::FromInt(1)));
4275 __ mov(scratch, Immediate(Heap::kInstanceofCacheAnswerRootIndex));
4276 __ mov(Operand::StaticArray(
4277 scratch, times_pointer_size, roots_address), eax);
4278 } else {
4279 // Get return address and delta to inlined map check.
Steve Block44f0eee2011-05-26 01:26:41 +01004280 __ mov(eax, factory->false_value());
Ben Murdoch086aeea2011-05-13 15:57:08 +01004281 __ mov(scratch, Operand(esp, 0 * kPointerSize));
4282 __ sub(scratch, Operand(esp, 1 * kPointerSize));
4283 if (FLAG_debug_code) {
4284 __ cmpb(Operand(scratch, kDeltaToMov), kMovEaxImmediateByte);
4285 __ Assert(equal, "InstanceofStub unexpected call site cache (mov)");
4286 }
4287 __ mov(Operand(scratch, kDeltaToMovImmediate), eax);
4288 if (!ReturnTrueFalseObject()) {
4289 __ Set(eax, Immediate(Smi::FromInt(1)));
4290 }
4291 }
4292 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004293
4294 Label object_not_null, object_not_null_or_smi;
4295 __ bind(&not_js_object);
4296 // Before null, smi and string value checks, check that the rhs is a function
4297 // as for a non-function rhs an exception needs to be thrown.
4298 __ test(function, Immediate(kSmiTagMask));
4299 __ j(zero, &slow, not_taken);
4300 __ CmpObjectType(function, JS_FUNCTION_TYPE, scratch);
4301 __ j(not_equal, &slow, not_taken);
4302
4303 // Null is not instance of anything.
Steve Block44f0eee2011-05-26 01:26:41 +01004304 __ cmp(object, factory->null_value());
Ben Murdochb0fe1622011-05-05 13:52:32 +01004305 __ j(not_equal, &object_not_null);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004306 __ Set(eax, Immediate(Smi::FromInt(1)));
Ben Murdoch086aeea2011-05-13 15:57:08 +01004307 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004308
4309 __ bind(&object_not_null);
4310 // Smi values is not instance of anything.
4311 __ test(object, Immediate(kSmiTagMask));
4312 __ j(not_zero, &object_not_null_or_smi, not_taken);
4313 __ Set(eax, Immediate(Smi::FromInt(1)));
Ben Murdoch086aeea2011-05-13 15:57:08 +01004314 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004315
4316 __ bind(&object_not_null_or_smi);
4317 // String values is not instance of anything.
4318 Condition is_string = masm->IsObjectStringType(object, scratch, scratch);
4319 __ j(NegateCondition(is_string), &slow);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004320 __ Set(eax, Immediate(Smi::FromInt(1)));
Ben Murdoch086aeea2011-05-13 15:57:08 +01004321 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004322
4323 // Slow-case: Go through the JavaScript implementation.
4324 __ bind(&slow);
Ben Murdoch086aeea2011-05-13 15:57:08 +01004325 if (!ReturnTrueFalseObject()) {
4326 // Tail call the builtin which returns 0 or 1.
4327 if (HasArgsInRegisters()) {
4328 // Push arguments below return address.
4329 __ pop(scratch);
4330 __ push(object);
4331 __ push(function);
4332 __ push(scratch);
4333 }
4334 __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
4335 } else {
4336 // Call the builtin and convert 0/1 to true/false.
4337 __ EnterInternalFrame();
Ben Murdochb0fe1622011-05-05 13:52:32 +01004338 __ push(object);
4339 __ push(function);
Ben Murdoch086aeea2011-05-13 15:57:08 +01004340 __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
4341 __ LeaveInternalFrame();
4342 NearLabel true_value, done;
4343 __ test(eax, Operand(eax));
4344 __ j(zero, &true_value);
Steve Block44f0eee2011-05-26 01:26:41 +01004345 __ mov(eax, factory->false_value());
Ben Murdoch086aeea2011-05-13 15:57:08 +01004346 __ jmp(&done);
4347 __ bind(&true_value);
Steve Block44f0eee2011-05-26 01:26:41 +01004348 __ mov(eax, factory->true_value());
Ben Murdoch086aeea2011-05-13 15:57:08 +01004349 __ bind(&done);
4350 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004351 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004352}
4353
4354
Ben Murdoch086aeea2011-05-13 15:57:08 +01004355Register InstanceofStub::left() { return eax; }
4356
4357
4358Register InstanceofStub::right() { return edx; }
4359
4360
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004361int CompareStub::MinorKey() {
4362 // Encode the three parameters in a unique 16 bit value. To avoid duplicate
4363 // stubs the never NaN NaN condition is only taken into account if the
4364 // condition is equals.
4365 ASSERT(static_cast<unsigned>(cc_) < (1 << 12));
4366 ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg));
4367 return ConditionField::encode(static_cast<unsigned>(cc_))
4368 | RegisterField::encode(false) // lhs_ and rhs_ are not used
4369 | StrictField::encode(strict_)
4370 | NeverNanNanField::encode(cc_ == equal ? never_nan_nan_ : false)
Kristian Monsen0d5e1162010-09-30 15:31:59 +01004371 | IncludeNumberCompareField::encode(include_number_compare_)
4372 | IncludeSmiCompareField::encode(include_smi_compare_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004373}
4374
4375
4376// Unfortunately you have to run without snapshots to see most of these
4377// names in the profile since most compare stubs end up in the snapshot.
4378const char* CompareStub::GetName() {
4379 ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg));
4380
4381 if (name_ != NULL) return name_;
4382 const int kMaxNameLength = 100;
Steve Block44f0eee2011-05-26 01:26:41 +01004383 name_ = Isolate::Current()->bootstrapper()->AllocateAutoDeletedArray(
4384 kMaxNameLength);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004385 if (name_ == NULL) return "OOM";
4386
4387 const char* cc_name;
4388 switch (cc_) {
4389 case less: cc_name = "LT"; break;
4390 case greater: cc_name = "GT"; break;
4391 case less_equal: cc_name = "LE"; break;
4392 case greater_equal: cc_name = "GE"; break;
4393 case equal: cc_name = "EQ"; break;
4394 case not_equal: cc_name = "NE"; break;
4395 default: cc_name = "UnknownCondition"; break;
4396 }
4397
4398 const char* strict_name = "";
4399 if (strict_ && (cc_ == equal || cc_ == not_equal)) {
4400 strict_name = "_STRICT";
4401 }
4402
4403 const char* never_nan_nan_name = "";
4404 if (never_nan_nan_ && (cc_ == equal || cc_ == not_equal)) {
4405 never_nan_nan_name = "_NO_NAN";
4406 }
4407
4408 const char* include_number_compare_name = "";
4409 if (!include_number_compare_) {
4410 include_number_compare_name = "_NO_NUMBER";
4411 }
4412
Kristian Monsen0d5e1162010-09-30 15:31:59 +01004413 const char* include_smi_compare_name = "";
4414 if (!include_smi_compare_) {
4415 include_smi_compare_name = "_NO_SMI";
4416 }
4417
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004418 OS::SNPrintF(Vector<char>(name_, kMaxNameLength),
Kristian Monsen0d5e1162010-09-30 15:31:59 +01004419 "CompareStub_%s%s%s%s%s",
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004420 cc_name,
4421 strict_name,
4422 never_nan_nan_name,
Kristian Monsen0d5e1162010-09-30 15:31:59 +01004423 include_number_compare_name,
4424 include_smi_compare_name);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004425 return name_;
4426}
4427
4428
4429// -------------------------------------------------------------------------
4430// StringCharCodeAtGenerator
4431
4432void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
4433 Label flat_string;
4434 Label ascii_string;
4435 Label got_char_code;
4436
4437 // If the receiver is a smi trigger the non-string case.
4438 STATIC_ASSERT(kSmiTag == 0);
4439 __ test(object_, Immediate(kSmiTagMask));
4440 __ j(zero, receiver_not_string_);
4441
4442 // Fetch the instance type of the receiver into result register.
4443 __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
4444 __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
4445 // If the receiver is not a string trigger the non-string case.
4446 __ test(result_, Immediate(kIsNotStringMask));
4447 __ j(not_zero, receiver_not_string_);
4448
4449 // If the index is non-smi trigger the non-smi case.
4450 STATIC_ASSERT(kSmiTag == 0);
4451 __ test(index_, Immediate(kSmiTagMask));
4452 __ j(not_zero, &index_not_smi_);
4453
4454 // Put smi-tagged index into scratch register.
4455 __ mov(scratch_, index_);
4456 __ bind(&got_smi_index_);
4457
4458 // Check for index out of range.
4459 __ cmp(scratch_, FieldOperand(object_, String::kLengthOffset));
4460 __ j(above_equal, index_out_of_range_);
4461
4462 // We need special handling for non-flat strings.
4463 STATIC_ASSERT(kSeqStringTag == 0);
4464 __ test(result_, Immediate(kStringRepresentationMask));
4465 __ j(zero, &flat_string);
4466
4467 // Handle non-flat strings.
4468 __ test(result_, Immediate(kIsConsStringMask));
4469 __ j(zero, &call_runtime_);
4470
4471 // ConsString.
4472 // Check whether the right hand side is the empty string (i.e. if
4473 // this is really a flat string in a cons string). If that is not
4474 // the case we would rather go to the runtime system now to flatten
4475 // the string.
4476 __ cmp(FieldOperand(object_, ConsString::kSecondOffset),
Steve Block44f0eee2011-05-26 01:26:41 +01004477 Immediate(masm->isolate()->factory()->empty_string()));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004478 __ j(not_equal, &call_runtime_);
4479 // Get the first of the two strings and load its instance type.
4480 __ mov(object_, FieldOperand(object_, ConsString::kFirstOffset));
4481 __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
4482 __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
4483 // If the first cons component is also non-flat, then go to runtime.
4484 STATIC_ASSERT(kSeqStringTag == 0);
4485 __ test(result_, Immediate(kStringRepresentationMask));
4486 __ j(not_zero, &call_runtime_);
4487
4488 // Check for 1-byte or 2-byte string.
4489 __ bind(&flat_string);
4490 STATIC_ASSERT(kAsciiStringTag != 0);
4491 __ test(result_, Immediate(kStringEncodingMask));
4492 __ j(not_zero, &ascii_string);
4493
4494 // 2-byte string.
4495 // Load the 2-byte character code into the result register.
4496 STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
4497 __ movzx_w(result_, FieldOperand(object_,
4498 scratch_, times_1, // Scratch is smi-tagged.
4499 SeqTwoByteString::kHeaderSize));
4500 __ jmp(&got_char_code);
4501
4502 // ASCII string.
4503 // Load the byte into the result register.
4504 __ bind(&ascii_string);
4505 __ SmiUntag(scratch_);
4506 __ movzx_b(result_, FieldOperand(object_,
4507 scratch_, times_1,
4508 SeqAsciiString::kHeaderSize));
4509 __ bind(&got_char_code);
4510 __ SmiTag(result_);
4511 __ bind(&exit_);
4512}
4513
4514
4515void StringCharCodeAtGenerator::GenerateSlow(
4516 MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
4517 __ Abort("Unexpected fallthrough to CharCodeAt slow case");
4518
4519 // Index is not a smi.
4520 __ bind(&index_not_smi_);
4521 // If index is a heap number, try converting it to an integer.
Steve Block44f0eee2011-05-26 01:26:41 +01004522 __ CheckMap(index_,
4523 masm->isolate()->factory()->heap_number_map(),
4524 index_not_number_,
4525 true);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004526 call_helper.BeforeCall(masm);
4527 __ push(object_);
4528 __ push(index_);
4529 __ push(index_); // Consumed by runtime conversion function.
4530 if (index_flags_ == STRING_INDEX_IS_NUMBER) {
4531 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
4532 } else {
4533 ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
4534 // NumberToSmi discards numbers that are not exact integers.
4535 __ CallRuntime(Runtime::kNumberToSmi, 1);
4536 }
4537 if (!scratch_.is(eax)) {
4538 // Save the conversion result before the pop instructions below
4539 // have a chance to overwrite it.
4540 __ mov(scratch_, eax);
4541 }
4542 __ pop(index_);
4543 __ pop(object_);
4544 // Reload the instance type.
4545 __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
4546 __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
4547 call_helper.AfterCall(masm);
4548 // If index is still not a smi, it must be out of range.
4549 STATIC_ASSERT(kSmiTag == 0);
4550 __ test(scratch_, Immediate(kSmiTagMask));
4551 __ j(not_zero, index_out_of_range_);
4552 // Otherwise, return to the fast path.
4553 __ jmp(&got_smi_index_);
4554
4555 // Call runtime. We get here when the receiver is a string and the
4556 // index is a number, but the code of getting the actual character
4557 // is too complex (e.g., when the string needs to be flattened).
4558 __ bind(&call_runtime_);
4559 call_helper.BeforeCall(masm);
4560 __ push(object_);
4561 __ push(index_);
4562 __ CallRuntime(Runtime::kStringCharCodeAt, 2);
4563 if (!result_.is(eax)) {
4564 __ mov(result_, eax);
4565 }
4566 call_helper.AfterCall(masm);
4567 __ jmp(&exit_);
4568
4569 __ Abort("Unexpected fallthrough from CharCodeAt slow case");
4570}
4571
4572
4573// -------------------------------------------------------------------------
4574// StringCharFromCodeGenerator
4575
4576void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
4577 // Fast case of Heap::LookupSingleCharacterStringFromCode.
4578 STATIC_ASSERT(kSmiTag == 0);
4579 STATIC_ASSERT(kSmiShiftSize == 0);
4580 ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1));
4581 __ test(code_,
4582 Immediate(kSmiTagMask |
4583 ((~String::kMaxAsciiCharCode) << kSmiTagSize)));
4584 __ j(not_zero, &slow_case_, not_taken);
4585
Steve Block44f0eee2011-05-26 01:26:41 +01004586 Factory* factory = masm->isolate()->factory();
4587 __ Set(result_, Immediate(factory->single_character_string_cache()));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004588 STATIC_ASSERT(kSmiTag == 0);
4589 STATIC_ASSERT(kSmiTagSize == 1);
4590 STATIC_ASSERT(kSmiShiftSize == 0);
4591 // At this point code register contains smi tagged ascii char code.
4592 __ mov(result_, FieldOperand(result_,
4593 code_, times_half_pointer_size,
4594 FixedArray::kHeaderSize));
Steve Block44f0eee2011-05-26 01:26:41 +01004595 __ cmp(result_, factory->undefined_value());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004596 __ j(equal, &slow_case_, not_taken);
4597 __ bind(&exit_);
4598}
4599
4600
4601void StringCharFromCodeGenerator::GenerateSlow(
4602 MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
4603 __ Abort("Unexpected fallthrough to CharFromCode slow case");
4604
4605 __ bind(&slow_case_);
4606 call_helper.BeforeCall(masm);
4607 __ push(code_);
4608 __ CallRuntime(Runtime::kCharFromCode, 1);
4609 if (!result_.is(eax)) {
4610 __ mov(result_, eax);
4611 }
4612 call_helper.AfterCall(masm);
4613 __ jmp(&exit_);
4614
4615 __ Abort("Unexpected fallthrough from CharFromCode slow case");
4616}
4617
4618
4619// -------------------------------------------------------------------------
4620// StringCharAtGenerator
4621
4622void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) {
4623 char_code_at_generator_.GenerateFast(masm);
4624 char_from_code_generator_.GenerateFast(masm);
4625}
4626
4627
4628void StringCharAtGenerator::GenerateSlow(
4629 MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
4630 char_code_at_generator_.GenerateSlow(masm, call_helper);
4631 char_from_code_generator_.GenerateSlow(masm, call_helper);
4632}
4633
4634
4635void StringAddStub::Generate(MacroAssembler* masm) {
Iain Merrick9ac36c92010-09-13 15:29:50 +01004636 Label string_add_runtime, call_builtin;
4637 Builtins::JavaScript builtin_id = Builtins::ADD;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004638
4639 // Load the two arguments.
4640 __ mov(eax, Operand(esp, 2 * kPointerSize)); // First argument.
4641 __ mov(edx, Operand(esp, 1 * kPointerSize)); // Second argument.
4642
4643 // Make sure that both arguments are strings if not known in advance.
Iain Merrick9ac36c92010-09-13 15:29:50 +01004644 if (flags_ == NO_STRING_ADD_FLAGS) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004645 __ test(eax, Immediate(kSmiTagMask));
4646 __ j(zero, &string_add_runtime);
4647 __ CmpObjectType(eax, FIRST_NONSTRING_TYPE, ebx);
4648 __ j(above_equal, &string_add_runtime);
4649
4650 // First argument is a a string, test second.
4651 __ test(edx, Immediate(kSmiTagMask));
4652 __ j(zero, &string_add_runtime);
4653 __ CmpObjectType(edx, FIRST_NONSTRING_TYPE, ebx);
4654 __ j(above_equal, &string_add_runtime);
Iain Merrick9ac36c92010-09-13 15:29:50 +01004655 } else {
4656 // Here at least one of the arguments is definitely a string.
4657 // We convert the one that is not known to be a string.
4658 if ((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) == 0) {
4659 ASSERT((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) != 0);
4660 GenerateConvertArgument(masm, 2 * kPointerSize, eax, ebx, ecx, edi,
4661 &call_builtin);
4662 builtin_id = Builtins::STRING_ADD_RIGHT;
4663 } else if ((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) == 0) {
4664 ASSERT((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) != 0);
4665 GenerateConvertArgument(masm, 1 * kPointerSize, edx, ebx, ecx, edi,
4666 &call_builtin);
4667 builtin_id = Builtins::STRING_ADD_LEFT;
4668 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004669 }
4670
4671 // Both arguments are strings.
4672 // eax: first string
4673 // edx: second string
4674 // Check if either of the strings are empty. In that case return the other.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01004675 NearLabel second_not_zero_length, both_not_zero_length;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004676 __ mov(ecx, FieldOperand(edx, String::kLengthOffset));
4677 STATIC_ASSERT(kSmiTag == 0);
4678 __ test(ecx, Operand(ecx));
4679 __ j(not_zero, &second_not_zero_length);
4680 // Second string is empty, result is first string which is already in eax.
Steve Block44f0eee2011-05-26 01:26:41 +01004681 Counters* counters = masm->isolate()->counters();
4682 __ IncrementCounter(counters->string_add_native(), 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004683 __ ret(2 * kPointerSize);
4684 __ bind(&second_not_zero_length);
4685 __ mov(ebx, FieldOperand(eax, String::kLengthOffset));
4686 STATIC_ASSERT(kSmiTag == 0);
4687 __ test(ebx, Operand(ebx));
4688 __ j(not_zero, &both_not_zero_length);
4689 // First string is empty, result is second string which is in edx.
4690 __ mov(eax, edx);
Steve Block44f0eee2011-05-26 01:26:41 +01004691 __ IncrementCounter(counters->string_add_native(), 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004692 __ ret(2 * kPointerSize);
4693
4694 // Both strings are non-empty.
4695 // eax: first string
4696 // ebx: length of first string as a smi
4697 // ecx: length of second string as a smi
4698 // edx: second string
4699 // Look at the length of the result of adding the two strings.
4700 Label string_add_flat_result, longer_than_two;
4701 __ bind(&both_not_zero_length);
4702 __ add(ebx, Operand(ecx));
4703 STATIC_ASSERT(Smi::kMaxValue == String::kMaxLength);
4704 // Handle exceptionally long strings in the runtime system.
4705 __ j(overflow, &string_add_runtime);
Steve Block44f0eee2011-05-26 01:26:41 +01004706 // Use the symbol table when adding two one character strings, as it
4707 // helps later optimizations to return a symbol here.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004708 __ cmp(Operand(ebx), Immediate(Smi::FromInt(2)));
4709 __ j(not_equal, &longer_than_two);
4710
4711 // Check that both strings are non-external ascii strings.
4712 __ JumpIfNotBothSequentialAsciiStrings(eax, edx, ebx, ecx,
4713 &string_add_runtime);
4714
Iain Merrick9ac36c92010-09-13 15:29:50 +01004715 // Get the two characters forming the new string.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004716 __ movzx_b(ebx, FieldOperand(eax, SeqAsciiString::kHeaderSize));
4717 __ movzx_b(ecx, FieldOperand(edx, SeqAsciiString::kHeaderSize));
4718
4719 // Try to lookup two character string in symbol table. If it is not found
4720 // just allocate a new one.
Iain Merrick9ac36c92010-09-13 15:29:50 +01004721 Label make_two_character_string, make_two_character_string_no_reload;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004722 StringHelper::GenerateTwoCharacterSymbolTableProbe(
Iain Merrick9ac36c92010-09-13 15:29:50 +01004723 masm, ebx, ecx, eax, edx, edi,
4724 &make_two_character_string_no_reload, &make_two_character_string);
Steve Block44f0eee2011-05-26 01:26:41 +01004725 __ IncrementCounter(counters->string_add_native(), 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004726 __ ret(2 * kPointerSize);
4727
Iain Merrick9ac36c92010-09-13 15:29:50 +01004728 // Allocate a two character string.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004729 __ bind(&make_two_character_string);
Iain Merrick9ac36c92010-09-13 15:29:50 +01004730 // Reload the arguments.
4731 __ mov(eax, Operand(esp, 2 * kPointerSize)); // First argument.
4732 __ mov(edx, Operand(esp, 1 * kPointerSize)); // Second argument.
4733 // Get the two characters forming the new string.
4734 __ movzx_b(ebx, FieldOperand(eax, SeqAsciiString::kHeaderSize));
4735 __ movzx_b(ecx, FieldOperand(edx, SeqAsciiString::kHeaderSize));
4736 __ bind(&make_two_character_string_no_reload);
Steve Block44f0eee2011-05-26 01:26:41 +01004737 __ IncrementCounter(counters->string_add_make_two_char(), 1);
Iain Merrick9ac36c92010-09-13 15:29:50 +01004738 __ AllocateAsciiString(eax, // Result.
4739 2, // Length.
4740 edi, // Scratch 1.
4741 edx, // Scratch 2.
4742 &string_add_runtime);
4743 // Pack both characters in ebx.
4744 __ shl(ecx, kBitsPerByte);
4745 __ or_(ebx, Operand(ecx));
4746 // Set the characters in the new string.
4747 __ mov_w(FieldOperand(eax, SeqAsciiString::kHeaderSize), ebx);
Steve Block44f0eee2011-05-26 01:26:41 +01004748 __ IncrementCounter(counters->string_add_native(), 1);
Iain Merrick9ac36c92010-09-13 15:29:50 +01004749 __ ret(2 * kPointerSize);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004750
4751 __ bind(&longer_than_two);
4752 // Check if resulting string will be flat.
4753 __ cmp(Operand(ebx), Immediate(Smi::FromInt(String::kMinNonFlatLength)));
4754 __ j(below, &string_add_flat_result);
4755
4756 // If result is not supposed to be flat allocate a cons string object. If both
4757 // strings are ascii the result is an ascii cons string.
4758 Label non_ascii, allocated, ascii_data;
4759 __ mov(edi, FieldOperand(eax, HeapObject::kMapOffset));
4760 __ movzx_b(ecx, FieldOperand(edi, Map::kInstanceTypeOffset));
4761 __ mov(edi, FieldOperand(edx, HeapObject::kMapOffset));
4762 __ movzx_b(edi, FieldOperand(edi, Map::kInstanceTypeOffset));
4763 __ and_(ecx, Operand(edi));
4764 STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag);
4765 __ test(ecx, Immediate(kAsciiStringTag));
4766 __ j(zero, &non_ascii);
4767 __ bind(&ascii_data);
4768 // Allocate an acsii cons string.
4769 __ AllocateAsciiConsString(ecx, edi, no_reg, &string_add_runtime);
4770 __ bind(&allocated);
4771 // Fill the fields of the cons string.
4772 if (FLAG_debug_code) __ AbortIfNotSmi(ebx);
4773 __ mov(FieldOperand(ecx, ConsString::kLengthOffset), ebx);
4774 __ mov(FieldOperand(ecx, ConsString::kHashFieldOffset),
4775 Immediate(String::kEmptyHashField));
4776 __ mov(FieldOperand(ecx, ConsString::kFirstOffset), eax);
4777 __ mov(FieldOperand(ecx, ConsString::kSecondOffset), edx);
4778 __ mov(eax, ecx);
Steve Block44f0eee2011-05-26 01:26:41 +01004779 __ IncrementCounter(counters->string_add_native(), 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004780 __ ret(2 * kPointerSize);
4781 __ bind(&non_ascii);
4782 // At least one of the strings is two-byte. Check whether it happens
4783 // to contain only ascii characters.
4784 // ecx: first instance type AND second instance type.
4785 // edi: second instance type.
4786 __ test(ecx, Immediate(kAsciiDataHintMask));
4787 __ j(not_zero, &ascii_data);
4788 __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
4789 __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
4790 __ xor_(edi, Operand(ecx));
4791 STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0);
4792 __ and_(edi, kAsciiStringTag | kAsciiDataHintTag);
4793 __ cmp(edi, kAsciiStringTag | kAsciiDataHintTag);
4794 __ j(equal, &ascii_data);
4795 // Allocate a two byte cons string.
4796 __ AllocateConsString(ecx, edi, no_reg, &string_add_runtime);
4797 __ jmp(&allocated);
4798
4799 // Handle creating a flat result. First check that both strings are not
4800 // external strings.
4801 // eax: first string
4802 // ebx: length of resulting flat string as a smi
4803 // edx: second string
4804 __ bind(&string_add_flat_result);
4805 __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
4806 __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
4807 __ and_(ecx, kStringRepresentationMask);
4808 __ cmp(ecx, kExternalStringTag);
4809 __ j(equal, &string_add_runtime);
4810 __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset));
4811 __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
4812 __ and_(ecx, kStringRepresentationMask);
4813 __ cmp(ecx, kExternalStringTag);
4814 __ j(equal, &string_add_runtime);
4815 // Now check if both strings are ascii strings.
4816 // eax: first string
4817 // ebx: length of resulting flat string as a smi
4818 // edx: second string
4819 Label non_ascii_string_add_flat_result;
4820 STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag);
4821 __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
4822 __ test_b(FieldOperand(ecx, Map::kInstanceTypeOffset), kAsciiStringTag);
4823 __ j(zero, &non_ascii_string_add_flat_result);
4824 __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset));
4825 __ test_b(FieldOperand(ecx, Map::kInstanceTypeOffset), kAsciiStringTag);
4826 __ j(zero, &string_add_runtime);
4827
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004828 // Both strings are ascii strings. As they are short they are both flat.
4829 // ebx: length of resulting flat string as a smi
4830 __ SmiUntag(ebx);
4831 __ AllocateAsciiString(eax, ebx, ecx, edx, edi, &string_add_runtime);
4832 // eax: result string
4833 __ mov(ecx, eax);
4834 // Locate first character of result.
4835 __ add(Operand(ecx), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
4836 // Load first argument and locate first character.
4837 __ mov(edx, Operand(esp, 2 * kPointerSize));
4838 __ mov(edi, FieldOperand(edx, String::kLengthOffset));
4839 __ SmiUntag(edi);
4840 __ add(Operand(edx), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
4841 // eax: result string
4842 // ecx: first character of result
4843 // edx: first char of first argument
4844 // edi: length of first argument
4845 StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, true);
4846 // Load second argument and locate first character.
4847 __ mov(edx, Operand(esp, 1 * kPointerSize));
4848 __ mov(edi, FieldOperand(edx, String::kLengthOffset));
4849 __ SmiUntag(edi);
4850 __ add(Operand(edx), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
4851 // eax: result string
4852 // ecx: next character of result
4853 // edx: first char of second argument
4854 // edi: length of second argument
4855 StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, true);
Steve Block44f0eee2011-05-26 01:26:41 +01004856 __ IncrementCounter(counters->string_add_native(), 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004857 __ ret(2 * kPointerSize);
4858
4859 // Handle creating a flat two byte result.
4860 // eax: first string - known to be two byte
4861 // ebx: length of resulting flat string as a smi
4862 // edx: second string
4863 __ bind(&non_ascii_string_add_flat_result);
4864 __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset));
4865 __ test_b(FieldOperand(ecx, Map::kInstanceTypeOffset), kAsciiStringTag);
4866 __ j(not_zero, &string_add_runtime);
4867 // Both strings are two byte strings. As they are short they are both
4868 // flat.
4869 __ SmiUntag(ebx);
4870 __ AllocateTwoByteString(eax, ebx, ecx, edx, edi, &string_add_runtime);
4871 // eax: result string
4872 __ mov(ecx, eax);
4873 // Locate first character of result.
4874 __ add(Operand(ecx),
4875 Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
4876 // Load first argument and locate first character.
4877 __ mov(edx, Operand(esp, 2 * kPointerSize));
4878 __ mov(edi, FieldOperand(edx, String::kLengthOffset));
4879 __ SmiUntag(edi);
4880 __ add(Operand(edx),
4881 Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
4882 // eax: result string
4883 // ecx: first character of result
4884 // edx: first char of first argument
4885 // edi: length of first argument
4886 StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, false);
4887 // Load second argument and locate first character.
4888 __ mov(edx, Operand(esp, 1 * kPointerSize));
4889 __ mov(edi, FieldOperand(edx, String::kLengthOffset));
4890 __ SmiUntag(edi);
4891 __ add(Operand(edx), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
4892 // eax: result string
4893 // ecx: next character of result
4894 // edx: first char of second argument
4895 // edi: length of second argument
4896 StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, false);
Steve Block44f0eee2011-05-26 01:26:41 +01004897 __ IncrementCounter(counters->string_add_native(), 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004898 __ ret(2 * kPointerSize);
4899
4900 // Just jump to runtime to add the two strings.
4901 __ bind(&string_add_runtime);
4902 __ TailCallRuntime(Runtime::kStringAdd, 2, 1);
Iain Merrick9ac36c92010-09-13 15:29:50 +01004903
4904 if (call_builtin.is_linked()) {
4905 __ bind(&call_builtin);
4906 __ InvokeBuiltin(builtin_id, JUMP_FUNCTION);
4907 }
4908}
4909
4910
4911void StringAddStub::GenerateConvertArgument(MacroAssembler* masm,
4912 int stack_offset,
4913 Register arg,
4914 Register scratch1,
4915 Register scratch2,
4916 Register scratch3,
4917 Label* slow) {
4918 // First check if the argument is already a string.
4919 Label not_string, done;
4920 __ test(arg, Immediate(kSmiTagMask));
4921 __ j(zero, &not_string);
4922 __ CmpObjectType(arg, FIRST_NONSTRING_TYPE, scratch1);
4923 __ j(below, &done);
4924
4925 // Check the number to string cache.
4926 Label not_cached;
4927 __ bind(&not_string);
4928 // Puts the cached result into scratch1.
4929 NumberToStringStub::GenerateLookupNumberStringCache(masm,
4930 arg,
4931 scratch1,
4932 scratch2,
4933 scratch3,
4934 false,
4935 &not_cached);
4936 __ mov(arg, scratch1);
4937 __ mov(Operand(esp, stack_offset), arg);
4938 __ jmp(&done);
4939
4940 // Check if the argument is a safe string wrapper.
4941 __ bind(&not_cached);
4942 __ test(arg, Immediate(kSmiTagMask));
4943 __ j(zero, slow);
4944 __ CmpObjectType(arg, JS_VALUE_TYPE, scratch1); // map -> scratch1.
4945 __ j(not_equal, slow);
4946 __ test_b(FieldOperand(scratch1, Map::kBitField2Offset),
4947 1 << Map::kStringWrapperSafeForDefaultValueOf);
4948 __ j(zero, slow);
4949 __ mov(arg, FieldOperand(arg, JSValue::kValueOffset));
4950 __ mov(Operand(esp, stack_offset), arg);
4951
4952 __ bind(&done);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004953}
4954
4955
4956void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
4957 Register dest,
4958 Register src,
4959 Register count,
4960 Register scratch,
4961 bool ascii) {
Kristian Monsen0d5e1162010-09-30 15:31:59 +01004962 NearLabel loop;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004963 __ bind(&loop);
4964 // This loop just copies one character at a time, as it is only used for very
4965 // short strings.
4966 if (ascii) {
4967 __ mov_b(scratch, Operand(src, 0));
4968 __ mov_b(Operand(dest, 0), scratch);
4969 __ add(Operand(src), Immediate(1));
4970 __ add(Operand(dest), Immediate(1));
4971 } else {
4972 __ mov_w(scratch, Operand(src, 0));
4973 __ mov_w(Operand(dest, 0), scratch);
4974 __ add(Operand(src), Immediate(2));
4975 __ add(Operand(dest), Immediate(2));
4976 }
4977 __ sub(Operand(count), Immediate(1));
4978 __ j(not_zero, &loop);
4979}
4980
4981
4982void StringHelper::GenerateCopyCharactersREP(MacroAssembler* masm,
4983 Register dest,
4984 Register src,
4985 Register count,
4986 Register scratch,
4987 bool ascii) {
4988 // Copy characters using rep movs of doublewords.
4989 // The destination is aligned on a 4 byte boundary because we are
4990 // copying to the beginning of a newly allocated string.
4991 ASSERT(dest.is(edi)); // rep movs destination
4992 ASSERT(src.is(esi)); // rep movs source
4993 ASSERT(count.is(ecx)); // rep movs count
4994 ASSERT(!scratch.is(dest));
4995 ASSERT(!scratch.is(src));
4996 ASSERT(!scratch.is(count));
4997
4998 // Nothing to do for zero characters.
4999 Label done;
5000 __ test(count, Operand(count));
5001 __ j(zero, &done);
5002
5003 // Make count the number of bytes to copy.
5004 if (!ascii) {
5005 __ shl(count, 1);
5006 }
5007
5008 // Don't enter the rep movs if there are less than 4 bytes to copy.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005009 NearLabel last_bytes;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005010 __ test(count, Immediate(~3));
5011 __ j(zero, &last_bytes);
5012
5013 // Copy from edi to esi using rep movs instruction.
5014 __ mov(scratch, count);
5015 __ sar(count, 2); // Number of doublewords to copy.
5016 __ cld();
5017 __ rep_movs();
5018
5019 // Find number of bytes left.
5020 __ mov(count, scratch);
5021 __ and_(count, 3);
5022
5023 // Check if there are more bytes to copy.
5024 __ bind(&last_bytes);
5025 __ test(count, Operand(count));
5026 __ j(zero, &done);
5027
5028 // Copy remaining characters.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005029 NearLabel loop;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005030 __ bind(&loop);
5031 __ mov_b(scratch, Operand(src, 0));
5032 __ mov_b(Operand(dest, 0), scratch);
5033 __ add(Operand(src), Immediate(1));
5034 __ add(Operand(dest), Immediate(1));
5035 __ sub(Operand(count), Immediate(1));
5036 __ j(not_zero, &loop);
5037
5038 __ bind(&done);
5039}
5040
5041
5042void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
5043 Register c1,
5044 Register c2,
5045 Register scratch1,
5046 Register scratch2,
5047 Register scratch3,
Iain Merrick9ac36c92010-09-13 15:29:50 +01005048 Label* not_probed,
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005049 Label* not_found) {
5050 // Register scratch3 is the general scratch register in this function.
5051 Register scratch = scratch3;
5052
5053 // Make sure that both characters are not digits as such strings has a
5054 // different hash algorithm. Don't try to look for these in the symbol table.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005055 NearLabel not_array_index;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005056 __ mov(scratch, c1);
5057 __ sub(Operand(scratch), Immediate(static_cast<int>('0')));
5058 __ cmp(Operand(scratch), Immediate(static_cast<int>('9' - '0')));
5059 __ j(above, &not_array_index);
5060 __ mov(scratch, c2);
5061 __ sub(Operand(scratch), Immediate(static_cast<int>('0')));
5062 __ cmp(Operand(scratch), Immediate(static_cast<int>('9' - '0')));
Iain Merrick9ac36c92010-09-13 15:29:50 +01005063 __ j(below_equal, not_probed);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005064
5065 __ bind(&not_array_index);
5066 // Calculate the two character string hash.
5067 Register hash = scratch1;
5068 GenerateHashInit(masm, hash, c1, scratch);
5069 GenerateHashAddCharacter(masm, hash, c2, scratch);
5070 GenerateHashGetHash(masm, hash, scratch);
5071
5072 // Collect the two characters in a register.
5073 Register chars = c1;
5074 __ shl(c2, kBitsPerByte);
5075 __ or_(chars, Operand(c2));
5076
5077 // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
5078 // hash: hash of two character string.
5079
5080 // Load the symbol table.
5081 Register symbol_table = c2;
Steve Block44f0eee2011-05-26 01:26:41 +01005082 ExternalReference roots_address =
5083 ExternalReference::roots_address(masm->isolate());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005084 __ mov(scratch, Immediate(Heap::kSymbolTableRootIndex));
5085 __ mov(symbol_table,
5086 Operand::StaticArray(scratch, times_pointer_size, roots_address));
5087
5088 // Calculate capacity mask from the symbol table capacity.
5089 Register mask = scratch2;
5090 __ mov(mask, FieldOperand(symbol_table, SymbolTable::kCapacityOffset));
5091 __ SmiUntag(mask);
5092 __ sub(Operand(mask), Immediate(1));
5093
5094 // Registers
5095 // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
5096 // hash: hash of two character string
5097 // symbol_table: symbol table
5098 // mask: capacity mask
5099 // scratch: -
5100
5101 // Perform a number of probes in the symbol table.
5102 static const int kProbes = 4;
5103 Label found_in_symbol_table;
5104 Label next_probe[kProbes], next_probe_pop_mask[kProbes];
5105 for (int i = 0; i < kProbes; i++) {
5106 // Calculate entry in symbol table.
5107 __ mov(scratch, hash);
5108 if (i > 0) {
5109 __ add(Operand(scratch), Immediate(SymbolTable::GetProbeOffset(i)));
5110 }
5111 __ and_(scratch, Operand(mask));
5112
5113 // Load the entry from the symbol table.
5114 Register candidate = scratch; // Scratch register contains candidate.
5115 STATIC_ASSERT(SymbolTable::kEntrySize == 1);
5116 __ mov(candidate,
5117 FieldOperand(symbol_table,
5118 scratch,
5119 times_pointer_size,
5120 SymbolTable::kElementsStartOffset));
5121
5122 // If entry is undefined no string with this hash can be found.
Steve Block44f0eee2011-05-26 01:26:41 +01005123 Factory* factory = masm->isolate()->factory();
5124 __ cmp(candidate, factory->undefined_value());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005125 __ j(equal, not_found);
Steve Block44f0eee2011-05-26 01:26:41 +01005126 __ cmp(candidate, factory->null_value());
5127 __ j(equal, &next_probe[i]);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005128
5129 // If length is not 2 the string is not a candidate.
5130 __ cmp(FieldOperand(candidate, String::kLengthOffset),
5131 Immediate(Smi::FromInt(2)));
5132 __ j(not_equal, &next_probe[i]);
5133
5134 // As we are out of registers save the mask on the stack and use that
5135 // register as a temporary.
5136 __ push(mask);
5137 Register temp = mask;
5138
5139 // Check that the candidate is a non-external ascii string.
5140 __ mov(temp, FieldOperand(candidate, HeapObject::kMapOffset));
5141 __ movzx_b(temp, FieldOperand(temp, Map::kInstanceTypeOffset));
5142 __ JumpIfInstanceTypeIsNotSequentialAscii(
5143 temp, temp, &next_probe_pop_mask[i]);
5144
5145 // Check if the two characters match.
5146 __ mov(temp, FieldOperand(candidate, SeqAsciiString::kHeaderSize));
5147 __ and_(temp, 0x0000ffff);
5148 __ cmp(chars, Operand(temp));
5149 __ j(equal, &found_in_symbol_table);
5150 __ bind(&next_probe_pop_mask[i]);
5151 __ pop(mask);
5152 __ bind(&next_probe[i]);
5153 }
5154
5155 // No matching 2 character string found by probing.
5156 __ jmp(not_found);
5157
5158 // Scratch register contains result when we fall through to here.
5159 Register result = scratch;
5160 __ bind(&found_in_symbol_table);
5161 __ pop(mask); // Pop saved mask from the stack.
5162 if (!result.is(eax)) {
5163 __ mov(eax, result);
5164 }
5165}
5166
5167
5168void StringHelper::GenerateHashInit(MacroAssembler* masm,
5169 Register hash,
5170 Register character,
5171 Register scratch) {
5172 // hash = character + (character << 10);
5173 __ mov(hash, character);
5174 __ shl(hash, 10);
5175 __ add(hash, Operand(character));
5176 // hash ^= hash >> 6;
5177 __ mov(scratch, hash);
5178 __ sar(scratch, 6);
5179 __ xor_(hash, Operand(scratch));
5180}
5181
5182
5183void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
5184 Register hash,
5185 Register character,
5186 Register scratch) {
5187 // hash += character;
5188 __ add(hash, Operand(character));
5189 // hash += hash << 10;
5190 __ mov(scratch, hash);
5191 __ shl(scratch, 10);
5192 __ add(hash, Operand(scratch));
5193 // hash ^= hash >> 6;
5194 __ mov(scratch, hash);
5195 __ sar(scratch, 6);
5196 __ xor_(hash, Operand(scratch));
5197}
5198
5199
5200void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
5201 Register hash,
5202 Register scratch) {
5203 // hash += hash << 3;
5204 __ mov(scratch, hash);
5205 __ shl(scratch, 3);
5206 __ add(hash, Operand(scratch));
5207 // hash ^= hash >> 11;
5208 __ mov(scratch, hash);
5209 __ sar(scratch, 11);
5210 __ xor_(hash, Operand(scratch));
5211 // hash += hash << 15;
5212 __ mov(scratch, hash);
5213 __ shl(scratch, 15);
5214 __ add(hash, Operand(scratch));
5215
5216 // if (hash == 0) hash = 27;
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005217 NearLabel hash_not_zero;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005218 __ test(hash, Operand(hash));
5219 __ j(not_zero, &hash_not_zero);
5220 __ mov(hash, Immediate(27));
5221 __ bind(&hash_not_zero);
5222}
5223
5224
5225void SubStringStub::Generate(MacroAssembler* masm) {
5226 Label runtime;
5227
5228 // Stack frame on entry.
5229 // esp[0]: return address
5230 // esp[4]: to
5231 // esp[8]: from
5232 // esp[12]: string
5233
5234 // Make sure first argument is a string.
5235 __ mov(eax, Operand(esp, 3 * kPointerSize));
5236 STATIC_ASSERT(kSmiTag == 0);
5237 __ test(eax, Immediate(kSmiTagMask));
5238 __ j(zero, &runtime);
5239 Condition is_string = masm->IsObjectStringType(eax, ebx, ebx);
5240 __ j(NegateCondition(is_string), &runtime);
5241
5242 // eax: string
5243 // ebx: instance type
5244
5245 // Calculate length of sub string using the smi values.
5246 Label result_longer_than_two;
5247 __ mov(ecx, Operand(esp, 1 * kPointerSize)); // To index.
5248 __ test(ecx, Immediate(kSmiTagMask));
5249 __ j(not_zero, &runtime);
5250 __ mov(edx, Operand(esp, 2 * kPointerSize)); // From index.
5251 __ test(edx, Immediate(kSmiTagMask));
5252 __ j(not_zero, &runtime);
5253 __ sub(ecx, Operand(edx));
5254 __ cmp(ecx, FieldOperand(eax, String::kLengthOffset));
5255 Label return_eax;
5256 __ j(equal, &return_eax);
5257 // Special handling of sub-strings of length 1 and 2. One character strings
5258 // are handled in the runtime system (looked up in the single character
5259 // cache). Two character strings are looked for in the symbol cache.
5260 __ SmiUntag(ecx); // Result length is no longer smi.
5261 __ cmp(ecx, 2);
5262 __ j(greater, &result_longer_than_two);
5263 __ j(less, &runtime);
5264
5265 // Sub string of length 2 requested.
5266 // eax: string
5267 // ebx: instance type
5268 // ecx: sub string length (value is 2)
5269 // edx: from index (smi)
5270 __ JumpIfInstanceTypeIsNotSequentialAscii(ebx, ebx, &runtime);
5271
5272 // Get the two characters forming the sub string.
5273 __ SmiUntag(edx); // From index is no longer smi.
5274 __ movzx_b(ebx, FieldOperand(eax, edx, times_1, SeqAsciiString::kHeaderSize));
5275 __ movzx_b(ecx,
5276 FieldOperand(eax, edx, times_1, SeqAsciiString::kHeaderSize + 1));
5277
5278 // Try to lookup two character string in symbol table.
5279 Label make_two_character_string;
5280 StringHelper::GenerateTwoCharacterSymbolTableProbe(
Iain Merrick9ac36c92010-09-13 15:29:50 +01005281 masm, ebx, ecx, eax, edx, edi,
5282 &make_two_character_string, &make_two_character_string);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005283 __ ret(3 * kPointerSize);
5284
5285 __ bind(&make_two_character_string);
5286 // Setup registers for allocating the two character string.
5287 __ mov(eax, Operand(esp, 3 * kPointerSize));
5288 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
5289 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
5290 __ Set(ecx, Immediate(2));
5291
5292 __ bind(&result_longer_than_two);
5293 // eax: string
5294 // ebx: instance type
5295 // ecx: result string length
5296 // Check for flat ascii string
5297 Label non_ascii_flat;
5298 __ JumpIfInstanceTypeIsNotSequentialAscii(ebx, ebx, &non_ascii_flat);
5299
5300 // Allocate the result.
5301 __ AllocateAsciiString(eax, ecx, ebx, edx, edi, &runtime);
5302
5303 // eax: result string
5304 // ecx: result string length
5305 __ mov(edx, esi); // esi used by following code.
5306 // Locate first character of result.
5307 __ mov(edi, eax);
5308 __ add(Operand(edi), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
5309 // Load string argument and locate character of sub string start.
5310 __ mov(esi, Operand(esp, 3 * kPointerSize));
5311 __ add(Operand(esi), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
5312 __ mov(ebx, Operand(esp, 2 * kPointerSize)); // from
5313 __ SmiUntag(ebx);
5314 __ add(esi, Operand(ebx));
5315
5316 // eax: result string
5317 // ecx: result length
5318 // edx: original value of esi
5319 // edi: first character of result
5320 // esi: character of sub string start
5321 StringHelper::GenerateCopyCharactersREP(masm, edi, esi, ecx, ebx, true);
5322 __ mov(esi, edx); // Restore esi.
Steve Block44f0eee2011-05-26 01:26:41 +01005323 Counters* counters = masm->isolate()->counters();
5324 __ IncrementCounter(counters->sub_string_native(), 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005325 __ ret(3 * kPointerSize);
5326
5327 __ bind(&non_ascii_flat);
5328 // eax: string
5329 // ebx: instance type & kStringRepresentationMask | kStringEncodingMask
5330 // ecx: result string length
5331 // Check for flat two byte string
5332 __ cmp(ebx, kSeqStringTag | kTwoByteStringTag);
5333 __ j(not_equal, &runtime);
5334
5335 // Allocate the result.
5336 __ AllocateTwoByteString(eax, ecx, ebx, edx, edi, &runtime);
5337
5338 // eax: result string
5339 // ecx: result string length
5340 __ mov(edx, esi); // esi used by following code.
5341 // Locate first character of result.
5342 __ mov(edi, eax);
5343 __ add(Operand(edi),
5344 Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
5345 // Load string argument and locate character of sub string start.
5346 __ mov(esi, Operand(esp, 3 * kPointerSize));
5347 __ add(Operand(esi),
5348 Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
5349 __ mov(ebx, Operand(esp, 2 * kPointerSize)); // from
5350 // As from is a smi it is 2 times the value which matches the size of a two
5351 // byte character.
5352 STATIC_ASSERT(kSmiTag == 0);
5353 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
5354 __ add(esi, Operand(ebx));
5355
5356 // eax: result string
5357 // ecx: result length
5358 // edx: original value of esi
5359 // edi: first character of result
5360 // esi: character of sub string start
5361 StringHelper::GenerateCopyCharactersREP(masm, edi, esi, ecx, ebx, false);
5362 __ mov(esi, edx); // Restore esi.
5363
5364 __ bind(&return_eax);
Steve Block44f0eee2011-05-26 01:26:41 +01005365 __ IncrementCounter(counters->sub_string_native(), 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005366 __ ret(3 * kPointerSize);
5367
5368 // Just jump to runtime to create the sub string.
5369 __ bind(&runtime);
5370 __ TailCallRuntime(Runtime::kSubString, 3, 1);
5371}
5372
5373
5374void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
5375 Register left,
5376 Register right,
5377 Register scratch1,
5378 Register scratch2,
5379 Register scratch3) {
5380 Label result_not_equal;
5381 Label result_greater;
5382 Label compare_lengths;
5383
Steve Block44f0eee2011-05-26 01:26:41 +01005384 Counters* counters = masm->isolate()->counters();
5385 __ IncrementCounter(counters->string_compare_native(), 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005386
5387 // Find minimum length.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005388 NearLabel left_shorter;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005389 __ mov(scratch1, FieldOperand(left, String::kLengthOffset));
5390 __ mov(scratch3, scratch1);
5391 __ sub(scratch3, FieldOperand(right, String::kLengthOffset));
5392
5393 Register length_delta = scratch3;
5394
5395 __ j(less_equal, &left_shorter);
5396 // Right string is shorter. Change scratch1 to be length of right string.
5397 __ sub(scratch1, Operand(length_delta));
5398 __ bind(&left_shorter);
5399
5400 Register min_length = scratch1;
5401
5402 // If either length is zero, just compare lengths.
5403 __ test(min_length, Operand(min_length));
5404 __ j(zero, &compare_lengths);
5405
5406 // Change index to run from -min_length to -1 by adding min_length
5407 // to string start. This means that loop ends when index reaches zero,
5408 // which doesn't need an additional compare.
5409 __ SmiUntag(min_length);
5410 __ lea(left,
5411 FieldOperand(left,
5412 min_length, times_1,
5413 SeqAsciiString::kHeaderSize));
5414 __ lea(right,
5415 FieldOperand(right,
5416 min_length, times_1,
5417 SeqAsciiString::kHeaderSize));
5418 __ neg(min_length);
5419
5420 Register index = min_length; // index = -min_length;
5421
5422 {
5423 // Compare loop.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005424 NearLabel loop;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005425 __ bind(&loop);
5426 // Compare characters.
5427 __ mov_b(scratch2, Operand(left, index, times_1, 0));
5428 __ cmpb(scratch2, Operand(right, index, times_1, 0));
5429 __ j(not_equal, &result_not_equal);
5430 __ add(Operand(index), Immediate(1));
5431 __ j(not_zero, &loop);
5432 }
5433
5434 // Compare lengths - strings up to min-length are equal.
5435 __ bind(&compare_lengths);
5436 __ test(length_delta, Operand(length_delta));
5437 __ j(not_zero, &result_not_equal);
5438
5439 // Result is EQUAL.
5440 STATIC_ASSERT(EQUAL == 0);
5441 STATIC_ASSERT(kSmiTag == 0);
5442 __ Set(eax, Immediate(Smi::FromInt(EQUAL)));
5443 __ ret(0);
5444
5445 __ bind(&result_not_equal);
5446 __ j(greater, &result_greater);
5447
5448 // Result is LESS.
5449 __ Set(eax, Immediate(Smi::FromInt(LESS)));
5450 __ ret(0);
5451
5452 // Result is GREATER.
5453 __ bind(&result_greater);
5454 __ Set(eax, Immediate(Smi::FromInt(GREATER)));
5455 __ ret(0);
5456}
5457
5458
5459void StringCompareStub::Generate(MacroAssembler* masm) {
5460 Label runtime;
5461
5462 // Stack frame on entry.
5463 // esp[0]: return address
5464 // esp[4]: right string
5465 // esp[8]: left string
5466
5467 __ mov(edx, Operand(esp, 2 * kPointerSize)); // left
5468 __ mov(eax, Operand(esp, 1 * kPointerSize)); // right
5469
Kristian Monsen0d5e1162010-09-30 15:31:59 +01005470 NearLabel not_same;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005471 __ cmp(edx, Operand(eax));
5472 __ j(not_equal, &not_same);
5473 STATIC_ASSERT(EQUAL == 0);
5474 STATIC_ASSERT(kSmiTag == 0);
5475 __ Set(eax, Immediate(Smi::FromInt(EQUAL)));
Steve Block44f0eee2011-05-26 01:26:41 +01005476 __ IncrementCounter(masm->isolate()->counters()->string_compare_native(), 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005477 __ ret(2 * kPointerSize);
5478
5479 __ bind(&not_same);
5480
5481 // Check that both objects are sequential ascii strings.
5482 __ JumpIfNotBothSequentialAsciiStrings(edx, eax, ecx, ebx, &runtime);
5483
5484 // Compare flat ascii strings.
5485 // Drop arguments from the stack.
5486 __ pop(ecx);
5487 __ add(Operand(esp), Immediate(2 * kPointerSize));
5488 __ push(ecx);
5489 GenerateCompareFlatAsciiStrings(masm, edx, eax, ecx, ebx, edi);
5490
5491 // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
5492 // tagged as a small integer.
5493 __ bind(&runtime);
5494 __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
5495}
5496
Ben Murdochb0fe1622011-05-05 13:52:32 +01005497
Ben Murdochb0fe1622011-05-05 13:52:32 +01005498void ICCompareStub::GenerateSmis(MacroAssembler* masm) {
5499 ASSERT(state_ == CompareIC::SMIS);
5500 NearLabel miss;
5501 __ mov(ecx, Operand(edx));
5502 __ or_(ecx, Operand(eax));
5503 __ test(ecx, Immediate(kSmiTagMask));
5504 __ j(not_zero, &miss, not_taken);
5505
5506 if (GetCondition() == equal) {
5507 // For equality we do not care about the sign of the result.
5508 __ sub(eax, Operand(edx));
5509 } else {
5510 NearLabel done;
5511 __ sub(edx, Operand(eax));
5512 __ j(no_overflow, &done);
5513 // Correct sign of result in case of overflow.
5514 __ not_(edx);
5515 __ bind(&done);
5516 __ mov(eax, edx);
5517 }
5518 __ ret(0);
5519
5520 __ bind(&miss);
5521 GenerateMiss(masm);
5522}
5523
5524
5525void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) {
5526 ASSERT(state_ == CompareIC::HEAP_NUMBERS);
5527
5528 NearLabel generic_stub;
5529 NearLabel unordered;
5530 NearLabel miss;
5531 __ mov(ecx, Operand(edx));
5532 __ and_(ecx, Operand(eax));
5533 __ test(ecx, Immediate(kSmiTagMask));
5534 __ j(zero, &generic_stub, not_taken);
5535
5536 __ CmpObjectType(eax, HEAP_NUMBER_TYPE, ecx);
5537 __ j(not_equal, &miss, not_taken);
5538 __ CmpObjectType(edx, HEAP_NUMBER_TYPE, ecx);
5539 __ j(not_equal, &miss, not_taken);
5540
5541 // Inlining the double comparison and falling back to the general compare
5542 // stub if NaN is involved or SS2 or CMOV is unsupported.
Ben Murdoch8b112d22011-06-08 16:22:53 +01005543 if (CpuFeatures::IsSupported(SSE2) && CpuFeatures::IsSupported(CMOV)) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01005544 CpuFeatures::Scope scope1(SSE2);
5545 CpuFeatures::Scope scope2(CMOV);
5546
5547 // Load left and right operand
5548 __ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
5549 __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
5550
5551 // Compare operands
5552 __ ucomisd(xmm0, xmm1);
5553
5554 // Don't base result on EFLAGS when a NaN is involved.
5555 __ j(parity_even, &unordered, not_taken);
5556
5557 // Return a result of -1, 0, or 1, based on EFLAGS.
5558 // Performing mov, because xor would destroy the flag register.
5559 __ mov(eax, 0); // equal
5560 __ mov(ecx, Immediate(Smi::FromInt(1)));
5561 __ cmov(above, eax, Operand(ecx));
5562 __ mov(ecx, Immediate(Smi::FromInt(-1)));
5563 __ cmov(below, eax, Operand(ecx));
5564 __ ret(0);
5565
5566 __ bind(&unordered);
5567 }
5568
5569 CompareStub stub(GetCondition(), strict(), NO_COMPARE_FLAGS);
5570 __ bind(&generic_stub);
5571 __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
5572
5573 __ bind(&miss);
5574 GenerateMiss(masm);
5575}
5576
5577
5578void ICCompareStub::GenerateObjects(MacroAssembler* masm) {
5579 ASSERT(state_ == CompareIC::OBJECTS);
5580 NearLabel miss;
5581 __ mov(ecx, Operand(edx));
5582 __ and_(ecx, Operand(eax));
5583 __ test(ecx, Immediate(kSmiTagMask));
5584 __ j(zero, &miss, not_taken);
5585
5586 __ CmpObjectType(eax, JS_OBJECT_TYPE, ecx);
5587 __ j(not_equal, &miss, not_taken);
5588 __ CmpObjectType(edx, JS_OBJECT_TYPE, ecx);
5589 __ j(not_equal, &miss, not_taken);
5590
5591 ASSERT(GetCondition() == equal);
5592 __ sub(eax, Operand(edx));
5593 __ ret(0);
5594
5595 __ bind(&miss);
5596 GenerateMiss(masm);
5597}
5598
5599
5600void ICCompareStub::GenerateMiss(MacroAssembler* masm) {
5601 // Save the registers.
5602 __ pop(ecx);
5603 __ push(edx);
5604 __ push(eax);
5605 __ push(ecx);
5606
5607 // Call the runtime system in a fresh internal frame.
Steve Block44f0eee2011-05-26 01:26:41 +01005608 ExternalReference miss = ExternalReference(IC_Utility(IC::kCompareIC_Miss),
5609 masm->isolate());
Ben Murdochb0fe1622011-05-05 13:52:32 +01005610 __ EnterInternalFrame();
5611 __ push(edx);
5612 __ push(eax);
5613 __ push(Immediate(Smi::FromInt(op_)));
5614 __ CallExternalReference(miss, 3);
5615 __ LeaveInternalFrame();
5616
5617 // Compute the entry point of the rewritten stub.
5618 __ lea(edi, FieldOperand(eax, Code::kHeaderSize));
5619
5620 // Restore registers.
5621 __ pop(ecx);
5622 __ pop(eax);
5623 __ pop(edx);
5624 __ push(ecx);
5625
5626 // Do a tail call to the rewritten stub.
5627 __ jmp(Operand(edi));
5628}
5629
5630
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005631#undef __
5632
5633} } // namespace v8::internal
5634
5635#endif // V8_TARGET_ARCH_IA32