blob: eb12de80b0ef57270d698a864a271f01b5b2360e [file] [log] [blame]
Steve Blocka7e24c12009-10-30 11:49:00 +00001// Copyright 2007-2009 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28/** \mainpage V8 API Reference Guide
29 *
30 * V8 is Google's open source JavaScript engine.
31 *
32 * This set of documents provides reference material generated from the
33 * V8 header file, include/v8.h.
34 *
35 * For other documentation see http://code.google.com/apis/v8/
36 */
37
38#ifndef V8_H_
39#define V8_H_
40
41#include <stdio.h>
42
43#ifdef _WIN32
44// When compiling on MinGW stdint.h is available.
45#ifdef __MINGW32__
46#include <stdint.h>
47#else // __MINGW32__
48typedef signed char int8_t;
49typedef unsigned char uint8_t;
50typedef short int16_t; // NOLINT
51typedef unsigned short uint16_t; // NOLINT
52typedef int int32_t;
53typedef unsigned int uint32_t;
54typedef __int64 int64_t;
55typedef unsigned __int64 uint64_t;
56// intptr_t and friends are defined in crtdefs.h through stdio.h.
57#endif // __MINGW32__
58
59// Setup for Windows DLL export/import. When building the V8 DLL the
60// BUILDING_V8_SHARED needs to be defined. When building a program which uses
61// the V8 DLL USING_V8_SHARED needs to be defined. When either building the V8
62// static library or building a program which uses the V8 static library neither
63// BUILDING_V8_SHARED nor USING_V8_SHARED should be defined.
64// The reason for having both V8EXPORT and V8EXPORT_INLINE is that classes which
65// have their code inside this header file need to have __declspec(dllexport)
66// when building the DLL but cannot have __declspec(dllimport) when building
67// a program which uses the DLL.
68#if defined(BUILDING_V8_SHARED) && defined(USING_V8_SHARED)
69#error both BUILDING_V8_SHARED and USING_V8_SHARED are set - please check the\
70 build configuration to ensure that at most one of these is set
71#endif
72
73#ifdef BUILDING_V8_SHARED
74#define V8EXPORT __declspec(dllexport)
75#define V8EXPORT_INLINE __declspec(dllexport)
76#elif USING_V8_SHARED
77#define V8EXPORT __declspec(dllimport)
78#define V8EXPORT_INLINE
79#else
80#define V8EXPORT
81#define V8EXPORT_INLINE
82#endif // BUILDING_V8_SHARED
83
84#else // _WIN32
85
86#include <stdint.h>
87
88// Setup for Linux shared library export. There is no need to distinguish
89// between building or using the V8 shared library, but we should not
90// export symbols when we are building a static library.
91#if defined(__GNUC__) && (__GNUC__ >= 4) && defined(V8_SHARED)
92#define V8EXPORT __attribute__ ((visibility("default")))
93#define V8EXPORT_INLINE __attribute__ ((visibility("default")))
94#else // defined(__GNUC__) && (__GNUC__ >= 4)
95#define V8EXPORT
96#define V8EXPORT_INLINE
97#endif // defined(__GNUC__) && (__GNUC__ >= 4)
98
99#endif // _WIN32
100
101/**
102 * The v8 JavaScript engine.
103 */
104namespace v8 {
105
106class Context;
107class String;
108class Value;
109class Utils;
110class Number;
111class Object;
112class Array;
113class Int32;
114class Uint32;
115class External;
116class Primitive;
117class Boolean;
118class Integer;
119class Function;
120class Date;
121class ImplementationUtilities;
122class Signature;
123template <class T> class Handle;
124template <class T> class Local;
125template <class T> class Persistent;
126class FunctionTemplate;
127class ObjectTemplate;
128class Data;
Kristian Monsen25f61362010-05-21 11:50:48 +0100129class StackTrace;
130class StackFrame;
Steve Blocka7e24c12009-10-30 11:49:00 +0000131
132namespace internal {
133
Steve Blocka7e24c12009-10-30 11:49:00 +0000134class Arguments;
Steve Blockd0582a62009-12-15 09:54:21 +0000135class Object;
136class Top;
Steve Blocka7e24c12009-10-30 11:49:00 +0000137
138}
139
140
141// --- W e a k H a n d l e s
142
143
144/**
145 * A weak reference callback function.
146 *
147 * \param object the weak global object to be reclaimed by the garbage collector
148 * \param parameter the value passed in when making the weak global object
149 */
150typedef void (*WeakReferenceCallback)(Persistent<Value> object,
151 void* parameter);
152
153
154// --- H a n d l e s ---
155
156#define TYPE_CHECK(T, S) \
157 while (false) { \
158 *(static_cast<T**>(0)) = static_cast<S*>(0); \
159 }
160
161/**
162 * An object reference managed by the v8 garbage collector.
163 *
164 * All objects returned from v8 have to be tracked by the garbage
165 * collector so that it knows that the objects are still alive. Also,
166 * because the garbage collector may move objects, it is unsafe to
167 * point directly to an object. Instead, all objects are stored in
168 * handles which are known by the garbage collector and updated
169 * whenever an object moves. Handles should always be passed by value
170 * (except in cases like out-parameters) and they should never be
171 * allocated on the heap.
172 *
173 * There are two types of handles: local and persistent handles.
174 * Local handles are light-weight and transient and typically used in
175 * local operations. They are managed by HandleScopes. Persistent
176 * handles can be used when storing objects across several independent
177 * operations and have to be explicitly deallocated when they're no
178 * longer used.
179 *
180 * It is safe to extract the object stored in the handle by
181 * dereferencing the handle (for instance, to extract the Object* from
182 * an Handle<Object>); the value will still be governed by a handle
183 * behind the scenes and the same rules apply to these values as to
184 * their handles.
185 */
186template <class T> class V8EXPORT_INLINE Handle {
187 public:
188
189 /**
190 * Creates an empty handle.
191 */
192 inline Handle();
193
194 /**
195 * Creates a new handle for the specified value.
196 */
197 explicit Handle(T* val) : val_(val) { }
198
199 /**
200 * Creates a handle for the contents of the specified handle. This
201 * constructor allows you to pass handles as arguments by value and
202 * to assign between handles. However, if you try to assign between
203 * incompatible handles, for instance from a Handle<String> to a
204 * Handle<Number> it will cause a compiletime error. Assigning
205 * between compatible handles, for instance assigning a
206 * Handle<String> to a variable declared as Handle<Value>, is legal
207 * because String is a subclass of Value.
208 */
209 template <class S> inline Handle(Handle<S> that)
210 : val_(reinterpret_cast<T*>(*that)) {
211 /**
212 * This check fails when trying to convert between incompatible
213 * handles. For example, converting from a Handle<String> to a
214 * Handle<Number>.
215 */
216 TYPE_CHECK(T, S);
217 }
218
219 /**
220 * Returns true if the handle is empty.
221 */
222 bool IsEmpty() const { return val_ == 0; }
223
224 T* operator->() const { return val_; }
225
226 T* operator*() const { return val_; }
227
228 /**
229 * Sets the handle to be empty. IsEmpty() will then return true.
230 */
231 void Clear() { this->val_ = 0; }
232
233 /**
234 * Checks whether two handles are the same.
235 * Returns true if both are empty, or if the objects
236 * to which they refer are identical.
237 * The handles' references are not checked.
238 */
239 template <class S> bool operator==(Handle<S> that) const {
240 internal::Object** a = reinterpret_cast<internal::Object**>(**this);
241 internal::Object** b = reinterpret_cast<internal::Object**>(*that);
242 if (a == 0) return b == 0;
243 if (b == 0) return false;
244 return *a == *b;
245 }
246
247 /**
248 * Checks whether two handles are different.
249 * Returns true if only one of the handles is empty, or if
250 * the objects to which they refer are different.
251 * The handles' references are not checked.
252 */
253 template <class S> bool operator!=(Handle<S> that) const {
254 return !operator==(that);
255 }
256
257 template <class S> static inline Handle<T> Cast(Handle<S> that) {
258#ifdef V8_ENABLE_CHECKS
259 // If we're going to perform the type check then we have to check
260 // that the handle isn't empty before doing the checked cast.
261 if (that.IsEmpty()) return Handle<T>();
262#endif
263 return Handle<T>(T::Cast(*that));
264 }
265
Steve Block6ded16b2010-05-10 14:33:55 +0100266 template <class S> inline Handle<S> As() {
267 return Handle<S>::Cast(*this);
268 }
269
Steve Blocka7e24c12009-10-30 11:49:00 +0000270 private:
271 T* val_;
272};
273
274
275/**
276 * A light-weight stack-allocated object handle. All operations
277 * that return objects from within v8 return them in local handles. They
278 * are created within HandleScopes, and all local handles allocated within a
279 * handle scope are destroyed when the handle scope is destroyed. Hence it
280 * is not necessary to explicitly deallocate local handles.
281 */
282template <class T> class V8EXPORT_INLINE Local : public Handle<T> {
283 public:
284 inline Local();
285 template <class S> inline Local(Local<S> that)
286 : Handle<T>(reinterpret_cast<T*>(*that)) {
287 /**
288 * This check fails when trying to convert between incompatible
289 * handles. For example, converting from a Handle<String> to a
290 * Handle<Number>.
291 */
292 TYPE_CHECK(T, S);
293 }
294 template <class S> inline Local(S* that) : Handle<T>(that) { }
295 template <class S> static inline Local<T> Cast(Local<S> that) {
296#ifdef V8_ENABLE_CHECKS
297 // If we're going to perform the type check then we have to check
298 // that the handle isn't empty before doing the checked cast.
299 if (that.IsEmpty()) return Local<T>();
300#endif
301 return Local<T>(T::Cast(*that));
302 }
303
Steve Block6ded16b2010-05-10 14:33:55 +0100304 template <class S> inline Local<S> As() {
305 return Local<S>::Cast(*this);
306 }
307
Steve Blocka7e24c12009-10-30 11:49:00 +0000308 /** Create a local handle for the content of another handle.
309 * The referee is kept alive by the local handle even when
310 * the original handle is destroyed/disposed.
311 */
312 inline static Local<T> New(Handle<T> that);
313};
314
315
316/**
317 * An object reference that is independent of any handle scope. Where
318 * a Local handle only lives as long as the HandleScope in which it was
319 * allocated, a Persistent handle remains valid until it is explicitly
320 * disposed.
321 *
322 * A persistent handle contains a reference to a storage cell within
323 * the v8 engine which holds an object value and which is updated by
324 * the garbage collector whenever the object is moved. A new storage
325 * cell can be created using Persistent::New and existing handles can
326 * be disposed using Persistent::Dispose. Since persistent handles
327 * are passed by value you may have many persistent handle objects
328 * that point to the same storage cell. For instance, if you pass a
329 * persistent handle as an argument to a function you will not get two
330 * different storage cells but rather two references to the same
331 * storage cell.
332 */
333template <class T> class V8EXPORT_INLINE Persistent : public Handle<T> {
334 public:
335
336 /**
337 * Creates an empty persistent handle that doesn't point to any
338 * storage cell.
339 */
340 inline Persistent();
341
342 /**
343 * Creates a persistent handle for the same storage cell as the
344 * specified handle. This constructor allows you to pass persistent
345 * handles as arguments by value and to assign between persistent
346 * handles. However, attempting to assign between incompatible
347 * persistent handles, for instance from a Persistent<String> to a
348 * Persistent<Number> will cause a compiletime error. Assigning
349 * between compatible persistent handles, for instance assigning a
350 * Persistent<String> to a variable declared as Persistent<Value>,
351 * is allowed as String is a subclass of Value.
352 */
353 template <class S> inline Persistent(Persistent<S> that)
354 : Handle<T>(reinterpret_cast<T*>(*that)) {
355 /**
356 * This check fails when trying to convert between incompatible
357 * handles. For example, converting from a Handle<String> to a
358 * Handle<Number>.
359 */
360 TYPE_CHECK(T, S);
361 }
362
363 template <class S> inline Persistent(S* that) : Handle<T>(that) { }
364
365 /**
366 * "Casts" a plain handle which is known to be a persistent handle
367 * to a persistent handle.
368 */
369 template <class S> explicit inline Persistent(Handle<S> that)
370 : Handle<T>(*that) { }
371
372 template <class S> static inline Persistent<T> Cast(Persistent<S> that) {
373#ifdef V8_ENABLE_CHECKS
374 // If we're going to perform the type check then we have to check
375 // that the handle isn't empty before doing the checked cast.
376 if (that.IsEmpty()) return Persistent<T>();
377#endif
378 return Persistent<T>(T::Cast(*that));
379 }
380
Steve Block6ded16b2010-05-10 14:33:55 +0100381 template <class S> inline Persistent<S> As() {
382 return Persistent<S>::Cast(*this);
383 }
384
Steve Blocka7e24c12009-10-30 11:49:00 +0000385 /**
386 * Creates a new persistent handle for an existing local or
387 * persistent handle.
388 */
389 inline static Persistent<T> New(Handle<T> that);
390
391 /**
392 * Releases the storage cell referenced by this persistent handle.
393 * Does not remove the reference to the cell from any handles.
394 * This handle's reference, and any any other references to the storage
395 * cell remain and IsEmpty will still return false.
396 */
397 inline void Dispose();
398
399 /**
400 * Make the reference to this object weak. When only weak handles
401 * refer to the object, the garbage collector will perform a
402 * callback to the given V8::WeakReferenceCallback function, passing
403 * it the object reference and the given parameters.
404 */
405 inline void MakeWeak(void* parameters, WeakReferenceCallback callback);
406
407 /** Clears the weak reference to this object.*/
408 inline void ClearWeak();
409
410 /**
411 *Checks if the handle holds the only reference to an object.
412 */
413 inline bool IsNearDeath() const;
414
415 /**
416 * Returns true if the handle's reference is weak.
417 */
418 inline bool IsWeak() const;
419
420 private:
421 friend class ImplementationUtilities;
422 friend class ObjectTemplate;
423};
424
425
426 /**
427 * A stack-allocated class that governs a number of local handles.
428 * After a handle scope has been created, all local handles will be
429 * allocated within that handle scope until either the handle scope is
430 * deleted or another handle scope is created. If there is already a
431 * handle scope and a new one is created, all allocations will take
432 * place in the new handle scope until it is deleted. After that,
433 * new handles will again be allocated in the original handle scope.
434 *
435 * After the handle scope of a local handle has been deleted the
436 * garbage collector will no longer track the object stored in the
437 * handle and may deallocate it. The behavior of accessing a handle
438 * for which the handle scope has been deleted is undefined.
439 */
440class V8EXPORT HandleScope {
441 public:
442 HandleScope();
443
444 ~HandleScope();
445
446 /**
447 * Closes the handle scope and returns the value as a handle in the
448 * previous scope, which is the new current scope after the call.
449 */
450 template <class T> Local<T> Close(Handle<T> value);
451
452 /**
453 * Counts the number of allocated handles.
454 */
455 static int NumberOfHandles();
456
457 /**
458 * Creates a new handle with the given value.
459 */
460 static internal::Object** CreateHandle(internal::Object* value);
461
462 private:
463 // Make it impossible to create heap-allocated or illegal handle
464 // scopes by disallowing certain operations.
465 HandleScope(const HandleScope&);
466 void operator=(const HandleScope&);
467 void* operator new(size_t size);
468 void operator delete(void*, size_t);
469
Steve Blockd0582a62009-12-15 09:54:21 +0000470 // This Data class is accessible internally as HandleScopeData through a
471 // typedef in the ImplementationUtilities class.
Steve Blocka7e24c12009-10-30 11:49:00 +0000472 class V8EXPORT Data {
473 public:
474 int extensions;
475 internal::Object** next;
476 internal::Object** limit;
477 inline void Initialize() {
478 extensions = -1;
479 next = limit = NULL;
480 }
481 };
482
483 Data previous_;
484
485 // Allow for the active closing of HandleScopes which allows to pass a handle
486 // from the HandleScope being closed to the next top most HandleScope.
487 bool is_closed_;
488 internal::Object** RawClose(internal::Object** value);
489
490 friend class ImplementationUtilities;
491};
492
493
494// --- S p e c i a l o b j e c t s ---
495
496
497/**
498 * The superclass of values and API object templates.
499 */
500class V8EXPORT Data {
501 private:
502 Data();
503};
504
505
506/**
507 * Pre-compilation data that can be associated with a script. This
508 * data can be calculated for a script in advance of actually
509 * compiling it, and can be stored between compilations. When script
510 * data is given to the compile method compilation will be faster.
511 */
512class V8EXPORT ScriptData { // NOLINT
513 public:
514 virtual ~ScriptData() { }
515 static ScriptData* PreCompile(const char* input, int length);
516 static ScriptData* New(unsigned* data, int length);
517
518 virtual int Length() = 0;
519 virtual unsigned* Data() = 0;
Leon Clarkee46be812010-01-19 14:06:41 +0000520 virtual bool HasError() = 0;
Steve Blocka7e24c12009-10-30 11:49:00 +0000521};
522
523
524/**
525 * The origin, within a file, of a script.
526 */
527class V8EXPORT ScriptOrigin {
528 public:
529 ScriptOrigin(Handle<Value> resource_name,
530 Handle<Integer> resource_line_offset = Handle<Integer>(),
531 Handle<Integer> resource_column_offset = Handle<Integer>())
532 : resource_name_(resource_name),
533 resource_line_offset_(resource_line_offset),
534 resource_column_offset_(resource_column_offset) { }
535 inline Handle<Value> ResourceName() const;
536 inline Handle<Integer> ResourceLineOffset() const;
537 inline Handle<Integer> ResourceColumnOffset() const;
538 private:
539 Handle<Value> resource_name_;
540 Handle<Integer> resource_line_offset_;
541 Handle<Integer> resource_column_offset_;
542};
543
544
545/**
546 * A compiled JavaScript script.
547 */
548class V8EXPORT Script {
549 public:
550
Steve Blocka7e24c12009-10-30 11:49:00 +0000551 /**
Andrei Popescu402d9372010-02-26 13:31:12 +0000552 * Compiles the specified script (context-independent).
Steve Blocka7e24c12009-10-30 11:49:00 +0000553 *
Andrei Popescu402d9372010-02-26 13:31:12 +0000554 * \param source Script source code.
Steve Block6ded16b2010-05-10 14:33:55 +0100555 * \param origin Script origin, owned by caller, no references are kept
Andrei Popescu402d9372010-02-26 13:31:12 +0000556 * when New() returns
557 * \param pre_data Pre-parsing data, as obtained by ScriptData::PreCompile()
558 * using pre_data speeds compilation if it's done multiple times.
559 * Owned by caller, no references are kept when New() returns.
560 * \param script_data Arbitrary data associated with script. Using
Steve Block6ded16b2010-05-10 14:33:55 +0100561 * this has same effect as calling SetData(), but allows data to be
Andrei Popescu402d9372010-02-26 13:31:12 +0000562 * available to compile event handlers.
563 * \return Compiled script object (context independent; when run it
564 * will use the currently entered context).
Steve Blocka7e24c12009-10-30 11:49:00 +0000565 */
Andrei Popescu402d9372010-02-26 13:31:12 +0000566 static Local<Script> New(Handle<String> source,
567 ScriptOrigin* origin = NULL,
568 ScriptData* pre_data = NULL,
569 Handle<String> script_data = Handle<String>());
Steve Blocka7e24c12009-10-30 11:49:00 +0000570
571 /**
572 * Compiles the specified script using the specified file name
573 * object (typically a string) as the script's origin.
574 *
Andrei Popescu402d9372010-02-26 13:31:12 +0000575 * \param source Script source code.
Steve Block6ded16b2010-05-10 14:33:55 +0100576 * \param file_name file name object (typically a string) to be used
Andrei Popescu402d9372010-02-26 13:31:12 +0000577 * as the script's origin.
578 * \return Compiled script object (context independent; when run it
579 * will use the currently entered context).
580 */
581 static Local<Script> New(Handle<String> source,
582 Handle<Value> file_name);
583
584 /**
585 * Compiles the specified script (bound to current context).
586 *
587 * \param source Script source code.
Steve Block6ded16b2010-05-10 14:33:55 +0100588 * \param origin Script origin, owned by caller, no references are kept
Andrei Popescu402d9372010-02-26 13:31:12 +0000589 * when Compile() returns
590 * \param pre_data Pre-parsing data, as obtained by ScriptData::PreCompile()
591 * using pre_data speeds compilation if it's done multiple times.
592 * Owned by caller, no references are kept when Compile() returns.
593 * \param script_data Arbitrary data associated with script. Using
594 * this has same effect as calling SetData(), but makes data available
595 * earlier (i.e. to compile event handlers).
596 * \return Compiled script object, bound to the context that was active
597 * when this function was called. When run it will always use this
598 * context.
Steve Blocka7e24c12009-10-30 11:49:00 +0000599 */
600 static Local<Script> Compile(Handle<String> source,
Andrei Popescu402d9372010-02-26 13:31:12 +0000601 ScriptOrigin* origin = NULL,
602 ScriptData* pre_data = NULL,
603 Handle<String> script_data = Handle<String>());
604
605 /**
606 * Compiles the specified script using the specified file name
607 * object (typically a string) as the script's origin.
608 *
609 * \param source Script source code.
610 * \param file_name File name to use as script's origin
611 * \param script_data Arbitrary data associated with script. Using
612 * this has same effect as calling SetData(), but makes data available
613 * earlier (i.e. to compile event handlers).
614 * \return Compiled script object, bound to the context that was active
615 * when this function was called. When run it will always use this
616 * context.
617 */
618 static Local<Script> Compile(Handle<String> source,
619 Handle<Value> file_name,
620 Handle<String> script_data = Handle<String>());
Steve Blocka7e24c12009-10-30 11:49:00 +0000621
622 /**
623 * Runs the script returning the resulting value. If the script is
624 * context independent (created using ::New) it will be run in the
625 * currently entered context. If it is context specific (created
626 * using ::Compile) it will be run in the context in which it was
627 * compiled.
628 */
629 Local<Value> Run();
630
631 /**
632 * Returns the script id value.
633 */
634 Local<Value> Id();
635
636 /**
637 * Associate an additional data object with the script. This is mainly used
638 * with the debugger as this data object is only available through the
639 * debugger API.
640 */
Steve Blockd0582a62009-12-15 09:54:21 +0000641 void SetData(Handle<String> data);
Steve Blocka7e24c12009-10-30 11:49:00 +0000642};
643
644
645/**
646 * An error message.
647 */
648class V8EXPORT Message {
649 public:
650 Local<String> Get() const;
651 Local<String> GetSourceLine() const;
652
653 /**
654 * Returns the resource name for the script from where the function causing
655 * the error originates.
656 */
657 Handle<Value> GetScriptResourceName() const;
658
659 /**
660 * Returns the resource data for the script from where the function causing
661 * the error originates.
662 */
663 Handle<Value> GetScriptData() const;
664
665 /**
666 * Returns the number, 1-based, of the line where the error occurred.
667 */
668 int GetLineNumber() const;
669
670 /**
671 * Returns the index within the script of the first character where
672 * the error occurred.
673 */
674 int GetStartPosition() const;
675
676 /**
677 * Returns the index within the script of the last character where
678 * the error occurred.
679 */
680 int GetEndPosition() const;
681
682 /**
683 * Returns the index within the line of the first character where
684 * the error occurred.
685 */
686 int GetStartColumn() const;
687
688 /**
689 * Returns the index within the line of the last character where
690 * the error occurred.
691 */
692 int GetEndColumn() const;
693
694 // TODO(1245381): Print to a string instead of on a FILE.
695 static void PrintCurrentStackTrace(FILE* out);
Kristian Monsen25f61362010-05-21 11:50:48 +0100696
697 static const int kNoLineNumberInfo = 0;
698 static const int kNoColumnInfo = 0;
699};
700
701
702/**
703 * Representation of a JavaScript stack trace. The information collected is a
704 * snapshot of the execution stack and the information remains valid after
705 * execution continues.
706 */
707class V8EXPORT StackTrace {
708 public:
709 /**
710 * Flags that determine what information is placed captured for each
711 * StackFrame when grabbing the current stack trace.
712 */
713 enum StackTraceOptions {
714 kLineNumber = 1,
715 kColumnOffset = 1 << 1 | kLineNumber,
716 kScriptName = 1 << 2,
717 kFunctionName = 1 << 3,
718 kIsEval = 1 << 4,
719 kIsConstructor = 1 << 5,
720 kOverview = kLineNumber | kColumnOffset | kScriptName | kFunctionName,
721 kDetailed = kOverview | kIsEval | kIsConstructor
722 };
723
724 /**
725 * Returns a StackFrame at a particular index.
726 */
727 Local<StackFrame> GetFrame(uint32_t index) const;
728
729 /**
730 * Returns the number of StackFrames.
731 */
732 int GetFrameCount() const;
733
734 /**
735 * Returns StackTrace as a v8::Array that contains StackFrame objects.
736 */
737 Local<Array> AsArray();
738
739 /**
740 * Grab a snapshot of the the current JavaScript execution stack.
741 *
742 * \param frame_limit The maximum number of stack frames we want to capture.
743 * \param options Enumerates the set of things we will capture for each
744 * StackFrame.
745 */
746 static Local<StackTrace> CurrentStackTrace(
747 int frame_limit,
748 StackTraceOptions options = kOverview);
749};
750
751
752/**
753 * A single JavaScript stack frame.
754 */
755class V8EXPORT StackFrame {
756 public:
757 /**
758 * Returns the number, 1-based, of the line for the associate function call.
759 * This method will return Message::kNoLineNumberInfo if it is unable to
760 * retrieve the line number, or if kLineNumber was not passed as an option
761 * when capturing the StackTrace.
762 */
763 int GetLineNumber() const;
764
765 /**
766 * Returns the 1-based column offset on the line for the associated function
767 * call.
768 * This method will return Message::kNoColumnInfo if it is unable to retrieve
769 * the column number, or if kColumnOffset was not passed as an option when
770 * capturing the StackTrace.
771 */
772 int GetColumn() const;
773
774 /**
775 * Returns the name of the resource that contains the script for the
776 * function for this StackFrame.
777 */
778 Local<String> GetScriptName() const;
779
780 /**
781 * Returns the name of the function associated with this stack frame.
782 */
783 Local<String> GetFunctionName() const;
784
785 /**
786 * Returns whether or not the associated function is compiled via a call to
787 * eval().
788 */
789 bool IsEval() const;
790
791 /**
792 * Returns whther or not the associated function is called as a
793 * constructor via "new".
794 */
795 bool IsConstructor() const;
Steve Blocka7e24c12009-10-30 11:49:00 +0000796};
797
798
799// --- V a l u e ---
800
801
802/**
803 * The superclass of all JavaScript values and objects.
804 */
805class V8EXPORT Value : public Data {
806 public:
807
808 /**
809 * Returns true if this value is the undefined value. See ECMA-262
810 * 4.3.10.
811 */
812 bool IsUndefined() const;
813
814 /**
815 * Returns true if this value is the null value. See ECMA-262
816 * 4.3.11.
817 */
818 bool IsNull() const;
819
820 /**
821 * Returns true if this value is true.
822 */
823 bool IsTrue() const;
824
825 /**
826 * Returns true if this value is false.
827 */
828 bool IsFalse() const;
829
830 /**
831 * Returns true if this value is an instance of the String type.
832 * See ECMA-262 8.4.
833 */
834 inline bool IsString() const;
835
836 /**
837 * Returns true if this value is a function.
838 */
839 bool IsFunction() const;
840
841 /**
842 * Returns true if this value is an array.
843 */
844 bool IsArray() const;
845
846 /**
847 * Returns true if this value is an object.
848 */
849 bool IsObject() const;
850
851 /**
852 * Returns true if this value is boolean.
853 */
854 bool IsBoolean() const;
855
856 /**
857 * Returns true if this value is a number.
858 */
859 bool IsNumber() const;
860
861 /**
862 * Returns true if this value is external.
863 */
864 bool IsExternal() const;
865
866 /**
867 * Returns true if this value is a 32-bit signed integer.
868 */
869 bool IsInt32() const;
870
871 /**
Steve Block6ded16b2010-05-10 14:33:55 +0100872 * Returns true if this value is a 32-bit unsigned integer.
873 */
874 bool IsUint32() const;
875
876 /**
Steve Blocka7e24c12009-10-30 11:49:00 +0000877 * Returns true if this value is a Date.
878 */
879 bool IsDate() const;
880
881 Local<Boolean> ToBoolean() const;
882 Local<Number> ToNumber() const;
883 Local<String> ToString() const;
884 Local<String> ToDetailString() const;
885 Local<Object> ToObject() const;
886 Local<Integer> ToInteger() const;
887 Local<Uint32> ToUint32() const;
888 Local<Int32> ToInt32() const;
889
890 /**
891 * Attempts to convert a string to an array index.
892 * Returns an empty handle if the conversion fails.
893 */
894 Local<Uint32> ToArrayIndex() const;
895
896 bool BooleanValue() const;
897 double NumberValue() const;
898 int64_t IntegerValue() const;
899 uint32_t Uint32Value() const;
900 int32_t Int32Value() const;
901
902 /** JS == */
903 bool Equals(Handle<Value> that) const;
904 bool StrictEquals(Handle<Value> that) const;
Steve Block3ce2e202009-11-05 08:53:23 +0000905
Steve Blocka7e24c12009-10-30 11:49:00 +0000906 private:
907 inline bool QuickIsString() const;
908 bool FullIsString() const;
909};
910
911
912/**
913 * The superclass of primitive values. See ECMA-262 4.3.2.
914 */
915class V8EXPORT Primitive : public Value { };
916
917
918/**
919 * A primitive boolean value (ECMA-262, 4.3.14). Either the true
920 * or false value.
921 */
922class V8EXPORT Boolean : public Primitive {
923 public:
924 bool Value() const;
925 static inline Handle<Boolean> New(bool value);
926};
927
928
929/**
930 * A JavaScript string value (ECMA-262, 4.3.17).
931 */
932class V8EXPORT String : public Primitive {
933 public:
934
935 /**
936 * Returns the number of characters in this string.
937 */
938 int Length() const;
939
940 /**
941 * Returns the number of bytes in the UTF-8 encoded
942 * representation of this string.
943 */
944 int Utf8Length() const;
945
946 /**
947 * Write the contents of the string to an external buffer.
948 * If no arguments are given, expects the buffer to be large
949 * enough to hold the entire string and NULL terminator. Copies
950 * the contents of the string and the NULL terminator into the
951 * buffer.
952 *
953 * Copies up to length characters into the output buffer.
954 * Only null-terminates if there is enough space in the buffer.
955 *
956 * \param buffer The buffer into which the string will be copied.
957 * \param start The starting position within the string at which
958 * copying begins.
959 * \param length The number of bytes to copy from the string.
Steve Block6ded16b2010-05-10 14:33:55 +0100960 * \param nchars_ref The number of characters written, can be NULL.
961 * \param hints Various hints that might affect performance of this or
962 * subsequent operations.
963 * \return The number of bytes copied to the buffer
Steve Blocka7e24c12009-10-30 11:49:00 +0000964 * excluding the NULL terminator.
965 */
Steve Block6ded16b2010-05-10 14:33:55 +0100966 enum WriteHints {
967 NO_HINTS = 0,
968 HINT_MANY_WRITES_EXPECTED = 1
969 };
970
971 int Write(uint16_t* buffer,
972 int start = 0,
973 int length = -1,
974 WriteHints hints = NO_HINTS) const; // UTF-16
975 int WriteAscii(char* buffer,
976 int start = 0,
977 int length = -1,
978 WriteHints hints = NO_HINTS) const; // ASCII
979 int WriteUtf8(char* buffer,
980 int length = -1,
981 int* nchars_ref = NULL,
982 WriteHints hints = NO_HINTS) const; // UTF-8
Steve Blocka7e24c12009-10-30 11:49:00 +0000983
984 /**
985 * A zero length string.
986 */
987 static v8::Local<v8::String> Empty();
988
989 /**
990 * Returns true if the string is external
991 */
992 bool IsExternal() const;
993
994 /**
995 * Returns true if the string is both external and ascii
996 */
997 bool IsExternalAscii() const;
Leon Clarkee46be812010-01-19 14:06:41 +0000998
999 class V8EXPORT ExternalStringResourceBase {
1000 public:
1001 virtual ~ExternalStringResourceBase() {}
1002 protected:
1003 ExternalStringResourceBase() {}
1004 private:
1005 // Disallow copying and assigning.
1006 ExternalStringResourceBase(const ExternalStringResourceBase&);
1007 void operator=(const ExternalStringResourceBase&);
1008 };
1009
Steve Blocka7e24c12009-10-30 11:49:00 +00001010 /**
1011 * An ExternalStringResource is a wrapper around a two-byte string
1012 * buffer that resides outside V8's heap. Implement an
1013 * ExternalStringResource to manage the life cycle of the underlying
1014 * buffer. Note that the string data must be immutable.
1015 */
Leon Clarkee46be812010-01-19 14:06:41 +00001016 class V8EXPORT ExternalStringResource
1017 : public ExternalStringResourceBase {
Steve Blocka7e24c12009-10-30 11:49:00 +00001018 public:
1019 /**
1020 * Override the destructor to manage the life cycle of the underlying
1021 * buffer.
1022 */
1023 virtual ~ExternalStringResource() {}
1024 /** The string data from the underlying buffer.*/
1025 virtual const uint16_t* data() const = 0;
1026 /** The length of the string. That is, the number of two-byte characters.*/
1027 virtual size_t length() const = 0;
1028 protected:
1029 ExternalStringResource() {}
Steve Blocka7e24c12009-10-30 11:49:00 +00001030 };
1031
1032 /**
1033 * An ExternalAsciiStringResource is a wrapper around an ascii
1034 * string buffer that resides outside V8's heap. Implement an
1035 * ExternalAsciiStringResource to manage the life cycle of the
1036 * underlying buffer. Note that the string data must be immutable
1037 * and that the data must be strict 7-bit ASCII, not Latin1 or
1038 * UTF-8, which would require special treatment internally in the
1039 * engine and, in the case of UTF-8, do not allow efficient indexing.
1040 * Use String::New or convert to 16 bit data for non-ASCII.
1041 */
1042
Leon Clarkee46be812010-01-19 14:06:41 +00001043 class V8EXPORT ExternalAsciiStringResource
1044 : public ExternalStringResourceBase {
Steve Blocka7e24c12009-10-30 11:49:00 +00001045 public:
1046 /**
1047 * Override the destructor to manage the life cycle of the underlying
1048 * buffer.
1049 */
1050 virtual ~ExternalAsciiStringResource() {}
1051 /** The string data from the underlying buffer.*/
1052 virtual const char* data() const = 0;
1053 /** The number of ascii characters in the string.*/
1054 virtual size_t length() const = 0;
1055 protected:
1056 ExternalAsciiStringResource() {}
Steve Blocka7e24c12009-10-30 11:49:00 +00001057 };
1058
1059 /**
1060 * Get the ExternalStringResource for an external string. Returns
1061 * NULL if IsExternal() doesn't return true.
1062 */
1063 inline ExternalStringResource* GetExternalStringResource() const;
1064
1065 /**
1066 * Get the ExternalAsciiStringResource for an external ascii string.
1067 * Returns NULL if IsExternalAscii() doesn't return true.
1068 */
1069 ExternalAsciiStringResource* GetExternalAsciiStringResource() const;
1070
1071 static inline String* Cast(v8::Value* obj);
1072
1073 /**
1074 * Allocates a new string from either utf-8 encoded or ascii data.
1075 * The second parameter 'length' gives the buffer length.
1076 * If the data is utf-8 encoded, the caller must
1077 * be careful to supply the length parameter.
1078 * If it is not given, the function calls
1079 * 'strlen' to determine the buffer length, it might be
1080 * wrong if 'data' contains a null character.
1081 */
1082 static Local<String> New(const char* data, int length = -1);
1083
1084 /** Allocates a new string from utf16 data.*/
1085 static Local<String> New(const uint16_t* data, int length = -1);
1086
1087 /** Creates a symbol. Returns one if it exists already.*/
1088 static Local<String> NewSymbol(const char* data, int length = -1);
1089
1090 /**
Steve Block3ce2e202009-11-05 08:53:23 +00001091 * Creates a new string by concatenating the left and the right strings
1092 * passed in as parameters.
1093 */
1094 static Local<String> Concat(Handle<String> left, Handle<String>right);
1095
1096 /**
Steve Blocka7e24c12009-10-30 11:49:00 +00001097 * Creates a new external string using the data defined in the given
1098 * resource. The resource is deleted when the external string is no
1099 * longer live on V8's heap. The caller of this function should not
1100 * delete or modify the resource. Neither should the underlying buffer be
1101 * deallocated or modified except through the destructor of the
1102 * external string resource.
1103 */
1104 static Local<String> NewExternal(ExternalStringResource* resource);
1105
1106 /**
1107 * Associate an external string resource with this string by transforming it
1108 * in place so that existing references to this string in the JavaScript heap
1109 * will use the external string resource. The external string resource's
1110 * character contents needs to be equivalent to this string.
1111 * Returns true if the string has been changed to be an external string.
1112 * The string is not modified if the operation fails.
1113 */
1114 bool MakeExternal(ExternalStringResource* resource);
1115
1116 /**
1117 * Creates a new external string using the ascii data defined in the given
1118 * resource. The resource is deleted when the external string is no
1119 * longer live on V8's heap. The caller of this function should not
1120 * delete or modify the resource. Neither should the underlying buffer be
1121 * deallocated or modified except through the destructor of the
1122 * external string resource.
1123 */
1124 static Local<String> NewExternal(ExternalAsciiStringResource* resource);
1125
1126 /**
1127 * Associate an external string resource with this string by transforming it
1128 * in place so that existing references to this string in the JavaScript heap
1129 * will use the external string resource. The external string resource's
1130 * character contents needs to be equivalent to this string.
1131 * Returns true if the string has been changed to be an external string.
1132 * The string is not modified if the operation fails.
1133 */
1134 bool MakeExternal(ExternalAsciiStringResource* resource);
1135
1136 /**
1137 * Returns true if this string can be made external.
1138 */
1139 bool CanMakeExternal();
1140
1141 /** Creates an undetectable string from the supplied ascii or utf-8 data.*/
1142 static Local<String> NewUndetectable(const char* data, int length = -1);
1143
1144 /** Creates an undetectable string from the supplied utf-16 data.*/
1145 static Local<String> NewUndetectable(const uint16_t* data, int length = -1);
1146
1147 /**
1148 * Converts an object to a utf8-encoded character array. Useful if
1149 * you want to print the object. If conversion to a string fails
1150 * (eg. due to an exception in the toString() method of the object)
1151 * then the length() method returns 0 and the * operator returns
1152 * NULL.
1153 */
1154 class V8EXPORT Utf8Value {
1155 public:
1156 explicit Utf8Value(Handle<v8::Value> obj);
1157 ~Utf8Value();
1158 char* operator*() { return str_; }
1159 const char* operator*() const { return str_; }
1160 int length() const { return length_; }
1161 private:
1162 char* str_;
1163 int length_;
1164
1165 // Disallow copying and assigning.
1166 Utf8Value(const Utf8Value&);
1167 void operator=(const Utf8Value&);
1168 };
1169
1170 /**
1171 * Converts an object to an ascii string.
1172 * Useful if you want to print the object.
1173 * If conversion to a string fails (eg. due to an exception in the toString()
1174 * method of the object) then the length() method returns 0 and the * operator
1175 * returns NULL.
1176 */
1177 class V8EXPORT AsciiValue {
1178 public:
1179 explicit AsciiValue(Handle<v8::Value> obj);
1180 ~AsciiValue();
1181 char* operator*() { return str_; }
1182 const char* operator*() const { return str_; }
1183 int length() const { return length_; }
1184 private:
1185 char* str_;
1186 int length_;
1187
1188 // Disallow copying and assigning.
1189 AsciiValue(const AsciiValue&);
1190 void operator=(const AsciiValue&);
1191 };
1192
1193 /**
1194 * Converts an object to a two-byte string.
1195 * If conversion to a string fails (eg. due to an exception in the toString()
1196 * method of the object) then the length() method returns 0 and the * operator
1197 * returns NULL.
1198 */
1199 class V8EXPORT Value {
1200 public:
1201 explicit Value(Handle<v8::Value> obj);
1202 ~Value();
1203 uint16_t* operator*() { return str_; }
1204 const uint16_t* operator*() const { return str_; }
1205 int length() const { return length_; }
1206 private:
1207 uint16_t* str_;
1208 int length_;
1209
1210 // Disallow copying and assigning.
1211 Value(const Value&);
1212 void operator=(const Value&);
1213 };
Steve Block3ce2e202009-11-05 08:53:23 +00001214
Steve Blocka7e24c12009-10-30 11:49:00 +00001215 private:
1216 void VerifyExternalStringResource(ExternalStringResource* val) const;
1217 static void CheckCast(v8::Value* obj);
1218};
1219
1220
1221/**
1222 * A JavaScript number value (ECMA-262, 4.3.20)
1223 */
1224class V8EXPORT Number : public Primitive {
1225 public:
1226 double Value() const;
1227 static Local<Number> New(double value);
1228 static inline Number* Cast(v8::Value* obj);
1229 private:
1230 Number();
1231 static void CheckCast(v8::Value* obj);
1232};
1233
1234
1235/**
1236 * A JavaScript value representing a signed integer.
1237 */
1238class V8EXPORT Integer : public Number {
1239 public:
1240 static Local<Integer> New(int32_t value);
Steve Block3ce2e202009-11-05 08:53:23 +00001241 static Local<Integer> NewFromUnsigned(uint32_t value);
Steve Blocka7e24c12009-10-30 11:49:00 +00001242 int64_t Value() const;
1243 static inline Integer* Cast(v8::Value* obj);
1244 private:
1245 Integer();
1246 static void CheckCast(v8::Value* obj);
1247};
1248
1249
1250/**
1251 * A JavaScript value representing a 32-bit signed integer.
1252 */
1253class V8EXPORT Int32 : public Integer {
1254 public:
1255 int32_t Value() const;
1256 private:
1257 Int32();
1258};
1259
1260
1261/**
1262 * A JavaScript value representing a 32-bit unsigned integer.
1263 */
1264class V8EXPORT Uint32 : public Integer {
1265 public:
1266 uint32_t Value() const;
1267 private:
1268 Uint32();
1269};
1270
1271
1272/**
1273 * An instance of the built-in Date constructor (ECMA-262, 15.9).
1274 */
1275class V8EXPORT Date : public Value {
1276 public:
1277 static Local<Value> New(double time);
1278
1279 /**
1280 * A specialization of Value::NumberValue that is more efficient
1281 * because we know the structure of this object.
1282 */
1283 double NumberValue() const;
1284
1285 static inline Date* Cast(v8::Value* obj);
1286 private:
1287 static void CheckCast(v8::Value* obj);
1288};
1289
1290
1291enum PropertyAttribute {
1292 None = 0,
1293 ReadOnly = 1 << 0,
1294 DontEnum = 1 << 1,
1295 DontDelete = 1 << 2
1296};
1297
Steve Block3ce2e202009-11-05 08:53:23 +00001298enum ExternalArrayType {
1299 kExternalByteArray = 1,
1300 kExternalUnsignedByteArray,
1301 kExternalShortArray,
1302 kExternalUnsignedShortArray,
1303 kExternalIntArray,
1304 kExternalUnsignedIntArray,
1305 kExternalFloatArray
1306};
1307
Steve Blocka7e24c12009-10-30 11:49:00 +00001308/**
1309 * A JavaScript object (ECMA-262, 4.3.3)
1310 */
1311class V8EXPORT Object : public Value {
1312 public:
1313 bool Set(Handle<Value> key,
1314 Handle<Value> value,
1315 PropertyAttribute attribs = None);
1316
Steve Block6ded16b2010-05-10 14:33:55 +01001317 bool Set(uint32_t index,
1318 Handle<Value> value);
1319
Steve Blocka7e24c12009-10-30 11:49:00 +00001320 // Sets a local property on this object bypassing interceptors and
1321 // overriding accessors or read-only properties.
1322 //
1323 // Note that if the object has an interceptor the property will be set
1324 // locally, but since the interceptor takes precedence the local property
1325 // will only be returned if the interceptor doesn't return a value.
1326 //
1327 // Note also that this only works for named properties.
1328 bool ForceSet(Handle<Value> key,
1329 Handle<Value> value,
1330 PropertyAttribute attribs = None);
1331
1332 Local<Value> Get(Handle<Value> key);
1333
Steve Block6ded16b2010-05-10 14:33:55 +01001334 Local<Value> Get(uint32_t index);
1335
Steve Blocka7e24c12009-10-30 11:49:00 +00001336 // TODO(1245389): Replace the type-specific versions of these
1337 // functions with generic ones that accept a Handle<Value> key.
1338 bool Has(Handle<String> key);
1339
1340 bool Delete(Handle<String> key);
1341
1342 // Delete a property on this object bypassing interceptors and
1343 // ignoring dont-delete attributes.
1344 bool ForceDelete(Handle<Value> key);
1345
1346 bool Has(uint32_t index);
1347
1348 bool Delete(uint32_t index);
1349
1350 /**
1351 * Returns an array containing the names of the enumerable properties
1352 * of this object, including properties from prototype objects. The
1353 * array returned by this method contains the same values as would
1354 * be enumerated by a for-in statement over this object.
1355 */
1356 Local<Array> GetPropertyNames();
1357
1358 /**
1359 * Get the prototype object. This does not skip objects marked to
1360 * be skipped by __proto__ and it does not consult the security
1361 * handler.
1362 */
1363 Local<Value> GetPrototype();
1364
1365 /**
Andrei Popescu402d9372010-02-26 13:31:12 +00001366 * Set the prototype object. This does not skip objects marked to
1367 * be skipped by __proto__ and it does not consult the security
1368 * handler.
1369 */
1370 bool SetPrototype(Handle<Value> prototype);
1371
1372 /**
Steve Blocka7e24c12009-10-30 11:49:00 +00001373 * Finds an instance of the given function template in the prototype
1374 * chain.
1375 */
1376 Local<Object> FindInstanceInPrototypeChain(Handle<FunctionTemplate> tmpl);
1377
1378 /**
1379 * Call builtin Object.prototype.toString on this object.
1380 * This is different from Value::ToString() that may call
1381 * user-defined toString function. This one does not.
1382 */
1383 Local<String> ObjectProtoToString();
1384
1385 /** Gets the number of internal fields for this Object. */
1386 int InternalFieldCount();
1387 /** Gets the value in an internal field. */
1388 inline Local<Value> GetInternalField(int index);
1389 /** Sets the value in an internal field. */
1390 void SetInternalField(int index, Handle<Value> value);
1391
1392 /** Gets a native pointer from an internal field. */
1393 inline void* GetPointerFromInternalField(int index);
Steve Block3ce2e202009-11-05 08:53:23 +00001394
Steve Blocka7e24c12009-10-30 11:49:00 +00001395 /** Sets a native pointer in an internal field. */
1396 void SetPointerInInternalField(int index, void* value);
1397
1398 // Testers for local properties.
1399 bool HasRealNamedProperty(Handle<String> key);
1400 bool HasRealIndexedProperty(uint32_t index);
1401 bool HasRealNamedCallbackProperty(Handle<String> key);
1402
1403 /**
1404 * If result.IsEmpty() no real property was located in the prototype chain.
1405 * This means interceptors in the prototype chain are not called.
1406 */
1407 Local<Value> GetRealNamedPropertyInPrototypeChain(Handle<String> key);
1408
1409 /**
1410 * If result.IsEmpty() no real property was located on the object or
1411 * in the prototype chain.
1412 * This means interceptors in the prototype chain are not called.
1413 */
1414 Local<Value> GetRealNamedProperty(Handle<String> key);
1415
1416 /** Tests for a named lookup interceptor.*/
1417 bool HasNamedLookupInterceptor();
1418
1419 /** Tests for an index lookup interceptor.*/
1420 bool HasIndexedLookupInterceptor();
1421
1422 /**
1423 * Turns on access check on the object if the object is an instance of
1424 * a template that has access check callbacks. If an object has no
1425 * access check info, the object cannot be accessed by anyone.
1426 */
1427 void TurnOnAccessCheck();
1428
1429 /**
1430 * Returns the identity hash for this object. The current implemenation uses
1431 * a hidden property on the object to store the identity hash.
1432 *
1433 * The return value will never be 0. Also, it is not guaranteed to be
1434 * unique.
1435 */
1436 int GetIdentityHash();
1437
1438 /**
1439 * Access hidden properties on JavaScript objects. These properties are
1440 * hidden from the executing JavaScript and only accessible through the V8
1441 * C++ API. Hidden properties introduced by V8 internally (for example the
1442 * identity hash) are prefixed with "v8::".
1443 */
1444 bool SetHiddenValue(Handle<String> key, Handle<Value> value);
1445 Local<Value> GetHiddenValue(Handle<String> key);
1446 bool DeleteHiddenValue(Handle<String> key);
Steve Block3ce2e202009-11-05 08:53:23 +00001447
Steve Blocka7e24c12009-10-30 11:49:00 +00001448 /**
1449 * Returns true if this is an instance of an api function (one
1450 * created from a function created from a function template) and has
1451 * been modified since it was created. Note that this method is
1452 * conservative and may return true for objects that haven't actually
1453 * been modified.
1454 */
1455 bool IsDirty();
1456
1457 /**
1458 * Clone this object with a fast but shallow copy. Values will point
1459 * to the same values as the original object.
1460 */
1461 Local<Object> Clone();
1462
1463 /**
1464 * Set the backing store of the indexed properties to be managed by the
1465 * embedding layer. Access to the indexed properties will follow the rules
1466 * spelled out in CanvasPixelArray.
1467 * Note: The embedding program still owns the data and needs to ensure that
1468 * the backing store is preserved while V8 has a reference.
1469 */
1470 void SetIndexedPropertiesToPixelData(uint8_t* data, int length);
1471
Steve Block3ce2e202009-11-05 08:53:23 +00001472 /**
1473 * Set the backing store of the indexed properties to be managed by the
1474 * embedding layer. Access to the indexed properties will follow the rules
1475 * spelled out for the CanvasArray subtypes in the WebGL specification.
1476 * Note: The embedding program still owns the data and needs to ensure that
1477 * the backing store is preserved while V8 has a reference.
1478 */
1479 void SetIndexedPropertiesToExternalArrayData(void* data,
1480 ExternalArrayType array_type,
1481 int number_of_elements);
1482
Steve Blocka7e24c12009-10-30 11:49:00 +00001483 static Local<Object> New();
1484 static inline Object* Cast(Value* obj);
1485 private:
1486 Object();
1487 static void CheckCast(Value* obj);
1488 Local<Value> CheckedGetInternalField(int index);
Steve Block3ce2e202009-11-05 08:53:23 +00001489 void* SlowGetPointerFromInternalField(int index);
Steve Blocka7e24c12009-10-30 11:49:00 +00001490
1491 /**
1492 * If quick access to the internal field is possible this method
Steve Block3ce2e202009-11-05 08:53:23 +00001493 * returns the value. Otherwise an empty handle is returned.
Steve Blocka7e24c12009-10-30 11:49:00 +00001494 */
1495 inline Local<Value> UncheckedGetInternalField(int index);
1496};
1497
1498
1499/**
1500 * An instance of the built-in array constructor (ECMA-262, 15.4.2).
1501 */
1502class V8EXPORT Array : public Object {
1503 public:
1504 uint32_t Length() const;
1505
1506 /**
1507 * Clones an element at index |index|. Returns an empty
1508 * handle if cloning fails (for any reason).
1509 */
1510 Local<Object> CloneElementAt(uint32_t index);
1511
1512 static Local<Array> New(int length = 0);
1513 static inline Array* Cast(Value* obj);
1514 private:
1515 Array();
1516 static void CheckCast(Value* obj);
1517};
1518
1519
1520/**
1521 * A JavaScript function object (ECMA-262, 15.3).
1522 */
1523class V8EXPORT Function : public Object {
1524 public:
1525 Local<Object> NewInstance() const;
1526 Local<Object> NewInstance(int argc, Handle<Value> argv[]) const;
1527 Local<Value> Call(Handle<Object> recv, int argc, Handle<Value> argv[]);
1528 void SetName(Handle<String> name);
1529 Handle<Value> GetName() const;
Andrei Popescu402d9372010-02-26 13:31:12 +00001530
1531 /**
1532 * Returns zero based line number of function body and
1533 * kLineOffsetNotFound if no information available.
1534 */
1535 int GetScriptLineNumber() const;
1536 ScriptOrigin GetScriptOrigin() const;
Steve Blocka7e24c12009-10-30 11:49:00 +00001537 static inline Function* Cast(Value* obj);
Andrei Popescu402d9372010-02-26 13:31:12 +00001538 static const int kLineOffsetNotFound;
Steve Blocka7e24c12009-10-30 11:49:00 +00001539 private:
1540 Function();
1541 static void CheckCast(Value* obj);
1542};
1543
1544
1545/**
1546 * A JavaScript value that wraps a C++ void*. This type of value is
1547 * mainly used to associate C++ data structures with JavaScript
1548 * objects.
1549 *
1550 * The Wrap function V8 will return the most optimal Value object wrapping the
1551 * C++ void*. The type of the value is not guaranteed to be an External object
1552 * and no assumptions about its type should be made. To access the wrapped
1553 * value Unwrap should be used, all other operations on that object will lead
1554 * to unpredictable results.
1555 */
1556class V8EXPORT External : public Value {
1557 public:
1558 static Local<Value> Wrap(void* data);
1559 static inline void* Unwrap(Handle<Value> obj);
1560
1561 static Local<External> New(void* value);
1562 static inline External* Cast(Value* obj);
1563 void* Value() const;
1564 private:
1565 External();
1566 static void CheckCast(v8::Value* obj);
1567 static inline void* QuickUnwrap(Handle<v8::Value> obj);
1568 static void* FullUnwrap(Handle<v8::Value> obj);
1569};
1570
1571
1572// --- T e m p l a t e s ---
1573
1574
1575/**
1576 * The superclass of object and function templates.
1577 */
1578class V8EXPORT Template : public Data {
1579 public:
1580 /** Adds a property to each instance created by this template.*/
1581 void Set(Handle<String> name, Handle<Data> value,
1582 PropertyAttribute attributes = None);
1583 inline void Set(const char* name, Handle<Data> value);
1584 private:
1585 Template();
1586
1587 friend class ObjectTemplate;
1588 friend class FunctionTemplate;
1589};
1590
1591
1592/**
1593 * The argument information given to function call callbacks. This
1594 * class provides access to information about the context of the call,
1595 * including the receiver, the number and values of arguments, and
1596 * the holder of the function.
1597 */
1598class V8EXPORT Arguments {
1599 public:
1600 inline int Length() const;
1601 inline Local<Value> operator[](int i) const;
1602 inline Local<Function> Callee() const;
1603 inline Local<Object> This() const;
1604 inline Local<Object> Holder() const;
1605 inline bool IsConstructCall() const;
1606 inline Local<Value> Data() const;
1607 private:
1608 Arguments();
1609 friend class ImplementationUtilities;
1610 inline Arguments(Local<Value> data,
1611 Local<Object> holder,
1612 Local<Function> callee,
1613 bool is_construct_call,
1614 void** values, int length);
1615 Local<Value> data_;
1616 Local<Object> holder_;
1617 Local<Function> callee_;
1618 bool is_construct_call_;
1619 void** values_;
1620 int length_;
1621};
1622
1623
1624/**
1625 * The information passed to an accessor callback about the context
1626 * of the property access.
1627 */
1628class V8EXPORT AccessorInfo {
1629 public:
1630 inline AccessorInfo(internal::Object** args)
1631 : args_(args) { }
1632 inline Local<Value> Data() const;
1633 inline Local<Object> This() const;
1634 inline Local<Object> Holder() const;
1635 private:
1636 internal::Object** args_;
1637};
1638
1639
1640typedef Handle<Value> (*InvocationCallback)(const Arguments& args);
1641
1642typedef int (*LookupCallback)(Local<Object> self, Local<String> name);
1643
1644/**
1645 * Accessor[Getter|Setter] are used as callback functions when
1646 * setting|getting a particular property. See objectTemplate::SetAccessor.
1647 */
1648typedef Handle<Value> (*AccessorGetter)(Local<String> property,
1649 const AccessorInfo& info);
1650
1651
1652typedef void (*AccessorSetter)(Local<String> property,
1653 Local<Value> value,
1654 const AccessorInfo& info);
1655
1656
1657/**
1658 * NamedProperty[Getter|Setter] are used as interceptors on object.
1659 * See ObjectTemplate::SetNamedPropertyHandler.
1660 */
1661typedef Handle<Value> (*NamedPropertyGetter)(Local<String> property,
1662 const AccessorInfo& info);
1663
1664
1665/**
1666 * Returns the value if the setter intercepts the request.
1667 * Otherwise, returns an empty handle.
1668 */
1669typedef Handle<Value> (*NamedPropertySetter)(Local<String> property,
1670 Local<Value> value,
1671 const AccessorInfo& info);
1672
1673
1674/**
1675 * Returns a non-empty handle if the interceptor intercepts the request.
1676 * The result is true if the property exists and false otherwise.
1677 */
1678typedef Handle<Boolean> (*NamedPropertyQuery)(Local<String> property,
1679 const AccessorInfo& info);
1680
1681
1682/**
1683 * Returns a non-empty handle if the deleter intercepts the request.
1684 * The return value is true if the property could be deleted and false
1685 * otherwise.
1686 */
1687typedef Handle<Boolean> (*NamedPropertyDeleter)(Local<String> property,
1688 const AccessorInfo& info);
1689
1690/**
1691 * Returns an array containing the names of the properties the named
1692 * property getter intercepts.
1693 */
1694typedef Handle<Array> (*NamedPropertyEnumerator)(const AccessorInfo& info);
1695
1696
1697/**
1698 * Returns the value of the property if the getter intercepts the
1699 * request. Otherwise, returns an empty handle.
1700 */
1701typedef Handle<Value> (*IndexedPropertyGetter)(uint32_t index,
1702 const AccessorInfo& info);
1703
1704
1705/**
1706 * Returns the value if the setter intercepts the request.
1707 * Otherwise, returns an empty handle.
1708 */
1709typedef Handle<Value> (*IndexedPropertySetter)(uint32_t index,
1710 Local<Value> value,
1711 const AccessorInfo& info);
1712
1713
1714/**
1715 * Returns a non-empty handle if the interceptor intercepts the request.
1716 * The result is true if the property exists and false otherwise.
1717 */
1718typedef Handle<Boolean> (*IndexedPropertyQuery)(uint32_t index,
1719 const AccessorInfo& info);
1720
1721/**
1722 * Returns a non-empty handle if the deleter intercepts the request.
1723 * The return value is true if the property could be deleted and false
1724 * otherwise.
1725 */
1726typedef Handle<Boolean> (*IndexedPropertyDeleter)(uint32_t index,
1727 const AccessorInfo& info);
1728
1729/**
1730 * Returns an array containing the indices of the properties the
1731 * indexed property getter intercepts.
1732 */
1733typedef Handle<Array> (*IndexedPropertyEnumerator)(const AccessorInfo& info);
1734
1735
1736/**
1737 * Access control specifications.
1738 *
1739 * Some accessors should be accessible across contexts. These
1740 * accessors have an explicit access control parameter which specifies
1741 * the kind of cross-context access that should be allowed.
1742 *
1743 * Additionally, for security, accessors can prohibit overwriting by
1744 * accessors defined in JavaScript. For objects that have such
1745 * accessors either locally or in their prototype chain it is not
1746 * possible to overwrite the accessor by using __defineGetter__ or
1747 * __defineSetter__ from JavaScript code.
1748 */
1749enum AccessControl {
1750 DEFAULT = 0,
1751 ALL_CAN_READ = 1,
1752 ALL_CAN_WRITE = 1 << 1,
1753 PROHIBITS_OVERWRITING = 1 << 2
1754};
1755
1756
1757/**
1758 * Access type specification.
1759 */
1760enum AccessType {
1761 ACCESS_GET,
1762 ACCESS_SET,
1763 ACCESS_HAS,
1764 ACCESS_DELETE,
1765 ACCESS_KEYS
1766};
1767
1768
1769/**
1770 * Returns true if cross-context access should be allowed to the named
1771 * property with the given key on the host object.
1772 */
1773typedef bool (*NamedSecurityCallback)(Local<Object> host,
1774 Local<Value> key,
1775 AccessType type,
1776 Local<Value> data);
1777
1778
1779/**
1780 * Returns true if cross-context access should be allowed to the indexed
1781 * property with the given index on the host object.
1782 */
1783typedef bool (*IndexedSecurityCallback)(Local<Object> host,
1784 uint32_t index,
1785 AccessType type,
1786 Local<Value> data);
1787
1788
1789/**
1790 * A FunctionTemplate is used to create functions at runtime. There
1791 * can only be one function created from a FunctionTemplate in a
1792 * context. The lifetime of the created function is equal to the
1793 * lifetime of the context. So in case the embedder needs to create
1794 * temporary functions that can be collected using Scripts is
1795 * preferred.
1796 *
1797 * A FunctionTemplate can have properties, these properties are added to the
1798 * function object when it is created.
1799 *
1800 * A FunctionTemplate has a corresponding instance template which is
1801 * used to create object instances when the function is used as a
1802 * constructor. Properties added to the instance template are added to
1803 * each object instance.
1804 *
1805 * A FunctionTemplate can have a prototype template. The prototype template
1806 * is used to create the prototype object of the function.
1807 *
1808 * The following example shows how to use a FunctionTemplate:
1809 *
1810 * \code
1811 * v8::Local<v8::FunctionTemplate> t = v8::FunctionTemplate::New();
1812 * t->Set("func_property", v8::Number::New(1));
1813 *
1814 * v8::Local<v8::Template> proto_t = t->PrototypeTemplate();
1815 * proto_t->Set("proto_method", v8::FunctionTemplate::New(InvokeCallback));
1816 * proto_t->Set("proto_const", v8::Number::New(2));
1817 *
1818 * v8::Local<v8::ObjectTemplate> instance_t = t->InstanceTemplate();
1819 * instance_t->SetAccessor("instance_accessor", InstanceAccessorCallback);
1820 * instance_t->SetNamedPropertyHandler(PropertyHandlerCallback, ...);
1821 * instance_t->Set("instance_property", Number::New(3));
1822 *
1823 * v8::Local<v8::Function> function = t->GetFunction();
1824 * v8::Local<v8::Object> instance = function->NewInstance();
1825 * \endcode
1826 *
1827 * Let's use "function" as the JS variable name of the function object
1828 * and "instance" for the instance object created above. The function
1829 * and the instance will have the following properties:
1830 *
1831 * \code
1832 * func_property in function == true;
1833 * function.func_property == 1;
1834 *
1835 * function.prototype.proto_method() invokes 'InvokeCallback'
1836 * function.prototype.proto_const == 2;
1837 *
1838 * instance instanceof function == true;
1839 * instance.instance_accessor calls 'InstanceAccessorCallback'
1840 * instance.instance_property == 3;
1841 * \endcode
1842 *
1843 * A FunctionTemplate can inherit from another one by calling the
1844 * FunctionTemplate::Inherit method. The following graph illustrates
1845 * the semantics of inheritance:
1846 *
1847 * \code
1848 * FunctionTemplate Parent -> Parent() . prototype -> { }
1849 * ^ ^
1850 * | Inherit(Parent) | .__proto__
1851 * | |
1852 * FunctionTemplate Child -> Child() . prototype -> { }
1853 * \endcode
1854 *
1855 * A FunctionTemplate 'Child' inherits from 'Parent', the prototype
1856 * object of the Child() function has __proto__ pointing to the
1857 * Parent() function's prototype object. An instance of the Child
1858 * function has all properties on Parent's instance templates.
1859 *
1860 * Let Parent be the FunctionTemplate initialized in the previous
1861 * section and create a Child FunctionTemplate by:
1862 *
1863 * \code
1864 * Local<FunctionTemplate> parent = t;
1865 * Local<FunctionTemplate> child = FunctionTemplate::New();
1866 * child->Inherit(parent);
1867 *
1868 * Local<Function> child_function = child->GetFunction();
1869 * Local<Object> child_instance = child_function->NewInstance();
1870 * \endcode
1871 *
1872 * The Child function and Child instance will have the following
1873 * properties:
1874 *
1875 * \code
1876 * child_func.prototype.__proto__ == function.prototype;
1877 * child_instance.instance_accessor calls 'InstanceAccessorCallback'
1878 * child_instance.instance_property == 3;
1879 * \endcode
1880 */
1881class V8EXPORT FunctionTemplate : public Template {
1882 public:
1883 /** Creates a function template.*/
1884 static Local<FunctionTemplate> New(
1885 InvocationCallback callback = 0,
1886 Handle<Value> data = Handle<Value>(),
1887 Handle<Signature> signature = Handle<Signature>());
1888 /** Returns the unique function instance in the current execution context.*/
1889 Local<Function> GetFunction();
1890
1891 /**
1892 * Set the call-handler callback for a FunctionTemplate. This
1893 * callback is called whenever the function created from this
1894 * FunctionTemplate is called.
1895 */
1896 void SetCallHandler(InvocationCallback callback,
1897 Handle<Value> data = Handle<Value>());
1898
1899 /** Get the InstanceTemplate. */
1900 Local<ObjectTemplate> InstanceTemplate();
1901
1902 /** Causes the function template to inherit from a parent function template.*/
1903 void Inherit(Handle<FunctionTemplate> parent);
1904
1905 /**
1906 * A PrototypeTemplate is the template used to create the prototype object
1907 * of the function created by this template.
1908 */
1909 Local<ObjectTemplate> PrototypeTemplate();
1910
1911
1912 /**
1913 * Set the class name of the FunctionTemplate. This is used for
1914 * printing objects created with the function created from the
1915 * FunctionTemplate as its constructor.
1916 */
1917 void SetClassName(Handle<String> name);
1918
1919 /**
1920 * Determines whether the __proto__ accessor ignores instances of
1921 * the function template. If instances of the function template are
1922 * ignored, __proto__ skips all instances and instead returns the
1923 * next object in the prototype chain.
1924 *
1925 * Call with a value of true to make the __proto__ accessor ignore
1926 * instances of the function template. Call with a value of false
1927 * to make the __proto__ accessor not ignore instances of the
1928 * function template. By default, instances of a function template
1929 * are not ignored.
1930 */
1931 void SetHiddenPrototype(bool value);
1932
1933 /**
1934 * Returns true if the given object is an instance of this function
1935 * template.
1936 */
1937 bool HasInstance(Handle<Value> object);
1938
1939 private:
1940 FunctionTemplate();
1941 void AddInstancePropertyAccessor(Handle<String> name,
1942 AccessorGetter getter,
1943 AccessorSetter setter,
1944 Handle<Value> data,
1945 AccessControl settings,
1946 PropertyAttribute attributes);
1947 void SetNamedInstancePropertyHandler(NamedPropertyGetter getter,
1948 NamedPropertySetter setter,
1949 NamedPropertyQuery query,
1950 NamedPropertyDeleter remover,
1951 NamedPropertyEnumerator enumerator,
1952 Handle<Value> data);
1953 void SetIndexedInstancePropertyHandler(IndexedPropertyGetter getter,
1954 IndexedPropertySetter setter,
1955 IndexedPropertyQuery query,
1956 IndexedPropertyDeleter remover,
1957 IndexedPropertyEnumerator enumerator,
1958 Handle<Value> data);
1959 void SetInstanceCallAsFunctionHandler(InvocationCallback callback,
1960 Handle<Value> data);
1961
1962 friend class Context;
1963 friend class ObjectTemplate;
1964};
1965
1966
1967/**
1968 * An ObjectTemplate is used to create objects at runtime.
1969 *
1970 * Properties added to an ObjectTemplate are added to each object
1971 * created from the ObjectTemplate.
1972 */
1973class V8EXPORT ObjectTemplate : public Template {
1974 public:
1975 /** Creates an ObjectTemplate. */
1976 static Local<ObjectTemplate> New();
1977
1978 /** Creates a new instance of this template.*/
1979 Local<Object> NewInstance();
1980
1981 /**
1982 * Sets an accessor on the object template.
1983 *
1984 * Whenever the property with the given name is accessed on objects
1985 * created from this ObjectTemplate the getter and setter callbacks
1986 * are called instead of getting and setting the property directly
1987 * on the JavaScript object.
1988 *
1989 * \param name The name of the property for which an accessor is added.
1990 * \param getter The callback to invoke when getting the property.
1991 * \param setter The callback to invoke when setting the property.
1992 * \param data A piece of data that will be passed to the getter and setter
1993 * callbacks whenever they are invoked.
1994 * \param settings Access control settings for the accessor. This is a bit
1995 * field consisting of one of more of
1996 * DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2.
1997 * The default is to not allow cross-context access.
1998 * ALL_CAN_READ means that all cross-context reads are allowed.
1999 * ALL_CAN_WRITE means that all cross-context writes are allowed.
2000 * The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all
2001 * cross-context access.
2002 * \param attribute The attributes of the property for which an accessor
2003 * is added.
2004 */
2005 void SetAccessor(Handle<String> name,
2006 AccessorGetter getter,
2007 AccessorSetter setter = 0,
2008 Handle<Value> data = Handle<Value>(),
2009 AccessControl settings = DEFAULT,
2010 PropertyAttribute attribute = None);
2011
2012 /**
2013 * Sets a named property handler on the object template.
2014 *
2015 * Whenever a named property is accessed on objects created from
2016 * this object template, the provided callback is invoked instead of
2017 * accessing the property directly on the JavaScript object.
2018 *
2019 * \param getter The callback to invoke when getting a property.
2020 * \param setter The callback to invoke when setting a property.
2021 * \param query The callback to invoke to check is an object has a property.
2022 * \param deleter The callback to invoke when deleting a property.
2023 * \param enumerator The callback to invoke to enumerate all the named
2024 * properties of an object.
2025 * \param data A piece of data that will be passed to the callbacks
2026 * whenever they are invoked.
2027 */
2028 void SetNamedPropertyHandler(NamedPropertyGetter getter,
2029 NamedPropertySetter setter = 0,
2030 NamedPropertyQuery query = 0,
2031 NamedPropertyDeleter deleter = 0,
2032 NamedPropertyEnumerator enumerator = 0,
2033 Handle<Value> data = Handle<Value>());
2034
2035 /**
2036 * Sets an indexed property handler on the object template.
2037 *
2038 * Whenever an indexed property is accessed on objects created from
2039 * this object template, the provided callback is invoked instead of
2040 * accessing the property directly on the JavaScript object.
2041 *
2042 * \param getter The callback to invoke when getting a property.
2043 * \param setter The callback to invoke when setting a property.
2044 * \param query The callback to invoke to check is an object has a property.
2045 * \param deleter The callback to invoke when deleting a property.
2046 * \param enumerator The callback to invoke to enumerate all the indexed
2047 * properties of an object.
2048 * \param data A piece of data that will be passed to the callbacks
2049 * whenever they are invoked.
2050 */
2051 void SetIndexedPropertyHandler(IndexedPropertyGetter getter,
2052 IndexedPropertySetter setter = 0,
2053 IndexedPropertyQuery query = 0,
2054 IndexedPropertyDeleter deleter = 0,
2055 IndexedPropertyEnumerator enumerator = 0,
2056 Handle<Value> data = Handle<Value>());
2057 /**
2058 * Sets the callback to be used when calling instances created from
2059 * this template as a function. If no callback is set, instances
2060 * behave like normal JavaScript objects that cannot be called as a
2061 * function.
2062 */
2063 void SetCallAsFunctionHandler(InvocationCallback callback,
2064 Handle<Value> data = Handle<Value>());
2065
2066 /**
2067 * Mark object instances of the template as undetectable.
2068 *
2069 * In many ways, undetectable objects behave as though they are not
2070 * there. They behave like 'undefined' in conditionals and when
2071 * printed. However, properties can be accessed and called as on
2072 * normal objects.
2073 */
2074 void MarkAsUndetectable();
2075
2076 /**
2077 * Sets access check callbacks on the object template.
2078 *
2079 * When accessing properties on instances of this object template,
2080 * the access check callback will be called to determine whether or
2081 * not to allow cross-context access to the properties.
2082 * The last parameter specifies whether access checks are turned
2083 * on by default on instances. If access checks are off by default,
2084 * they can be turned on on individual instances by calling
2085 * Object::TurnOnAccessCheck().
2086 */
2087 void SetAccessCheckCallbacks(NamedSecurityCallback named_handler,
2088 IndexedSecurityCallback indexed_handler,
2089 Handle<Value> data = Handle<Value>(),
2090 bool turned_on_by_default = true);
2091
2092 /**
2093 * Gets the number of internal fields for objects generated from
2094 * this template.
2095 */
2096 int InternalFieldCount();
2097
2098 /**
2099 * Sets the number of internal fields for objects generated from
2100 * this template.
2101 */
2102 void SetInternalFieldCount(int value);
2103
2104 private:
2105 ObjectTemplate();
2106 static Local<ObjectTemplate> New(Handle<FunctionTemplate> constructor);
2107 friend class FunctionTemplate;
2108};
2109
2110
2111/**
2112 * A Signature specifies which receivers and arguments a function can
2113 * legally be called with.
2114 */
2115class V8EXPORT Signature : public Data {
2116 public:
2117 static Local<Signature> New(Handle<FunctionTemplate> receiver =
2118 Handle<FunctionTemplate>(),
2119 int argc = 0,
2120 Handle<FunctionTemplate> argv[] = 0);
2121 private:
2122 Signature();
2123};
2124
2125
2126/**
2127 * A utility for determining the type of objects based on the template
2128 * they were constructed from.
2129 */
2130class V8EXPORT TypeSwitch : public Data {
2131 public:
2132 static Local<TypeSwitch> New(Handle<FunctionTemplate> type);
2133 static Local<TypeSwitch> New(int argc, Handle<FunctionTemplate> types[]);
2134 int match(Handle<Value> value);
2135 private:
2136 TypeSwitch();
2137};
2138
2139
2140// --- E x t e n s i o n s ---
2141
2142
2143/**
2144 * Ignore
2145 */
2146class V8EXPORT Extension { // NOLINT
2147 public:
2148 Extension(const char* name,
2149 const char* source = 0,
2150 int dep_count = 0,
2151 const char** deps = 0);
2152 virtual ~Extension() { }
2153 virtual v8::Handle<v8::FunctionTemplate>
2154 GetNativeFunction(v8::Handle<v8::String> name) {
2155 return v8::Handle<v8::FunctionTemplate>();
2156 }
2157
2158 const char* name() { return name_; }
2159 const char* source() { return source_; }
2160 int dependency_count() { return dep_count_; }
2161 const char** dependencies() { return deps_; }
2162 void set_auto_enable(bool value) { auto_enable_ = value; }
2163 bool auto_enable() { return auto_enable_; }
2164
2165 private:
2166 const char* name_;
2167 const char* source_;
2168 int dep_count_;
2169 const char** deps_;
2170 bool auto_enable_;
2171
2172 // Disallow copying and assigning.
2173 Extension(const Extension&);
2174 void operator=(const Extension&);
2175};
2176
2177
2178void V8EXPORT RegisterExtension(Extension* extension);
2179
2180
2181/**
2182 * Ignore
2183 */
2184class V8EXPORT DeclareExtension {
2185 public:
2186 inline DeclareExtension(Extension* extension) {
2187 RegisterExtension(extension);
2188 }
2189};
2190
2191
2192// --- S t a t i c s ---
2193
2194
2195Handle<Primitive> V8EXPORT Undefined();
2196Handle<Primitive> V8EXPORT Null();
2197Handle<Boolean> V8EXPORT True();
2198Handle<Boolean> V8EXPORT False();
2199
2200
2201/**
2202 * A set of constraints that specifies the limits of the runtime's memory use.
2203 * You must set the heap size before initializing the VM - the size cannot be
2204 * adjusted after the VM is initialized.
2205 *
2206 * If you are using threads then you should hold the V8::Locker lock while
2207 * setting the stack limit and you must set a non-default stack limit separately
2208 * for each thread.
2209 */
2210class V8EXPORT ResourceConstraints {
2211 public:
2212 ResourceConstraints();
2213 int max_young_space_size() const { return max_young_space_size_; }
2214 void set_max_young_space_size(int value) { max_young_space_size_ = value; }
2215 int max_old_space_size() const { return max_old_space_size_; }
2216 void set_max_old_space_size(int value) { max_old_space_size_ = value; }
2217 uint32_t* stack_limit() const { return stack_limit_; }
2218 // Sets an address beyond which the VM's stack may not grow.
2219 void set_stack_limit(uint32_t* value) { stack_limit_ = value; }
2220 private:
2221 int max_young_space_size_;
2222 int max_old_space_size_;
2223 uint32_t* stack_limit_;
2224};
2225
2226
Kristian Monsen25f61362010-05-21 11:50:48 +01002227bool V8EXPORT SetResourceConstraints(ResourceConstraints* constraints);
Steve Blocka7e24c12009-10-30 11:49:00 +00002228
2229
2230// --- E x c e p t i o n s ---
2231
2232
2233typedef void (*FatalErrorCallback)(const char* location, const char* message);
2234
2235
2236typedef void (*MessageCallback)(Handle<Message> message, Handle<Value> data);
2237
2238
2239/**
2240 * Schedules an exception to be thrown when returning to JavaScript. When an
2241 * exception has been scheduled it is illegal to invoke any JavaScript
2242 * operation; the caller must return immediately and only after the exception
2243 * has been handled does it become legal to invoke JavaScript operations.
2244 */
2245Handle<Value> V8EXPORT ThrowException(Handle<Value> exception);
2246
2247/**
2248 * Create new error objects by calling the corresponding error object
2249 * constructor with the message.
2250 */
2251class V8EXPORT Exception {
2252 public:
2253 static Local<Value> RangeError(Handle<String> message);
2254 static Local<Value> ReferenceError(Handle<String> message);
2255 static Local<Value> SyntaxError(Handle<String> message);
2256 static Local<Value> TypeError(Handle<String> message);
2257 static Local<Value> Error(Handle<String> message);
2258};
2259
2260
2261// --- C o u n t e r s C a l l b a c k s ---
2262
2263typedef int* (*CounterLookupCallback)(const char* name);
2264
2265typedef void* (*CreateHistogramCallback)(const char* name,
2266 int min,
2267 int max,
2268 size_t buckets);
2269
2270typedef void (*AddHistogramSampleCallback)(void* histogram, int sample);
2271
2272// --- F a i l e d A c c e s s C h e c k C a l l b a c k ---
2273typedef void (*FailedAccessCheckCallback)(Local<Object> target,
2274 AccessType type,
2275 Local<Value> data);
2276
2277// --- G a r b a g e C o l l e c t i o n C a l l b a c k s
2278
2279/**
Steve Block6ded16b2010-05-10 14:33:55 +01002280 * Applications can register callback functions which will be called
2281 * before and after a garbage collection. Allocations are not
2282 * allowed in the callback functions, you therefore cannot manipulate
Steve Blocka7e24c12009-10-30 11:49:00 +00002283 * objects (set or delete properties for example) since it is possible
2284 * such operations will result in the allocation of objects.
2285 */
Steve Block6ded16b2010-05-10 14:33:55 +01002286enum GCType {
2287 kGCTypeScavenge = 1 << 0,
2288 kGCTypeMarkSweepCompact = 1 << 1,
2289 kGCTypeAll = kGCTypeScavenge | kGCTypeMarkSweepCompact
2290};
2291
2292enum GCCallbackFlags {
2293 kNoGCCallbackFlags = 0,
2294 kGCCallbackFlagCompacted = 1 << 0
2295};
2296
2297typedef void (*GCPrologueCallback)(GCType type, GCCallbackFlags flags);
2298typedef void (*GCEpilogueCallback)(GCType type, GCCallbackFlags flags);
2299
Steve Blocka7e24c12009-10-30 11:49:00 +00002300typedef void (*GCCallback)();
2301
2302
2303// --- C o n t e x t G e n e r a t o r ---
2304
2305/**
2306 * Applications must provide a callback function which is called to generate
2307 * a context if a context was not deserialized from the snapshot.
2308 */
2309typedef Persistent<Context> (*ContextGenerator)();
2310
2311
2312/**
2313 * Profiler modules.
2314 *
2315 * In V8, profiler consists of several modules: CPU profiler, and different
2316 * kinds of heap profiling. Each can be turned on / off independently.
2317 * When PROFILER_MODULE_HEAP_SNAPSHOT flag is passed to ResumeProfilerEx,
2318 * modules are enabled only temporarily for making a snapshot of the heap.
2319 */
2320enum ProfilerModules {
2321 PROFILER_MODULE_NONE = 0,
2322 PROFILER_MODULE_CPU = 1,
2323 PROFILER_MODULE_HEAP_STATS = 1 << 1,
2324 PROFILER_MODULE_JS_CONSTRUCTORS = 1 << 2,
2325 PROFILER_MODULE_HEAP_SNAPSHOT = 1 << 16
2326};
2327
2328
2329/**
Steve Block3ce2e202009-11-05 08:53:23 +00002330 * Collection of V8 heap information.
2331 *
2332 * Instances of this class can be passed to v8::V8::HeapStatistics to
2333 * get heap statistics from V8.
2334 */
2335class V8EXPORT HeapStatistics {
2336 public:
2337 HeapStatistics();
2338 size_t total_heap_size() { return total_heap_size_; }
2339 size_t used_heap_size() { return used_heap_size_; }
2340
2341 private:
2342 void set_total_heap_size(size_t size) { total_heap_size_ = size; }
2343 void set_used_heap_size(size_t size) { used_heap_size_ = size; }
2344
2345 size_t total_heap_size_;
2346 size_t used_heap_size_;
2347
2348 friend class V8;
2349};
2350
2351
2352/**
Steve Blocka7e24c12009-10-30 11:49:00 +00002353 * Container class for static utility functions.
2354 */
2355class V8EXPORT V8 {
2356 public:
2357 /** Set the callback to invoke in case of fatal errors. */
2358 static void SetFatalErrorHandler(FatalErrorCallback that);
2359
2360 /**
2361 * Ignore out-of-memory exceptions.
2362 *
2363 * V8 running out of memory is treated as a fatal error by default.
2364 * This means that the fatal error handler is called and that V8 is
2365 * terminated.
2366 *
2367 * IgnoreOutOfMemoryException can be used to not treat a
2368 * out-of-memory situation as a fatal error. This way, the contexts
2369 * that did not cause the out of memory problem might be able to
2370 * continue execution.
2371 */
2372 static void IgnoreOutOfMemoryException();
2373
2374 /**
2375 * Check if V8 is dead and therefore unusable. This is the case after
2376 * fatal errors such as out-of-memory situations.
2377 */
2378 static bool IsDead();
2379
2380 /**
2381 * Adds a message listener.
2382 *
2383 * The same message listener can be added more than once and it that
2384 * case it will be called more than once for each message.
2385 */
2386 static bool AddMessageListener(MessageCallback that,
2387 Handle<Value> data = Handle<Value>());
2388
2389 /**
2390 * Remove all message listeners from the specified callback function.
2391 */
2392 static void RemoveMessageListeners(MessageCallback that);
2393
2394 /**
2395 * Sets V8 flags from a string.
2396 */
2397 static void SetFlagsFromString(const char* str, int length);
2398
2399 /**
2400 * Sets V8 flags from the command line.
2401 */
2402 static void SetFlagsFromCommandLine(int* argc,
2403 char** argv,
2404 bool remove_flags);
2405
2406 /** Get the version string. */
2407 static const char* GetVersion();
2408
2409 /**
2410 * Enables the host application to provide a mechanism for recording
2411 * statistics counters.
2412 */
2413 static void SetCounterFunction(CounterLookupCallback);
2414
2415 /**
2416 * Enables the host application to provide a mechanism for recording
2417 * histograms. The CreateHistogram function returns a
2418 * histogram which will later be passed to the AddHistogramSample
2419 * function.
2420 */
2421 static void SetCreateHistogramFunction(CreateHistogramCallback);
2422 static void SetAddHistogramSampleFunction(AddHistogramSampleCallback);
2423
2424 /**
2425 * Enables the computation of a sliding window of states. The sliding
2426 * window information is recorded in statistics counters.
2427 */
2428 static void EnableSlidingStateWindow();
2429
2430 /** Callback function for reporting failed access checks.*/
2431 static void SetFailedAccessCheckCallbackFunction(FailedAccessCheckCallback);
2432
2433 /**
2434 * Enables the host application to receive a notification before a
Steve Block6ded16b2010-05-10 14:33:55 +01002435 * garbage collection. Allocations are not allowed in the
2436 * callback function, you therefore cannot manipulate objects (set
2437 * or delete properties for example) since it is possible such
2438 * operations will result in the allocation of objects. It is possible
2439 * to specify the GCType filter for your callback. But it is not possible to
2440 * register the same callback function two times with different
2441 * GCType filters.
2442 */
2443 static void AddGCPrologueCallback(
2444 GCPrologueCallback callback, GCType gc_type_filter = kGCTypeAll);
2445
2446 /**
2447 * This function removes callback which was installed by
2448 * AddGCPrologueCallback function.
2449 */
2450 static void RemoveGCPrologueCallback(GCPrologueCallback callback);
2451
2452 /**
2453 * The function is deprecated. Please use AddGCPrologueCallback instead.
2454 * Enables the host application to receive a notification before a
2455 * garbage collection. Allocations are not allowed in the
Steve Blocka7e24c12009-10-30 11:49:00 +00002456 * callback function, you therefore cannot manipulate objects (set
2457 * or delete properties for example) since it is possible such
2458 * operations will result in the allocation of objects.
2459 */
2460 static void SetGlobalGCPrologueCallback(GCCallback);
2461
2462 /**
2463 * Enables the host application to receive a notification after a
Steve Block6ded16b2010-05-10 14:33:55 +01002464 * garbage collection. Allocations are not allowed in the
2465 * callback function, you therefore cannot manipulate objects (set
2466 * or delete properties for example) since it is possible such
2467 * operations will result in the allocation of objects. It is possible
2468 * to specify the GCType filter for your callback. But it is not possible to
2469 * register the same callback function two times with different
2470 * GCType filters.
2471 */
2472 static void AddGCEpilogueCallback(
2473 GCEpilogueCallback callback, GCType gc_type_filter = kGCTypeAll);
2474
2475 /**
2476 * This function removes callback which was installed by
2477 * AddGCEpilogueCallback function.
2478 */
2479 static void RemoveGCEpilogueCallback(GCEpilogueCallback callback);
2480
2481 /**
2482 * The function is deprecated. Please use AddGCEpilogueCallback instead.
2483 * Enables the host application to receive a notification after a
Steve Blocka7e24c12009-10-30 11:49:00 +00002484 * major garbage collection. Allocations are not allowed in the
2485 * callback function, you therefore cannot manipulate objects (set
2486 * or delete properties for example) since it is possible such
2487 * operations will result in the allocation of objects.
2488 */
2489 static void SetGlobalGCEpilogueCallback(GCCallback);
2490
2491 /**
2492 * Allows the host application to group objects together. If one
2493 * object in the group is alive, all objects in the group are alive.
2494 * After each garbage collection, object groups are removed. It is
2495 * intended to be used in the before-garbage-collection callback
2496 * function, for instance to simulate DOM tree connections among JS
2497 * wrapper objects.
2498 */
2499 static void AddObjectGroup(Persistent<Value>* objects, size_t length);
2500
2501 /**
2502 * Initializes from snapshot if possible. Otherwise, attempts to
2503 * initialize from scratch. This function is called implicitly if
2504 * you use the API without calling it first.
2505 */
2506 static bool Initialize();
2507
2508 /**
2509 * Adjusts the amount of registered external memory. Used to give
2510 * V8 an indication of the amount of externally allocated memory
2511 * that is kept alive by JavaScript objects. V8 uses this to decide
2512 * when to perform global garbage collections. Registering
2513 * externally allocated memory will trigger global garbage
2514 * collections more often than otherwise in an attempt to garbage
2515 * collect the JavaScript objects keeping the externally allocated
2516 * memory alive.
2517 *
2518 * \param change_in_bytes the change in externally allocated memory
2519 * that is kept alive by JavaScript objects.
2520 * \returns the adjusted value.
2521 */
2522 static int AdjustAmountOfExternalAllocatedMemory(int change_in_bytes);
2523
2524 /**
2525 * Suspends recording of tick samples in the profiler.
2526 * When the V8 profiling mode is enabled (usually via command line
2527 * switches) this function suspends recording of tick samples.
2528 * Profiling ticks are discarded until ResumeProfiler() is called.
2529 *
2530 * See also the --prof and --prof_auto command line switches to
2531 * enable V8 profiling.
2532 */
2533 static void PauseProfiler();
2534
2535 /**
2536 * Resumes recording of tick samples in the profiler.
2537 * See also PauseProfiler().
2538 */
2539 static void ResumeProfiler();
2540
2541 /**
2542 * Return whether profiler is currently paused.
2543 */
2544 static bool IsProfilerPaused();
2545
2546 /**
Andrei Popescu402d9372010-02-26 13:31:12 +00002547 * Resumes specified profiler modules. Can be called several times to
2548 * mark the opening of a profiler events block with the given tag.
2549 *
Steve Blocka7e24c12009-10-30 11:49:00 +00002550 * "ResumeProfiler" is equivalent to "ResumeProfilerEx(PROFILER_MODULE_CPU)".
2551 * See ProfilerModules enum.
2552 *
2553 * \param flags Flags specifying profiler modules.
Andrei Popescu402d9372010-02-26 13:31:12 +00002554 * \param tag Profile tag.
Steve Blocka7e24c12009-10-30 11:49:00 +00002555 */
Andrei Popescu402d9372010-02-26 13:31:12 +00002556 static void ResumeProfilerEx(int flags, int tag = 0);
Steve Blocka7e24c12009-10-30 11:49:00 +00002557
2558 /**
Andrei Popescu402d9372010-02-26 13:31:12 +00002559 * Pauses specified profiler modules. Each call to "PauseProfilerEx" closes
2560 * a block of profiler events opened by a call to "ResumeProfilerEx" with the
2561 * same tag value. There is no need for blocks to be properly nested.
2562 * The profiler is paused when the last opened block is closed.
2563 *
Steve Blocka7e24c12009-10-30 11:49:00 +00002564 * "PauseProfiler" is equivalent to "PauseProfilerEx(PROFILER_MODULE_CPU)".
2565 * See ProfilerModules enum.
2566 *
2567 * \param flags Flags specifying profiler modules.
Andrei Popescu402d9372010-02-26 13:31:12 +00002568 * \param tag Profile tag.
Steve Blocka7e24c12009-10-30 11:49:00 +00002569 */
Andrei Popescu402d9372010-02-26 13:31:12 +00002570 static void PauseProfilerEx(int flags, int tag = 0);
Steve Blocka7e24c12009-10-30 11:49:00 +00002571
2572 /**
2573 * Returns active (resumed) profiler modules.
2574 * See ProfilerModules enum.
2575 *
2576 * \returns active profiler modules.
2577 */
2578 static int GetActiveProfilerModules();
2579
2580 /**
2581 * If logging is performed into a memory buffer (via --logfile=*), allows to
2582 * retrieve previously written messages. This can be used for retrieving
2583 * profiler log data in the application. This function is thread-safe.
2584 *
2585 * Caller provides a destination buffer that must exist during GetLogLines
2586 * call. Only whole log lines are copied into the buffer.
2587 *
2588 * \param from_pos specified a point in a buffer to read from, 0 is the
2589 * beginning of a buffer. It is assumed that caller updates its current
2590 * position using returned size value from the previous call.
2591 * \param dest_buf destination buffer for log data.
2592 * \param max_size size of the destination buffer.
2593 * \returns actual size of log data copied into buffer.
2594 */
2595 static int GetLogLines(int from_pos, char* dest_buf, int max_size);
2596
2597 /**
Steve Block6ded16b2010-05-10 14:33:55 +01002598 * The minimum allowed size for a log lines buffer. If the size of
2599 * the buffer given will not be enough to hold a line of the maximum
2600 * length, an attempt to find a log line end in GetLogLines will
2601 * fail, and an empty result will be returned.
2602 */
2603 static const int kMinimumSizeForLogLinesBuffer = 2048;
2604
2605 /**
Steve Blocka7e24c12009-10-30 11:49:00 +00002606 * Retrieve the V8 thread id of the calling thread.
2607 *
2608 * The thread id for a thread should only be retrieved after the V8
2609 * lock has been acquired with a Locker object with that thread.
2610 */
2611 static int GetCurrentThreadId();
2612
2613 /**
2614 * Forcefully terminate execution of a JavaScript thread. This can
2615 * be used to terminate long-running scripts.
2616 *
2617 * TerminateExecution should only be called when then V8 lock has
2618 * been acquired with a Locker object. Therefore, in order to be
2619 * able to terminate long-running threads, preemption must be
2620 * enabled to allow the user of TerminateExecution to acquire the
2621 * lock.
2622 *
2623 * The termination is achieved by throwing an exception that is
2624 * uncatchable by JavaScript exception handlers. Termination
2625 * exceptions act as if they were caught by a C++ TryCatch exception
2626 * handlers. If forceful termination is used, any C++ TryCatch
2627 * exception handler that catches an exception should check if that
2628 * exception is a termination exception and immediately return if
2629 * that is the case. Returning immediately in that case will
2630 * continue the propagation of the termination exception if needed.
2631 *
2632 * The thread id passed to TerminateExecution must have been
2633 * obtained by calling GetCurrentThreadId on the thread in question.
2634 *
2635 * \param thread_id The thread id of the thread to terminate.
2636 */
2637 static void TerminateExecution(int thread_id);
2638
2639 /**
2640 * Forcefully terminate the current thread of JavaScript execution.
2641 *
2642 * This method can be used by any thread even if that thread has not
2643 * acquired the V8 lock with a Locker object.
2644 */
2645 static void TerminateExecution();
2646
2647 /**
Steve Block6ded16b2010-05-10 14:33:55 +01002648 * Is V8 terminating JavaScript execution.
2649 *
2650 * Returns true if JavaScript execution is currently terminating
2651 * because of a call to TerminateExecution. In that case there are
2652 * still JavaScript frames on the stack and the termination
2653 * exception is still active.
2654 */
2655 static bool IsExecutionTerminating();
2656
2657 /**
Steve Blocka7e24c12009-10-30 11:49:00 +00002658 * Releases any resources used by v8 and stops any utility threads
2659 * that may be running. Note that disposing v8 is permanent, it
2660 * cannot be reinitialized.
2661 *
2662 * It should generally not be necessary to dispose v8 before exiting
2663 * a process, this should happen automatically. It is only necessary
2664 * to use if the process needs the resources taken up by v8.
2665 */
2666 static bool Dispose();
2667
Steve Block3ce2e202009-11-05 08:53:23 +00002668 /**
2669 * Get statistics about the heap memory usage.
2670 */
2671 static void GetHeapStatistics(HeapStatistics* heap_statistics);
Steve Blocka7e24c12009-10-30 11:49:00 +00002672
2673 /**
2674 * Optional notification that the embedder is idle.
2675 * V8 uses the notification to reduce memory footprint.
2676 * This call can be used repeatedly if the embedder remains idle.
Steve Blocka7e24c12009-10-30 11:49:00 +00002677 * Returns true if the embedder should stop calling IdleNotification
2678 * until real work has been done. This indicates that V8 has done
2679 * as much cleanup as it will be able to do.
2680 */
Steve Block3ce2e202009-11-05 08:53:23 +00002681 static bool IdleNotification();
Steve Blocka7e24c12009-10-30 11:49:00 +00002682
2683 /**
2684 * Optional notification that the system is running low on memory.
2685 * V8 uses these notifications to attempt to free memory.
2686 */
2687 static void LowMemoryNotification();
2688
Steve Block6ded16b2010-05-10 14:33:55 +01002689 /**
2690 * Optional notification that a context has been disposed. V8 uses
2691 * these notifications to guide the GC heuristic. Returns the number
2692 * of context disposals - including this one - since the last time
2693 * V8 had a chance to clean up.
2694 */
2695 static int ContextDisposedNotification();
2696
Steve Blocka7e24c12009-10-30 11:49:00 +00002697 private:
2698 V8();
2699
2700 static internal::Object** GlobalizeReference(internal::Object** handle);
2701 static void DisposeGlobal(internal::Object** global_handle);
2702 static void MakeWeak(internal::Object** global_handle,
2703 void* data,
2704 WeakReferenceCallback);
2705 static void ClearWeak(internal::Object** global_handle);
2706 static bool IsGlobalNearDeath(internal::Object** global_handle);
2707 static bool IsGlobalWeak(internal::Object** global_handle);
2708
2709 template <class T> friend class Handle;
2710 template <class T> friend class Local;
2711 template <class T> friend class Persistent;
2712 friend class Context;
2713};
2714
2715
2716/**
2717 * An external exception handler.
2718 */
2719class V8EXPORT TryCatch {
2720 public:
2721
2722 /**
2723 * Creates a new try/catch block and registers it with v8.
2724 */
2725 TryCatch();
2726
2727 /**
2728 * Unregisters and deletes this try/catch block.
2729 */
2730 ~TryCatch();
2731
2732 /**
2733 * Returns true if an exception has been caught by this try/catch block.
2734 */
2735 bool HasCaught() const;
2736
2737 /**
2738 * For certain types of exceptions, it makes no sense to continue
2739 * execution.
2740 *
2741 * Currently, the only type of exception that can be caught by a
2742 * TryCatch handler and for which it does not make sense to continue
2743 * is termination exception. Such exceptions are thrown when the
2744 * TerminateExecution methods are called to terminate a long-running
2745 * script.
2746 *
2747 * If CanContinue returns false, the correct action is to perform
2748 * any C++ cleanup needed and then return.
2749 */
2750 bool CanContinue() const;
2751
2752 /**
Steve Blockd0582a62009-12-15 09:54:21 +00002753 * Throws the exception caught by this TryCatch in a way that avoids
2754 * it being caught again by this same TryCatch. As with ThrowException
2755 * it is illegal to execute any JavaScript operations after calling
2756 * ReThrow; the caller must return immediately to where the exception
2757 * is caught.
2758 */
2759 Handle<Value> ReThrow();
2760
2761 /**
Steve Blocka7e24c12009-10-30 11:49:00 +00002762 * Returns the exception caught by this try/catch block. If no exception has
2763 * been caught an empty handle is returned.
2764 *
2765 * The returned handle is valid until this TryCatch block has been destroyed.
2766 */
2767 Local<Value> Exception() const;
2768
2769 /**
2770 * Returns the .stack property of the thrown object. If no .stack
2771 * property is present an empty handle is returned.
2772 */
2773 Local<Value> StackTrace() const;
2774
2775 /**
2776 * Returns the message associated with this exception. If there is
2777 * no message associated an empty handle is returned.
2778 *
2779 * The returned handle is valid until this TryCatch block has been
2780 * destroyed.
2781 */
2782 Local<v8::Message> Message() const;
2783
2784 /**
2785 * Clears any exceptions that may have been caught by this try/catch block.
2786 * After this method has been called, HasCaught() will return false.
2787 *
2788 * It is not necessary to clear a try/catch block before using it again; if
2789 * another exception is thrown the previously caught exception will just be
2790 * overwritten. However, it is often a good idea since it makes it easier
2791 * to determine which operation threw a given exception.
2792 */
2793 void Reset();
2794
2795 /**
2796 * Set verbosity of the external exception handler.
2797 *
2798 * By default, exceptions that are caught by an external exception
2799 * handler are not reported. Call SetVerbose with true on an
2800 * external exception handler to have exceptions caught by the
2801 * handler reported as if they were not caught.
2802 */
2803 void SetVerbose(bool value);
2804
2805 /**
2806 * Set whether or not this TryCatch should capture a Message object
2807 * which holds source information about where the exception
2808 * occurred. True by default.
2809 */
2810 void SetCaptureMessage(bool value);
2811
Steve Blockd0582a62009-12-15 09:54:21 +00002812 private:
2813 void* next_;
Steve Blocka7e24c12009-10-30 11:49:00 +00002814 void* exception_;
2815 void* message_;
Steve Blockd0582a62009-12-15 09:54:21 +00002816 bool is_verbose_ : 1;
2817 bool can_continue_ : 1;
2818 bool capture_message_ : 1;
2819 bool rethrow_ : 1;
2820
2821 friend class v8::internal::Top;
Steve Blocka7e24c12009-10-30 11:49:00 +00002822};
2823
2824
2825// --- C o n t e x t ---
2826
2827
2828/**
2829 * Ignore
2830 */
2831class V8EXPORT ExtensionConfiguration {
2832 public:
2833 ExtensionConfiguration(int name_count, const char* names[])
2834 : name_count_(name_count), names_(names) { }
2835 private:
2836 friend class ImplementationUtilities;
2837 int name_count_;
2838 const char** names_;
2839};
2840
2841
2842/**
2843 * A sandboxed execution context with its own set of built-in objects
2844 * and functions.
2845 */
2846class V8EXPORT Context {
2847 public:
2848 /** Returns the global object of the context. */
2849 Local<Object> Global();
2850
2851 /**
2852 * Detaches the global object from its context before
2853 * the global object can be reused to create a new context.
2854 */
2855 void DetachGlobal();
2856
Andrei Popescu74b3c142010-03-29 12:03:09 +01002857 /**
2858 * Reattaches a global object to a context. This can be used to
2859 * restore the connection between a global object and a context
2860 * after DetachGlobal has been called.
2861 *
2862 * \param global_object The global object to reattach to the
2863 * context. For this to work, the global object must be the global
2864 * object that was associated with this context before a call to
2865 * DetachGlobal.
2866 */
2867 void ReattachGlobal(Handle<Object> global_object);
2868
Steve Blocka7e24c12009-10-30 11:49:00 +00002869 /** Creates a new context. */
2870 static Persistent<Context> New(
Andrei Popescu31002712010-02-23 13:46:05 +00002871 ExtensionConfiguration* extensions = NULL,
Steve Blocka7e24c12009-10-30 11:49:00 +00002872 Handle<ObjectTemplate> global_template = Handle<ObjectTemplate>(),
2873 Handle<Value> global_object = Handle<Value>());
2874
2875 /** Returns the last entered context. */
2876 static Local<Context> GetEntered();
2877
2878 /** Returns the context that is on the top of the stack. */
2879 static Local<Context> GetCurrent();
2880
2881 /**
2882 * Returns the context of the calling JavaScript code. That is the
2883 * context of the top-most JavaScript frame. If there are no
2884 * JavaScript frames an empty handle is returned.
2885 */
2886 static Local<Context> GetCalling();
2887
2888 /**
2889 * Sets the security token for the context. To access an object in
2890 * another context, the security tokens must match.
2891 */
2892 void SetSecurityToken(Handle<Value> token);
2893
2894 /** Restores the security token to the default value. */
2895 void UseDefaultSecurityToken();
2896
2897 /** Returns the security token of this context.*/
2898 Handle<Value> GetSecurityToken();
2899
2900 /**
2901 * Enter this context. After entering a context, all code compiled
2902 * and run is compiled and run in this context. If another context
2903 * is already entered, this old context is saved so it can be
2904 * restored when the new context is exited.
2905 */
2906 void Enter();
2907
2908 /**
2909 * Exit this context. Exiting the current context restores the
2910 * context that was in place when entering the current context.
2911 */
2912 void Exit();
2913
2914 /** Returns true if the context has experienced an out of memory situation. */
2915 bool HasOutOfMemoryException();
2916
2917 /** Returns true if V8 has a current context. */
2918 static bool InContext();
2919
2920 /**
2921 * Associate an additional data object with the context. This is mainly used
2922 * with the debugger to provide additional information on the context through
2923 * the debugger API.
2924 */
Steve Blockd0582a62009-12-15 09:54:21 +00002925 void SetData(Handle<String> data);
Steve Blocka7e24c12009-10-30 11:49:00 +00002926 Local<Value> GetData();
2927
2928 /**
2929 * Stack-allocated class which sets the execution context for all
2930 * operations executed within a local scope.
2931 */
2932 class V8EXPORT Scope {
2933 public:
2934 inline Scope(Handle<Context> context) : context_(context) {
2935 context_->Enter();
2936 }
2937 inline ~Scope() { context_->Exit(); }
2938 private:
2939 Handle<Context> context_;
2940 };
2941
2942 private:
2943 friend class Value;
2944 friend class Script;
2945 friend class Object;
2946 friend class Function;
2947};
2948
2949
2950/**
2951 * Multiple threads in V8 are allowed, but only one thread at a time
2952 * is allowed to use V8. The definition of 'using V8' includes
2953 * accessing handles or holding onto object pointers obtained from V8
2954 * handles. It is up to the user of V8 to ensure (perhaps with
2955 * locking) that this constraint is not violated.
2956 *
2957 * If you wish to start using V8 in a thread you can do this by constructing
2958 * a v8::Locker object. After the code using V8 has completed for the
2959 * current thread you can call the destructor. This can be combined
2960 * with C++ scope-based construction as follows:
2961 *
2962 * \code
2963 * ...
2964 * {
2965 * v8::Locker locker;
2966 * ...
2967 * // Code using V8 goes here.
2968 * ...
2969 * } // Destructor called here
2970 * \endcode
2971 *
2972 * If you wish to stop using V8 in a thread A you can do this by either
2973 * by destroying the v8::Locker object as above or by constructing a
2974 * v8::Unlocker object:
2975 *
2976 * \code
2977 * {
2978 * v8::Unlocker unlocker;
2979 * ...
2980 * // Code not using V8 goes here while V8 can run in another thread.
2981 * ...
2982 * } // Destructor called here.
2983 * \endcode
2984 *
2985 * The Unlocker object is intended for use in a long-running callback
2986 * from V8, where you want to release the V8 lock for other threads to
2987 * use.
2988 *
2989 * The v8::Locker is a recursive lock. That is, you can lock more than
2990 * once in a given thread. This can be useful if you have code that can
2991 * be called either from code that holds the lock or from code that does
2992 * not. The Unlocker is not recursive so you can not have several
2993 * Unlockers on the stack at once, and you can not use an Unlocker in a
2994 * thread that is not inside a Locker's scope.
2995 *
2996 * An unlocker will unlock several lockers if it has to and reinstate
2997 * the correct depth of locking on its destruction. eg.:
2998 *
2999 * \code
3000 * // V8 not locked.
3001 * {
3002 * v8::Locker locker;
3003 * // V8 locked.
3004 * {
3005 * v8::Locker another_locker;
3006 * // V8 still locked (2 levels).
3007 * {
3008 * v8::Unlocker unlocker;
3009 * // V8 not locked.
3010 * }
3011 * // V8 locked again (2 levels).
3012 * }
3013 * // V8 still locked (1 level).
3014 * }
3015 * // V8 Now no longer locked.
3016 * \endcode
3017 */
3018class V8EXPORT Unlocker {
3019 public:
3020 Unlocker();
3021 ~Unlocker();
3022};
3023
3024
3025class V8EXPORT Locker {
3026 public:
3027 Locker();
3028 ~Locker();
3029
3030 /**
3031 * Start preemption.
3032 *
3033 * When preemption is started, a timer is fired every n milli seconds
3034 * that will switch between multiple threads that are in contention
3035 * for the V8 lock.
3036 */
3037 static void StartPreemption(int every_n_ms);
3038
3039 /**
3040 * Stop preemption.
3041 */
3042 static void StopPreemption();
3043
3044 /**
3045 * Returns whether or not the locker is locked by the current thread.
3046 */
3047 static bool IsLocked();
3048
3049 /**
3050 * Returns whether v8::Locker is being used by this V8 instance.
3051 */
3052 static bool IsActive() { return active_; }
3053
3054 private:
3055 bool has_lock_;
3056 bool top_level_;
3057
3058 static bool active_;
3059
3060 // Disallow copying and assigning.
3061 Locker(const Locker&);
3062 void operator=(const Locker&);
3063};
3064
3065
3066
3067// --- I m p l e m e n t a t i o n ---
3068
3069
3070namespace internal {
3071
3072
3073// Tag information for HeapObject.
3074const int kHeapObjectTag = 1;
3075const int kHeapObjectTagSize = 2;
3076const intptr_t kHeapObjectTagMask = (1 << kHeapObjectTagSize) - 1;
3077
Steve Blocka7e24c12009-10-30 11:49:00 +00003078// Tag information for Smi.
3079const int kSmiTag = 0;
3080const int kSmiTagSize = 1;
3081const intptr_t kSmiTagMask = (1 << kSmiTagSize) - 1;
3082
Steve Block3ce2e202009-11-05 08:53:23 +00003083template <size_t ptr_size> struct SmiConstants;
3084
3085// Smi constants for 32-bit systems.
3086template <> struct SmiConstants<4> {
3087 static const int kSmiShiftSize = 0;
3088 static const int kSmiValueSize = 31;
3089 static inline int SmiToInt(internal::Object* value) {
3090 int shift_bits = kSmiTagSize + kSmiShiftSize;
3091 // Throw away top 32 bits and shift down (requires >> to be sign extending).
3092 return static_cast<int>(reinterpret_cast<intptr_t>(value)) >> shift_bits;
3093 }
3094};
3095
3096// Smi constants for 64-bit systems.
3097template <> struct SmiConstants<8> {
3098 static const int kSmiShiftSize = 31;
3099 static const int kSmiValueSize = 32;
3100 static inline int SmiToInt(internal::Object* value) {
3101 int shift_bits = kSmiTagSize + kSmiShiftSize;
3102 // Shift down and throw away top 32 bits.
3103 return static_cast<int>(reinterpret_cast<intptr_t>(value) >> shift_bits);
3104 }
3105};
3106
3107const int kSmiShiftSize = SmiConstants<sizeof(void*)>::kSmiShiftSize;
3108const int kSmiValueSize = SmiConstants<sizeof(void*)>::kSmiValueSize;
Steve Blocka7e24c12009-10-30 11:49:00 +00003109
Steve Blockd0582a62009-12-15 09:54:21 +00003110template <size_t ptr_size> struct InternalConstants;
3111
3112// Internal constants for 32-bit systems.
3113template <> struct InternalConstants<4> {
3114 static const int kStringResourceOffset = 3 * sizeof(void*);
3115};
3116
3117// Internal constants for 64-bit systems.
3118template <> struct InternalConstants<8> {
Steve Block6ded16b2010-05-10 14:33:55 +01003119 static const int kStringResourceOffset = 3 * sizeof(void*);
Steve Blockd0582a62009-12-15 09:54:21 +00003120};
3121
Steve Blocka7e24c12009-10-30 11:49:00 +00003122/**
3123 * This class exports constants and functionality from within v8 that
3124 * is necessary to implement inline functions in the v8 api. Don't
3125 * depend on functions and constants defined here.
3126 */
3127class Internals {
3128 public:
3129
3130 // These values match non-compiler-dependent values defined within
3131 // the implementation of v8.
3132 static const int kHeapObjectMapOffset = 0;
3133 static const int kMapInstanceTypeOffset = sizeof(void*) + sizeof(int);
Steve Blockd0582a62009-12-15 09:54:21 +00003134 static const int kStringResourceOffset =
3135 InternalConstants<sizeof(void*)>::kStringResourceOffset;
3136
Steve Blocka7e24c12009-10-30 11:49:00 +00003137 static const int kProxyProxyOffset = sizeof(void*);
3138 static const int kJSObjectHeaderSize = 3 * sizeof(void*);
3139 static const int kFullStringRepresentationMask = 0x07;
3140 static const int kExternalTwoByteRepresentationTag = 0x03;
Steve Blocka7e24c12009-10-30 11:49:00 +00003141
3142 // These constants are compiler dependent so their values must be
3143 // defined within the implementation.
3144 V8EXPORT static int kJSObjectType;
3145 V8EXPORT static int kFirstNonstringType;
3146 V8EXPORT static int kProxyType;
3147
3148 static inline bool HasHeapObjectTag(internal::Object* value) {
3149 return ((reinterpret_cast<intptr_t>(value) & kHeapObjectTagMask) ==
3150 kHeapObjectTag);
3151 }
3152
3153 static inline bool HasSmiTag(internal::Object* value) {
3154 return ((reinterpret_cast<intptr_t>(value) & kSmiTagMask) == kSmiTag);
3155 }
3156
3157 static inline int SmiValue(internal::Object* value) {
Steve Block3ce2e202009-11-05 08:53:23 +00003158 return SmiConstants<sizeof(void*)>::SmiToInt(value);
3159 }
3160
3161 static inline int GetInstanceType(internal::Object* obj) {
3162 typedef internal::Object O;
3163 O* map = ReadField<O*>(obj, kHeapObjectMapOffset);
3164 return ReadField<uint8_t>(map, kMapInstanceTypeOffset);
3165 }
3166
3167 static inline void* GetExternalPointer(internal::Object* obj) {
3168 if (HasSmiTag(obj)) {
3169 return obj;
3170 } else if (GetInstanceType(obj) == kProxyType) {
3171 return ReadField<void*>(obj, kProxyProxyOffset);
3172 } else {
3173 return NULL;
3174 }
Steve Blocka7e24c12009-10-30 11:49:00 +00003175 }
3176
3177 static inline bool IsExternalTwoByteString(int instance_type) {
3178 int representation = (instance_type & kFullStringRepresentationMask);
3179 return representation == kExternalTwoByteRepresentationTag;
3180 }
3181
3182 template <typename T>
3183 static inline T ReadField(Object* ptr, int offset) {
3184 uint8_t* addr = reinterpret_cast<uint8_t*>(ptr) + offset - kHeapObjectTag;
3185 return *reinterpret_cast<T*>(addr);
3186 }
3187
3188};
3189
3190}
3191
3192
3193template <class T>
3194Handle<T>::Handle() : val_(0) { }
3195
3196
3197template <class T>
3198Local<T>::Local() : Handle<T>() { }
3199
3200
3201template <class T>
3202Local<T> Local<T>::New(Handle<T> that) {
3203 if (that.IsEmpty()) return Local<T>();
3204 internal::Object** p = reinterpret_cast<internal::Object**>(*that);
3205 return Local<T>(reinterpret_cast<T*>(HandleScope::CreateHandle(*p)));
3206}
3207
3208
3209template <class T>
3210Persistent<T> Persistent<T>::New(Handle<T> that) {
3211 if (that.IsEmpty()) return Persistent<T>();
3212 internal::Object** p = reinterpret_cast<internal::Object**>(*that);
3213 return Persistent<T>(reinterpret_cast<T*>(V8::GlobalizeReference(p)));
3214}
3215
3216
3217template <class T>
3218bool Persistent<T>::IsNearDeath() const {
3219 if (this->IsEmpty()) return false;
3220 return V8::IsGlobalNearDeath(reinterpret_cast<internal::Object**>(**this));
3221}
3222
3223
3224template <class T>
3225bool Persistent<T>::IsWeak() const {
3226 if (this->IsEmpty()) return false;
3227 return V8::IsGlobalWeak(reinterpret_cast<internal::Object**>(**this));
3228}
3229
3230
3231template <class T>
3232void Persistent<T>::Dispose() {
3233 if (this->IsEmpty()) return;
3234 V8::DisposeGlobal(reinterpret_cast<internal::Object**>(**this));
3235}
3236
3237
3238template <class T>
3239Persistent<T>::Persistent() : Handle<T>() { }
3240
3241template <class T>
3242void Persistent<T>::MakeWeak(void* parameters, WeakReferenceCallback callback) {
3243 V8::MakeWeak(reinterpret_cast<internal::Object**>(**this),
3244 parameters,
3245 callback);
3246}
3247
3248template <class T>
3249void Persistent<T>::ClearWeak() {
3250 V8::ClearWeak(reinterpret_cast<internal::Object**>(**this));
3251}
3252
3253Local<Value> Arguments::operator[](int i) const {
3254 if (i < 0 || length_ <= i) return Local<Value>(*Undefined());
3255 return Local<Value>(reinterpret_cast<Value*>(values_ - i));
3256}
3257
3258
3259Local<Function> Arguments::Callee() const {
3260 return callee_;
3261}
3262
3263
3264Local<Object> Arguments::This() const {
3265 return Local<Object>(reinterpret_cast<Object*>(values_ + 1));
3266}
3267
3268
3269Local<Object> Arguments::Holder() const {
3270 return holder_;
3271}
3272
3273
3274Local<Value> Arguments::Data() const {
3275 return data_;
3276}
3277
3278
3279bool Arguments::IsConstructCall() const {
3280 return is_construct_call_;
3281}
3282
3283
3284int Arguments::Length() const {
3285 return length_;
3286}
3287
3288
3289template <class T>
3290Local<T> HandleScope::Close(Handle<T> value) {
3291 internal::Object** before = reinterpret_cast<internal::Object**>(*value);
3292 internal::Object** after = RawClose(before);
3293 return Local<T>(reinterpret_cast<T*>(after));
3294}
3295
3296Handle<Value> ScriptOrigin::ResourceName() const {
3297 return resource_name_;
3298}
3299
3300
3301Handle<Integer> ScriptOrigin::ResourceLineOffset() const {
3302 return resource_line_offset_;
3303}
3304
3305
3306Handle<Integer> ScriptOrigin::ResourceColumnOffset() const {
3307 return resource_column_offset_;
3308}
3309
3310
3311Handle<Boolean> Boolean::New(bool value) {
3312 return value ? True() : False();
3313}
3314
3315
3316void Template::Set(const char* name, v8::Handle<Data> value) {
3317 Set(v8::String::New(name), value);
3318}
3319
3320
3321Local<Value> Object::GetInternalField(int index) {
3322#ifndef V8_ENABLE_CHECKS
3323 Local<Value> quick_result = UncheckedGetInternalField(index);
3324 if (!quick_result.IsEmpty()) return quick_result;
3325#endif
3326 return CheckedGetInternalField(index);
3327}
3328
3329
3330Local<Value> Object::UncheckedGetInternalField(int index) {
3331 typedef internal::Object O;
3332 typedef internal::Internals I;
3333 O* obj = *reinterpret_cast<O**>(this);
Steve Block3ce2e202009-11-05 08:53:23 +00003334 if (I::GetInstanceType(obj) == I::kJSObjectType) {
Steve Blocka7e24c12009-10-30 11:49:00 +00003335 // If the object is a plain JSObject, which is the common case,
3336 // we know where to find the internal fields and can return the
3337 // value directly.
3338 int offset = I::kJSObjectHeaderSize + (sizeof(void*) * index);
3339 O* value = I::ReadField<O*>(obj, offset);
3340 O** result = HandleScope::CreateHandle(value);
3341 return Local<Value>(reinterpret_cast<Value*>(result));
3342 } else {
3343 return Local<Value>();
3344 }
3345}
3346
3347
3348void* External::Unwrap(Handle<v8::Value> obj) {
3349#ifdef V8_ENABLE_CHECKS
3350 return FullUnwrap(obj);
3351#else
3352 return QuickUnwrap(obj);
3353#endif
3354}
3355
3356
3357void* External::QuickUnwrap(Handle<v8::Value> wrapper) {
3358 typedef internal::Object O;
Steve Blocka7e24c12009-10-30 11:49:00 +00003359 O* obj = *reinterpret_cast<O**>(const_cast<v8::Value*>(*wrapper));
Steve Block3ce2e202009-11-05 08:53:23 +00003360 return internal::Internals::GetExternalPointer(obj);
Steve Blocka7e24c12009-10-30 11:49:00 +00003361}
3362
3363
3364void* Object::GetPointerFromInternalField(int index) {
Steve Block3ce2e202009-11-05 08:53:23 +00003365 typedef internal::Object O;
3366 typedef internal::Internals I;
3367
3368 O* obj = *reinterpret_cast<O**>(this);
3369
3370 if (I::GetInstanceType(obj) == I::kJSObjectType) {
3371 // If the object is a plain JSObject, which is the common case,
3372 // we know where to find the internal fields and can return the
3373 // value directly.
3374 int offset = I::kJSObjectHeaderSize + (sizeof(void*) * index);
3375 O* value = I::ReadField<O*>(obj, offset);
3376 return I::GetExternalPointer(value);
3377 }
3378
3379 return SlowGetPointerFromInternalField(index);
Steve Blocka7e24c12009-10-30 11:49:00 +00003380}
3381
3382
3383String* String::Cast(v8::Value* value) {
3384#ifdef V8_ENABLE_CHECKS
3385 CheckCast(value);
3386#endif
3387 return static_cast<String*>(value);
3388}
3389
3390
3391String::ExternalStringResource* String::GetExternalStringResource() const {
3392 typedef internal::Object O;
3393 typedef internal::Internals I;
3394 O* obj = *reinterpret_cast<O**>(const_cast<String*>(this));
Steve Blocka7e24c12009-10-30 11:49:00 +00003395 String::ExternalStringResource* result;
Steve Block3ce2e202009-11-05 08:53:23 +00003396 if (I::IsExternalTwoByteString(I::GetInstanceType(obj))) {
Steve Blocka7e24c12009-10-30 11:49:00 +00003397 void* value = I::ReadField<void*>(obj, I::kStringResourceOffset);
3398 result = reinterpret_cast<String::ExternalStringResource*>(value);
3399 } else {
3400 result = NULL;
3401 }
3402#ifdef V8_ENABLE_CHECKS
3403 VerifyExternalStringResource(result);
3404#endif
3405 return result;
3406}
3407
3408
3409bool Value::IsString() const {
3410#ifdef V8_ENABLE_CHECKS
3411 return FullIsString();
3412#else
3413 return QuickIsString();
3414#endif
3415}
3416
3417bool Value::QuickIsString() const {
3418 typedef internal::Object O;
3419 typedef internal::Internals I;
3420 O* obj = *reinterpret_cast<O**>(const_cast<Value*>(this));
3421 if (!I::HasHeapObjectTag(obj)) return false;
Steve Block3ce2e202009-11-05 08:53:23 +00003422 return (I::GetInstanceType(obj) < I::kFirstNonstringType);
Steve Blocka7e24c12009-10-30 11:49:00 +00003423}
3424
3425
3426Number* Number::Cast(v8::Value* value) {
3427#ifdef V8_ENABLE_CHECKS
3428 CheckCast(value);
3429#endif
3430 return static_cast<Number*>(value);
3431}
3432
3433
3434Integer* Integer::Cast(v8::Value* value) {
3435#ifdef V8_ENABLE_CHECKS
3436 CheckCast(value);
3437#endif
3438 return static_cast<Integer*>(value);
3439}
3440
3441
3442Date* Date::Cast(v8::Value* value) {
3443#ifdef V8_ENABLE_CHECKS
3444 CheckCast(value);
3445#endif
3446 return static_cast<Date*>(value);
3447}
3448
3449
3450Object* Object::Cast(v8::Value* value) {
3451#ifdef V8_ENABLE_CHECKS
3452 CheckCast(value);
3453#endif
3454 return static_cast<Object*>(value);
3455}
3456
3457
3458Array* Array::Cast(v8::Value* value) {
3459#ifdef V8_ENABLE_CHECKS
3460 CheckCast(value);
3461#endif
3462 return static_cast<Array*>(value);
3463}
3464
3465
3466Function* Function::Cast(v8::Value* value) {
3467#ifdef V8_ENABLE_CHECKS
3468 CheckCast(value);
3469#endif
3470 return static_cast<Function*>(value);
3471}
3472
3473
3474External* External::Cast(v8::Value* value) {
3475#ifdef V8_ENABLE_CHECKS
3476 CheckCast(value);
3477#endif
3478 return static_cast<External*>(value);
3479}
3480
3481
3482Local<Value> AccessorInfo::Data() const {
Steve Block6ded16b2010-05-10 14:33:55 +01003483 return Local<Value>(reinterpret_cast<Value*>(&args_[-2]));
Steve Blocka7e24c12009-10-30 11:49:00 +00003484}
3485
3486
3487Local<Object> AccessorInfo::This() const {
3488 return Local<Object>(reinterpret_cast<Object*>(&args_[0]));
3489}
3490
3491
3492Local<Object> AccessorInfo::Holder() const {
3493 return Local<Object>(reinterpret_cast<Object*>(&args_[-1]));
3494}
3495
3496
3497/**
3498 * \example shell.cc
3499 * A simple shell that takes a list of expressions on the
3500 * command-line and executes them.
3501 */
3502
3503
3504/**
3505 * \example process.cc
3506 */
3507
3508
3509} // namespace v8
3510
3511
3512#undef V8EXPORT
3513#undef V8EXPORT_INLINE
3514#undef TYPE_CHECK
3515
3516
3517#endif // V8_H_