blob: c7050a788b0ed421e5a716546c02acd37148a18a [file] [log] [blame]
Steve Blocka7e24c12009-10-30 11:49:00 +00001// Copyright (c) 1994-2006 Sun Microsystems Inc.
2// All Rights Reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions
6// are met:
7//
8// - Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10//
11// - Redistribution in binary form must reproduce the above copyright
12// notice, this list of conditions and the following disclaimer in the
13// documentation and/or other materials provided with the
14// distribution.
15//
16// - Neither the name of Sun Microsystems or the names of contributors may
17// be used to endorse or promote products derived from this software without
18// specific prior written permission.
19//
20// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31// OF THE POSSIBILITY OF SUCH DAMAGE.
32
Leon Clarked91b9f72010-01-27 17:25:45 +000033// The original source code covered by the above license above has been
34// modified significantly by Google Inc.
Ben Murdoch8b112d22011-06-08 16:22:53 +010035// Copyright 2011 the V8 project authors. All rights reserved.
Steve Blocka7e24c12009-10-30 11:49:00 +000036
37#include "v8.h"
38
Leon Clarkef7060e22010-06-03 12:02:55 +010039#if defined(V8_TARGET_ARCH_ARM)
40
Steve Blocka7e24c12009-10-30 11:49:00 +000041#include "arm/assembler-arm-inl.h"
42#include "serialize.h"
43
44namespace v8 {
45namespace internal {
46
Ben Murdoch8b112d22011-06-08 16:22:53 +010047#ifdef DEBUG
48bool CpuFeatures::initialized_ = false;
49#endif
50unsigned CpuFeatures::supported_ = 0;
51unsigned CpuFeatures::found_by_runtime_probing_ = 0;
52
Andrei Popescu402d9372010-02-26 13:31:12 +000053
Ben Murdoch257744e2011-11-30 15:57:28 +000054// Get the CPU features enabled by the build. For cross compilation the
55// preprocessor symbols CAN_USE_ARMV7_INSTRUCTIONS and CAN_USE_VFP_INSTRUCTIONS
56// can be defined to enable ARMv7 and VFPv3 instructions when building the
57// snapshot.
Andrei Popescu402d9372010-02-26 13:31:12 +000058static uint64_t CpuFeaturesImpliedByCompiler() {
59 uint64_t answer = 0;
60#ifdef CAN_USE_ARMV7_INSTRUCTIONS
61 answer |= 1u << ARMv7;
62#endif // def CAN_USE_ARMV7_INSTRUCTIONS
Ben Murdoch257744e2011-11-30 15:57:28 +000063#ifdef CAN_USE_VFP_INSTRUCTIONS
64 answer |= 1u << VFP3 | 1u << ARMv7;
65#endif // def CAN_USE_VFP_INSTRUCTIONS
66
67#ifdef __arm__
Andrei Popescu402d9372010-02-26 13:31:12 +000068 // If the compiler is allowed to use VFP then we can use VFP too in our code
69 // generation even when generating snapshots. This won't work for cross
Ben Murdoch8b112d22011-06-08 16:22:53 +010070 // compilation. VFPv3 implies ARMv7, see ARM DDI 0406B, page A1-6.
Andrei Popescu402d9372010-02-26 13:31:12 +000071#if defined(__VFP_FP__) && !defined(__SOFTFP__)
Ben Murdoch8b112d22011-06-08 16:22:53 +010072 answer |= 1u << VFP3 | 1u << ARMv7;
Andrei Popescu402d9372010-02-26 13:31:12 +000073#endif // defined(__VFP_FP__) && !defined(__SOFTFP__)
Ben Murdoch257744e2011-11-30 15:57:28 +000074#endif // def __arm__
75
Andrei Popescu402d9372010-02-26 13:31:12 +000076 return answer;
77}
Andrei Popescu402d9372010-02-26 13:31:12 +000078
79
Ben Murdoch8b112d22011-06-08 16:22:53 +010080void CpuFeatures::Probe() {
81 ASSERT(!initialized_);
82#ifdef DEBUG
83 initialized_ = true;
84#endif
Ben Murdoch257744e2011-11-30 15:57:28 +000085
86 // Get the features implied by the OS and the compiler settings. This is the
87 // minimal set of features which is also alowed for generated code in the
88 // snapshot.
89 supported_ |= OS::CpuFeaturesImpliedByPlatform();
90 supported_ |= CpuFeaturesImpliedByCompiler();
91
92 if (Serializer::enabled()) {
93 // No probing for features if we might serialize (generate snapshot).
94 return;
95 }
96
Andrei Popescu402d9372010-02-26 13:31:12 +000097#ifndef __arm__
Ben Murdoch8b112d22011-06-08 16:22:53 +010098 // For the simulator=arm build, use VFP when FLAG_enable_vfp3 is
99 // enabled. VFPv3 implies ARMv7, see ARM DDI 0406B, page A1-6.
Andrei Popescu31002712010-02-23 13:46:05 +0000100 if (FLAG_enable_vfp3) {
Ben Murdoch8b112d22011-06-08 16:22:53 +0100101 supported_ |= 1u << VFP3 | 1u << ARMv7;
Andrei Popescu31002712010-02-23 13:46:05 +0000102 }
103 // For the simulator=arm build, use ARMv7 when FLAG_enable_armv7 is enabled
104 if (FLAG_enable_armv7) {
Steve Block6ded16b2010-05-10 14:33:55 +0100105 supported_ |= 1u << ARMv7;
Andrei Popescu31002712010-02-23 13:46:05 +0000106 }
Andrei Popescu402d9372010-02-26 13:31:12 +0000107#else // def __arm__
Ben Murdoch257744e2011-11-30 15:57:28 +0000108 // Probe for additional features not already known to be available.
109 if (!IsSupported(VFP3) && OS::ArmCpuHasFeature(VFP3)) {
Ben Murdoch8b112d22011-06-08 16:22:53 +0100110 // This implementation also sets the VFP flags if runtime
111 // detection of VFP returns true. VFPv3 implies ARMv7, see ARM DDI
112 // 0406B, page A1-6.
113 supported_ |= 1u << VFP3 | 1u << ARMv7;
114 found_by_runtime_probing_ |= 1u << VFP3 | 1u << ARMv7;
Steve Blockd0582a62009-12-15 09:54:21 +0000115 }
Andrei Popescu31002712010-02-23 13:46:05 +0000116
Ben Murdoch257744e2011-11-30 15:57:28 +0000117 if (!IsSupported(ARMv7) && OS::ArmCpuHasFeature(ARMv7)) {
Andrei Popescu31002712010-02-23 13:46:05 +0000118 supported_ |= 1u << ARMv7;
119 found_by_runtime_probing_ |= 1u << ARMv7;
120 }
Steve Block6ded16b2010-05-10 14:33:55 +0100121#endif
Steve Blockd0582a62009-12-15 09:54:21 +0000122}
123
124
Steve Blocka7e24c12009-10-30 11:49:00 +0000125// -----------------------------------------------------------------------------
Steve Blocka7e24c12009-10-30 11:49:00 +0000126// Implementation of RelocInfo
127
128const int RelocInfo::kApplyMask = 0;
129
130
Leon Clarkef7060e22010-06-03 12:02:55 +0100131bool RelocInfo::IsCodedSpecially() {
132 // The deserializer needs to know whether a pointer is specially coded. Being
133 // specially coded on ARM means that it is a movw/movt instruction. We don't
134 // generate those yet.
135 return false;
136}
137
138
139
Steve Blocka7e24c12009-10-30 11:49:00 +0000140void RelocInfo::PatchCode(byte* instructions, int instruction_count) {
141 // Patch the code at the current address with the supplied instructions.
142 Instr* pc = reinterpret_cast<Instr*>(pc_);
143 Instr* instr = reinterpret_cast<Instr*>(instructions);
144 for (int i = 0; i < instruction_count; i++) {
145 *(pc + i) = *(instr + i);
146 }
147
148 // Indicate that code has changed.
149 CPU::FlushICache(pc_, instruction_count * Assembler::kInstrSize);
150}
151
152
153// Patch the code at the current PC with a call to the target address.
154// Additional guard instructions can be added if required.
155void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) {
156 // Patch the code at the current address with a call to the target.
157 UNIMPLEMENTED();
158}
159
160
161// -----------------------------------------------------------------------------
162// Implementation of Operand and MemOperand
163// See assembler-arm-inl.h for inlined constructors
164
165Operand::Operand(Handle<Object> handle) {
166 rm_ = no_reg;
167 // Verify all Objects referred by code are NOT in new space.
168 Object* obj = *handle;
Steve Block44f0eee2011-05-26 01:26:41 +0100169 ASSERT(!HEAP->InNewSpace(obj));
Steve Blocka7e24c12009-10-30 11:49:00 +0000170 if (obj->IsHeapObject()) {
171 imm32_ = reinterpret_cast<intptr_t>(handle.location());
172 rmode_ = RelocInfo::EMBEDDED_OBJECT;
173 } else {
174 // no relocation needed
175 imm32_ = reinterpret_cast<intptr_t>(obj);
176 rmode_ = RelocInfo::NONE;
177 }
178}
179
180
181Operand::Operand(Register rm, ShiftOp shift_op, int shift_imm) {
182 ASSERT(is_uint5(shift_imm));
183 ASSERT(shift_op != ROR || shift_imm != 0); // use RRX if you mean it
184 rm_ = rm;
185 rs_ = no_reg;
186 shift_op_ = shift_op;
187 shift_imm_ = shift_imm & 31;
188 if (shift_op == RRX) {
189 // encoded as ROR with shift_imm == 0
190 ASSERT(shift_imm == 0);
191 shift_op_ = ROR;
192 shift_imm_ = 0;
193 }
194}
195
196
197Operand::Operand(Register rm, ShiftOp shift_op, Register rs) {
198 ASSERT(shift_op != RRX);
199 rm_ = rm;
200 rs_ = no_reg;
201 shift_op_ = shift_op;
202 rs_ = rs;
203}
204
205
206MemOperand::MemOperand(Register rn, int32_t offset, AddrMode am) {
207 rn_ = rn;
208 rm_ = no_reg;
209 offset_ = offset;
210 am_ = am;
211}
212
213MemOperand::MemOperand(Register rn, Register rm, AddrMode am) {
214 rn_ = rn;
215 rm_ = rm;
216 shift_op_ = LSL;
217 shift_imm_ = 0;
218 am_ = am;
219}
220
221
222MemOperand::MemOperand(Register rn, Register rm,
223 ShiftOp shift_op, int shift_imm, AddrMode am) {
224 ASSERT(is_uint5(shift_imm));
225 rn_ = rn;
226 rm_ = rm;
227 shift_op_ = shift_op;
228 shift_imm_ = shift_imm & 31;
229 am_ = am;
230}
231
232
233// -----------------------------------------------------------------------------
Steve Block1e0659c2011-05-24 12:43:12 +0100234// Specific instructions, constants, and masks.
Steve Blocka7e24c12009-10-30 11:49:00 +0000235
236// add(sp, sp, 4) instruction (aka Pop())
Steve Block1e0659c2011-05-24 12:43:12 +0100237const Instr kPopInstruction =
238 al | PostIndex | 4 | LeaveCC | I | sp.code() * B16 | sp.code() * B12;
Steve Blocka7e24c12009-10-30 11:49:00 +0000239// str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r))
240// register r is not encoded.
Steve Block1e0659c2011-05-24 12:43:12 +0100241const Instr kPushRegPattern =
Steve Blocka7e24c12009-10-30 11:49:00 +0000242 al | B26 | 4 | NegPreIndex | sp.code() * B16;
243// ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r))
244// register r is not encoded.
Steve Block1e0659c2011-05-24 12:43:12 +0100245const Instr kPopRegPattern =
Steve Blocka7e24c12009-10-30 11:49:00 +0000246 al | B26 | L | 4 | PostIndex | sp.code() * B16;
247// mov lr, pc
Steve Block1e0659c2011-05-24 12:43:12 +0100248const Instr kMovLrPc = al | MOV | pc.code() | lr.code() * B12;
Steve Block6ded16b2010-05-10 14:33:55 +0100249// ldr rd, [pc, #offset]
Steve Block1e0659c2011-05-24 12:43:12 +0100250const Instr kLdrPCMask = kCondMask | 15 * B24 | 7 * B20 | 15 * B16;
Steve Block6ded16b2010-05-10 14:33:55 +0100251const Instr kLdrPCPattern = al | 5 * B24 | L | pc.code() * B16;
252// blxcc rm
253const Instr kBlxRegMask =
254 15 * B24 | 15 * B20 | 15 * B16 | 15 * B12 | 15 * B8 | 15 * B4;
255const Instr kBlxRegPattern =
Steve Block1e0659c2011-05-24 12:43:12 +0100256 B24 | B21 | 15 * B16 | 15 * B12 | 15 * B8 | BLX;
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100257const Instr kMovMvnMask = 0x6d * B21 | 0xf * B16;
258const Instr kMovMvnPattern = 0xd * B21;
259const Instr kMovMvnFlip = B22;
260const Instr kMovLeaveCCMask = 0xdff * B16;
261const Instr kMovLeaveCCPattern = 0x1a0 * B16;
262const Instr kMovwMask = 0xff * B20;
263const Instr kMovwPattern = 0x30 * B20;
264const Instr kMovwLeaveCCFlip = 0x5 * B21;
265const Instr kCmpCmnMask = 0xdd * B20 | 0xf * B12;
266const Instr kCmpCmnPattern = 0x15 * B20;
267const Instr kCmpCmnFlip = B21;
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100268const Instr kAddSubFlip = 0x6 * B21;
269const Instr kAndBicFlip = 0xe * B21;
270
Leon Clarkef7060e22010-06-03 12:02:55 +0100271// A mask for the Rd register for push, pop, ldr, str instructions.
Steve Block1e0659c2011-05-24 12:43:12 +0100272const Instr kLdrRegFpOffsetPattern =
Leon Clarkef7060e22010-06-03 12:02:55 +0100273 al | B26 | L | Offset | fp.code() * B16;
Steve Block1e0659c2011-05-24 12:43:12 +0100274const Instr kStrRegFpOffsetPattern =
Leon Clarkef7060e22010-06-03 12:02:55 +0100275 al | B26 | Offset | fp.code() * B16;
Steve Block1e0659c2011-05-24 12:43:12 +0100276const Instr kLdrRegFpNegOffsetPattern =
Leon Clarkef7060e22010-06-03 12:02:55 +0100277 al | B26 | L | NegOffset | fp.code() * B16;
Steve Block1e0659c2011-05-24 12:43:12 +0100278const Instr kStrRegFpNegOffsetPattern =
Leon Clarkef7060e22010-06-03 12:02:55 +0100279 al | B26 | NegOffset | fp.code() * B16;
Steve Block1e0659c2011-05-24 12:43:12 +0100280const Instr kLdrStrInstrTypeMask = 0xffff0000;
281const Instr kLdrStrInstrArgumentMask = 0x0000ffff;
282const Instr kLdrStrOffsetMask = 0x00000fff;
283
Steve Blocka7e24c12009-10-30 11:49:00 +0000284
Andrei Popescu31002712010-02-23 13:46:05 +0000285// Spare buffer.
Steve Blocka7e24c12009-10-30 11:49:00 +0000286static const int kMinimalBufferSize = 4*KB;
Steve Blocka7e24c12009-10-30 11:49:00 +0000287
Steve Block1e0659c2011-05-24 12:43:12 +0100288
Ben Murdoch8b112d22011-06-08 16:22:53 +0100289Assembler::Assembler(Isolate* arg_isolate, void* buffer, int buffer_size)
290 : AssemblerBase(arg_isolate),
Steve Block44f0eee2011-05-26 01:26:41 +0100291 positions_recorder_(this),
Steve Block44f0eee2011-05-26 01:26:41 +0100292 emit_debug_code_(FLAG_debug_code) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000293 if (buffer == NULL) {
Andrei Popescu31002712010-02-23 13:46:05 +0000294 // Do our own buffer management.
Steve Blocka7e24c12009-10-30 11:49:00 +0000295 if (buffer_size <= kMinimalBufferSize) {
296 buffer_size = kMinimalBufferSize;
297
Steve Block44f0eee2011-05-26 01:26:41 +0100298 if (isolate()->assembler_spare_buffer() != NULL) {
299 buffer = isolate()->assembler_spare_buffer();
300 isolate()->set_assembler_spare_buffer(NULL);
Steve Blocka7e24c12009-10-30 11:49:00 +0000301 }
302 }
303 if (buffer == NULL) {
304 buffer_ = NewArray<byte>(buffer_size);
305 } else {
306 buffer_ = static_cast<byte*>(buffer);
307 }
308 buffer_size_ = buffer_size;
309 own_buffer_ = true;
310
311 } else {
Andrei Popescu31002712010-02-23 13:46:05 +0000312 // Use externally provided buffer instead.
Steve Blocka7e24c12009-10-30 11:49:00 +0000313 ASSERT(buffer_size > 0);
314 buffer_ = static_cast<byte*>(buffer);
315 buffer_size_ = buffer_size;
316 own_buffer_ = false;
317 }
318
Andrei Popescu31002712010-02-23 13:46:05 +0000319 // Setup buffer pointers.
Steve Blocka7e24c12009-10-30 11:49:00 +0000320 ASSERT(buffer_ != NULL);
321 pc_ = buffer_;
322 reloc_info_writer.Reposition(buffer_ + buffer_size, pc_);
323 num_prinfo_ = 0;
324 next_buffer_check_ = 0;
Steve Block6ded16b2010-05-10 14:33:55 +0100325 const_pool_blocked_nesting_ = 0;
Steve Blocka7e24c12009-10-30 11:49:00 +0000326 no_const_pool_before_ = 0;
327 last_const_pool_end_ = 0;
328 last_bound_pos_ = 0;
Ben Murdoch257744e2011-11-30 15:57:28 +0000329 ast_id_for_reloc_info_ = kNoASTId;
Steve Blocka7e24c12009-10-30 11:49:00 +0000330}
331
332
333Assembler::~Assembler() {
Steve Block6ded16b2010-05-10 14:33:55 +0100334 ASSERT(const_pool_blocked_nesting_ == 0);
Steve Blocka7e24c12009-10-30 11:49:00 +0000335 if (own_buffer_) {
Steve Block44f0eee2011-05-26 01:26:41 +0100336 if (isolate()->assembler_spare_buffer() == NULL &&
337 buffer_size_ == kMinimalBufferSize) {
338 isolate()->set_assembler_spare_buffer(buffer_);
Steve Blocka7e24c12009-10-30 11:49:00 +0000339 } else {
340 DeleteArray(buffer_);
341 }
342 }
343}
344
345
346void Assembler::GetCode(CodeDesc* desc) {
Andrei Popescu31002712010-02-23 13:46:05 +0000347 // Emit constant pool if necessary.
Steve Blocka7e24c12009-10-30 11:49:00 +0000348 CheckConstPool(true, false);
349 ASSERT(num_prinfo_ == 0);
350
Andrei Popescu31002712010-02-23 13:46:05 +0000351 // Setup code descriptor.
Steve Blocka7e24c12009-10-30 11:49:00 +0000352 desc->buffer = buffer_;
353 desc->buffer_size = buffer_size_;
354 desc->instr_size = pc_offset();
355 desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
356}
357
358
359void Assembler::Align(int m) {
360 ASSERT(m >= 4 && IsPowerOf2(m));
361 while ((pc_offset() & (m - 1)) != 0) {
362 nop();
363 }
364}
365
366
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100367void Assembler::CodeTargetAlign() {
368 // Preferred alignment of jump targets on some ARM chips.
369 Align(8);
370}
371
372
Steve Block1e0659c2011-05-24 12:43:12 +0100373Condition Assembler::GetCondition(Instr instr) {
374 return Instruction::ConditionField(instr);
375}
376
377
Steve Block6ded16b2010-05-10 14:33:55 +0100378bool Assembler::IsBranch(Instr instr) {
379 return (instr & (B27 | B25)) == (B27 | B25);
380}
381
382
383int Assembler::GetBranchOffset(Instr instr) {
384 ASSERT(IsBranch(instr));
385 // Take the jump offset in the lower 24 bits, sign extend it and multiply it
386 // with 4 to get the offset in bytes.
Steve Block1e0659c2011-05-24 12:43:12 +0100387 return ((instr & kImm24Mask) << 8) >> 6;
Steve Block6ded16b2010-05-10 14:33:55 +0100388}
389
390
391bool Assembler::IsLdrRegisterImmediate(Instr instr) {
392 return (instr & (B27 | B26 | B25 | B22 | B20)) == (B26 | B20);
393}
394
395
396int Assembler::GetLdrRegisterImmediateOffset(Instr instr) {
397 ASSERT(IsLdrRegisterImmediate(instr));
398 bool positive = (instr & B23) == B23;
Steve Block1e0659c2011-05-24 12:43:12 +0100399 int offset = instr & kOff12Mask; // Zero extended offset.
Steve Block6ded16b2010-05-10 14:33:55 +0100400 return positive ? offset : -offset;
401}
402
403
404Instr Assembler::SetLdrRegisterImmediateOffset(Instr instr, int offset) {
405 ASSERT(IsLdrRegisterImmediate(instr));
406 bool positive = offset >= 0;
407 if (!positive) offset = -offset;
408 ASSERT(is_uint12(offset));
409 // Set bit indicating whether the offset should be added.
410 instr = (instr & ~B23) | (positive ? B23 : 0);
411 // Set the actual offset.
Steve Block1e0659c2011-05-24 12:43:12 +0100412 return (instr & ~kOff12Mask) | offset;
Steve Block6ded16b2010-05-10 14:33:55 +0100413}
414
415
Kristian Monsen50ef84f2010-07-29 15:18:00 +0100416bool Assembler::IsStrRegisterImmediate(Instr instr) {
417 return (instr & (B27 | B26 | B25 | B22 | B20)) == B26;
418}
419
420
421Instr Assembler::SetStrRegisterImmediateOffset(Instr instr, int offset) {
422 ASSERT(IsStrRegisterImmediate(instr));
423 bool positive = offset >= 0;
424 if (!positive) offset = -offset;
425 ASSERT(is_uint12(offset));
426 // Set bit indicating whether the offset should be added.
427 instr = (instr & ~B23) | (positive ? B23 : 0);
428 // Set the actual offset.
Steve Block1e0659c2011-05-24 12:43:12 +0100429 return (instr & ~kOff12Mask) | offset;
Kristian Monsen50ef84f2010-07-29 15:18:00 +0100430}
431
432
433bool Assembler::IsAddRegisterImmediate(Instr instr) {
434 return (instr & (B27 | B26 | B25 | B24 | B23 | B22 | B21)) == (B25 | B23);
435}
436
437
438Instr Assembler::SetAddRegisterImmediateOffset(Instr instr, int offset) {
439 ASSERT(IsAddRegisterImmediate(instr));
440 ASSERT(offset >= 0);
441 ASSERT(is_uint12(offset));
442 // Set the offset.
Steve Block1e0659c2011-05-24 12:43:12 +0100443 return (instr & ~kOff12Mask) | offset;
Kristian Monsen50ef84f2010-07-29 15:18:00 +0100444}
445
446
Leon Clarkef7060e22010-06-03 12:02:55 +0100447Register Assembler::GetRd(Instr instr) {
448 Register reg;
Steve Block1e0659c2011-05-24 12:43:12 +0100449 reg.code_ = Instruction::RdValue(instr);
450 return reg;
451}
452
453
454Register Assembler::GetRn(Instr instr) {
455 Register reg;
456 reg.code_ = Instruction::RnValue(instr);
457 return reg;
458}
459
460
461Register Assembler::GetRm(Instr instr) {
462 Register reg;
463 reg.code_ = Instruction::RmValue(instr);
Leon Clarkef7060e22010-06-03 12:02:55 +0100464 return reg;
465}
466
467
468bool Assembler::IsPush(Instr instr) {
469 return ((instr & ~kRdMask) == kPushRegPattern);
470}
471
472
473bool Assembler::IsPop(Instr instr) {
474 return ((instr & ~kRdMask) == kPopRegPattern);
475}
476
477
478bool Assembler::IsStrRegFpOffset(Instr instr) {
479 return ((instr & kLdrStrInstrTypeMask) == kStrRegFpOffsetPattern);
480}
481
482
483bool Assembler::IsLdrRegFpOffset(Instr instr) {
484 return ((instr & kLdrStrInstrTypeMask) == kLdrRegFpOffsetPattern);
485}
486
487
488bool Assembler::IsStrRegFpNegOffset(Instr instr) {
489 return ((instr & kLdrStrInstrTypeMask) == kStrRegFpNegOffsetPattern);
490}
491
492
493bool Assembler::IsLdrRegFpNegOffset(Instr instr) {
494 return ((instr & kLdrStrInstrTypeMask) == kLdrRegFpNegOffsetPattern);
495}
496
497
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -0800498bool Assembler::IsLdrPcImmediateOffset(Instr instr) {
499 // Check the instruction is indeed a
500 // ldr<cond> <Rd>, [pc +/- offset_12].
Steve Block1e0659c2011-05-24 12:43:12 +0100501 return (instr & (kLdrPCMask & ~kCondMask)) == 0x051f0000;
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -0800502}
503
504
Steve Block1e0659c2011-05-24 12:43:12 +0100505bool Assembler::IsTstImmediate(Instr instr) {
506 return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask)) ==
507 (I | TST | S);
508}
509
510
511bool Assembler::IsCmpRegister(Instr instr) {
512 return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask | B4)) ==
513 (CMP | S);
514}
515
516
517bool Assembler::IsCmpImmediate(Instr instr) {
518 return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask)) ==
519 (I | CMP | S);
520}
521
522
523Register Assembler::GetCmpImmediateRegister(Instr instr) {
524 ASSERT(IsCmpImmediate(instr));
525 return GetRn(instr);
526}
527
528
529int Assembler::GetCmpImmediateRawImmediate(Instr instr) {
530 ASSERT(IsCmpImmediate(instr));
531 return instr & kOff12Mask;
532}
533
Steve Blocka7e24c12009-10-30 11:49:00 +0000534// Labels refer to positions in the (to be) generated code.
535// There are bound, linked, and unused labels.
536//
537// Bound labels refer to known positions in the already
538// generated code. pos() is the position the label refers to.
539//
540// Linked labels refer to unknown positions in the code
541// to be generated; pos() is the position of the last
542// instruction using the label.
543
544
545// The link chain is terminated by a negative code position (must be aligned)
546const int kEndOfChain = -4;
547
548
549int Assembler::target_at(int pos) {
550 Instr instr = instr_at(pos);
Steve Block1e0659c2011-05-24 12:43:12 +0100551 if ((instr & ~kImm24Mask) == 0) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000552 // Emitted label constant, not part of a branch.
553 return instr - (Code::kHeaderSize - kHeapObjectTag);
554 }
555 ASSERT((instr & 7*B25) == 5*B25); // b, bl, or blx imm24
Steve Block1e0659c2011-05-24 12:43:12 +0100556 int imm26 = ((instr & kImm24Mask) << 8) >> 6;
557 if ((Instruction::ConditionField(instr) == kSpecialCondition) &&
558 ((instr & B24) != 0)) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000559 // blx uses bit 24 to encode bit 2 of imm26
560 imm26 += 2;
Steve Block6ded16b2010-05-10 14:33:55 +0100561 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000562 return pos + kPcLoadDelta + imm26;
563}
564
565
566void Assembler::target_at_put(int pos, int target_pos) {
567 Instr instr = instr_at(pos);
Steve Block1e0659c2011-05-24 12:43:12 +0100568 if ((instr & ~kImm24Mask) == 0) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000569 ASSERT(target_pos == kEndOfChain || target_pos >= 0);
570 // Emitted label constant, not part of a branch.
571 // Make label relative to Code* of generated Code object.
572 instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag));
573 return;
574 }
575 int imm26 = target_pos - (pos + kPcLoadDelta);
576 ASSERT((instr & 7*B25) == 5*B25); // b, bl, or blx imm24
Steve Block1e0659c2011-05-24 12:43:12 +0100577 if (Instruction::ConditionField(instr) == kSpecialCondition) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000578 // blx uses bit 24 to encode bit 2 of imm26
579 ASSERT((imm26 & 1) == 0);
Steve Block1e0659c2011-05-24 12:43:12 +0100580 instr = (instr & ~(B24 | kImm24Mask)) | ((imm26 & 2) >> 1)*B24;
Steve Blocka7e24c12009-10-30 11:49:00 +0000581 } else {
582 ASSERT((imm26 & 3) == 0);
Steve Block1e0659c2011-05-24 12:43:12 +0100583 instr &= ~kImm24Mask;
Steve Blocka7e24c12009-10-30 11:49:00 +0000584 }
585 int imm24 = imm26 >> 2;
586 ASSERT(is_int24(imm24));
Steve Block1e0659c2011-05-24 12:43:12 +0100587 instr_at_put(pos, instr | (imm24 & kImm24Mask));
Steve Blocka7e24c12009-10-30 11:49:00 +0000588}
589
590
591void Assembler::print(Label* L) {
592 if (L->is_unused()) {
593 PrintF("unused label\n");
594 } else if (L->is_bound()) {
595 PrintF("bound label to %d\n", L->pos());
596 } else if (L->is_linked()) {
597 Label l = *L;
598 PrintF("unbound label");
599 while (l.is_linked()) {
600 PrintF("@ %d ", l.pos());
601 Instr instr = instr_at(l.pos());
Steve Block1e0659c2011-05-24 12:43:12 +0100602 if ((instr & ~kImm24Mask) == 0) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000603 PrintF("value\n");
604 } else {
605 ASSERT((instr & 7*B25) == 5*B25); // b, bl, or blx
Steve Block1e0659c2011-05-24 12:43:12 +0100606 Condition cond = Instruction::ConditionField(instr);
Steve Blocka7e24c12009-10-30 11:49:00 +0000607 const char* b;
608 const char* c;
Steve Block1e0659c2011-05-24 12:43:12 +0100609 if (cond == kSpecialCondition) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000610 b = "blx";
611 c = "";
612 } else {
613 if ((instr & B24) != 0)
614 b = "bl";
615 else
616 b = "b";
617
618 switch (cond) {
619 case eq: c = "eq"; break;
620 case ne: c = "ne"; break;
621 case hs: c = "hs"; break;
622 case lo: c = "lo"; break;
623 case mi: c = "mi"; break;
624 case pl: c = "pl"; break;
625 case vs: c = "vs"; break;
626 case vc: c = "vc"; break;
627 case hi: c = "hi"; break;
628 case ls: c = "ls"; break;
629 case ge: c = "ge"; break;
630 case lt: c = "lt"; break;
631 case gt: c = "gt"; break;
632 case le: c = "le"; break;
633 case al: c = ""; break;
634 default:
635 c = "";
636 UNREACHABLE();
637 }
638 }
639 PrintF("%s%s\n", b, c);
640 }
641 next(&l);
642 }
643 } else {
644 PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
645 }
646}
647
648
649void Assembler::bind_to(Label* L, int pos) {
650 ASSERT(0 <= pos && pos <= pc_offset()); // must have a valid binding position
651 while (L->is_linked()) {
652 int fixup_pos = L->pos();
653 next(L); // call next before overwriting link with target at fixup_pos
654 target_at_put(fixup_pos, pos);
655 }
656 L->bind_to(pos);
657
658 // Keep track of the last bound label so we don't eliminate any instructions
659 // before a bound label.
660 if (pos > last_bound_pos_)
661 last_bound_pos_ = pos;
662}
663
664
665void Assembler::link_to(Label* L, Label* appendix) {
666 if (appendix->is_linked()) {
667 if (L->is_linked()) {
Andrei Popescu31002712010-02-23 13:46:05 +0000668 // Append appendix to L's list.
Steve Blocka7e24c12009-10-30 11:49:00 +0000669 int fixup_pos;
670 int link = L->pos();
671 do {
672 fixup_pos = link;
673 link = target_at(fixup_pos);
674 } while (link > 0);
675 ASSERT(link == kEndOfChain);
676 target_at_put(fixup_pos, appendix->pos());
677 } else {
Andrei Popescu31002712010-02-23 13:46:05 +0000678 // L is empty, simply use appendix.
Steve Blocka7e24c12009-10-30 11:49:00 +0000679 *L = *appendix;
680 }
681 }
682 appendix->Unuse(); // appendix should not be used anymore
683}
684
685
686void Assembler::bind(Label* L) {
687 ASSERT(!L->is_bound()); // label can only be bound once
688 bind_to(L, pc_offset());
689}
690
691
692void Assembler::next(Label* L) {
693 ASSERT(L->is_linked());
694 int link = target_at(L->pos());
695 if (link > 0) {
696 L->link_to(link);
697 } else {
698 ASSERT(link == kEndOfChain);
699 L->Unuse();
700 }
701}
702
703
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100704static Instr EncodeMovwImmediate(uint32_t immediate) {
705 ASSERT(immediate < 0x10000);
706 return ((immediate & 0xf000) << 4) | (immediate & 0xfff);
707}
708
709
Andrei Popescu31002712010-02-23 13:46:05 +0000710// Low-level code emission routines depending on the addressing mode.
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100711// If this returns true then you have to use the rotate_imm and immed_8
712// that it returns, because it may have already changed the instruction
713// to match them!
Steve Blocka7e24c12009-10-30 11:49:00 +0000714static bool fits_shifter(uint32_t imm32,
715 uint32_t* rotate_imm,
716 uint32_t* immed_8,
717 Instr* instr) {
Andrei Popescu31002712010-02-23 13:46:05 +0000718 // imm32 must be unsigned.
Steve Blocka7e24c12009-10-30 11:49:00 +0000719 for (int rot = 0; rot < 16; rot++) {
720 uint32_t imm8 = (imm32 << 2*rot) | (imm32 >> (32 - 2*rot));
721 if ((imm8 <= 0xff)) {
722 *rotate_imm = rot;
723 *immed_8 = imm8;
724 return true;
725 }
726 }
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100727 // If the opcode is one with a complementary version and the complementary
728 // immediate fits, change the opcode.
729 if (instr != NULL) {
730 if ((*instr & kMovMvnMask) == kMovMvnPattern) {
731 if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) {
732 *instr ^= kMovMvnFlip;
733 return true;
734 } else if ((*instr & kMovLeaveCCMask) == kMovLeaveCCPattern) {
Ben Murdoch8b112d22011-06-08 16:22:53 +0100735 if (CpuFeatures::IsSupported(ARMv7)) {
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100736 if (imm32 < 0x10000) {
737 *instr ^= kMovwLeaveCCFlip;
738 *instr |= EncodeMovwImmediate(imm32);
739 *rotate_imm = *immed_8 = 0; // Not used for movw.
740 return true;
741 }
742 }
743 }
744 } else if ((*instr & kCmpCmnMask) == kCmpCmnPattern) {
745 if (fits_shifter(-imm32, rotate_imm, immed_8, NULL)) {
746 *instr ^= kCmpCmnFlip;
747 return true;
748 }
749 } else {
750 Instr alu_insn = (*instr & kALUMask);
Steve Block1e0659c2011-05-24 12:43:12 +0100751 if (alu_insn == ADD ||
752 alu_insn == SUB) {
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100753 if (fits_shifter(-imm32, rotate_imm, immed_8, NULL)) {
754 *instr ^= kAddSubFlip;
755 return true;
756 }
Steve Block1e0659c2011-05-24 12:43:12 +0100757 } else if (alu_insn == AND ||
758 alu_insn == BIC) {
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100759 if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) {
760 *instr ^= kAndBicFlip;
761 return true;
762 }
763 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000764 }
765 }
766 return false;
767}
768
769
770// We have to use the temporary register for things that can be relocated even
771// if they can be encoded in the ARM's 12 bits of immediate-offset instruction
772// space. There is no guarantee that the relocated location can be similarly
773// encoded.
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -0800774bool Operand::must_use_constant_pool() const {
775 if (rmode_ == RelocInfo::EXTERNAL_REFERENCE) {
Steve Blockd0582a62009-12-15 09:54:21 +0000776#ifdef DEBUG
777 if (!Serializer::enabled()) {
778 Serializer::TooLateToEnableNow();
779 }
Andrei Popescu402d9372010-02-26 13:31:12 +0000780#endif // def DEBUG
Steve Blocka7e24c12009-10-30 11:49:00 +0000781 return Serializer::enabled();
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -0800782 } else if (rmode_ == RelocInfo::NONE) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000783 return false;
784 }
785 return true;
786}
787
788
Steve Block44f0eee2011-05-26 01:26:41 +0100789bool Operand::is_single_instruction(Instr instr) const {
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100790 if (rm_.is_valid()) return true;
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100791 uint32_t dummy1, dummy2;
Steve Block44f0eee2011-05-26 01:26:41 +0100792 if (must_use_constant_pool() ||
793 !fits_shifter(imm32_, &dummy1, &dummy2, &instr)) {
794 // The immediate operand cannot be encoded as a shifter operand, or use of
795 // constant pool is required. For a mov instruction not setting the
796 // condition code additional instruction conventions can be used.
797 if ((instr & ~kCondMask) == 13*B21) { // mov, S not set
798 if (must_use_constant_pool() ||
Ben Murdoch8b112d22011-06-08 16:22:53 +0100799 !CpuFeatures::IsSupported(ARMv7)) {
Steve Block44f0eee2011-05-26 01:26:41 +0100800 // mov instruction will be an ldr from constant pool (one instruction).
801 return true;
802 } else {
803 // mov instruction will be a mov or movw followed by movt (two
804 // instructions).
805 return false;
806 }
807 } else {
808 // If this is not a mov or mvn instruction there will always an additional
809 // instructions - either mov or ldr. The mov might actually be two
810 // instructions mov or movw followed by movt so including the actual
811 // instruction two or three instructions will be generated.
812 return false;
813 }
814 } else {
815 // No use of constant pool and the immediate operand can be encoded as a
816 // shifter operand.
817 return true;
818 }
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100819}
820
821
Steve Blocka7e24c12009-10-30 11:49:00 +0000822void Assembler::addrmod1(Instr instr,
823 Register rn,
824 Register rd,
825 const Operand& x) {
826 CheckBuffer();
Steve Block1e0659c2011-05-24 12:43:12 +0100827 ASSERT((instr & ~(kCondMask | kOpCodeMask | S)) == 0);
Steve Blocka7e24c12009-10-30 11:49:00 +0000828 if (!x.rm_.is_valid()) {
Andrei Popescu31002712010-02-23 13:46:05 +0000829 // Immediate.
Steve Blocka7e24c12009-10-30 11:49:00 +0000830 uint32_t rotate_imm;
831 uint32_t immed_8;
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -0800832 if (x.must_use_constant_pool() ||
Steve Blocka7e24c12009-10-30 11:49:00 +0000833 !fits_shifter(x.imm32_, &rotate_imm, &immed_8, &instr)) {
834 // The immediate operand cannot be encoded as a shifter operand, so load
835 // it first to register ip and change the original instruction to use ip.
836 // However, if the original instruction is a 'mov rd, x' (not setting the
Andrei Popescu31002712010-02-23 13:46:05 +0000837 // condition code), then replace it with a 'ldr rd, [pc]'.
Steve Blocka7e24c12009-10-30 11:49:00 +0000838 CHECK(!rn.is(ip)); // rn should never be ip, or will be trashed
Steve Block1e0659c2011-05-24 12:43:12 +0100839 Condition cond = Instruction::ConditionField(instr);
840 if ((instr & ~kCondMask) == 13*B21) { // mov, S not set
Steve Block44f0eee2011-05-26 01:26:41 +0100841 if (x.must_use_constant_pool() ||
Ben Murdoch8b112d22011-06-08 16:22:53 +0100842 !CpuFeatures::IsSupported(ARMv7)) {
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100843 RecordRelocInfo(x.rmode_, x.imm32_);
844 ldr(rd, MemOperand(pc, 0), cond);
845 } else {
846 // Will probably use movw, will certainly not use constant pool.
847 mov(rd, Operand(x.imm32_ & 0xffff), LeaveCC, cond);
848 movt(rd, static_cast<uint32_t>(x.imm32_) >> 16, cond);
849 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000850 } else {
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100851 // If this is not a mov or mvn instruction we may still be able to avoid
852 // a constant pool entry by using mvn or movw.
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -0800853 if (!x.must_use_constant_pool() &&
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100854 (instr & kMovMvnMask) != kMovMvnPattern) {
855 mov(ip, x, LeaveCC, cond);
856 } else {
857 RecordRelocInfo(x.rmode_, x.imm32_);
858 ldr(ip, MemOperand(pc, 0), cond);
859 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000860 addrmod1(instr, rn, rd, Operand(ip));
861 }
862 return;
863 }
864 instr |= I | rotate_imm*B8 | immed_8;
865 } else if (!x.rs_.is_valid()) {
Andrei Popescu31002712010-02-23 13:46:05 +0000866 // Immediate shift.
Steve Blocka7e24c12009-10-30 11:49:00 +0000867 instr |= x.shift_imm_*B7 | x.shift_op_ | x.rm_.code();
868 } else {
Andrei Popescu31002712010-02-23 13:46:05 +0000869 // Register shift.
Steve Blocka7e24c12009-10-30 11:49:00 +0000870 ASSERT(!rn.is(pc) && !rd.is(pc) && !x.rm_.is(pc) && !x.rs_.is(pc));
871 instr |= x.rs_.code()*B8 | x.shift_op_ | B4 | x.rm_.code();
872 }
873 emit(instr | rn.code()*B16 | rd.code()*B12);
Kristian Monsen50ef84f2010-07-29 15:18:00 +0100874 if (rn.is(pc) || x.rm_.is(pc)) {
Andrei Popescu31002712010-02-23 13:46:05 +0000875 // Block constant pool emission for one instruction after reading pc.
Steve Blocka7e24c12009-10-30 11:49:00 +0000876 BlockConstPoolBefore(pc_offset() + kInstrSize);
Kristian Monsen50ef84f2010-07-29 15:18:00 +0100877 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000878}
879
880
881void Assembler::addrmod2(Instr instr, Register rd, const MemOperand& x) {
Steve Block1e0659c2011-05-24 12:43:12 +0100882 ASSERT((instr & ~(kCondMask | B | L)) == B26);
Steve Blocka7e24c12009-10-30 11:49:00 +0000883 int am = x.am_;
884 if (!x.rm_.is_valid()) {
Andrei Popescu31002712010-02-23 13:46:05 +0000885 // Immediate offset.
Steve Blocka7e24c12009-10-30 11:49:00 +0000886 int offset_12 = x.offset_;
887 if (offset_12 < 0) {
888 offset_12 = -offset_12;
889 am ^= U;
890 }
891 if (!is_uint12(offset_12)) {
Andrei Popescu31002712010-02-23 13:46:05 +0000892 // Immediate offset cannot be encoded, load it first to register ip
893 // rn (and rd in a load) should never be ip, or will be trashed.
Steve Blocka7e24c12009-10-30 11:49:00 +0000894 ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
Steve Block1e0659c2011-05-24 12:43:12 +0100895 mov(ip, Operand(x.offset_), LeaveCC, Instruction::ConditionField(instr));
Steve Blocka7e24c12009-10-30 11:49:00 +0000896 addrmod2(instr, rd, MemOperand(x.rn_, ip, x.am_));
897 return;
898 }
899 ASSERT(offset_12 >= 0); // no masking needed
900 instr |= offset_12;
901 } else {
Andrei Popescu31002712010-02-23 13:46:05 +0000902 // Register offset (shift_imm_ and shift_op_ are 0) or scaled
Steve Blocka7e24c12009-10-30 11:49:00 +0000903 // register offset the constructors make sure than both shift_imm_
Andrei Popescu31002712010-02-23 13:46:05 +0000904 // and shift_op_ are initialized.
Steve Blocka7e24c12009-10-30 11:49:00 +0000905 ASSERT(!x.rm_.is(pc));
906 instr |= B25 | x.shift_imm_*B7 | x.shift_op_ | x.rm_.code();
907 }
908 ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback
909 emit(instr | am | x.rn_.code()*B16 | rd.code()*B12);
910}
911
912
913void Assembler::addrmod3(Instr instr, Register rd, const MemOperand& x) {
Steve Block1e0659c2011-05-24 12:43:12 +0100914 ASSERT((instr & ~(kCondMask | L | S6 | H)) == (B4 | B7));
Steve Blocka7e24c12009-10-30 11:49:00 +0000915 ASSERT(x.rn_.is_valid());
916 int am = x.am_;
917 if (!x.rm_.is_valid()) {
Andrei Popescu31002712010-02-23 13:46:05 +0000918 // Immediate offset.
Steve Blocka7e24c12009-10-30 11:49:00 +0000919 int offset_8 = x.offset_;
920 if (offset_8 < 0) {
921 offset_8 = -offset_8;
922 am ^= U;
923 }
924 if (!is_uint8(offset_8)) {
Andrei Popescu31002712010-02-23 13:46:05 +0000925 // Immediate offset cannot be encoded, load it first to register ip
926 // rn (and rd in a load) should never be ip, or will be trashed.
Steve Blocka7e24c12009-10-30 11:49:00 +0000927 ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
Steve Block1e0659c2011-05-24 12:43:12 +0100928 mov(ip, Operand(x.offset_), LeaveCC, Instruction::ConditionField(instr));
Steve Blocka7e24c12009-10-30 11:49:00 +0000929 addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_));
930 return;
931 }
932 ASSERT(offset_8 >= 0); // no masking needed
933 instr |= B | (offset_8 >> 4)*B8 | (offset_8 & 0xf);
934 } else if (x.shift_imm_ != 0) {
Andrei Popescu31002712010-02-23 13:46:05 +0000935 // Scaled register offset not supported, load index first
936 // rn (and rd in a load) should never be ip, or will be trashed.
Steve Blocka7e24c12009-10-30 11:49:00 +0000937 ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
938 mov(ip, Operand(x.rm_, x.shift_op_, x.shift_imm_), LeaveCC,
Steve Block1e0659c2011-05-24 12:43:12 +0100939 Instruction::ConditionField(instr));
Steve Blocka7e24c12009-10-30 11:49:00 +0000940 addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_));
941 return;
942 } else {
Andrei Popescu31002712010-02-23 13:46:05 +0000943 // Register offset.
Steve Blocka7e24c12009-10-30 11:49:00 +0000944 ASSERT((am & (P|W)) == P || !x.rm_.is(pc)); // no pc index with writeback
945 instr |= x.rm_.code();
946 }
947 ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback
948 emit(instr | am | x.rn_.code()*B16 | rd.code()*B12);
949}
950
951
952void Assembler::addrmod4(Instr instr, Register rn, RegList rl) {
Steve Block1e0659c2011-05-24 12:43:12 +0100953 ASSERT((instr & ~(kCondMask | P | U | W | L)) == B27);
Steve Blocka7e24c12009-10-30 11:49:00 +0000954 ASSERT(rl != 0);
955 ASSERT(!rn.is(pc));
956 emit(instr | rn.code()*B16 | rl);
957}
958
959
960void Assembler::addrmod5(Instr instr, CRegister crd, const MemOperand& x) {
Andrei Popescu31002712010-02-23 13:46:05 +0000961 // Unindexed addressing is not encoded by this function.
Steve Blocka7e24c12009-10-30 11:49:00 +0000962 ASSERT_EQ((B27 | B26),
Steve Block1e0659c2011-05-24 12:43:12 +0100963 (instr & ~(kCondMask | kCoprocessorMask | P | U | N | W | L)));
Steve Blocka7e24c12009-10-30 11:49:00 +0000964 ASSERT(x.rn_.is_valid() && !x.rm_.is_valid());
965 int am = x.am_;
966 int offset_8 = x.offset_;
967 ASSERT((offset_8 & 3) == 0); // offset must be an aligned word offset
968 offset_8 >>= 2;
969 if (offset_8 < 0) {
970 offset_8 = -offset_8;
971 am ^= U;
972 }
973 ASSERT(is_uint8(offset_8)); // unsigned word offset must fit in a byte
974 ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback
975
Andrei Popescu31002712010-02-23 13:46:05 +0000976 // Post-indexed addressing requires W == 1; different than in addrmod2/3.
Steve Blocka7e24c12009-10-30 11:49:00 +0000977 if ((am & P) == 0)
978 am |= W;
979
980 ASSERT(offset_8 >= 0); // no masking needed
981 emit(instr | am | x.rn_.code()*B16 | crd.code()*B12 | offset_8);
982}
983
984
985int Assembler::branch_offset(Label* L, bool jump_elimination_allowed) {
986 int target_pos;
987 if (L->is_bound()) {
988 target_pos = L->pos();
989 } else {
990 if (L->is_linked()) {
991 target_pos = L->pos(); // L's link
992 } else {
993 target_pos = kEndOfChain;
994 }
995 L->link_to(pc_offset());
996 }
997
998 // Block the emission of the constant pool, since the branch instruction must
Andrei Popescu31002712010-02-23 13:46:05 +0000999 // be emitted at the pc offset recorded by the label.
Steve Blocka7e24c12009-10-30 11:49:00 +00001000 BlockConstPoolBefore(pc_offset() + kInstrSize);
1001 return target_pos - (pc_offset() + kPcLoadDelta);
1002}
1003
1004
1005void Assembler::label_at_put(Label* L, int at_offset) {
1006 int target_pos;
1007 if (L->is_bound()) {
1008 target_pos = L->pos();
1009 } else {
1010 if (L->is_linked()) {
1011 target_pos = L->pos(); // L's link
1012 } else {
1013 target_pos = kEndOfChain;
1014 }
1015 L->link_to(at_offset);
1016 instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag));
1017 }
1018}
1019
1020
Andrei Popescu31002712010-02-23 13:46:05 +00001021// Branch instructions.
Steve Blocka7e24c12009-10-30 11:49:00 +00001022void Assembler::b(int branch_offset, Condition cond) {
1023 ASSERT((branch_offset & 3) == 0);
1024 int imm24 = branch_offset >> 2;
1025 ASSERT(is_int24(imm24));
Steve Block1e0659c2011-05-24 12:43:12 +01001026 emit(cond | B27 | B25 | (imm24 & kImm24Mask));
Steve Blocka7e24c12009-10-30 11:49:00 +00001027
Steve Block6ded16b2010-05-10 14:33:55 +01001028 if (cond == al) {
Andrei Popescu31002712010-02-23 13:46:05 +00001029 // Dead code is a good location to emit the constant pool.
Steve Blocka7e24c12009-10-30 11:49:00 +00001030 CheckConstPool(false, false);
Steve Block6ded16b2010-05-10 14:33:55 +01001031 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001032}
1033
1034
1035void Assembler::bl(int branch_offset, Condition cond) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001036 positions_recorder()->WriteRecordedPositions();
Steve Blocka7e24c12009-10-30 11:49:00 +00001037 ASSERT((branch_offset & 3) == 0);
1038 int imm24 = branch_offset >> 2;
1039 ASSERT(is_int24(imm24));
Steve Block1e0659c2011-05-24 12:43:12 +01001040 emit(cond | B27 | B25 | B24 | (imm24 & kImm24Mask));
Steve Blocka7e24c12009-10-30 11:49:00 +00001041}
1042
1043
1044void Assembler::blx(int branch_offset) { // v5 and above
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -08001045 positions_recorder()->WriteRecordedPositions();
Steve Blocka7e24c12009-10-30 11:49:00 +00001046 ASSERT((branch_offset & 1) == 0);
1047 int h = ((branch_offset & 2) >> 1)*B24;
1048 int imm24 = branch_offset >> 2;
1049 ASSERT(is_int24(imm24));
Steve Block1e0659c2011-05-24 12:43:12 +01001050 emit(kSpecialCondition | B27 | B25 | h | (imm24 & kImm24Mask));
Steve Blocka7e24c12009-10-30 11:49:00 +00001051}
1052
1053
1054void Assembler::blx(Register target, Condition cond) { // v5 and above
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -08001055 positions_recorder()->WriteRecordedPositions();
Steve Blocka7e24c12009-10-30 11:49:00 +00001056 ASSERT(!target.is(pc));
Steve Block1e0659c2011-05-24 12:43:12 +01001057 emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | BLX | target.code());
Steve Blocka7e24c12009-10-30 11:49:00 +00001058}
1059
1060
1061void Assembler::bx(Register target, Condition cond) { // v5 and above, plus v4t
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -08001062 positions_recorder()->WriteRecordedPositions();
Steve Blocka7e24c12009-10-30 11:49:00 +00001063 ASSERT(!target.is(pc)); // use of pc is actually allowed, but discouraged
Steve Block1e0659c2011-05-24 12:43:12 +01001064 emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | BX | target.code());
Steve Blocka7e24c12009-10-30 11:49:00 +00001065}
1066
1067
Andrei Popescu31002712010-02-23 13:46:05 +00001068// Data-processing instructions.
1069
Steve Blocka7e24c12009-10-30 11:49:00 +00001070void Assembler::and_(Register dst, Register src1, const Operand& src2,
1071 SBit s, Condition cond) {
Steve Block1e0659c2011-05-24 12:43:12 +01001072 addrmod1(cond | AND | s, src1, dst, src2);
Steve Blocka7e24c12009-10-30 11:49:00 +00001073}
1074
1075
1076void Assembler::eor(Register dst, Register src1, const Operand& src2,
1077 SBit s, Condition cond) {
Steve Block1e0659c2011-05-24 12:43:12 +01001078 addrmod1(cond | EOR | s, src1, dst, src2);
Steve Blocka7e24c12009-10-30 11:49:00 +00001079}
1080
1081
1082void Assembler::sub(Register dst, Register src1, const Operand& src2,
1083 SBit s, Condition cond) {
Steve Block1e0659c2011-05-24 12:43:12 +01001084 addrmod1(cond | SUB | s, src1, dst, src2);
Steve Blocka7e24c12009-10-30 11:49:00 +00001085}
1086
1087
1088void Assembler::rsb(Register dst, Register src1, const Operand& src2,
1089 SBit s, Condition cond) {
Steve Block1e0659c2011-05-24 12:43:12 +01001090 addrmod1(cond | RSB | s, src1, dst, src2);
Steve Blocka7e24c12009-10-30 11:49:00 +00001091}
1092
1093
1094void Assembler::add(Register dst, Register src1, const Operand& src2,
1095 SBit s, Condition cond) {
Steve Block1e0659c2011-05-24 12:43:12 +01001096 addrmod1(cond | ADD | s, src1, dst, src2);
Steve Blocka7e24c12009-10-30 11:49:00 +00001097}
1098
1099
1100void Assembler::adc(Register dst, Register src1, const Operand& src2,
1101 SBit s, Condition cond) {
Steve Block1e0659c2011-05-24 12:43:12 +01001102 addrmod1(cond | ADC | s, src1, dst, src2);
Steve Blocka7e24c12009-10-30 11:49:00 +00001103}
1104
1105
1106void Assembler::sbc(Register dst, Register src1, const Operand& src2,
1107 SBit s, Condition cond) {
Steve Block1e0659c2011-05-24 12:43:12 +01001108 addrmod1(cond | SBC | s, src1, dst, src2);
Steve Blocka7e24c12009-10-30 11:49:00 +00001109}
1110
1111
1112void Assembler::rsc(Register dst, Register src1, const Operand& src2,
1113 SBit s, Condition cond) {
Steve Block1e0659c2011-05-24 12:43:12 +01001114 addrmod1(cond | RSC | s, src1, dst, src2);
Steve Blocka7e24c12009-10-30 11:49:00 +00001115}
1116
1117
1118void Assembler::tst(Register src1, const Operand& src2, Condition cond) {
Steve Block1e0659c2011-05-24 12:43:12 +01001119 addrmod1(cond | TST | S, src1, r0, src2);
Steve Blocka7e24c12009-10-30 11:49:00 +00001120}
1121
1122
1123void Assembler::teq(Register src1, const Operand& src2, Condition cond) {
Steve Block1e0659c2011-05-24 12:43:12 +01001124 addrmod1(cond | TEQ | S, src1, r0, src2);
Steve Blocka7e24c12009-10-30 11:49:00 +00001125}
1126
1127
1128void Assembler::cmp(Register src1, const Operand& src2, Condition cond) {
Steve Block1e0659c2011-05-24 12:43:12 +01001129 addrmod1(cond | CMP | S, src1, r0, src2);
1130}
1131
1132
1133void Assembler::cmp_raw_immediate(
1134 Register src, int raw_immediate, Condition cond) {
1135 ASSERT(is_uint12(raw_immediate));
1136 emit(cond | I | CMP | S | src.code() << 16 | raw_immediate);
Steve Blocka7e24c12009-10-30 11:49:00 +00001137}
1138
1139
1140void Assembler::cmn(Register src1, const Operand& src2, Condition cond) {
Steve Block1e0659c2011-05-24 12:43:12 +01001141 addrmod1(cond | CMN | S, src1, r0, src2);
Steve Blocka7e24c12009-10-30 11:49:00 +00001142}
1143
1144
1145void Assembler::orr(Register dst, Register src1, const Operand& src2,
1146 SBit s, Condition cond) {
Steve Block1e0659c2011-05-24 12:43:12 +01001147 addrmod1(cond | ORR | s, src1, dst, src2);
Steve Blocka7e24c12009-10-30 11:49:00 +00001148}
1149
1150
1151void Assembler::mov(Register dst, const Operand& src, SBit s, Condition cond) {
1152 if (dst.is(pc)) {
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -08001153 positions_recorder()->WriteRecordedPositions();
Steve Blocka7e24c12009-10-30 11:49:00 +00001154 }
Steve Block6ded16b2010-05-10 14:33:55 +01001155 // Don't allow nop instructions in the form mov rn, rn to be generated using
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -08001156 // the mov instruction. They must be generated using nop(int/NopMarkerTypes)
1157 // or MarkCode(int/NopMarkerTypes) pseudo instructions.
Steve Block6ded16b2010-05-10 14:33:55 +01001158 ASSERT(!(src.is_reg() && src.rm().is(dst) && s == LeaveCC && cond == al));
Steve Block1e0659c2011-05-24 12:43:12 +01001159 addrmod1(cond | MOV | s, r0, dst, src);
Steve Blocka7e24c12009-10-30 11:49:00 +00001160}
1161
1162
Kristian Monsen9dcf7e22010-06-28 14:14:28 +01001163void Assembler::movw(Register reg, uint32_t immediate, Condition cond) {
1164 ASSERT(immediate < 0x10000);
1165 mov(reg, Operand(immediate), LeaveCC, cond);
1166}
1167
1168
1169void Assembler::movt(Register reg, uint32_t immediate, Condition cond) {
1170 emit(cond | 0x34*B20 | reg.code()*B12 | EncodeMovwImmediate(immediate));
1171}
1172
1173
Steve Blocka7e24c12009-10-30 11:49:00 +00001174void Assembler::bic(Register dst, Register src1, const Operand& src2,
1175 SBit s, Condition cond) {
Steve Block1e0659c2011-05-24 12:43:12 +01001176 addrmod1(cond | BIC | s, src1, dst, src2);
Steve Blocka7e24c12009-10-30 11:49:00 +00001177}
1178
1179
1180void Assembler::mvn(Register dst, const Operand& src, SBit s, Condition cond) {
Steve Block1e0659c2011-05-24 12:43:12 +01001181 addrmod1(cond | MVN | s, r0, dst, src);
Steve Blocka7e24c12009-10-30 11:49:00 +00001182}
1183
1184
Andrei Popescu31002712010-02-23 13:46:05 +00001185// Multiply instructions.
Steve Blocka7e24c12009-10-30 11:49:00 +00001186void Assembler::mla(Register dst, Register src1, Register src2, Register srcA,
1187 SBit s, Condition cond) {
1188 ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc));
1189 emit(cond | A | s | dst.code()*B16 | srcA.code()*B12 |
1190 src2.code()*B8 | B7 | B4 | src1.code());
1191}
1192
1193
1194void Assembler::mul(Register dst, Register src1, Register src2,
1195 SBit s, Condition cond) {
1196 ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc));
1197 // dst goes in bits 16-19 for this instruction!
1198 emit(cond | s | dst.code()*B16 | src2.code()*B8 | B7 | B4 | src1.code());
1199}
1200
1201
1202void Assembler::smlal(Register dstL,
1203 Register dstH,
1204 Register src1,
1205 Register src2,
1206 SBit s,
1207 Condition cond) {
1208 ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
1209 ASSERT(!dstL.is(dstH));
1210 emit(cond | B23 | B22 | A | s | dstH.code()*B16 | dstL.code()*B12 |
1211 src2.code()*B8 | B7 | B4 | src1.code());
1212}
1213
1214
1215void Assembler::smull(Register dstL,
1216 Register dstH,
1217 Register src1,
1218 Register src2,
1219 SBit s,
1220 Condition cond) {
1221 ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
1222 ASSERT(!dstL.is(dstH));
1223 emit(cond | B23 | B22 | s | dstH.code()*B16 | dstL.code()*B12 |
1224 src2.code()*B8 | B7 | B4 | src1.code());
1225}
1226
1227
1228void Assembler::umlal(Register dstL,
1229 Register dstH,
1230 Register src1,
1231 Register src2,
1232 SBit s,
1233 Condition cond) {
1234 ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
1235 ASSERT(!dstL.is(dstH));
1236 emit(cond | B23 | A | s | dstH.code()*B16 | dstL.code()*B12 |
1237 src2.code()*B8 | B7 | B4 | src1.code());
1238}
1239
1240
1241void Assembler::umull(Register dstL,
1242 Register dstH,
1243 Register src1,
1244 Register src2,
1245 SBit s,
1246 Condition cond) {
1247 ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
1248 ASSERT(!dstL.is(dstH));
1249 emit(cond | B23 | s | dstH.code()*B16 | dstL.code()*B12 |
1250 src2.code()*B8 | B7 | B4 | src1.code());
1251}
1252
1253
Andrei Popescu31002712010-02-23 13:46:05 +00001254// Miscellaneous arithmetic instructions.
Steve Blocka7e24c12009-10-30 11:49:00 +00001255void Assembler::clz(Register dst, Register src, Condition cond) {
1256 // v5 and above.
1257 ASSERT(!dst.is(pc) && !src.is(pc));
1258 emit(cond | B24 | B22 | B21 | 15*B16 | dst.code()*B12 |
Steve Block1e0659c2011-05-24 12:43:12 +01001259 15*B8 | CLZ | src.code());
Steve Blocka7e24c12009-10-30 11:49:00 +00001260}
1261
1262
Kristian Monsen50ef84f2010-07-29 15:18:00 +01001263// Saturating instructions.
1264
1265// Unsigned saturate.
1266void Assembler::usat(Register dst,
1267 int satpos,
1268 const Operand& src,
1269 Condition cond) {
1270 // v6 and above.
Ben Murdoch8b112d22011-06-08 16:22:53 +01001271 ASSERT(CpuFeatures::IsSupported(ARMv7));
Kristian Monsen50ef84f2010-07-29 15:18:00 +01001272 ASSERT(!dst.is(pc) && !src.rm_.is(pc));
1273 ASSERT((satpos >= 0) && (satpos <= 31));
1274 ASSERT((src.shift_op_ == ASR) || (src.shift_op_ == LSL));
1275 ASSERT(src.rs_.is(no_reg));
1276
1277 int sh = 0;
1278 if (src.shift_op_ == ASR) {
1279 sh = 1;
1280 }
1281
1282 emit(cond | 0x6*B24 | 0xe*B20 | satpos*B16 | dst.code()*B12 |
1283 src.shift_imm_*B7 | sh*B6 | 0x1*B4 | src.rm_.code());
1284}
1285
1286
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001287// Bitfield manipulation instructions.
1288
1289// Unsigned bit field extract.
1290// Extracts #width adjacent bits from position #lsb in a register, and
1291// writes them to the low bits of a destination register.
1292// ubfx dst, src, #lsb, #width
1293void Assembler::ubfx(Register dst,
1294 Register src,
1295 int lsb,
1296 int width,
1297 Condition cond) {
1298 // v7 and above.
Ben Murdoch8b112d22011-06-08 16:22:53 +01001299 ASSERT(CpuFeatures::IsSupported(ARMv7));
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001300 ASSERT(!dst.is(pc) && !src.is(pc));
1301 ASSERT((lsb >= 0) && (lsb <= 31));
1302 ASSERT((width >= 1) && (width <= (32 - lsb)));
1303 emit(cond | 0xf*B23 | B22 | B21 | (width - 1)*B16 | dst.code()*B12 |
1304 lsb*B7 | B6 | B4 | src.code());
1305}
1306
1307
1308// Signed bit field extract.
1309// Extracts #width adjacent bits from position #lsb in a register, and
1310// writes them to the low bits of a destination register. The extracted
1311// value is sign extended to fill the destination register.
1312// sbfx dst, src, #lsb, #width
1313void Assembler::sbfx(Register dst,
1314 Register src,
1315 int lsb,
1316 int width,
1317 Condition cond) {
1318 // v7 and above.
Ben Murdoch8b112d22011-06-08 16:22:53 +01001319 ASSERT(CpuFeatures::IsSupported(ARMv7));
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001320 ASSERT(!dst.is(pc) && !src.is(pc));
1321 ASSERT((lsb >= 0) && (lsb <= 31));
1322 ASSERT((width >= 1) && (width <= (32 - lsb)));
1323 emit(cond | 0xf*B23 | B21 | (width - 1)*B16 | dst.code()*B12 |
1324 lsb*B7 | B6 | B4 | src.code());
1325}
1326
1327
1328// Bit field clear.
1329// Sets #width adjacent bits at position #lsb in the destination register
1330// to zero, preserving the value of the other bits.
1331// bfc dst, #lsb, #width
1332void Assembler::bfc(Register dst, int lsb, int width, Condition cond) {
1333 // v7 and above.
Ben Murdoch8b112d22011-06-08 16:22:53 +01001334 ASSERT(CpuFeatures::IsSupported(ARMv7));
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001335 ASSERT(!dst.is(pc));
1336 ASSERT((lsb >= 0) && (lsb <= 31));
1337 ASSERT((width >= 1) && (width <= (32 - lsb)));
1338 int msb = lsb + width - 1;
1339 emit(cond | 0x1f*B22 | msb*B16 | dst.code()*B12 | lsb*B7 | B4 | 0xf);
1340}
1341
1342
1343// Bit field insert.
1344// Inserts #width adjacent bits from the low bits of the source register
1345// into position #lsb of the destination register.
1346// bfi dst, src, #lsb, #width
1347void Assembler::bfi(Register dst,
1348 Register src,
1349 int lsb,
1350 int width,
1351 Condition cond) {
1352 // v7 and above.
Ben Murdoch8b112d22011-06-08 16:22:53 +01001353 ASSERT(CpuFeatures::IsSupported(ARMv7));
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001354 ASSERT(!dst.is(pc) && !src.is(pc));
1355 ASSERT((lsb >= 0) && (lsb <= 31));
1356 ASSERT((width >= 1) && (width <= (32 - lsb)));
1357 int msb = lsb + width - 1;
1358 emit(cond | 0x1f*B22 | msb*B16 | dst.code()*B12 | lsb*B7 | B4 |
1359 src.code());
1360}
1361
1362
Andrei Popescu31002712010-02-23 13:46:05 +00001363// Status register access instructions.
Steve Blocka7e24c12009-10-30 11:49:00 +00001364void Assembler::mrs(Register dst, SRegister s, Condition cond) {
1365 ASSERT(!dst.is(pc));
1366 emit(cond | B24 | s | 15*B16 | dst.code()*B12);
1367}
1368
1369
1370void Assembler::msr(SRegisterFieldMask fields, const Operand& src,
1371 Condition cond) {
1372 ASSERT(fields >= B16 && fields < B20); // at least one field set
1373 Instr instr;
1374 if (!src.rm_.is_valid()) {
Andrei Popescu31002712010-02-23 13:46:05 +00001375 // Immediate.
Steve Blocka7e24c12009-10-30 11:49:00 +00001376 uint32_t rotate_imm;
1377 uint32_t immed_8;
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -08001378 if (src.must_use_constant_pool() ||
Steve Blocka7e24c12009-10-30 11:49:00 +00001379 !fits_shifter(src.imm32_, &rotate_imm, &immed_8, NULL)) {
Andrei Popescu31002712010-02-23 13:46:05 +00001380 // Immediate operand cannot be encoded, load it first to register ip.
Steve Blocka7e24c12009-10-30 11:49:00 +00001381 RecordRelocInfo(src.rmode_, src.imm32_);
1382 ldr(ip, MemOperand(pc, 0), cond);
1383 msr(fields, Operand(ip), cond);
1384 return;
1385 }
1386 instr = I | rotate_imm*B8 | immed_8;
1387 } else {
1388 ASSERT(!src.rs_.is_valid() && src.shift_imm_ == 0); // only rm allowed
1389 instr = src.rm_.code();
1390 }
1391 emit(cond | instr | B24 | B21 | fields | 15*B12);
1392}
1393
1394
Andrei Popescu31002712010-02-23 13:46:05 +00001395// Load/Store instructions.
Steve Blocka7e24c12009-10-30 11:49:00 +00001396void Assembler::ldr(Register dst, const MemOperand& src, Condition cond) {
1397 if (dst.is(pc)) {
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -08001398 positions_recorder()->WriteRecordedPositions();
Steve Blocka7e24c12009-10-30 11:49:00 +00001399 }
1400 addrmod2(cond | B26 | L, dst, src);
Steve Blocka7e24c12009-10-30 11:49:00 +00001401}
1402
1403
1404void Assembler::str(Register src, const MemOperand& dst, Condition cond) {
1405 addrmod2(cond | B26, src, dst);
Steve Blocka7e24c12009-10-30 11:49:00 +00001406}
1407
1408
1409void Assembler::ldrb(Register dst, const MemOperand& src, Condition cond) {
1410 addrmod2(cond | B26 | B | L, dst, src);
1411}
1412
1413
1414void Assembler::strb(Register src, const MemOperand& dst, Condition cond) {
1415 addrmod2(cond | B26 | B, src, dst);
1416}
1417
1418
1419void Assembler::ldrh(Register dst, const MemOperand& src, Condition cond) {
1420 addrmod3(cond | L | B7 | H | B4, dst, src);
1421}
1422
1423
1424void Assembler::strh(Register src, const MemOperand& dst, Condition cond) {
1425 addrmod3(cond | B7 | H | B4, src, dst);
1426}
1427
1428
1429void Assembler::ldrsb(Register dst, const MemOperand& src, Condition cond) {
1430 addrmod3(cond | L | B7 | S6 | B4, dst, src);
1431}
1432
1433
1434void Assembler::ldrsh(Register dst, const MemOperand& src, Condition cond) {
1435 addrmod3(cond | L | B7 | S6 | H | B4, dst, src);
1436}
1437
1438
Leon Clarkef7060e22010-06-03 12:02:55 +01001439void Assembler::ldrd(Register dst1, Register dst2,
1440 const MemOperand& src, Condition cond) {
Ben Murdoch8b112d22011-06-08 16:22:53 +01001441 ASSERT(CpuFeatures::IsEnabled(ARMv7));
Kristian Monsen25f61362010-05-21 11:50:48 +01001442 ASSERT(src.rm().is(no_reg));
Leon Clarkef7060e22010-06-03 12:02:55 +01001443 ASSERT(!dst1.is(lr)); // r14.
1444 ASSERT_EQ(0, dst1.code() % 2);
1445 ASSERT_EQ(dst1.code() + 1, dst2.code());
1446 addrmod3(cond | B7 | B6 | B4, dst1, src);
Kristian Monsen25f61362010-05-21 11:50:48 +01001447}
1448
1449
Leon Clarkef7060e22010-06-03 12:02:55 +01001450void Assembler::strd(Register src1, Register src2,
1451 const MemOperand& dst, Condition cond) {
Kristian Monsen25f61362010-05-21 11:50:48 +01001452 ASSERT(dst.rm().is(no_reg));
Leon Clarkef7060e22010-06-03 12:02:55 +01001453 ASSERT(!src1.is(lr)); // r14.
1454 ASSERT_EQ(0, src1.code() % 2);
1455 ASSERT_EQ(src1.code() + 1, src2.code());
Ben Murdoch8b112d22011-06-08 16:22:53 +01001456 ASSERT(CpuFeatures::IsEnabled(ARMv7));
Leon Clarkef7060e22010-06-03 12:02:55 +01001457 addrmod3(cond | B7 | B6 | B5 | B4, src1, dst);
Kristian Monsen25f61362010-05-21 11:50:48 +01001458}
1459
Andrei Popescu31002712010-02-23 13:46:05 +00001460// Load/Store multiple instructions.
Steve Blocka7e24c12009-10-30 11:49:00 +00001461void Assembler::ldm(BlockAddrMode am,
1462 Register base,
1463 RegList dst,
1464 Condition cond) {
Andrei Popescu31002712010-02-23 13:46:05 +00001465 // ABI stack constraint: ldmxx base, {..sp..} base != sp is not restartable.
Steve Blocka7e24c12009-10-30 11:49:00 +00001466 ASSERT(base.is(sp) || (dst & sp.bit()) == 0);
1467
1468 addrmod4(cond | B27 | am | L, base, dst);
1469
Andrei Popescu31002712010-02-23 13:46:05 +00001470 // Emit the constant pool after a function return implemented by ldm ..{..pc}.
Steve Blocka7e24c12009-10-30 11:49:00 +00001471 if (cond == al && (dst & pc.bit()) != 0) {
1472 // There is a slight chance that the ldm instruction was actually a call,
1473 // in which case it would be wrong to return into the constant pool; we
1474 // recognize this case by checking if the emission of the pool was blocked
1475 // at the pc of the ldm instruction by a mov lr, pc instruction; if this is
1476 // the case, we emit a jump over the pool.
1477 CheckConstPool(true, no_const_pool_before_ == pc_offset() - kInstrSize);
1478 }
1479}
1480
1481
1482void Assembler::stm(BlockAddrMode am,
1483 Register base,
1484 RegList src,
1485 Condition cond) {
1486 addrmod4(cond | B27 | am, base, src);
1487}
1488
1489
Andrei Popescu31002712010-02-23 13:46:05 +00001490// Exception-generating instructions and debugging support.
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -08001491// Stops with a non-negative code less than kNumOfWatchedStops support
1492// enabling/disabling and a counter feature. See simulator-arm.h .
1493void Assembler::stop(const char* msg, Condition cond, int32_t code) {
Andrei Popescu402d9372010-02-26 13:31:12 +00001494#ifndef __arm__
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -08001495 ASSERT(code >= kDefaultStopCode);
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -08001496 // The Simulator will handle the stop instruction and get the message address.
1497 // It expects to find the address just after the svc instruction.
1498 BlockConstPoolFor(2);
1499 if (code >= 0) {
Steve Block1e0659c2011-05-24 12:43:12 +01001500 svc(kStopCode + code, cond);
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -08001501 } else {
Steve Block1e0659c2011-05-24 12:43:12 +01001502 svc(kStopCode + kMaxStopCode, cond);
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -08001503 }
1504 emit(reinterpret_cast<Instr>(msg));
Andrei Popescu402d9372010-02-26 13:31:12 +00001505#else // def __arm__
1506#ifdef CAN_USE_ARMV5_INSTRUCTIONS
Steve Block1e0659c2011-05-24 12:43:12 +01001507 if (cond != al) {
1508 Label skip;
1509 b(&skip, NegateCondition(cond));
1510 bkpt(0);
1511 bind(&skip);
1512 } else {
1513 bkpt(0);
1514 }
Andrei Popescu402d9372010-02-26 13:31:12 +00001515#else // ndef CAN_USE_ARMV5_INSTRUCTIONS
Ben Murdochb0fe1622011-05-05 13:52:32 +01001516 svc(0x9f0001, cond);
Andrei Popescu402d9372010-02-26 13:31:12 +00001517#endif // ndef CAN_USE_ARMV5_INSTRUCTIONS
1518#endif // def __arm__
Steve Blocka7e24c12009-10-30 11:49:00 +00001519}
1520
1521
1522void Assembler::bkpt(uint32_t imm16) { // v5 and above
1523 ASSERT(is_uint16(imm16));
Steve Block1e0659c2011-05-24 12:43:12 +01001524 emit(al | B24 | B21 | (imm16 >> 4)*B8 | BKPT | (imm16 & 0xf));
Steve Blocka7e24c12009-10-30 11:49:00 +00001525}
1526
1527
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -08001528void Assembler::svc(uint32_t imm24, Condition cond) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001529 ASSERT(is_uint24(imm24));
1530 emit(cond | 15*B24 | imm24);
1531}
1532
1533
Andrei Popescu31002712010-02-23 13:46:05 +00001534// Coprocessor instructions.
Steve Blocka7e24c12009-10-30 11:49:00 +00001535void Assembler::cdp(Coprocessor coproc,
1536 int opcode_1,
1537 CRegister crd,
1538 CRegister crn,
1539 CRegister crm,
1540 int opcode_2,
1541 Condition cond) {
1542 ASSERT(is_uint4(opcode_1) && is_uint3(opcode_2));
1543 emit(cond | B27 | B26 | B25 | (opcode_1 & 15)*B20 | crn.code()*B16 |
1544 crd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | crm.code());
1545}
1546
1547
1548void Assembler::cdp2(Coprocessor coproc,
1549 int opcode_1,
1550 CRegister crd,
1551 CRegister crn,
1552 CRegister crm,
1553 int opcode_2) { // v5 and above
Steve Block1e0659c2011-05-24 12:43:12 +01001554 cdp(coproc, opcode_1, crd, crn, crm, opcode_2, kSpecialCondition);
Steve Blocka7e24c12009-10-30 11:49:00 +00001555}
1556
1557
1558void Assembler::mcr(Coprocessor coproc,
1559 int opcode_1,
1560 Register rd,
1561 CRegister crn,
1562 CRegister crm,
1563 int opcode_2,
1564 Condition cond) {
1565 ASSERT(is_uint3(opcode_1) && is_uint3(opcode_2));
1566 emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | crn.code()*B16 |
1567 rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code());
1568}
1569
1570
1571void Assembler::mcr2(Coprocessor coproc,
1572 int opcode_1,
1573 Register rd,
1574 CRegister crn,
1575 CRegister crm,
1576 int opcode_2) { // v5 and above
Steve Block1e0659c2011-05-24 12:43:12 +01001577 mcr(coproc, opcode_1, rd, crn, crm, opcode_2, kSpecialCondition);
Steve Blocka7e24c12009-10-30 11:49:00 +00001578}
1579
1580
1581void Assembler::mrc(Coprocessor coproc,
1582 int opcode_1,
1583 Register rd,
1584 CRegister crn,
1585 CRegister crm,
1586 int opcode_2,
1587 Condition cond) {
1588 ASSERT(is_uint3(opcode_1) && is_uint3(opcode_2));
1589 emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | L | crn.code()*B16 |
1590 rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code());
1591}
1592
1593
1594void Assembler::mrc2(Coprocessor coproc,
1595 int opcode_1,
1596 Register rd,
1597 CRegister crn,
1598 CRegister crm,
1599 int opcode_2) { // v5 and above
Steve Block1e0659c2011-05-24 12:43:12 +01001600 mrc(coproc, opcode_1, rd, crn, crm, opcode_2, kSpecialCondition);
Steve Blocka7e24c12009-10-30 11:49:00 +00001601}
1602
1603
1604void Assembler::ldc(Coprocessor coproc,
1605 CRegister crd,
1606 const MemOperand& src,
1607 LFlag l,
1608 Condition cond) {
1609 addrmod5(cond | B27 | B26 | l | L | coproc*B8, crd, src);
1610}
1611
1612
1613void Assembler::ldc(Coprocessor coproc,
1614 CRegister crd,
1615 Register rn,
1616 int option,
1617 LFlag l,
1618 Condition cond) {
Andrei Popescu31002712010-02-23 13:46:05 +00001619 // Unindexed addressing.
Steve Blocka7e24c12009-10-30 11:49:00 +00001620 ASSERT(is_uint8(option));
1621 emit(cond | B27 | B26 | U | l | L | rn.code()*B16 | crd.code()*B12 |
1622 coproc*B8 | (option & 255));
1623}
1624
1625
1626void Assembler::ldc2(Coprocessor coproc,
1627 CRegister crd,
1628 const MemOperand& src,
1629 LFlag l) { // v5 and above
Steve Block1e0659c2011-05-24 12:43:12 +01001630 ldc(coproc, crd, src, l, kSpecialCondition);
Steve Blocka7e24c12009-10-30 11:49:00 +00001631}
1632
1633
1634void Assembler::ldc2(Coprocessor coproc,
1635 CRegister crd,
1636 Register rn,
1637 int option,
1638 LFlag l) { // v5 and above
Steve Block1e0659c2011-05-24 12:43:12 +01001639 ldc(coproc, crd, rn, option, l, kSpecialCondition);
Steve Blocka7e24c12009-10-30 11:49:00 +00001640}
1641
1642
Steve Blockd0582a62009-12-15 09:54:21 +00001643// Support for VFP.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001644
Leon Clarked91b9f72010-01-27 17:25:45 +00001645void Assembler::vldr(const DwVfpRegister dst,
1646 const Register base,
1647 int offset,
1648 const Condition cond) {
1649 // Ddst = MEM(Rbase + offset).
1650 // Instruction details available in ARM DDI 0406A, A8-628.
Ben Murdochb0fe1622011-05-05 13:52:32 +01001651 // cond(31-28) | 1101(27-24)| U001(23-20) | Rbase(19-16) |
Leon Clarked91b9f72010-01-27 17:25:45 +00001652 // Vdst(15-12) | 1011(11-8) | offset
Ben Murdoch8b112d22011-06-08 16:22:53 +01001653 ASSERT(CpuFeatures::IsEnabled(VFP3));
Ben Murdochb0fe1622011-05-05 13:52:32 +01001654 int u = 1;
1655 if (offset < 0) {
1656 offset = -offset;
1657 u = 0;
1658 }
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001659
Iain Merrick75681382010-08-19 15:07:18 +01001660 ASSERT(offset >= 0);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001661 if ((offset % 4) == 0 && (offset / 4) < 256) {
1662 emit(cond | u*B23 | 0xD1*B20 | base.code()*B16 | dst.code()*B12 |
1663 0xB*B8 | ((offset / 4) & 255));
1664 } else {
1665 // Larger offsets must be handled by computing the correct address
1666 // in the ip register.
1667 ASSERT(!base.is(ip));
1668 if (u == 1) {
1669 add(ip, base, Operand(offset));
1670 } else {
1671 sub(ip, base, Operand(offset));
1672 }
1673 emit(cond | 0xD1*B20 | ip.code()*B16 | dst.code()*B12 | 0xB*B8);
1674 }
1675}
1676
1677
1678void Assembler::vldr(const DwVfpRegister dst,
1679 const MemOperand& operand,
1680 const Condition cond) {
1681 ASSERT(!operand.rm().is_valid());
1682 ASSERT(operand.am_ == Offset);
1683 vldr(dst, operand.rn(), operand.offset(), cond);
Leon Clarked91b9f72010-01-27 17:25:45 +00001684}
1685
1686
Steve Block6ded16b2010-05-10 14:33:55 +01001687void Assembler::vldr(const SwVfpRegister dst,
1688 const Register base,
1689 int offset,
1690 const Condition cond) {
1691 // Sdst = MEM(Rbase + offset).
1692 // Instruction details available in ARM DDI 0406A, A8-628.
Ben Murdochb0fe1622011-05-05 13:52:32 +01001693 // cond(31-28) | 1101(27-24)| U001(23-20) | Rbase(19-16) |
Steve Block6ded16b2010-05-10 14:33:55 +01001694 // Vdst(15-12) | 1010(11-8) | offset
Ben Murdoch8b112d22011-06-08 16:22:53 +01001695 ASSERT(CpuFeatures::IsEnabled(VFP3));
Ben Murdochb0fe1622011-05-05 13:52:32 +01001696 int u = 1;
1697 if (offset < 0) {
1698 offset = -offset;
1699 u = 0;
1700 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001701 int sd, d;
1702 dst.split_code(&sd, &d);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001703 ASSERT(offset >= 0);
1704
1705 if ((offset % 4) == 0 && (offset / 4) < 256) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001706 emit(cond | u*B23 | d*B22 | 0xD1*B20 | base.code()*B16 | sd*B12 |
Steve Block6ded16b2010-05-10 14:33:55 +01001707 0xA*B8 | ((offset / 4) & 255));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001708 } else {
1709 // Larger offsets must be handled by computing the correct address
1710 // in the ip register.
1711 ASSERT(!base.is(ip));
1712 if (u == 1) {
1713 add(ip, base, Operand(offset));
1714 } else {
1715 sub(ip, base, Operand(offset));
1716 }
1717 emit(cond | d*B22 | 0xD1*B20 | ip.code()*B16 | sd*B12 | 0xA*B8);
1718 }
1719}
1720
1721
1722void Assembler::vldr(const SwVfpRegister dst,
1723 const MemOperand& operand,
1724 const Condition cond) {
1725 ASSERT(!operand.rm().is_valid());
1726 ASSERT(operand.am_ == Offset);
1727 vldr(dst, operand.rn(), operand.offset(), cond);
Steve Block6ded16b2010-05-10 14:33:55 +01001728}
1729
1730
Leon Clarked91b9f72010-01-27 17:25:45 +00001731void Assembler::vstr(const DwVfpRegister src,
1732 const Register base,
1733 int offset,
1734 const Condition cond) {
1735 // MEM(Rbase + offset) = Dsrc.
1736 // Instruction details available in ARM DDI 0406A, A8-786.
Ben Murdochb0fe1622011-05-05 13:52:32 +01001737 // cond(31-28) | 1101(27-24)| U000(23-20) | | Rbase(19-16) |
Leon Clarked91b9f72010-01-27 17:25:45 +00001738 // Vsrc(15-12) | 1011(11-8) | (offset/4)
Ben Murdoch8b112d22011-06-08 16:22:53 +01001739 ASSERT(CpuFeatures::IsEnabled(VFP3));
Ben Murdochb0fe1622011-05-05 13:52:32 +01001740 int u = 1;
1741 if (offset < 0) {
1742 offset = -offset;
1743 u = 0;
1744 }
Iain Merrick75681382010-08-19 15:07:18 +01001745 ASSERT(offset >= 0);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001746 if ((offset % 4) == 0 && (offset / 4) < 256) {
1747 emit(cond | u*B23 | 0xD0*B20 | base.code()*B16 | src.code()*B12 |
1748 0xB*B8 | ((offset / 4) & 255));
1749 } else {
1750 // Larger offsets must be handled by computing the correct address
1751 // in the ip register.
1752 ASSERT(!base.is(ip));
1753 if (u == 1) {
1754 add(ip, base, Operand(offset));
1755 } else {
1756 sub(ip, base, Operand(offset));
1757 }
1758 emit(cond | 0xD0*B20 | ip.code()*B16 | src.code()*B12 | 0xB*B8);
1759 }
1760}
1761
1762
1763void Assembler::vstr(const DwVfpRegister src,
1764 const MemOperand& operand,
1765 const Condition cond) {
1766 ASSERT(!operand.rm().is_valid());
1767 ASSERT(operand.am_ == Offset);
1768 vstr(src, operand.rn(), operand.offset(), cond);
Leon Clarked91b9f72010-01-27 17:25:45 +00001769}
1770
1771
Iain Merrick75681382010-08-19 15:07:18 +01001772void Assembler::vstr(const SwVfpRegister src,
1773 const Register base,
1774 int offset,
1775 const Condition cond) {
1776 // MEM(Rbase + offset) = SSrc.
1777 // Instruction details available in ARM DDI 0406A, A8-786.
Ben Murdochb0fe1622011-05-05 13:52:32 +01001778 // cond(31-28) | 1101(27-24)| U000(23-20) | Rbase(19-16) |
Iain Merrick75681382010-08-19 15:07:18 +01001779 // Vdst(15-12) | 1010(11-8) | (offset/4)
Ben Murdoch8b112d22011-06-08 16:22:53 +01001780 ASSERT(CpuFeatures::IsEnabled(VFP3));
Ben Murdochb0fe1622011-05-05 13:52:32 +01001781 int u = 1;
1782 if (offset < 0) {
1783 offset = -offset;
1784 u = 0;
1785 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001786 int sd, d;
1787 src.split_code(&sd, &d);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001788 ASSERT(offset >= 0);
1789 if ((offset % 4) == 0 && (offset / 4) < 256) {
1790 emit(cond | u*B23 | d*B22 | 0xD0*B20 | base.code()*B16 | sd*B12 |
1791 0xA*B8 | ((offset / 4) & 255));
1792 } else {
1793 // Larger offsets must be handled by computing the correct address
1794 // in the ip register.
1795 ASSERT(!base.is(ip));
1796 if (u == 1) {
1797 add(ip, base, Operand(offset));
1798 } else {
1799 sub(ip, base, Operand(offset));
1800 }
1801 emit(cond | d*B22 | 0xD0*B20 | ip.code()*B16 | sd*B12 | 0xA*B8);
1802 }
1803}
1804
1805
1806void Assembler::vstr(const SwVfpRegister src,
1807 const MemOperand& operand,
1808 const Condition cond) {
1809 ASSERT(!operand.rm().is_valid());
1810 ASSERT(operand.am_ == Offset);
1811 vldr(src, operand.rn(), operand.offset(), cond);
Iain Merrick75681382010-08-19 15:07:18 +01001812}
1813
1814
Ben Murdoch8b112d22011-06-08 16:22:53 +01001815void Assembler::vldm(BlockAddrMode am,
1816 Register base,
1817 DwVfpRegister first,
1818 DwVfpRegister last,
1819 Condition cond) {
1820 // Instruction details available in ARM DDI 0406A, A8-626.
1821 // cond(31-28) | 110(27-25)| PUDW1(24-20) | Rbase(19-16) |
1822 // first(15-12) | 1010(11-8) | (count * 2)
1823 ASSERT(CpuFeatures::IsEnabled(VFP3));
1824 ASSERT_LE(first.code(), last.code());
1825 ASSERT(am == ia || am == ia_w || am == db_w);
1826 ASSERT(!base.is(pc));
1827
1828 int sd, d;
1829 first.split_code(&sd, &d);
1830 int count = last.code() - first.code() + 1;
1831 emit(cond | B27 | B26 | am | d*B22 | B20 | base.code()*B16 | sd*B12 |
1832 0xB*B8 | count*2);
1833}
1834
1835
1836void Assembler::vstm(BlockAddrMode am,
1837 Register base,
1838 DwVfpRegister first,
1839 DwVfpRegister last,
1840 Condition cond) {
1841 // Instruction details available in ARM DDI 0406A, A8-784.
1842 // cond(31-28) | 110(27-25)| PUDW0(24-20) | Rbase(19-16) |
1843 // first(15-12) | 1011(11-8) | (count * 2)
1844 ASSERT(CpuFeatures::IsEnabled(VFP3));
1845 ASSERT_LE(first.code(), last.code());
1846 ASSERT(am == ia || am == ia_w || am == db_w);
1847 ASSERT(!base.is(pc));
1848
1849 int sd, d;
1850 first.split_code(&sd, &d);
1851 int count = last.code() - first.code() + 1;
1852 emit(cond | B27 | B26 | am | d*B22 | base.code()*B16 | sd*B12 |
1853 0xB*B8 | count*2);
1854}
1855
1856void Assembler::vldm(BlockAddrMode am,
1857 Register base,
1858 SwVfpRegister first,
1859 SwVfpRegister last,
1860 Condition cond) {
1861 // Instruction details available in ARM DDI 0406A, A8-626.
1862 // cond(31-28) | 110(27-25)| PUDW1(24-20) | Rbase(19-16) |
1863 // first(15-12) | 1010(11-8) | (count/2)
1864 ASSERT(CpuFeatures::IsEnabled(VFP3));
1865 ASSERT_LE(first.code(), last.code());
1866 ASSERT(am == ia || am == ia_w || am == db_w);
1867 ASSERT(!base.is(pc));
1868
1869 int sd, d;
1870 first.split_code(&sd, &d);
1871 int count = last.code() - first.code() + 1;
1872 emit(cond | B27 | B26 | am | d*B22 | B20 | base.code()*B16 | sd*B12 |
1873 0xA*B8 | count);
1874}
1875
1876
1877void Assembler::vstm(BlockAddrMode am,
1878 Register base,
1879 SwVfpRegister first,
1880 SwVfpRegister last,
1881 Condition cond) {
1882 // Instruction details available in ARM DDI 0406A, A8-784.
1883 // cond(31-28) | 110(27-25)| PUDW0(24-20) | Rbase(19-16) |
1884 // first(15-12) | 1011(11-8) | (count/2)
1885 ASSERT(CpuFeatures::IsEnabled(VFP3));
1886 ASSERT_LE(first.code(), last.code());
1887 ASSERT(am == ia || am == ia_w || am == db_w);
1888 ASSERT(!base.is(pc));
1889
1890 int sd, d;
1891 first.split_code(&sd, &d);
1892 int count = last.code() - first.code() + 1;
1893 emit(cond | B27 | B26 | am | d*B22 | base.code()*B16 | sd*B12 |
1894 0xA*B8 | count);
1895}
1896
Ben Murdoch3bec4d22010-07-22 14:51:16 +01001897static void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi) {
1898 uint64_t i;
1899 memcpy(&i, &d, 8);
1900
1901 *lo = i & 0xffffffff;
1902 *hi = i >> 32;
1903}
1904
1905// Only works for little endian floating point formats.
1906// We don't support VFP on the mixed endian floating point platform.
1907static bool FitsVMOVDoubleImmediate(double d, uint32_t *encoding) {
Ben Murdoch8b112d22011-06-08 16:22:53 +01001908 ASSERT(CpuFeatures::IsEnabled(VFP3));
Ben Murdoch3bec4d22010-07-22 14:51:16 +01001909
1910 // VMOV can accept an immediate of the form:
1911 //
1912 // +/- m * 2^(-n) where 16 <= m <= 31 and 0 <= n <= 7
1913 //
1914 // The immediate is encoded using an 8-bit quantity, comprised of two
1915 // 4-bit fields. For an 8-bit immediate of the form:
1916 //
1917 // [abcdefgh]
1918 //
1919 // where a is the MSB and h is the LSB, an immediate 64-bit double can be
1920 // created of the form:
1921 //
1922 // [aBbbbbbb,bbcdefgh,00000000,00000000,
1923 // 00000000,00000000,00000000,00000000]
1924 //
1925 // where B = ~b.
1926 //
1927
1928 uint32_t lo, hi;
1929 DoubleAsTwoUInt32(d, &lo, &hi);
1930
1931 // The most obvious constraint is the long block of zeroes.
1932 if ((lo != 0) || ((hi & 0xffff) != 0)) {
1933 return false;
1934 }
1935
1936 // Bits 62:55 must be all clear or all set.
1937 if (((hi & 0x3fc00000) != 0) && ((hi & 0x3fc00000) != 0x3fc00000)) {
1938 return false;
1939 }
1940
1941 // Bit 63 must be NOT bit 62.
1942 if (((hi ^ (hi << 1)) & (0x40000000)) == 0) {
1943 return false;
1944 }
1945
1946 // Create the encoded immediate in the form:
1947 // [00000000,0000abcd,00000000,0000efgh]
1948 *encoding = (hi >> 16) & 0xf; // Low nybble.
1949 *encoding |= (hi >> 4) & 0x70000; // Low three bits of the high nybble.
1950 *encoding |= (hi >> 12) & 0x80000; // Top bit of the high nybble.
1951
1952 return true;
1953}
1954
1955
1956void Assembler::vmov(const DwVfpRegister dst,
1957 double imm,
1958 const Condition cond) {
1959 // Dd = immediate
1960 // Instruction details available in ARM DDI 0406B, A8-640.
Ben Murdoch8b112d22011-06-08 16:22:53 +01001961 ASSERT(CpuFeatures::IsEnabled(VFP3));
Ben Murdoch3bec4d22010-07-22 14:51:16 +01001962
1963 uint32_t enc;
1964 if (FitsVMOVDoubleImmediate(imm, &enc)) {
1965 // The double can be encoded in the instruction.
1966 emit(cond | 0xE*B24 | 0xB*B20 | dst.code()*B12 | 0xB*B8 | enc);
1967 } else {
1968 // Synthesise the double from ARM immediates. This could be implemented
1969 // using vldr from a constant pool.
1970 uint32_t lo, hi;
1971 DoubleAsTwoUInt32(imm, &lo, &hi);
1972
1973 if (lo == hi) {
1974 // If the lo and hi parts of the double are equal, the literal is easier
1975 // to create. This is the case with 0.0.
1976 mov(ip, Operand(lo));
1977 vmov(dst, ip, ip);
1978 } else {
1979 // Move the low part of the double into the lower of the corresponsing S
1980 // registers of D register dst.
1981 mov(ip, Operand(lo));
1982 vmov(dst.low(), ip, cond);
1983
1984 // Move the high part of the double into the higher of the corresponsing S
1985 // registers of D register dst.
1986 mov(ip, Operand(hi));
1987 vmov(dst.high(), ip, cond);
1988 }
1989 }
1990}
1991
1992
1993void Assembler::vmov(const SwVfpRegister dst,
1994 const SwVfpRegister src,
1995 const Condition cond) {
1996 // Sd = Sm
1997 // Instruction details available in ARM DDI 0406B, A8-642.
Ben Murdoch8b112d22011-06-08 16:22:53 +01001998 ASSERT(CpuFeatures::IsEnabled(VFP3));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01001999 int sd, d, sm, m;
2000 dst.split_code(&sd, &d);
2001 src.split_code(&sm, &m);
2002 emit(cond | 0xE*B24 | d*B22 | 0xB*B20 | sd*B12 | 0xA*B8 | B6 | m*B5 | sm);
Ben Murdoch3bec4d22010-07-22 14:51:16 +01002003}
2004
2005
Leon Clarkee46be812010-01-19 14:06:41 +00002006void Assembler::vmov(const DwVfpRegister dst,
Steve Block8defd9f2010-07-08 12:39:36 +01002007 const DwVfpRegister src,
2008 const Condition cond) {
2009 // Dd = Dm
2010 // Instruction details available in ARM DDI 0406B, A8-642.
Ben Murdoch8b112d22011-06-08 16:22:53 +01002011 ASSERT(CpuFeatures::IsEnabled(VFP3));
Steve Block8defd9f2010-07-08 12:39:36 +01002012 emit(cond | 0xE*B24 | 0xB*B20 |
2013 dst.code()*B12 | 0x5*B9 | B8 | B6 | src.code());
2014}
2015
2016
2017void Assembler::vmov(const DwVfpRegister dst,
Leon Clarkee46be812010-01-19 14:06:41 +00002018 const Register src1,
2019 const Register src2,
2020 const Condition cond) {
Steve Blockd0582a62009-12-15 09:54:21 +00002021 // Dm = <Rt,Rt2>.
2022 // Instruction details available in ARM DDI 0406A, A8-646.
2023 // cond(31-28) | 1100(27-24)| 010(23-21) | op=0(20) | Rt2(19-16) |
2024 // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm
Ben Murdoch8b112d22011-06-08 16:22:53 +01002025 ASSERT(CpuFeatures::IsEnabled(VFP3));
Steve Blockd0582a62009-12-15 09:54:21 +00002026 ASSERT(!src1.is(pc) && !src2.is(pc));
2027 emit(cond | 0xC*B24 | B22 | src2.code()*B16 |
2028 src1.code()*B12 | 0xB*B8 | B4 | dst.code());
2029}
2030
2031
Leon Clarkee46be812010-01-19 14:06:41 +00002032void Assembler::vmov(const Register dst1,
2033 const Register dst2,
2034 const DwVfpRegister src,
2035 const Condition cond) {
Steve Blockd0582a62009-12-15 09:54:21 +00002036 // <Rt,Rt2> = Dm.
2037 // Instruction details available in ARM DDI 0406A, A8-646.
2038 // cond(31-28) | 1100(27-24)| 010(23-21) | op=1(20) | Rt2(19-16) |
2039 // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm
Ben Murdoch8b112d22011-06-08 16:22:53 +01002040 ASSERT(CpuFeatures::IsEnabled(VFP3));
Steve Blockd0582a62009-12-15 09:54:21 +00002041 ASSERT(!dst1.is(pc) && !dst2.is(pc));
2042 emit(cond | 0xC*B24 | B22 | B20 | dst2.code()*B16 |
2043 dst1.code()*B12 | 0xB*B8 | B4 | src.code());
2044}
2045
2046
Leon Clarkee46be812010-01-19 14:06:41 +00002047void Assembler::vmov(const SwVfpRegister dst,
Steve Blockd0582a62009-12-15 09:54:21 +00002048 const Register src,
Steve Blockd0582a62009-12-15 09:54:21 +00002049 const Condition cond) {
2050 // Sn = Rt.
2051 // Instruction details available in ARM DDI 0406A, A8-642.
2052 // cond(31-28) | 1110(27-24)| 000(23-21) | op=0(20) | Vn(19-16) |
2053 // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0)
Ben Murdoch8b112d22011-06-08 16:22:53 +01002054 ASSERT(CpuFeatures::IsEnabled(VFP3));
Steve Blockd0582a62009-12-15 09:54:21 +00002055 ASSERT(!src.is(pc));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002056 int sn, n;
2057 dst.split_code(&sn, &n);
2058 emit(cond | 0xE*B24 | sn*B16 | src.code()*B12 | 0xA*B8 | n*B7 | B4);
Steve Blockd0582a62009-12-15 09:54:21 +00002059}
2060
2061
Leon Clarkee46be812010-01-19 14:06:41 +00002062void Assembler::vmov(const Register dst,
2063 const SwVfpRegister src,
Steve Blockd0582a62009-12-15 09:54:21 +00002064 const Condition cond) {
2065 // Rt = Sn.
2066 // Instruction details available in ARM DDI 0406A, A8-642.
2067 // cond(31-28) | 1110(27-24)| 000(23-21) | op=1(20) | Vn(19-16) |
2068 // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0)
Ben Murdoch8b112d22011-06-08 16:22:53 +01002069 ASSERT(CpuFeatures::IsEnabled(VFP3));
Steve Blockd0582a62009-12-15 09:54:21 +00002070 ASSERT(!dst.is(pc));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002071 int sn, n;
2072 src.split_code(&sn, &n);
2073 emit(cond | 0xE*B24 | B20 | sn*B16 | dst.code()*B12 | 0xA*B8 | n*B7 | B4);
Steve Blockd0582a62009-12-15 09:54:21 +00002074}
2075
2076
Steve Block6ded16b2010-05-10 14:33:55 +01002077// Type of data to read from or write to VFP register.
2078// Used as specifier in generic vcvt instruction.
2079enum VFPType { S32, U32, F32, F64 };
2080
2081
2082static bool IsSignedVFPType(VFPType type) {
2083 switch (type) {
2084 case S32:
2085 return true;
2086 case U32:
2087 return false;
2088 default:
2089 UNREACHABLE();
2090 return false;
2091 }
Steve Blockd0582a62009-12-15 09:54:21 +00002092}
2093
2094
Steve Block6ded16b2010-05-10 14:33:55 +01002095static bool IsIntegerVFPType(VFPType type) {
2096 switch (type) {
2097 case S32:
2098 case U32:
2099 return true;
2100 case F32:
2101 case F64:
2102 return false;
2103 default:
2104 UNREACHABLE();
2105 return false;
2106 }
2107}
2108
2109
2110static bool IsDoubleVFPType(VFPType type) {
2111 switch (type) {
2112 case F32:
2113 return false;
2114 case F64:
2115 return true;
2116 default:
2117 UNREACHABLE();
2118 return false;
2119 }
2120}
2121
2122
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002123// Split five bit reg_code based on size of reg_type.
2124// 32-bit register codes are Vm:M
2125// 64-bit register codes are M:Vm
2126// where Vm is four bits, and M is a single bit.
2127static void SplitRegCode(VFPType reg_type,
Steve Block6ded16b2010-05-10 14:33:55 +01002128 int reg_code,
2129 int* vm,
2130 int* m) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002131 ASSERT((reg_code >= 0) && (reg_code <= 31));
2132 if (IsIntegerVFPType(reg_type) || !IsDoubleVFPType(reg_type)) {
2133 // 32 bit type.
Steve Block6ded16b2010-05-10 14:33:55 +01002134 *m = reg_code & 0x1;
2135 *vm = reg_code >> 1;
2136 } else {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002137 // 64 bit type.
Steve Block6ded16b2010-05-10 14:33:55 +01002138 *m = (reg_code & 0x10) >> 4;
2139 *vm = reg_code & 0x0F;
2140 }
2141}
2142
2143
2144// Encode vcvt.src_type.dst_type instruction.
2145static Instr EncodeVCVT(const VFPType dst_type,
2146 const int dst_code,
2147 const VFPType src_type,
2148 const int src_code,
Steve Block1e0659c2011-05-24 12:43:12 +01002149 VFPConversionMode mode,
Steve Block6ded16b2010-05-10 14:33:55 +01002150 const Condition cond) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002151 ASSERT(src_type != dst_type);
2152 int D, Vd, M, Vm;
2153 SplitRegCode(src_type, src_code, &Vm, &M);
2154 SplitRegCode(dst_type, dst_code, &Vd, &D);
2155
Steve Block6ded16b2010-05-10 14:33:55 +01002156 if (IsIntegerVFPType(dst_type) || IsIntegerVFPType(src_type)) {
2157 // Conversion between IEEE floating point and 32-bit integer.
2158 // Instruction details available in ARM DDI 0406B, A8.6.295.
2159 // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 1(19) | opc2(18-16) |
2160 // Vd(15-12) | 101(11-9) | sz(8) | op(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
2161 ASSERT(!IsIntegerVFPType(dst_type) || !IsIntegerVFPType(src_type));
2162
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002163 int sz, opc2, op;
Steve Block6ded16b2010-05-10 14:33:55 +01002164
2165 if (IsIntegerVFPType(dst_type)) {
2166 opc2 = IsSignedVFPType(dst_type) ? 0x5 : 0x4;
2167 sz = IsDoubleVFPType(src_type) ? 0x1 : 0x0;
Russell Brenner90bac252010-11-18 13:33:46 -08002168 op = mode;
Steve Block6ded16b2010-05-10 14:33:55 +01002169 } else {
2170 ASSERT(IsIntegerVFPType(src_type));
Steve Block6ded16b2010-05-10 14:33:55 +01002171 opc2 = 0x0;
2172 sz = IsDoubleVFPType(dst_type) ? 0x1 : 0x0;
2173 op = IsSignedVFPType(src_type) ? 0x1 : 0x0;
Steve Block6ded16b2010-05-10 14:33:55 +01002174 }
2175
2176 return (cond | 0xE*B24 | B23 | D*B22 | 0x3*B20 | B19 | opc2*B16 |
2177 Vd*B12 | 0x5*B9 | sz*B8 | op*B7 | B6 | M*B5 | Vm);
2178 } else {
2179 // Conversion between IEEE double and single precision.
2180 // Instruction details available in ARM DDI 0406B, A8.6.298.
2181 // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0111(19-16) |
2182 // Vd(15-12) | 101(11-9) | sz(8) | 1(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002183 int sz = IsDoubleVFPType(src_type) ? 0x1 : 0x0;
Steve Block6ded16b2010-05-10 14:33:55 +01002184 return (cond | 0xE*B24 | B23 | D*B22 | 0x3*B20 | 0x7*B16 |
2185 Vd*B12 | 0x5*B9 | sz*B8 | B7 | B6 | M*B5 | Vm);
2186 }
2187}
2188
2189
2190void Assembler::vcvt_f64_s32(const DwVfpRegister dst,
2191 const SwVfpRegister src,
Steve Block1e0659c2011-05-24 12:43:12 +01002192 VFPConversionMode mode,
Steve Block6ded16b2010-05-10 14:33:55 +01002193 const Condition cond) {
Ben Murdoch8b112d22011-06-08 16:22:53 +01002194 ASSERT(CpuFeatures::IsEnabled(VFP3));
Russell Brenner90bac252010-11-18 13:33:46 -08002195 emit(EncodeVCVT(F64, dst.code(), S32, src.code(), mode, cond));
Steve Block6ded16b2010-05-10 14:33:55 +01002196}
2197
2198
2199void Assembler::vcvt_f32_s32(const SwVfpRegister dst,
2200 const SwVfpRegister src,
Steve Block1e0659c2011-05-24 12:43:12 +01002201 VFPConversionMode mode,
Steve Block6ded16b2010-05-10 14:33:55 +01002202 const Condition cond) {
Ben Murdoch8b112d22011-06-08 16:22:53 +01002203 ASSERT(CpuFeatures::IsEnabled(VFP3));
Russell Brenner90bac252010-11-18 13:33:46 -08002204 emit(EncodeVCVT(F32, dst.code(), S32, src.code(), mode, cond));
Steve Block6ded16b2010-05-10 14:33:55 +01002205}
2206
2207
2208void Assembler::vcvt_f64_u32(const DwVfpRegister dst,
2209 const SwVfpRegister src,
Steve Block1e0659c2011-05-24 12:43:12 +01002210 VFPConversionMode mode,
Steve Block6ded16b2010-05-10 14:33:55 +01002211 const Condition cond) {
Ben Murdoch8b112d22011-06-08 16:22:53 +01002212 ASSERT(CpuFeatures::IsEnabled(VFP3));
Russell Brenner90bac252010-11-18 13:33:46 -08002213 emit(EncodeVCVT(F64, dst.code(), U32, src.code(), mode, cond));
Steve Block6ded16b2010-05-10 14:33:55 +01002214}
2215
2216
2217void Assembler::vcvt_s32_f64(const SwVfpRegister dst,
2218 const DwVfpRegister src,
Steve Block1e0659c2011-05-24 12:43:12 +01002219 VFPConversionMode mode,
Steve Block6ded16b2010-05-10 14:33:55 +01002220 const Condition cond) {
Ben Murdoch8b112d22011-06-08 16:22:53 +01002221 ASSERT(CpuFeatures::IsEnabled(VFP3));
Russell Brenner90bac252010-11-18 13:33:46 -08002222 emit(EncodeVCVT(S32, dst.code(), F64, src.code(), mode, cond));
Steve Block6ded16b2010-05-10 14:33:55 +01002223}
2224
2225
2226void Assembler::vcvt_u32_f64(const SwVfpRegister dst,
2227 const DwVfpRegister src,
Steve Block1e0659c2011-05-24 12:43:12 +01002228 VFPConversionMode mode,
Steve Block6ded16b2010-05-10 14:33:55 +01002229 const Condition cond) {
Ben Murdoch8b112d22011-06-08 16:22:53 +01002230 ASSERT(CpuFeatures::IsEnabled(VFP3));
Russell Brenner90bac252010-11-18 13:33:46 -08002231 emit(EncodeVCVT(U32, dst.code(), F64, src.code(), mode, cond));
Steve Block6ded16b2010-05-10 14:33:55 +01002232}
2233
2234
2235void Assembler::vcvt_f64_f32(const DwVfpRegister dst,
2236 const SwVfpRegister src,
Steve Block1e0659c2011-05-24 12:43:12 +01002237 VFPConversionMode mode,
Steve Block6ded16b2010-05-10 14:33:55 +01002238 const Condition cond) {
Ben Murdoch8b112d22011-06-08 16:22:53 +01002239 ASSERT(CpuFeatures::IsEnabled(VFP3));
Russell Brenner90bac252010-11-18 13:33:46 -08002240 emit(EncodeVCVT(F64, dst.code(), F32, src.code(), mode, cond));
Steve Block6ded16b2010-05-10 14:33:55 +01002241}
2242
2243
2244void Assembler::vcvt_f32_f64(const SwVfpRegister dst,
2245 const DwVfpRegister src,
Steve Block1e0659c2011-05-24 12:43:12 +01002246 VFPConversionMode mode,
Steve Block6ded16b2010-05-10 14:33:55 +01002247 const Condition cond) {
Ben Murdoch8b112d22011-06-08 16:22:53 +01002248 ASSERT(CpuFeatures::IsEnabled(VFP3));
Russell Brenner90bac252010-11-18 13:33:46 -08002249 emit(EncodeVCVT(F32, dst.code(), F64, src.code(), mode, cond));
Steve Blockd0582a62009-12-15 09:54:21 +00002250}
2251
2252
Steve Block44f0eee2011-05-26 01:26:41 +01002253void Assembler::vneg(const DwVfpRegister dst,
2254 const DwVfpRegister src,
2255 const Condition cond) {
2256 emit(cond | 0xE*B24 | 0xB*B20 | B16 | dst.code()*B12 |
2257 0x5*B9 | B8 | B6 | src.code());
2258}
2259
2260
Steve Block1e0659c2011-05-24 12:43:12 +01002261void Assembler::vabs(const DwVfpRegister dst,
2262 const DwVfpRegister src,
2263 const Condition cond) {
2264 emit(cond | 0xE*B24 | 0xB*B20 | dst.code()*B12 |
2265 0x5*B9 | B8 | 0x3*B6 | src.code());
2266}
2267
2268
Leon Clarkee46be812010-01-19 14:06:41 +00002269void Assembler::vadd(const DwVfpRegister dst,
2270 const DwVfpRegister src1,
2271 const DwVfpRegister src2,
2272 const Condition cond) {
2273 // Dd = vadd(Dn, Dm) double precision floating point addition.
Steve Blockd0582a62009-12-15 09:54:21 +00002274 // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
2275 // Instruction details available in ARM DDI 0406A, A8-536.
2276 // cond(31-28) | 11100(27-23)| D=?(22) | 11(21-20) | Vn(19-16) |
2277 // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 0(6) | M=?(5) | 0(4) | Vm(3-0)
Ben Murdoch8b112d22011-06-08 16:22:53 +01002278 ASSERT(CpuFeatures::IsEnabled(VFP3));
Steve Blockd0582a62009-12-15 09:54:21 +00002279 emit(cond | 0xE*B24 | 0x3*B20 | src1.code()*B16 |
2280 dst.code()*B12 | 0x5*B9 | B8 | src2.code());
2281}
2282
2283
Leon Clarkee46be812010-01-19 14:06:41 +00002284void Assembler::vsub(const DwVfpRegister dst,
2285 const DwVfpRegister src1,
2286 const DwVfpRegister src2,
2287 const Condition cond) {
2288 // Dd = vsub(Dn, Dm) double precision floating point subtraction.
Steve Blockd0582a62009-12-15 09:54:21 +00002289 // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
2290 // Instruction details available in ARM DDI 0406A, A8-784.
2291 // cond(31-28) | 11100(27-23)| D=?(22) | 11(21-20) | Vn(19-16) |
2292 // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 1(6) | M=?(5) | 0(4) | Vm(3-0)
Ben Murdoch8b112d22011-06-08 16:22:53 +01002293 ASSERT(CpuFeatures::IsEnabled(VFP3));
Steve Blockd0582a62009-12-15 09:54:21 +00002294 emit(cond | 0xE*B24 | 0x3*B20 | src1.code()*B16 |
2295 dst.code()*B12 | 0x5*B9 | B8 | B6 | src2.code());
2296}
2297
2298
Leon Clarkee46be812010-01-19 14:06:41 +00002299void Assembler::vmul(const DwVfpRegister dst,
2300 const DwVfpRegister src1,
2301 const DwVfpRegister src2,
2302 const Condition cond) {
2303 // Dd = vmul(Dn, Dm) double precision floating point multiplication.
Steve Blockd0582a62009-12-15 09:54:21 +00002304 // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
2305 // Instruction details available in ARM DDI 0406A, A8-784.
2306 // cond(31-28) | 11100(27-23)| D=?(22) | 10(21-20) | Vn(19-16) |
2307 // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=0 | 0(6) | M=?(5) | 0(4) | Vm(3-0)
Ben Murdoch8b112d22011-06-08 16:22:53 +01002308 ASSERT(CpuFeatures::IsEnabled(VFP3));
Steve Blockd0582a62009-12-15 09:54:21 +00002309 emit(cond | 0xE*B24 | 0x2*B20 | src1.code()*B16 |
2310 dst.code()*B12 | 0x5*B9 | B8 | src2.code());
2311}
2312
2313
Leon Clarkee46be812010-01-19 14:06:41 +00002314void Assembler::vdiv(const DwVfpRegister dst,
2315 const DwVfpRegister src1,
2316 const DwVfpRegister src2,
2317 const Condition cond) {
2318 // Dd = vdiv(Dn, Dm) double precision floating point division.
Steve Blockd0582a62009-12-15 09:54:21 +00002319 // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
2320 // Instruction details available in ARM DDI 0406A, A8-584.
2321 // cond(31-28) | 11101(27-23)| D=?(22) | 00(21-20) | Vn(19-16) |
2322 // Vd(15-12) | 101(11-9) | sz(8)=1 | N(7)=? | 0(6) | M=?(5) | 0(4) | Vm(3-0)
Ben Murdoch8b112d22011-06-08 16:22:53 +01002323 ASSERT(CpuFeatures::IsEnabled(VFP3));
Steve Blockd0582a62009-12-15 09:54:21 +00002324 emit(cond | 0xE*B24 | B23 | src1.code()*B16 |
2325 dst.code()*B12 | 0x5*B9 | B8 | src2.code());
2326}
2327
2328
Leon Clarkee46be812010-01-19 14:06:41 +00002329void Assembler::vcmp(const DwVfpRegister src1,
2330 const DwVfpRegister src2,
Steve Blockd0582a62009-12-15 09:54:21 +00002331 const Condition cond) {
2332 // vcmp(Dd, Dm) double precision floating point comparison.
2333 // Instruction details available in ARM DDI 0406A, A8-570.
2334 // cond(31-28) | 11101 (27-23)| D=?(22) | 11 (21-20) | 0100 (19-16) |
Ben Murdochb8e0da22011-05-16 14:20:40 +01002335 // Vd(15-12) | 101(11-9) | sz(8)=1 | E(7)=0 | 1(6) | M(5)=? | 0(4) | Vm(3-0)
Ben Murdoch8b112d22011-06-08 16:22:53 +01002336 ASSERT(CpuFeatures::IsEnabled(VFP3));
Steve Blockd0582a62009-12-15 09:54:21 +00002337 emit(cond | 0xE*B24 |B23 | 0x3*B20 | B18 |
Ben Murdochb8e0da22011-05-16 14:20:40 +01002338 src1.code()*B12 | 0x5*B9 | B8 | B6 | src2.code());
Steve Blockd0582a62009-12-15 09:54:21 +00002339}
2340
2341
Iain Merrick75681382010-08-19 15:07:18 +01002342void Assembler::vcmp(const DwVfpRegister src1,
2343 const double src2,
Iain Merrick75681382010-08-19 15:07:18 +01002344 const Condition cond) {
2345 // vcmp(Dd, Dm) double precision floating point comparison.
2346 // Instruction details available in ARM DDI 0406A, A8-570.
2347 // cond(31-28) | 11101 (27-23)| D=?(22) | 11 (21-20) | 0101 (19-16) |
Ben Murdochb8e0da22011-05-16 14:20:40 +01002348 // Vd(15-12) | 101(11-9) | sz(8)=1 | E(7)=0 | 1(6) | M(5)=? | 0(4) | 0000(3-0)
Ben Murdoch8b112d22011-06-08 16:22:53 +01002349 ASSERT(CpuFeatures::IsEnabled(VFP3));
Iain Merrick75681382010-08-19 15:07:18 +01002350 ASSERT(src2 == 0.0);
2351 emit(cond | 0xE*B24 |B23 | 0x3*B20 | B18 | B16 |
Ben Murdochb8e0da22011-05-16 14:20:40 +01002352 src1.code()*B12 | 0x5*B9 | B8 | B6);
Iain Merrick75681382010-08-19 15:07:18 +01002353}
2354
2355
Russell Brenner90bac252010-11-18 13:33:46 -08002356void Assembler::vmsr(Register dst, Condition cond) {
2357 // Instruction details available in ARM DDI 0406A, A8-652.
2358 // cond(31-28) | 1110 (27-24) | 1110(23-20)| 0001 (19-16) |
2359 // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0)
Ben Murdoch8b112d22011-06-08 16:22:53 +01002360 ASSERT(CpuFeatures::IsEnabled(VFP3));
Russell Brenner90bac252010-11-18 13:33:46 -08002361 emit(cond | 0xE*B24 | 0xE*B20 | B16 |
2362 dst.code()*B12 | 0xA*B8 | B4);
2363}
2364
2365
Steve Blockd0582a62009-12-15 09:54:21 +00002366void Assembler::vmrs(Register dst, Condition cond) {
2367 // Instruction details available in ARM DDI 0406A, A8-652.
2368 // cond(31-28) | 1110 (27-24) | 1111(23-20)| 0001 (19-16) |
2369 // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0)
Ben Murdoch8b112d22011-06-08 16:22:53 +01002370 ASSERT(CpuFeatures::IsEnabled(VFP3));
Steve Blockd0582a62009-12-15 09:54:21 +00002371 emit(cond | 0xE*B24 | 0xF*B20 | B16 |
2372 dst.code()*B12 | 0xA*B8 | B4);
2373}
2374
2375
Steve Block8defd9f2010-07-08 12:39:36 +01002376void Assembler::vsqrt(const DwVfpRegister dst,
2377 const DwVfpRegister src,
2378 const Condition cond) {
2379 // cond(31-28) | 11101 (27-23)| D=?(22) | 11 (21-20) | 0001 (19-16) |
2380 // Vd(15-12) | 101(11-9) | sz(8)=1 | 11 (7-6) | M(5)=? | 0(4) | Vm(3-0)
Ben Murdoch8b112d22011-06-08 16:22:53 +01002381 ASSERT(CpuFeatures::IsEnabled(VFP3));
Steve Block8defd9f2010-07-08 12:39:36 +01002382 emit(cond | 0xE*B24 | B23 | 0x3*B20 | B16 |
2383 dst.code()*B12 | 0x5*B9 | B8 | 3*B6 | src.code());
2384}
2385
2386
Andrei Popescu31002712010-02-23 13:46:05 +00002387// Pseudo instructions.
Steve Block6ded16b2010-05-10 14:33:55 +01002388void Assembler::nop(int type) {
2389 // This is mov rx, rx.
2390 ASSERT(0 <= type && type <= 14); // mov pc, pc is not a nop.
2391 emit(al | 13*B21 | type*B12 | type);
2392}
2393
2394
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -08002395bool Assembler::IsNop(Instr instr, int type) {
Steve Block1e0659c2011-05-24 12:43:12 +01002396 // Check for mov rx, rx where x = type.
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -08002397 ASSERT(0 <= type && type <= 14); // mov pc, pc is not a nop.
2398 return instr == (al | 13*B21 | type*B12 | type);
2399}
2400
2401
Steve Blockd0582a62009-12-15 09:54:21 +00002402bool Assembler::ImmediateFitsAddrMode1Instruction(int32_t imm32) {
2403 uint32_t dummy1;
2404 uint32_t dummy2;
2405 return fits_shifter(imm32, &dummy1, &dummy2, NULL);
2406}
2407
2408
2409void Assembler::BlockConstPoolFor(int instructions) {
2410 BlockConstPoolBefore(pc_offset() + instructions * kInstrSize);
2411}
2412
2413
Andrei Popescu31002712010-02-23 13:46:05 +00002414// Debugging.
Steve Blocka7e24c12009-10-30 11:49:00 +00002415void Assembler::RecordJSReturn() {
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -08002416 positions_recorder()->WriteRecordedPositions();
Steve Blocka7e24c12009-10-30 11:49:00 +00002417 CheckBuffer();
2418 RecordRelocInfo(RelocInfo::JS_RETURN);
2419}
2420
2421
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002422void Assembler::RecordDebugBreakSlot() {
Teng-Hui Zhu3e5fa292010-11-09 16:16:48 -08002423 positions_recorder()->WriteRecordedPositions();
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002424 CheckBuffer();
2425 RecordRelocInfo(RelocInfo::DEBUG_BREAK_SLOT);
2426}
2427
2428
Steve Blocka7e24c12009-10-30 11:49:00 +00002429void Assembler::RecordComment(const char* msg) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01002430 if (FLAG_code_comments) {
Steve Blocka7e24c12009-10-30 11:49:00 +00002431 CheckBuffer();
2432 RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg));
2433 }
2434}
2435
2436
Steve Blocka7e24c12009-10-30 11:49:00 +00002437void Assembler::GrowBuffer() {
2438 if (!own_buffer_) FATAL("external code buffer is too small");
2439
Andrei Popescu31002712010-02-23 13:46:05 +00002440 // Compute new buffer size.
Steve Blocka7e24c12009-10-30 11:49:00 +00002441 CodeDesc desc; // the new buffer
2442 if (buffer_size_ < 4*KB) {
2443 desc.buffer_size = 4*KB;
2444 } else if (buffer_size_ < 1*MB) {
2445 desc.buffer_size = 2*buffer_size_;
2446 } else {
2447 desc.buffer_size = buffer_size_ + 1*MB;
2448 }
2449 CHECK_GT(desc.buffer_size, 0); // no overflow
2450
Andrei Popescu31002712010-02-23 13:46:05 +00002451 // Setup new buffer.
Steve Blocka7e24c12009-10-30 11:49:00 +00002452 desc.buffer = NewArray<byte>(desc.buffer_size);
2453
2454 desc.instr_size = pc_offset();
2455 desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
2456
Andrei Popescu31002712010-02-23 13:46:05 +00002457 // Copy the data.
Steve Blocka7e24c12009-10-30 11:49:00 +00002458 int pc_delta = desc.buffer - buffer_;
2459 int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
2460 memmove(desc.buffer, buffer_, desc.instr_size);
2461 memmove(reloc_info_writer.pos() + rc_delta,
2462 reloc_info_writer.pos(), desc.reloc_size);
2463
Andrei Popescu31002712010-02-23 13:46:05 +00002464 // Switch buffers.
Steve Blocka7e24c12009-10-30 11:49:00 +00002465 DeleteArray(buffer_);
2466 buffer_ = desc.buffer;
2467 buffer_size_ = desc.buffer_size;
2468 pc_ += pc_delta;
2469 reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
2470 reloc_info_writer.last_pc() + pc_delta);
2471
Andrei Popescu31002712010-02-23 13:46:05 +00002472 // None of our relocation types are pc relative pointing outside the code
Steve Blocka7e24c12009-10-30 11:49:00 +00002473 // buffer nor pc absolute pointing inside the code buffer, so there is no need
Andrei Popescu31002712010-02-23 13:46:05 +00002474 // to relocate any emitted relocation entries.
Steve Blocka7e24c12009-10-30 11:49:00 +00002475
Andrei Popescu31002712010-02-23 13:46:05 +00002476 // Relocate pending relocation entries.
Steve Blocka7e24c12009-10-30 11:49:00 +00002477 for (int i = 0; i < num_prinfo_; i++) {
2478 RelocInfo& rinfo = prinfo_[i];
2479 ASSERT(rinfo.rmode() != RelocInfo::COMMENT &&
2480 rinfo.rmode() != RelocInfo::POSITION);
2481 if (rinfo.rmode() != RelocInfo::JS_RETURN) {
2482 rinfo.set_pc(rinfo.pc() + pc_delta);
2483 }
2484 }
2485}
2486
2487
Ben Murdochb0fe1622011-05-05 13:52:32 +01002488void Assembler::db(uint8_t data) {
Ben Murdochb8e0da22011-05-16 14:20:40 +01002489 // No relocation info should be pending while using db. db is used
2490 // to write pure data with no pointers and the constant pool should
2491 // be emitted before using db.
2492 ASSERT(num_prinfo_ == 0);
Ben Murdochb0fe1622011-05-05 13:52:32 +01002493 CheckBuffer();
2494 *reinterpret_cast<uint8_t*>(pc_) = data;
2495 pc_ += sizeof(uint8_t);
2496}
2497
2498
2499void Assembler::dd(uint32_t data) {
Ben Murdochb8e0da22011-05-16 14:20:40 +01002500 // No relocation info should be pending while using dd. dd is used
2501 // to write pure data with no pointers and the constant pool should
2502 // be emitted before using dd.
2503 ASSERT(num_prinfo_ == 0);
Ben Murdochb0fe1622011-05-05 13:52:32 +01002504 CheckBuffer();
2505 *reinterpret_cast<uint32_t*>(pc_) = data;
2506 pc_ += sizeof(uint32_t);
2507}
2508
2509
Steve Blocka7e24c12009-10-30 11:49:00 +00002510void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
2511 RelocInfo rinfo(pc_, rmode, data); // we do not try to reuse pool constants
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002512 if (rmode >= RelocInfo::JS_RETURN && rmode <= RelocInfo::DEBUG_BREAK_SLOT) {
Andrei Popescu31002712010-02-23 13:46:05 +00002513 // Adjust code for new modes.
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01002514 ASSERT(RelocInfo::IsDebugBreakSlot(rmode)
2515 || RelocInfo::IsJSReturn(rmode)
Steve Blocka7e24c12009-10-30 11:49:00 +00002516 || RelocInfo::IsComment(rmode)
2517 || RelocInfo::IsPosition(rmode));
Andrei Popescu31002712010-02-23 13:46:05 +00002518 // These modes do not need an entry in the constant pool.
Steve Blocka7e24c12009-10-30 11:49:00 +00002519 } else {
2520 ASSERT(num_prinfo_ < kMaxNumPRInfo);
2521 prinfo_[num_prinfo_++] = rinfo;
2522 // Make sure the constant pool is not emitted in place of the next
Andrei Popescu31002712010-02-23 13:46:05 +00002523 // instruction for which we just recorded relocation info.
Steve Blocka7e24c12009-10-30 11:49:00 +00002524 BlockConstPoolBefore(pc_offset() + kInstrSize);
2525 }
2526 if (rinfo.rmode() != RelocInfo::NONE) {
2527 // Don't record external references unless the heap will be serialized.
Steve Blockd0582a62009-12-15 09:54:21 +00002528 if (rmode == RelocInfo::EXTERNAL_REFERENCE) {
2529#ifdef DEBUG
2530 if (!Serializer::enabled()) {
2531 Serializer::TooLateToEnableNow();
2532 }
2533#endif
Steve Block44f0eee2011-05-26 01:26:41 +01002534 if (!Serializer::enabled() && !emit_debug_code()) {
Steve Blockd0582a62009-12-15 09:54:21 +00002535 return;
2536 }
Steve Blocka7e24c12009-10-30 11:49:00 +00002537 }
2538 ASSERT(buffer_space() >= kMaxRelocSize); // too late to grow buffer here
Ben Murdoch257744e2011-11-30 15:57:28 +00002539 if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
2540 ASSERT(ast_id_for_reloc_info_ != kNoASTId);
2541 RelocInfo reloc_info_with_ast_id(pc_, rmode, ast_id_for_reloc_info_);
2542 ast_id_for_reloc_info_ = kNoASTId;
2543 reloc_info_writer.Write(&reloc_info_with_ast_id);
2544 } else {
2545 reloc_info_writer.Write(&rinfo);
2546 }
Steve Blocka7e24c12009-10-30 11:49:00 +00002547 }
2548}
2549
2550
2551void Assembler::CheckConstPool(bool force_emit, bool require_jump) {
2552 // Calculate the offset of the next check. It will be overwritten
2553 // when a const pool is generated or when const pools are being
2554 // blocked for a specific range.
2555 next_buffer_check_ = pc_offset() + kCheckConstInterval;
2556
Andrei Popescu31002712010-02-23 13:46:05 +00002557 // There is nothing to do if there are no pending relocation info entries.
Steve Blocka7e24c12009-10-30 11:49:00 +00002558 if (num_prinfo_ == 0) return;
2559
2560 // We emit a constant pool at regular intervals of about kDistBetweenPools
2561 // or when requested by parameter force_emit (e.g. after each function).
2562 // We prefer not to emit a jump unless the max distance is reached or if we
2563 // are running low on slots, which can happen if a lot of constants are being
2564 // emitted (e.g. --debug-code and many static references).
2565 int dist = pc_offset() - last_const_pool_end_;
2566 if (!force_emit && dist < kMaxDistBetweenPools &&
2567 (require_jump || dist < kDistBetweenPools) &&
2568 // TODO(1236125): Cleanup the "magic" number below. We know that
2569 // the code generation will test every kCheckConstIntervalInst.
2570 // Thus we are safe as long as we generate less than 7 constant
2571 // entries per instruction.
2572 (num_prinfo_ < (kMaxNumPRInfo - (7 * kCheckConstIntervalInst)))) {
2573 return;
2574 }
2575
2576 // If we did not return by now, we need to emit the constant pool soon.
2577
2578 // However, some small sequences of instructions must not be broken up by the
2579 // insertion of a constant pool; such sequences are protected by setting
Steve Block6ded16b2010-05-10 14:33:55 +01002580 // either const_pool_blocked_nesting_ or no_const_pool_before_, which are
2581 // both checked here. Also, recursive calls to CheckConstPool are blocked by
2582 // no_const_pool_before_.
2583 if (const_pool_blocked_nesting_ > 0 || pc_offset() < no_const_pool_before_) {
Andrei Popescu31002712010-02-23 13:46:05 +00002584 // Emission is currently blocked; make sure we try again as soon as
2585 // possible.
Steve Block6ded16b2010-05-10 14:33:55 +01002586 if (const_pool_blocked_nesting_ > 0) {
2587 next_buffer_check_ = pc_offset() + kInstrSize;
2588 } else {
2589 next_buffer_check_ = no_const_pool_before_;
2590 }
Steve Blocka7e24c12009-10-30 11:49:00 +00002591
Andrei Popescu31002712010-02-23 13:46:05 +00002592 // Something is wrong if emission is forced and blocked at the same time.
Steve Blocka7e24c12009-10-30 11:49:00 +00002593 ASSERT(!force_emit);
2594 return;
2595 }
2596
2597 int jump_instr = require_jump ? kInstrSize : 0;
2598
2599 // Check that the code buffer is large enough before emitting the constant
2600 // pool and relocation information (include the jump over the pool and the
2601 // constant pool marker).
2602 int max_needed_space =
2603 jump_instr + kInstrSize + num_prinfo_*(kInstrSize + kMaxRelocSize);
2604 while (buffer_space() <= (max_needed_space + kGap)) GrowBuffer();
2605
Andrei Popescu31002712010-02-23 13:46:05 +00002606 // Block recursive calls to CheckConstPool.
Steve Blocka7e24c12009-10-30 11:49:00 +00002607 BlockConstPoolBefore(pc_offset() + jump_instr + kInstrSize +
2608 num_prinfo_*kInstrSize);
2609 // Don't bother to check for the emit calls below.
2610 next_buffer_check_ = no_const_pool_before_;
2611
Andrei Popescu31002712010-02-23 13:46:05 +00002612 // Emit jump over constant pool if necessary.
Steve Blocka7e24c12009-10-30 11:49:00 +00002613 Label after_pool;
2614 if (require_jump) b(&after_pool);
2615
2616 RecordComment("[ Constant Pool");
2617
Andrei Popescu31002712010-02-23 13:46:05 +00002618 // Put down constant pool marker "Undefined instruction" as specified by
Steve Block44f0eee2011-05-26 01:26:41 +01002619 // A5.6 (ARMv7) Instruction set encoding.
2620 emit(kConstantPoolMarker | num_prinfo_);
Steve Blocka7e24c12009-10-30 11:49:00 +00002621
Andrei Popescu31002712010-02-23 13:46:05 +00002622 // Emit constant pool entries.
Steve Blocka7e24c12009-10-30 11:49:00 +00002623 for (int i = 0; i < num_prinfo_; i++) {
2624 RelocInfo& rinfo = prinfo_[i];
2625 ASSERT(rinfo.rmode() != RelocInfo::COMMENT &&
2626 rinfo.rmode() != RelocInfo::POSITION &&
2627 rinfo.rmode() != RelocInfo::STATEMENT_POSITION);
2628 Instr instr = instr_at(rinfo.pc());
2629
Andrei Popescu31002712010-02-23 13:46:05 +00002630 // Instruction to patch must be a ldr/str [pc, #offset].
2631 // P and U set, B and W clear, Rn == pc, offset12 still 0.
Steve Block1e0659c2011-05-24 12:43:12 +01002632 ASSERT((instr & (7*B25 | P | U | B | W | 15*B16 | kOff12Mask)) ==
Steve Blocka7e24c12009-10-30 11:49:00 +00002633 (2*B25 | P | U | pc.code()*B16));
2634 int delta = pc_ - rinfo.pc() - 8;
2635 ASSERT(delta >= -4); // instr could be ldr pc, [pc, #-4] followed by targ32
2636 if (delta < 0) {
2637 instr &= ~U;
2638 delta = -delta;
2639 }
2640 ASSERT(is_uint12(delta));
2641 instr_at_put(rinfo.pc(), instr + delta);
2642 emit(rinfo.data());
2643 }
2644 num_prinfo_ = 0;
2645 last_const_pool_end_ = pc_offset();
2646
2647 RecordComment("]");
2648
2649 if (after_pool.is_linked()) {
2650 bind(&after_pool);
2651 }
2652
2653 // Since a constant pool was just emitted, move the check offset forward by
2654 // the standard interval.
2655 next_buffer_check_ = pc_offset() + kCheckConstInterval;
2656}
2657
2658
2659} } // namespace v8::internal
Leon Clarkef7060e22010-06-03 12:02:55 +01002660
2661#endif // V8_TARGET_ARCH_ARM