| Steve Block | a7e24c1 | 2009-10-30 11:49:00 +0000 | [diff] [blame^] | 1 | // Copyright 2006-2008 the V8 project authors. All rights reserved. |
| 2 | // Redistribution and use in source and binary forms, with or without |
| 3 | // modification, are permitted provided that the following conditions are |
| 4 | // met: |
| 5 | // |
| 6 | // * Redistributions of source code must retain the above copyright |
| 7 | // notice, this list of conditions and the following disclaimer. |
| 8 | // * Redistributions in binary form must reproduce the above |
| 9 | // copyright notice, this list of conditions and the following |
| 10 | // disclaimer in the documentation and/or other materials provided |
| 11 | // with the distribution. |
| 12 | // * Neither the name of Google Inc. nor the names of its |
| 13 | // contributors may be used to endorse or promote products derived |
| 14 | // from this software without specific prior written permission. |
| 15 | // |
| 16 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 17 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 18 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 19 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 20 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 21 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 22 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 23 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 24 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 25 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 26 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 27 | |
| 28 | #include "v8.h" |
| 29 | |
| 30 | #include "accessors.h" |
| 31 | #include "api.h" |
| 32 | #include "execution.h" |
| 33 | #include "global-handles.h" |
| 34 | #include "ic-inl.h" |
| 35 | #include "natives.h" |
| 36 | #include "platform.h" |
| 37 | #include "runtime.h" |
| 38 | #include "serialize.h" |
| 39 | #include "stub-cache.h" |
| 40 | #include "v8threads.h" |
| 41 | |
| 42 | namespace v8 { |
| 43 | namespace internal { |
| 44 | |
| 45 | // 32-bit encoding: a RelativeAddress must be able to fit in a |
| 46 | // pointer: it is encoded as an Address with (from LS to MS bits): |
| 47 | // - 2 bits identifying this as a HeapObject. |
| 48 | // - 4 bits to encode the AllocationSpace (including special values for |
| 49 | // code and fixed arrays in LO space) |
| 50 | // - 27 bits identifying a word in the space, in one of three formats: |
| 51 | // - paged spaces: 16 bits of page number, 11 bits of word offset in page |
| 52 | // - NEW space: 27 bits of word offset |
| 53 | // - LO space: 27 bits of page number |
| 54 | |
| 55 | const int kSpaceShift = kHeapObjectTagSize; |
| 56 | const int kSpaceBits = 4; |
| 57 | const int kSpaceMask = (1 << kSpaceBits) - 1; |
| 58 | |
| 59 | const int kOffsetShift = kSpaceShift + kSpaceBits; |
| 60 | const int kOffsetBits = 11; |
| 61 | const int kOffsetMask = (1 << kOffsetBits) - 1; |
| 62 | |
| 63 | const int kPageShift = kOffsetShift + kOffsetBits; |
| 64 | const int kPageBits = 32 - (kOffsetBits + kSpaceBits + kHeapObjectTagSize); |
| 65 | const int kPageMask = (1 << kPageBits) - 1; |
| 66 | |
| 67 | const int kPageAndOffsetShift = kOffsetShift; |
| 68 | const int kPageAndOffsetBits = kPageBits + kOffsetBits; |
| 69 | const int kPageAndOffsetMask = (1 << kPageAndOffsetBits) - 1; |
| 70 | |
| 71 | // These values are special allocation space tags used for |
| 72 | // serialization. |
| 73 | // Mark the pages executable on platforms that support it. |
| 74 | const int kLargeCode = LAST_SPACE + 1; |
| 75 | // Allocate extra remembered-set bits. |
| 76 | const int kLargeFixedArray = LAST_SPACE + 2; |
| 77 | |
| 78 | |
| 79 | static inline AllocationSpace GetSpace(Address addr) { |
| 80 | const intptr_t encoded = reinterpret_cast<intptr_t>(addr); |
| 81 | int space_number = (static_cast<int>(encoded >> kSpaceShift) & kSpaceMask); |
| 82 | if (space_number > LAST_SPACE) space_number = LO_SPACE; |
| 83 | return static_cast<AllocationSpace>(space_number); |
| 84 | } |
| 85 | |
| 86 | |
| 87 | static inline bool IsLargeExecutableObject(Address addr) { |
| 88 | const intptr_t encoded = reinterpret_cast<intptr_t>(addr); |
| 89 | const int space_number = |
| 90 | (static_cast<int>(encoded >> kSpaceShift) & kSpaceMask); |
| 91 | return (space_number == kLargeCode); |
| 92 | } |
| 93 | |
| 94 | |
| 95 | static inline bool IsLargeFixedArray(Address addr) { |
| 96 | const intptr_t encoded = reinterpret_cast<intptr_t>(addr); |
| 97 | const int space_number = |
| 98 | (static_cast<int>(encoded >> kSpaceShift) & kSpaceMask); |
| 99 | return (space_number == kLargeFixedArray); |
| 100 | } |
| 101 | |
| 102 | |
| 103 | static inline int PageIndex(Address addr) { |
| 104 | const intptr_t encoded = reinterpret_cast<intptr_t>(addr); |
| 105 | return static_cast<int>(encoded >> kPageShift) & kPageMask; |
| 106 | } |
| 107 | |
| 108 | |
| 109 | static inline int PageOffset(Address addr) { |
| 110 | const intptr_t encoded = reinterpret_cast<intptr_t>(addr); |
| 111 | const int offset = static_cast<int>(encoded >> kOffsetShift) & kOffsetMask; |
| 112 | return offset << kObjectAlignmentBits; |
| 113 | } |
| 114 | |
| 115 | |
| 116 | static inline int NewSpaceOffset(Address addr) { |
| 117 | const intptr_t encoded = reinterpret_cast<intptr_t>(addr); |
| 118 | const int page_offset = |
| 119 | static_cast<int>(encoded >> kPageAndOffsetShift) & kPageAndOffsetMask; |
| 120 | return page_offset << kObjectAlignmentBits; |
| 121 | } |
| 122 | |
| 123 | |
| 124 | static inline int LargeObjectIndex(Address addr) { |
| 125 | const intptr_t encoded = reinterpret_cast<intptr_t>(addr); |
| 126 | return static_cast<int>(encoded >> kPageAndOffsetShift) & kPageAndOffsetMask; |
| 127 | } |
| 128 | |
| 129 | |
| 130 | // A RelativeAddress encodes a heap address that is independent of |
| 131 | // the actual memory addresses in real heap. The general case (for the |
| 132 | // OLD, CODE and MAP spaces) is as a (space id, page number, page offset) |
| 133 | // triple. The NEW space has page number == 0, because there are no |
| 134 | // pages. The LARGE_OBJECT space has page offset = 0, since there is |
| 135 | // exactly one object per page. RelativeAddresses are encodable as |
| 136 | // Addresses, so that they can replace the map() pointers of |
| 137 | // HeapObjects. The encoded Addresses are also encoded as HeapObjects |
| 138 | // and allow for marking (is_marked() see mark(), clear_mark()...) as |
| 139 | // used by the Mark-Compact collector. |
| 140 | |
| 141 | class RelativeAddress { |
| 142 | public: |
| 143 | RelativeAddress(AllocationSpace space, |
| 144 | int page_index, |
| 145 | int page_offset) |
| 146 | : space_(space), page_index_(page_index), page_offset_(page_offset) { |
| 147 | // Assert that the space encoding (plus the two pseudo-spaces for |
| 148 | // special large objects) fits in the available bits. |
| 149 | ASSERT(((LAST_SPACE + 2) & ~kSpaceMask) == 0); |
| 150 | ASSERT(space <= LAST_SPACE && space >= 0); |
| 151 | } |
| 152 | |
| 153 | // Return the encoding of 'this' as an Address. Decode with constructor. |
| 154 | Address Encode() const; |
| 155 | |
| 156 | AllocationSpace space() const { |
| 157 | if (space_ > LAST_SPACE) return LO_SPACE; |
| 158 | return static_cast<AllocationSpace>(space_); |
| 159 | } |
| 160 | int page_index() const { return page_index_; } |
| 161 | int page_offset() const { return page_offset_; } |
| 162 | |
| 163 | bool in_paged_space() const { |
| 164 | return space_ == CODE_SPACE || |
| 165 | space_ == OLD_POINTER_SPACE || |
| 166 | space_ == OLD_DATA_SPACE || |
| 167 | space_ == MAP_SPACE || |
| 168 | space_ == CELL_SPACE; |
| 169 | } |
| 170 | |
| 171 | void next_address(int offset) { page_offset_ += offset; } |
| 172 | void next_page(int init_offset = 0) { |
| 173 | page_index_++; |
| 174 | page_offset_ = init_offset; |
| 175 | } |
| 176 | |
| 177 | #ifdef DEBUG |
| 178 | void Verify(); |
| 179 | #endif |
| 180 | |
| 181 | void set_to_large_code_object() { |
| 182 | ASSERT(space_ == LO_SPACE); |
| 183 | space_ = kLargeCode; |
| 184 | } |
| 185 | void set_to_large_fixed_array() { |
| 186 | ASSERT(space_ == LO_SPACE); |
| 187 | space_ = kLargeFixedArray; |
| 188 | } |
| 189 | |
| 190 | |
| 191 | private: |
| 192 | int space_; |
| 193 | int page_index_; |
| 194 | int page_offset_; |
| 195 | }; |
| 196 | |
| 197 | |
| 198 | Address RelativeAddress::Encode() const { |
| 199 | ASSERT(page_index_ >= 0); |
| 200 | int word_offset = 0; |
| 201 | int result = 0; |
| 202 | switch (space_) { |
| 203 | case MAP_SPACE: |
| 204 | case CELL_SPACE: |
| 205 | case OLD_POINTER_SPACE: |
| 206 | case OLD_DATA_SPACE: |
| 207 | case CODE_SPACE: |
| 208 | ASSERT_EQ(0, page_index_ & ~kPageMask); |
| 209 | word_offset = page_offset_ >> kObjectAlignmentBits; |
| 210 | ASSERT_EQ(0, word_offset & ~kOffsetMask); |
| 211 | result = (page_index_ << kPageShift) | (word_offset << kOffsetShift); |
| 212 | break; |
| 213 | case NEW_SPACE: |
| 214 | ASSERT_EQ(0, page_index_); |
| 215 | word_offset = page_offset_ >> kObjectAlignmentBits; |
| 216 | ASSERT_EQ(0, word_offset & ~kPageAndOffsetMask); |
| 217 | result = word_offset << kPageAndOffsetShift; |
| 218 | break; |
| 219 | case LO_SPACE: |
| 220 | case kLargeCode: |
| 221 | case kLargeFixedArray: |
| 222 | ASSERT_EQ(0, page_offset_); |
| 223 | ASSERT_EQ(0, page_index_ & ~kPageAndOffsetMask); |
| 224 | result = page_index_ << kPageAndOffsetShift; |
| 225 | break; |
| 226 | } |
| 227 | // OR in AllocationSpace and kHeapObjectTag |
| 228 | ASSERT_EQ(0, space_ & ~kSpaceMask); |
| 229 | result |= (space_ << kSpaceShift) | kHeapObjectTag; |
| 230 | return reinterpret_cast<Address>(result); |
| 231 | } |
| 232 | |
| 233 | |
| 234 | #ifdef DEBUG |
| 235 | void RelativeAddress::Verify() { |
| 236 | ASSERT(page_offset_ >= 0 && page_index_ >= 0); |
| 237 | switch (space_) { |
| 238 | case MAP_SPACE: |
| 239 | case CELL_SPACE: |
| 240 | case OLD_POINTER_SPACE: |
| 241 | case OLD_DATA_SPACE: |
| 242 | case CODE_SPACE: |
| 243 | ASSERT(Page::kObjectStartOffset <= page_offset_ && |
| 244 | page_offset_ <= Page::kPageSize); |
| 245 | break; |
| 246 | case NEW_SPACE: |
| 247 | ASSERT(page_index_ == 0); |
| 248 | break; |
| 249 | case LO_SPACE: |
| 250 | case kLargeCode: |
| 251 | case kLargeFixedArray: |
| 252 | ASSERT(page_offset_ == 0); |
| 253 | break; |
| 254 | } |
| 255 | } |
| 256 | #endif |
| 257 | |
| 258 | enum GCTreatment { |
| 259 | DataObject, // Object that cannot contain a reference to new space. |
| 260 | PointerObject, // Object that can contain a reference to new space. |
| 261 | CodeObject // Object that contains executable code. |
| 262 | }; |
| 263 | |
| 264 | // A SimulatedHeapSpace simulates the allocation of objects in a page in |
| 265 | // the heap. It uses linear allocation - that is, it doesn't simulate the |
| 266 | // use of a free list. This simulated |
| 267 | // allocation must exactly match that done by Heap. |
| 268 | |
| 269 | class SimulatedHeapSpace { |
| 270 | public: |
| 271 | // The default constructor initializes to an invalid state. |
| 272 | SimulatedHeapSpace(): current_(LAST_SPACE, -1, -1) {} |
| 273 | |
| 274 | // Sets 'this' to the first address in 'space' that would be |
| 275 | // returned by allocation in an empty heap. |
| 276 | void InitEmptyHeap(AllocationSpace space); |
| 277 | |
| 278 | // Sets 'this' to the next address in 'space' that would be returned |
| 279 | // by allocation in the current heap. Intended only for testing |
| 280 | // serialization and deserialization in the current address space. |
| 281 | void InitCurrentHeap(AllocationSpace space); |
| 282 | |
| 283 | // Returns the RelativeAddress where the next |
| 284 | // object of 'size' bytes will be allocated, and updates 'this' to |
| 285 | // point to the next free address beyond that object. |
| 286 | RelativeAddress Allocate(int size, GCTreatment special_gc_treatment); |
| 287 | |
| 288 | private: |
| 289 | RelativeAddress current_; |
| 290 | }; |
| 291 | |
| 292 | |
| 293 | void SimulatedHeapSpace::InitEmptyHeap(AllocationSpace space) { |
| 294 | switch (space) { |
| 295 | case MAP_SPACE: |
| 296 | case CELL_SPACE: |
| 297 | case OLD_POINTER_SPACE: |
| 298 | case OLD_DATA_SPACE: |
| 299 | case CODE_SPACE: |
| 300 | current_ = RelativeAddress(space, 0, Page::kObjectStartOffset); |
| 301 | break; |
| 302 | case NEW_SPACE: |
| 303 | case LO_SPACE: |
| 304 | current_ = RelativeAddress(space, 0, 0); |
| 305 | break; |
| 306 | } |
| 307 | } |
| 308 | |
| 309 | |
| 310 | void SimulatedHeapSpace::InitCurrentHeap(AllocationSpace space) { |
| 311 | switch (space) { |
| 312 | case MAP_SPACE: |
| 313 | case CELL_SPACE: |
| 314 | case OLD_POINTER_SPACE: |
| 315 | case OLD_DATA_SPACE: |
| 316 | case CODE_SPACE: { |
| 317 | PagedSpace* ps; |
| 318 | if (space == MAP_SPACE) { |
| 319 | ps = Heap::map_space(); |
| 320 | } else if (space == CELL_SPACE) { |
| 321 | ps = Heap::cell_space(); |
| 322 | } else if (space == OLD_POINTER_SPACE) { |
| 323 | ps = Heap::old_pointer_space(); |
| 324 | } else if (space == OLD_DATA_SPACE) { |
| 325 | ps = Heap::old_data_space(); |
| 326 | } else { |
| 327 | ASSERT(space == CODE_SPACE); |
| 328 | ps = Heap::code_space(); |
| 329 | } |
| 330 | Address top = ps->top(); |
| 331 | Page* top_page = Page::FromAllocationTop(top); |
| 332 | int page_index = 0; |
| 333 | PageIterator it(ps, PageIterator::PAGES_IN_USE); |
| 334 | while (it.has_next()) { |
| 335 | if (it.next() == top_page) break; |
| 336 | page_index++; |
| 337 | } |
| 338 | current_ = RelativeAddress(space, |
| 339 | page_index, |
| 340 | top_page->Offset(top)); |
| 341 | break; |
| 342 | } |
| 343 | case NEW_SPACE: |
| 344 | current_ = RelativeAddress(space, |
| 345 | 0, |
| 346 | Heap::NewSpaceTop() - Heap::NewSpaceStart()); |
| 347 | break; |
| 348 | case LO_SPACE: |
| 349 | int page_index = 0; |
| 350 | for (LargeObjectIterator it(Heap::lo_space()); it.has_next(); it.next()) { |
| 351 | page_index++; |
| 352 | } |
| 353 | current_ = RelativeAddress(space, page_index, 0); |
| 354 | break; |
| 355 | } |
| 356 | } |
| 357 | |
| 358 | |
| 359 | RelativeAddress SimulatedHeapSpace::Allocate(int size, |
| 360 | GCTreatment special_gc_treatment) { |
| 361 | #ifdef DEBUG |
| 362 | current_.Verify(); |
| 363 | #endif |
| 364 | int alloc_size = OBJECT_SIZE_ALIGN(size); |
| 365 | if (current_.in_paged_space() && |
| 366 | current_.page_offset() + alloc_size > Page::kPageSize) { |
| 367 | ASSERT(alloc_size <= Page::kMaxHeapObjectSize); |
| 368 | current_.next_page(Page::kObjectStartOffset); |
| 369 | } |
| 370 | RelativeAddress result = current_; |
| 371 | if (current_.space() == LO_SPACE) { |
| 372 | current_.next_page(); |
| 373 | if (special_gc_treatment == CodeObject) { |
| 374 | result.set_to_large_code_object(); |
| 375 | } else if (special_gc_treatment == PointerObject) { |
| 376 | result.set_to_large_fixed_array(); |
| 377 | } |
| 378 | } else { |
| 379 | current_.next_address(alloc_size); |
| 380 | } |
| 381 | #ifdef DEBUG |
| 382 | current_.Verify(); |
| 383 | result.Verify(); |
| 384 | #endif |
| 385 | return result; |
| 386 | } |
| 387 | |
| 388 | // ----------------------------------------------------------------------------- |
| 389 | // Coding of external references. |
| 390 | |
| 391 | // The encoding of an external reference. The type is in the high word. |
| 392 | // The id is in the low word. |
| 393 | static uint32_t EncodeExternal(TypeCode type, uint16_t id) { |
| 394 | return static_cast<uint32_t>(type) << 16 | id; |
| 395 | } |
| 396 | |
| 397 | |
| 398 | static int* GetInternalPointer(StatsCounter* counter) { |
| 399 | // All counters refer to dummy_counter, if deserializing happens without |
| 400 | // setting up counters. |
| 401 | static int dummy_counter = 0; |
| 402 | return counter->Enabled() ? counter->GetInternalPointer() : &dummy_counter; |
| 403 | } |
| 404 | |
| 405 | |
| 406 | // ExternalReferenceTable is a helper class that defines the relationship |
| 407 | // between external references and their encodings. It is used to build |
| 408 | // hashmaps in ExternalReferenceEncoder and ExternalReferenceDecoder. |
| 409 | class ExternalReferenceTable { |
| 410 | public: |
| 411 | static ExternalReferenceTable* instance() { |
| 412 | if (!instance_) instance_ = new ExternalReferenceTable(); |
| 413 | return instance_; |
| 414 | } |
| 415 | |
| 416 | int size() const { return refs_.length(); } |
| 417 | |
| 418 | Address address(int i) { return refs_[i].address; } |
| 419 | |
| 420 | uint32_t code(int i) { return refs_[i].code; } |
| 421 | |
| 422 | const char* name(int i) { return refs_[i].name; } |
| 423 | |
| 424 | int max_id(int code) { return max_id_[code]; } |
| 425 | |
| 426 | private: |
| 427 | static ExternalReferenceTable* instance_; |
| 428 | |
| 429 | ExternalReferenceTable() : refs_(64) { PopulateTable(); } |
| 430 | ~ExternalReferenceTable() { } |
| 431 | |
| 432 | struct ExternalReferenceEntry { |
| 433 | Address address; |
| 434 | uint32_t code; |
| 435 | const char* name; |
| 436 | }; |
| 437 | |
| 438 | void PopulateTable(); |
| 439 | |
| 440 | // For a few types of references, we can get their address from their id. |
| 441 | void AddFromId(TypeCode type, uint16_t id, const char* name); |
| 442 | |
| 443 | // For other types of references, the caller will figure out the address. |
| 444 | void Add(Address address, TypeCode type, uint16_t id, const char* name); |
| 445 | |
| 446 | List<ExternalReferenceEntry> refs_; |
| 447 | int max_id_[kTypeCodeCount]; |
| 448 | }; |
| 449 | |
| 450 | |
| 451 | ExternalReferenceTable* ExternalReferenceTable::instance_ = NULL; |
| 452 | |
| 453 | |
| 454 | void ExternalReferenceTable::AddFromId(TypeCode type, |
| 455 | uint16_t id, |
| 456 | const char* name) { |
| 457 | Address address; |
| 458 | switch (type) { |
| 459 | case C_BUILTIN: { |
| 460 | ExternalReference ref(static_cast<Builtins::CFunctionId>(id)); |
| 461 | address = ref.address(); |
| 462 | break; |
| 463 | } |
| 464 | case BUILTIN: { |
| 465 | ExternalReference ref(static_cast<Builtins::Name>(id)); |
| 466 | address = ref.address(); |
| 467 | break; |
| 468 | } |
| 469 | case RUNTIME_FUNCTION: { |
| 470 | ExternalReference ref(static_cast<Runtime::FunctionId>(id)); |
| 471 | address = ref.address(); |
| 472 | break; |
| 473 | } |
| 474 | case IC_UTILITY: { |
| 475 | ExternalReference ref(IC_Utility(static_cast<IC::UtilityId>(id))); |
| 476 | address = ref.address(); |
| 477 | break; |
| 478 | } |
| 479 | default: |
| 480 | UNREACHABLE(); |
| 481 | return; |
| 482 | } |
| 483 | Add(address, type, id, name); |
| 484 | } |
| 485 | |
| 486 | |
| 487 | void ExternalReferenceTable::Add(Address address, |
| 488 | TypeCode type, |
| 489 | uint16_t id, |
| 490 | const char* name) { |
| 491 | CHECK_NE(NULL, address); |
| 492 | ExternalReferenceEntry entry; |
| 493 | entry.address = address; |
| 494 | entry.code = EncodeExternal(type, id); |
| 495 | entry.name = name; |
| 496 | CHECK_NE(0, entry.code); |
| 497 | refs_.Add(entry); |
| 498 | if (id > max_id_[type]) max_id_[type] = id; |
| 499 | } |
| 500 | |
| 501 | |
| 502 | void ExternalReferenceTable::PopulateTable() { |
| 503 | for (int type_code = 0; type_code < kTypeCodeCount; type_code++) { |
| 504 | max_id_[type_code] = 0; |
| 505 | } |
| 506 | |
| 507 | // The following populates all of the different type of external references |
| 508 | // into the ExternalReferenceTable. |
| 509 | // |
| 510 | // NOTE: This function was originally 100k of code. It has since been |
| 511 | // rewritten to be mostly table driven, as the callback macro style tends to |
| 512 | // very easily cause code bloat. Please be careful in the future when adding |
| 513 | // new references. |
| 514 | |
| 515 | struct RefTableEntry { |
| 516 | TypeCode type; |
| 517 | uint16_t id; |
| 518 | const char* name; |
| 519 | }; |
| 520 | |
| 521 | static const RefTableEntry ref_table[] = { |
| 522 | // Builtins |
| 523 | #define DEF_ENTRY_C(name) \ |
| 524 | { C_BUILTIN, \ |
| 525 | Builtins::c_##name, \ |
| 526 | "Builtins::" #name }, |
| 527 | |
| 528 | BUILTIN_LIST_C(DEF_ENTRY_C) |
| 529 | #undef DEF_ENTRY_C |
| 530 | |
| 531 | #define DEF_ENTRY_C(name) \ |
| 532 | { BUILTIN, \ |
| 533 | Builtins::name, \ |
| 534 | "Builtins::" #name }, |
| 535 | #define DEF_ENTRY_A(name, kind, state) DEF_ENTRY_C(name) |
| 536 | |
| 537 | BUILTIN_LIST_C(DEF_ENTRY_C) |
| 538 | BUILTIN_LIST_A(DEF_ENTRY_A) |
| 539 | BUILTIN_LIST_DEBUG_A(DEF_ENTRY_A) |
| 540 | #undef DEF_ENTRY_C |
| 541 | #undef DEF_ENTRY_A |
| 542 | |
| 543 | // Runtime functions |
| 544 | #define RUNTIME_ENTRY(name, nargs, ressize) \ |
| 545 | { RUNTIME_FUNCTION, \ |
| 546 | Runtime::k##name, \ |
| 547 | "Runtime::" #name }, |
| 548 | |
| 549 | RUNTIME_FUNCTION_LIST(RUNTIME_ENTRY) |
| 550 | #undef RUNTIME_ENTRY |
| 551 | |
| 552 | // IC utilities |
| 553 | #define IC_ENTRY(name) \ |
| 554 | { IC_UTILITY, \ |
| 555 | IC::k##name, \ |
| 556 | "IC::" #name }, |
| 557 | |
| 558 | IC_UTIL_LIST(IC_ENTRY) |
| 559 | #undef IC_ENTRY |
| 560 | }; // end of ref_table[]. |
| 561 | |
| 562 | for (size_t i = 0; i < ARRAY_SIZE(ref_table); ++i) { |
| 563 | AddFromId(ref_table[i].type, ref_table[i].id, ref_table[i].name); |
| 564 | } |
| 565 | |
| 566 | #ifdef ENABLE_DEBUGGER_SUPPORT |
| 567 | // Debug addresses |
| 568 | Add(Debug_Address(Debug::k_after_break_target_address).address(), |
| 569 | DEBUG_ADDRESS, |
| 570 | Debug::k_after_break_target_address << kDebugIdShift, |
| 571 | "Debug::after_break_target_address()"); |
| 572 | Add(Debug_Address(Debug::k_debug_break_return_address).address(), |
| 573 | DEBUG_ADDRESS, |
| 574 | Debug::k_debug_break_return_address << kDebugIdShift, |
| 575 | "Debug::debug_break_return_address()"); |
| 576 | const char* debug_register_format = "Debug::register_address(%i)"; |
| 577 | size_t dr_format_length = strlen(debug_register_format); |
| 578 | for (int i = 0; i < kNumJSCallerSaved; ++i) { |
| 579 | Vector<char> name = Vector<char>::New(dr_format_length + 1); |
| 580 | OS::SNPrintF(name, debug_register_format, i); |
| 581 | Add(Debug_Address(Debug::k_register_address, i).address(), |
| 582 | DEBUG_ADDRESS, |
| 583 | Debug::k_register_address << kDebugIdShift | i, |
| 584 | name.start()); |
| 585 | } |
| 586 | #endif |
| 587 | |
| 588 | // Stat counters |
| 589 | struct StatsRefTableEntry { |
| 590 | StatsCounter* counter; |
| 591 | uint16_t id; |
| 592 | const char* name; |
| 593 | }; |
| 594 | |
| 595 | static const StatsRefTableEntry stats_ref_table[] = { |
| 596 | #define COUNTER_ENTRY(name, caption) \ |
| 597 | { &Counters::name, \ |
| 598 | Counters::k_##name, \ |
| 599 | "Counters::" #name }, |
| 600 | |
| 601 | STATS_COUNTER_LIST_1(COUNTER_ENTRY) |
| 602 | STATS_COUNTER_LIST_2(COUNTER_ENTRY) |
| 603 | #undef COUNTER_ENTRY |
| 604 | }; // end of stats_ref_table[]. |
| 605 | |
| 606 | for (size_t i = 0; i < ARRAY_SIZE(stats_ref_table); ++i) { |
| 607 | Add(reinterpret_cast<Address>( |
| 608 | GetInternalPointer(stats_ref_table[i].counter)), |
| 609 | STATS_COUNTER, |
| 610 | stats_ref_table[i].id, |
| 611 | stats_ref_table[i].name); |
| 612 | } |
| 613 | |
| 614 | // Top addresses |
| 615 | const char* top_address_format = "Top::get_address_from_id(%i)"; |
| 616 | size_t top_format_length = strlen(top_address_format); |
| 617 | for (uint16_t i = 0; i < Top::k_top_address_count; ++i) { |
| 618 | Vector<char> name = Vector<char>::New(top_format_length + 1); |
| 619 | const char* chars = name.start(); |
| 620 | OS::SNPrintF(name, top_address_format, i); |
| 621 | Add(Top::get_address_from_id((Top::AddressId)i), TOP_ADDRESS, i, chars); |
| 622 | } |
| 623 | |
| 624 | // Extensions |
| 625 | Add(FUNCTION_ADDR(GCExtension::GC), EXTENSION, 1, |
| 626 | "GCExtension::GC"); |
| 627 | |
| 628 | // Accessors |
| 629 | #define ACCESSOR_DESCRIPTOR_DECLARATION(name) \ |
| 630 | Add((Address)&Accessors::name, \ |
| 631 | ACCESSOR, \ |
| 632 | Accessors::k##name, \ |
| 633 | "Accessors::" #name); |
| 634 | |
| 635 | ACCESSOR_DESCRIPTOR_LIST(ACCESSOR_DESCRIPTOR_DECLARATION) |
| 636 | #undef ACCESSOR_DESCRIPTOR_DECLARATION |
| 637 | |
| 638 | // Stub cache tables |
| 639 | Add(SCTableReference::keyReference(StubCache::kPrimary).address(), |
| 640 | STUB_CACHE_TABLE, |
| 641 | 1, |
| 642 | "StubCache::primary_->key"); |
| 643 | Add(SCTableReference::valueReference(StubCache::kPrimary).address(), |
| 644 | STUB_CACHE_TABLE, |
| 645 | 2, |
| 646 | "StubCache::primary_->value"); |
| 647 | Add(SCTableReference::keyReference(StubCache::kSecondary).address(), |
| 648 | STUB_CACHE_TABLE, |
| 649 | 3, |
| 650 | "StubCache::secondary_->key"); |
| 651 | Add(SCTableReference::valueReference(StubCache::kSecondary).address(), |
| 652 | STUB_CACHE_TABLE, |
| 653 | 4, |
| 654 | "StubCache::secondary_->value"); |
| 655 | |
| 656 | // Runtime entries |
| 657 | Add(ExternalReference::perform_gc_function().address(), |
| 658 | RUNTIME_ENTRY, |
| 659 | 1, |
| 660 | "Runtime::PerformGC"); |
| 661 | Add(ExternalReference::random_positive_smi_function().address(), |
| 662 | RUNTIME_ENTRY, |
| 663 | 2, |
| 664 | "V8::RandomPositiveSmi"); |
| 665 | |
| 666 | // Miscellaneous |
| 667 | Add(ExternalReference::builtin_passed_function().address(), |
| 668 | UNCLASSIFIED, |
| 669 | 1, |
| 670 | "Builtins::builtin_passed_function"); |
| 671 | Add(ExternalReference::the_hole_value_location().address(), |
| 672 | UNCLASSIFIED, |
| 673 | 2, |
| 674 | "Factory::the_hole_value().location()"); |
| 675 | Add(ExternalReference::roots_address().address(), |
| 676 | UNCLASSIFIED, |
| 677 | 3, |
| 678 | "Heap::roots_address()"); |
| 679 | Add(ExternalReference::address_of_stack_guard_limit().address(), |
| 680 | UNCLASSIFIED, |
| 681 | 4, |
| 682 | "StackGuard::address_of_jslimit()"); |
| 683 | Add(ExternalReference::address_of_regexp_stack_limit().address(), |
| 684 | UNCLASSIFIED, |
| 685 | 5, |
| 686 | "RegExpStack::limit_address()"); |
| 687 | Add(ExternalReference::new_space_start().address(), |
| 688 | UNCLASSIFIED, |
| 689 | 6, |
| 690 | "Heap::NewSpaceStart()"); |
| 691 | Add(ExternalReference::heap_always_allocate_scope_depth().address(), |
| 692 | UNCLASSIFIED, |
| 693 | 7, |
| 694 | "Heap::always_allocate_scope_depth()"); |
| 695 | Add(ExternalReference::new_space_allocation_limit_address().address(), |
| 696 | UNCLASSIFIED, |
| 697 | 8, |
| 698 | "Heap::NewSpaceAllocationLimitAddress()"); |
| 699 | Add(ExternalReference::new_space_allocation_top_address().address(), |
| 700 | UNCLASSIFIED, |
| 701 | 9, |
| 702 | "Heap::NewSpaceAllocationTopAddress()"); |
| 703 | #ifdef ENABLE_DEBUGGER_SUPPORT |
| 704 | Add(ExternalReference::debug_break().address(), |
| 705 | UNCLASSIFIED, |
| 706 | 10, |
| 707 | "Debug::Break()"); |
| 708 | Add(ExternalReference::debug_step_in_fp_address().address(), |
| 709 | UNCLASSIFIED, |
| 710 | 11, |
| 711 | "Debug::step_in_fp_addr()"); |
| 712 | #endif |
| 713 | Add(ExternalReference::double_fp_operation(Token::ADD).address(), |
| 714 | UNCLASSIFIED, |
| 715 | 12, |
| 716 | "add_two_doubles"); |
| 717 | Add(ExternalReference::double_fp_operation(Token::SUB).address(), |
| 718 | UNCLASSIFIED, |
| 719 | 13, |
| 720 | "sub_two_doubles"); |
| 721 | Add(ExternalReference::double_fp_operation(Token::MUL).address(), |
| 722 | UNCLASSIFIED, |
| 723 | 14, |
| 724 | "mul_two_doubles"); |
| 725 | Add(ExternalReference::double_fp_operation(Token::DIV).address(), |
| 726 | UNCLASSIFIED, |
| 727 | 15, |
| 728 | "div_two_doubles"); |
| 729 | Add(ExternalReference::double_fp_operation(Token::MOD).address(), |
| 730 | UNCLASSIFIED, |
| 731 | 16, |
| 732 | "mod_two_doubles"); |
| 733 | Add(ExternalReference::compare_doubles().address(), |
| 734 | UNCLASSIFIED, |
| 735 | 17, |
| 736 | "compare_doubles"); |
| 737 | #ifdef V8_NATIVE_REGEXP |
| 738 | Add(ExternalReference::re_case_insensitive_compare_uc16().address(), |
| 739 | UNCLASSIFIED, |
| 740 | 18, |
| 741 | "NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()"); |
| 742 | Add(ExternalReference::re_check_stack_guard_state().address(), |
| 743 | UNCLASSIFIED, |
| 744 | 19, |
| 745 | "RegExpMacroAssembler*::CheckStackGuardState()"); |
| 746 | Add(ExternalReference::re_grow_stack().address(), |
| 747 | UNCLASSIFIED, |
| 748 | 20, |
| 749 | "NativeRegExpMacroAssembler::GrowStack()"); |
| 750 | #endif |
| 751 | } |
| 752 | |
| 753 | |
| 754 | ExternalReferenceEncoder::ExternalReferenceEncoder() |
| 755 | : encodings_(Match) { |
| 756 | ExternalReferenceTable* external_references = |
| 757 | ExternalReferenceTable::instance(); |
| 758 | for (int i = 0; i < external_references->size(); ++i) { |
| 759 | Put(external_references->address(i), i); |
| 760 | } |
| 761 | } |
| 762 | |
| 763 | |
| 764 | uint32_t ExternalReferenceEncoder::Encode(Address key) const { |
| 765 | int index = IndexOf(key); |
| 766 | return index >=0 ? ExternalReferenceTable::instance()->code(index) : 0; |
| 767 | } |
| 768 | |
| 769 | |
| 770 | const char* ExternalReferenceEncoder::NameOfAddress(Address key) const { |
| 771 | int index = IndexOf(key); |
| 772 | return index >=0 ? ExternalReferenceTable::instance()->name(index) : NULL; |
| 773 | } |
| 774 | |
| 775 | |
| 776 | int ExternalReferenceEncoder::IndexOf(Address key) const { |
| 777 | if (key == NULL) return -1; |
| 778 | HashMap::Entry* entry = |
| 779 | const_cast<HashMap &>(encodings_).Lookup(key, Hash(key), false); |
| 780 | return entry == NULL |
| 781 | ? -1 |
| 782 | : static_cast<int>(reinterpret_cast<intptr_t>(entry->value)); |
| 783 | } |
| 784 | |
| 785 | |
| 786 | void ExternalReferenceEncoder::Put(Address key, int index) { |
| 787 | HashMap::Entry* entry = encodings_.Lookup(key, Hash(key), true); |
| 788 | entry->value = reinterpret_cast<void *>(index); |
| 789 | } |
| 790 | |
| 791 | |
| 792 | ExternalReferenceDecoder::ExternalReferenceDecoder() |
| 793 | : encodings_(NewArray<Address*>(kTypeCodeCount)) { |
| 794 | ExternalReferenceTable* external_references = |
| 795 | ExternalReferenceTable::instance(); |
| 796 | for (int type = kFirstTypeCode; type < kTypeCodeCount; ++type) { |
| 797 | int max = external_references->max_id(type) + 1; |
| 798 | encodings_[type] = NewArray<Address>(max + 1); |
| 799 | } |
| 800 | for (int i = 0; i < external_references->size(); ++i) { |
| 801 | Put(external_references->code(i), external_references->address(i)); |
| 802 | } |
| 803 | } |
| 804 | |
| 805 | |
| 806 | ExternalReferenceDecoder::~ExternalReferenceDecoder() { |
| 807 | for (int type = kFirstTypeCode; type < kTypeCodeCount; ++type) { |
| 808 | DeleteArray(encodings_[type]); |
| 809 | } |
| 810 | DeleteArray(encodings_); |
| 811 | } |
| 812 | |
| 813 | |
| 814 | //------------------------------------------------------------------------------ |
| 815 | // Implementation of Serializer |
| 816 | |
| 817 | |
| 818 | // Helper class to write the bytes of the serialized heap. |
| 819 | |
| 820 | class SnapshotWriter { |
| 821 | public: |
| 822 | SnapshotWriter() { |
| 823 | len_ = 0; |
| 824 | max_ = 8 << 10; // 8K initial size |
| 825 | str_ = NewArray<byte>(max_); |
| 826 | } |
| 827 | |
| 828 | ~SnapshotWriter() { |
| 829 | DeleteArray(str_); |
| 830 | } |
| 831 | |
| 832 | void GetBytes(byte** str, int* len) { |
| 833 | *str = NewArray<byte>(len_); |
| 834 | memcpy(*str, str_, len_); |
| 835 | *len = len_; |
| 836 | } |
| 837 | |
| 838 | void Reserve(int bytes, int pos); |
| 839 | |
| 840 | void PutC(char c) { |
| 841 | InsertC(c, len_); |
| 842 | } |
| 843 | |
| 844 | void PutInt(int i) { |
| 845 | InsertInt(i, len_); |
| 846 | } |
| 847 | |
| 848 | void PutAddress(Address p) { |
| 849 | PutBytes(reinterpret_cast<byte*>(&p), sizeof(p)); |
| 850 | } |
| 851 | |
| 852 | void PutBytes(const byte* a, int size) { |
| 853 | InsertBytes(a, len_, size); |
| 854 | } |
| 855 | |
| 856 | void PutString(const char* s) { |
| 857 | InsertString(s, len_); |
| 858 | } |
| 859 | |
| 860 | int InsertC(char c, int pos) { |
| 861 | Reserve(1, pos); |
| 862 | str_[pos] = c; |
| 863 | len_++; |
| 864 | return pos + 1; |
| 865 | } |
| 866 | |
| 867 | int InsertInt(int i, int pos) { |
| 868 | return InsertBytes(reinterpret_cast<byte*>(&i), pos, sizeof(i)); |
| 869 | } |
| 870 | |
| 871 | int InsertBytes(const byte* a, int pos, int size) { |
| 872 | Reserve(size, pos); |
| 873 | memcpy(&str_[pos], a, size); |
| 874 | len_ += size; |
| 875 | return pos + size; |
| 876 | } |
| 877 | |
| 878 | int InsertString(const char* s, int pos); |
| 879 | |
| 880 | int length() { return len_; } |
| 881 | |
| 882 | Address position() { return reinterpret_cast<Address>(&str_[len_]); } |
| 883 | |
| 884 | private: |
| 885 | byte* str_; // the snapshot |
| 886 | int len_; // the current length of str_ |
| 887 | int max_; // the allocated size of str_ |
| 888 | }; |
| 889 | |
| 890 | |
| 891 | void SnapshotWriter::Reserve(int bytes, int pos) { |
| 892 | CHECK(0 <= pos && pos <= len_); |
| 893 | while (len_ + bytes >= max_) { |
| 894 | max_ *= 2; |
| 895 | byte* old = str_; |
| 896 | str_ = NewArray<byte>(max_); |
| 897 | memcpy(str_, old, len_); |
| 898 | DeleteArray(old); |
| 899 | } |
| 900 | if (pos < len_) { |
| 901 | byte* old = str_; |
| 902 | str_ = NewArray<byte>(max_); |
| 903 | memcpy(str_, old, pos); |
| 904 | memcpy(str_ + pos + bytes, old + pos, len_ - pos); |
| 905 | DeleteArray(old); |
| 906 | } |
| 907 | } |
| 908 | |
| 909 | int SnapshotWriter::InsertString(const char* s, int pos) { |
| 910 | int size = strlen(s); |
| 911 | pos = InsertC('[', pos); |
| 912 | pos = InsertInt(size, pos); |
| 913 | pos = InsertC(']', pos); |
| 914 | return InsertBytes(reinterpret_cast<const byte*>(s), pos, size); |
| 915 | } |
| 916 | |
| 917 | |
| 918 | class ReferenceUpdater: public ObjectVisitor { |
| 919 | public: |
| 920 | ReferenceUpdater(HeapObject* obj, Serializer* serializer) |
| 921 | : obj_address_(obj->address()), |
| 922 | serializer_(serializer), |
| 923 | reference_encoder_(serializer->reference_encoder_), |
| 924 | offsets_(8), |
| 925 | addresses_(8) { |
| 926 | } |
| 927 | |
| 928 | virtual void VisitPointers(Object** start, Object** end) { |
| 929 | for (Object** p = start; p < end; ++p) { |
| 930 | if ((*p)->IsHeapObject()) { |
| 931 | offsets_.Add(reinterpret_cast<Address>(p) - obj_address_); |
| 932 | Address a = serializer_->GetSavedAddress(HeapObject::cast(*p)); |
| 933 | addresses_.Add(a); |
| 934 | } |
| 935 | } |
| 936 | } |
| 937 | |
| 938 | virtual void VisitCodeTarget(RelocInfo* rinfo) { |
| 939 | ASSERT(RelocInfo::IsCodeTarget(rinfo->rmode())); |
| 940 | Code* target = Code::GetCodeFromTargetAddress(rinfo->target_address()); |
| 941 | Address encoded_target = serializer_->GetSavedAddress(target); |
| 942 | offsets_.Add(rinfo->target_address_address() - obj_address_); |
| 943 | addresses_.Add(encoded_target); |
| 944 | } |
| 945 | |
| 946 | |
| 947 | virtual void VisitExternalReferences(Address* start, Address* end) { |
| 948 | for (Address* p = start; p < end; ++p) { |
| 949 | uint32_t code = reference_encoder_->Encode(*p); |
| 950 | CHECK(*p == NULL ? code == 0 : code != 0); |
| 951 | offsets_.Add(reinterpret_cast<Address>(p) - obj_address_); |
| 952 | addresses_.Add(reinterpret_cast<Address>(code)); |
| 953 | } |
| 954 | } |
| 955 | |
| 956 | virtual void VisitRuntimeEntry(RelocInfo* rinfo) { |
| 957 | Address target = rinfo->target_address(); |
| 958 | uint32_t encoding = reference_encoder_->Encode(target); |
| 959 | CHECK(target == NULL ? encoding == 0 : encoding != 0); |
| 960 | offsets_.Add(rinfo->target_address_address() - obj_address_); |
| 961 | addresses_.Add(reinterpret_cast<Address>(encoding)); |
| 962 | } |
| 963 | |
| 964 | void Update(Address start_address) { |
| 965 | for (int i = 0; i < offsets_.length(); i++) { |
| 966 | memcpy(start_address + offsets_[i], &addresses_[i], sizeof(Address)); |
| 967 | } |
| 968 | } |
| 969 | |
| 970 | private: |
| 971 | Address obj_address_; |
| 972 | Serializer* serializer_; |
| 973 | ExternalReferenceEncoder* reference_encoder_; |
| 974 | List<int> offsets_; |
| 975 | List<Address> addresses_; |
| 976 | }; |
| 977 | |
| 978 | |
| 979 | // Helper functions for a map of encoded heap object addresses. |
| 980 | static uint32_t HeapObjectHash(HeapObject* key) { |
| 981 | uint32_t low32bits = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)); |
| 982 | return low32bits >> 2; |
| 983 | } |
| 984 | |
| 985 | |
| 986 | static bool MatchHeapObject(void* key1, void* key2) { |
| 987 | return key1 == key2; |
| 988 | } |
| 989 | |
| 990 | |
| 991 | Serializer::Serializer() |
| 992 | : global_handles_(4), |
| 993 | saved_addresses_(MatchHeapObject) { |
| 994 | root_ = true; |
| 995 | roots_ = 0; |
| 996 | objects_ = 0; |
| 997 | reference_encoder_ = NULL; |
| 998 | writer_ = new SnapshotWriter(); |
| 999 | for (int i = 0; i <= LAST_SPACE; i++) { |
| 1000 | allocator_[i] = new SimulatedHeapSpace(); |
| 1001 | } |
| 1002 | } |
| 1003 | |
| 1004 | |
| 1005 | Serializer::~Serializer() { |
| 1006 | for (int i = 0; i <= LAST_SPACE; i++) { |
| 1007 | delete allocator_[i]; |
| 1008 | } |
| 1009 | if (reference_encoder_) delete reference_encoder_; |
| 1010 | delete writer_; |
| 1011 | } |
| 1012 | |
| 1013 | |
| 1014 | bool Serializer::serialization_enabled_ = false; |
| 1015 | |
| 1016 | |
| 1017 | #ifdef DEBUG |
| 1018 | static const int kMaxTagLength = 32; |
| 1019 | |
| 1020 | void Serializer::Synchronize(const char* tag) { |
| 1021 | if (FLAG_debug_serialization) { |
| 1022 | int length = strlen(tag); |
| 1023 | ASSERT(length <= kMaxTagLength); |
| 1024 | writer_->PutC('S'); |
| 1025 | writer_->PutInt(length); |
| 1026 | writer_->PutBytes(reinterpret_cast<const byte*>(tag), length); |
| 1027 | } |
| 1028 | } |
| 1029 | #endif |
| 1030 | |
| 1031 | |
| 1032 | void Serializer::InitializeAllocators() { |
| 1033 | for (int i = 0; i <= LAST_SPACE; i++) { |
| 1034 | allocator_[i]->InitEmptyHeap(static_cast<AllocationSpace>(i)); |
| 1035 | } |
| 1036 | } |
| 1037 | |
| 1038 | |
| 1039 | bool Serializer::IsVisited(HeapObject* obj) { |
| 1040 | HashMap::Entry* entry = |
| 1041 | saved_addresses_.Lookup(obj, HeapObjectHash(obj), false); |
| 1042 | return entry != NULL; |
| 1043 | } |
| 1044 | |
| 1045 | |
| 1046 | Address Serializer::GetSavedAddress(HeapObject* obj) { |
| 1047 | HashMap::Entry* entry = |
| 1048 | saved_addresses_.Lookup(obj, HeapObjectHash(obj), false); |
| 1049 | ASSERT(entry != NULL); |
| 1050 | return reinterpret_cast<Address>(entry->value); |
| 1051 | } |
| 1052 | |
| 1053 | |
| 1054 | void Serializer::SaveAddress(HeapObject* obj, Address addr) { |
| 1055 | HashMap::Entry* entry = |
| 1056 | saved_addresses_.Lookup(obj, HeapObjectHash(obj), true); |
| 1057 | entry->value = addr; |
| 1058 | } |
| 1059 | |
| 1060 | |
| 1061 | void Serializer::Serialize() { |
| 1062 | // No active threads. |
| 1063 | CHECK_EQ(NULL, ThreadState::FirstInUse()); |
| 1064 | // No active or weak handles. |
| 1065 | CHECK(HandleScopeImplementer::instance()->blocks()->is_empty()); |
| 1066 | CHECK_EQ(0, GlobalHandles::NumberOfWeakHandles()); |
| 1067 | // We need a counter function during serialization to resolve the |
| 1068 | // references to counters in the code on the heap. |
| 1069 | CHECK(StatsTable::HasCounterFunction()); |
| 1070 | CHECK(enabled()); |
| 1071 | InitializeAllocators(); |
| 1072 | reference_encoder_ = new ExternalReferenceEncoder(); |
| 1073 | PutHeader(); |
| 1074 | Heap::IterateRoots(this); |
| 1075 | PutLog(); |
| 1076 | PutContextStack(); |
| 1077 | Disable(); |
| 1078 | } |
| 1079 | |
| 1080 | |
| 1081 | void Serializer::Finalize(byte** str, int* len) { |
| 1082 | writer_->GetBytes(str, len); |
| 1083 | } |
| 1084 | |
| 1085 | |
| 1086 | // Serialize objects by writing them into the stream. |
| 1087 | |
| 1088 | void Serializer::VisitPointers(Object** start, Object** end) { |
| 1089 | bool root = root_; |
| 1090 | root_ = false; |
| 1091 | for (Object** p = start; p < end; ++p) { |
| 1092 | bool serialized; |
| 1093 | Address a = Encode(*p, &serialized); |
| 1094 | if (root) { |
| 1095 | roots_++; |
| 1096 | // If the object was not just serialized, |
| 1097 | // write its encoded address instead. |
| 1098 | if (!serialized) PutEncodedAddress(a); |
| 1099 | } |
| 1100 | } |
| 1101 | root_ = root; |
| 1102 | } |
| 1103 | |
| 1104 | |
| 1105 | void Serializer::VisitCodeTarget(RelocInfo* rinfo) { |
| 1106 | ASSERT(RelocInfo::IsCodeTarget(rinfo->rmode())); |
| 1107 | Code* target = Code::GetCodeFromTargetAddress(rinfo->target_address()); |
| 1108 | bool serialized; |
| 1109 | Encode(target, &serialized); |
| 1110 | } |
| 1111 | |
| 1112 | |
| 1113 | class GlobalHandlesRetriever: public ObjectVisitor { |
| 1114 | public: |
| 1115 | explicit GlobalHandlesRetriever(List<Object**>* handles) |
| 1116 | : global_handles_(handles) {} |
| 1117 | |
| 1118 | virtual void VisitPointers(Object** start, Object** end) { |
| 1119 | for (; start != end; ++start) { |
| 1120 | global_handles_->Add(start); |
| 1121 | } |
| 1122 | } |
| 1123 | |
| 1124 | private: |
| 1125 | List<Object**>* global_handles_; |
| 1126 | }; |
| 1127 | |
| 1128 | |
| 1129 | void Serializer::PutFlags() { |
| 1130 | writer_->PutC('F'); |
| 1131 | List<const char*>* argv = FlagList::argv(); |
| 1132 | writer_->PutInt(argv->length()); |
| 1133 | writer_->PutC('['); |
| 1134 | for (int i = 0; i < argv->length(); i++) { |
| 1135 | if (i > 0) writer_->PutC('|'); |
| 1136 | writer_->PutString((*argv)[i]); |
| 1137 | DeleteArray((*argv)[i]); |
| 1138 | } |
| 1139 | writer_->PutC(']'); |
| 1140 | flags_end_ = writer_->length(); |
| 1141 | delete argv; |
| 1142 | } |
| 1143 | |
| 1144 | |
| 1145 | void Serializer::PutHeader() { |
| 1146 | PutFlags(); |
| 1147 | writer_->PutC('D'); |
| 1148 | #ifdef DEBUG |
| 1149 | writer_->PutC(FLAG_debug_serialization ? '1' : '0'); |
| 1150 | #else |
| 1151 | writer_->PutC('0'); |
| 1152 | #endif |
| 1153 | #ifdef V8_NATIVE_REGEXP |
| 1154 | writer_->PutC('N'); |
| 1155 | #else // Interpreted regexp |
| 1156 | writer_->PutC('I'); |
| 1157 | #endif |
| 1158 | // Write sizes of paged memory spaces. Allocate extra space for the old |
| 1159 | // and code spaces, because objects in new space will be promoted to them. |
| 1160 | writer_->PutC('S'); |
| 1161 | writer_->PutC('['); |
| 1162 | writer_->PutInt(Heap::old_pointer_space()->Size() + |
| 1163 | Heap::new_space()->Size()); |
| 1164 | writer_->PutC('|'); |
| 1165 | writer_->PutInt(Heap::old_data_space()->Size() + Heap::new_space()->Size()); |
| 1166 | writer_->PutC('|'); |
| 1167 | writer_->PutInt(Heap::code_space()->Size() + Heap::new_space()->Size()); |
| 1168 | writer_->PutC('|'); |
| 1169 | writer_->PutInt(Heap::map_space()->Size()); |
| 1170 | writer_->PutC('|'); |
| 1171 | writer_->PutInt(Heap::cell_space()->Size()); |
| 1172 | writer_->PutC(']'); |
| 1173 | // Write global handles. |
| 1174 | writer_->PutC('G'); |
| 1175 | writer_->PutC('['); |
| 1176 | GlobalHandlesRetriever ghr(&global_handles_); |
| 1177 | GlobalHandles::IterateRoots(&ghr); |
| 1178 | for (int i = 0; i < global_handles_.length(); i++) { |
| 1179 | writer_->PutC('N'); |
| 1180 | } |
| 1181 | writer_->PutC(']'); |
| 1182 | } |
| 1183 | |
| 1184 | |
| 1185 | void Serializer::PutLog() { |
| 1186 | #ifdef ENABLE_LOGGING_AND_PROFILING |
| 1187 | if (FLAG_log_code) { |
| 1188 | Logger::TearDown(); |
| 1189 | int pos = writer_->InsertC('L', flags_end_); |
| 1190 | bool exists; |
| 1191 | Vector<const char> log = ReadFile(FLAG_logfile, &exists); |
| 1192 | writer_->InsertString(log.start(), pos); |
| 1193 | log.Dispose(); |
| 1194 | } |
| 1195 | #endif |
| 1196 | } |
| 1197 | |
| 1198 | |
| 1199 | static int IndexOf(const List<Object**>& list, Object** element) { |
| 1200 | for (int i = 0; i < list.length(); i++) { |
| 1201 | if (list[i] == element) return i; |
| 1202 | } |
| 1203 | return -1; |
| 1204 | } |
| 1205 | |
| 1206 | |
| 1207 | void Serializer::PutGlobalHandleStack(const List<Handle<Object> >& stack) { |
| 1208 | writer_->PutC('['); |
| 1209 | writer_->PutInt(stack.length()); |
| 1210 | for (int i = stack.length() - 1; i >= 0; i--) { |
| 1211 | writer_->PutC('|'); |
| 1212 | int gh_index = IndexOf(global_handles_, stack[i].location()); |
| 1213 | CHECK_GE(gh_index, 0); |
| 1214 | writer_->PutInt(gh_index); |
| 1215 | } |
| 1216 | writer_->PutC(']'); |
| 1217 | } |
| 1218 | |
| 1219 | |
| 1220 | void Serializer::PutContextStack() { |
| 1221 | List<Context*> contexts(2); |
| 1222 | while (HandleScopeImplementer::instance()->HasSavedContexts()) { |
| 1223 | Context* context = |
| 1224 | HandleScopeImplementer::instance()->RestoreContext(); |
| 1225 | contexts.Add(context); |
| 1226 | } |
| 1227 | for (int i = contexts.length() - 1; i >= 0; i--) { |
| 1228 | HandleScopeImplementer::instance()->SaveContext(contexts[i]); |
| 1229 | } |
| 1230 | writer_->PutC('C'); |
| 1231 | writer_->PutC('['); |
| 1232 | writer_->PutInt(contexts.length()); |
| 1233 | if (!contexts.is_empty()) { |
| 1234 | Object** start = reinterpret_cast<Object**>(&contexts.first()); |
| 1235 | VisitPointers(start, start + contexts.length()); |
| 1236 | } |
| 1237 | writer_->PutC(']'); |
| 1238 | } |
| 1239 | |
| 1240 | void Serializer::PutEncodedAddress(Address addr) { |
| 1241 | writer_->PutC('P'); |
| 1242 | writer_->PutAddress(addr); |
| 1243 | } |
| 1244 | |
| 1245 | |
| 1246 | Address Serializer::Encode(Object* o, bool* serialized) { |
| 1247 | *serialized = false; |
| 1248 | if (o->IsSmi()) { |
| 1249 | return reinterpret_cast<Address>(o); |
| 1250 | } else { |
| 1251 | HeapObject* obj = HeapObject::cast(o); |
| 1252 | if (IsVisited(obj)) { |
| 1253 | return GetSavedAddress(obj); |
| 1254 | } else { |
| 1255 | // First visit: serialize the object. |
| 1256 | *serialized = true; |
| 1257 | return PutObject(obj); |
| 1258 | } |
| 1259 | } |
| 1260 | } |
| 1261 | |
| 1262 | |
| 1263 | Address Serializer::PutObject(HeapObject* obj) { |
| 1264 | Map* map = obj->map(); |
| 1265 | InstanceType type = map->instance_type(); |
| 1266 | int size = obj->SizeFromMap(map); |
| 1267 | |
| 1268 | // Simulate the allocation of obj to predict where it will be |
| 1269 | // allocated during deserialization. |
| 1270 | Address addr = Allocate(obj).Encode(); |
| 1271 | |
| 1272 | SaveAddress(obj, addr); |
| 1273 | |
| 1274 | if (type == CODE_TYPE) { |
| 1275 | LOG(CodeMoveEvent(obj->address(), addr)); |
| 1276 | } |
| 1277 | |
| 1278 | // Write out the object prologue: type, size, and simulated address of obj. |
| 1279 | writer_->PutC('['); |
| 1280 | CHECK_EQ(0, static_cast<int>(size & kObjectAlignmentMask)); |
| 1281 | writer_->PutInt(type); |
| 1282 | writer_->PutInt(size >> kObjectAlignmentBits); |
| 1283 | PutEncodedAddress(addr); // encodes AllocationSpace |
| 1284 | |
| 1285 | // Visit all the pointers in the object other than the map. This |
| 1286 | // will recursively serialize any as-yet-unvisited objects. |
| 1287 | obj->Iterate(this); |
| 1288 | |
| 1289 | // Mark end of recursively embedded objects, start of object body. |
| 1290 | writer_->PutC('|'); |
| 1291 | // Write out the raw contents of the object. No compression, but |
| 1292 | // fast to deserialize. |
| 1293 | writer_->PutBytes(obj->address(), size); |
| 1294 | // Update pointers and external references in the written object. |
| 1295 | ReferenceUpdater updater(obj, this); |
| 1296 | obj->Iterate(&updater); |
| 1297 | updater.Update(writer_->position() - size); |
| 1298 | |
| 1299 | #ifdef DEBUG |
| 1300 | if (FLAG_debug_serialization) { |
| 1301 | // Write out the object epilogue to catch synchronization errors. |
| 1302 | PutEncodedAddress(addr); |
| 1303 | writer_->PutC(']'); |
| 1304 | } |
| 1305 | #endif |
| 1306 | |
| 1307 | objects_++; |
| 1308 | return addr; |
| 1309 | } |
| 1310 | |
| 1311 | |
| 1312 | RelativeAddress Serializer::Allocate(HeapObject* obj) { |
| 1313 | // Find out which AllocationSpace 'obj' is in. |
| 1314 | AllocationSpace s; |
| 1315 | bool found = false; |
| 1316 | for (int i = FIRST_SPACE; !found && i <= LAST_SPACE; i++) { |
| 1317 | s = static_cast<AllocationSpace>(i); |
| 1318 | found = Heap::InSpace(obj, s); |
| 1319 | } |
| 1320 | CHECK(found); |
| 1321 | int size = obj->Size(); |
| 1322 | if (s == NEW_SPACE) { |
| 1323 | if (size > Heap::MaxObjectSizeInPagedSpace()) { |
| 1324 | s = LO_SPACE; |
| 1325 | } else { |
| 1326 | OldSpace* space = Heap::TargetSpace(obj); |
| 1327 | ASSERT(space == Heap::old_pointer_space() || |
| 1328 | space == Heap::old_data_space()); |
| 1329 | s = (space == Heap::old_pointer_space()) ? |
| 1330 | OLD_POINTER_SPACE : |
| 1331 | OLD_DATA_SPACE; |
| 1332 | } |
| 1333 | } |
| 1334 | GCTreatment gc_treatment = DataObject; |
| 1335 | if (obj->IsFixedArray()) gc_treatment = PointerObject; |
| 1336 | else if (obj->IsCode()) gc_treatment = CodeObject; |
| 1337 | return allocator_[s]->Allocate(size, gc_treatment); |
| 1338 | } |
| 1339 | |
| 1340 | |
| 1341 | //------------------------------------------------------------------------------ |
| 1342 | // Implementation of Deserializer |
| 1343 | |
| 1344 | |
| 1345 | static const int kInitArraySize = 32; |
| 1346 | |
| 1347 | |
| 1348 | Deserializer::Deserializer(const byte* str, int len) |
| 1349 | : reader_(str, len), |
| 1350 | map_pages_(kInitArraySize), |
| 1351 | cell_pages_(kInitArraySize), |
| 1352 | old_pointer_pages_(kInitArraySize), |
| 1353 | old_data_pages_(kInitArraySize), |
| 1354 | code_pages_(kInitArraySize), |
| 1355 | large_objects_(kInitArraySize), |
| 1356 | global_handles_(4) { |
| 1357 | root_ = true; |
| 1358 | roots_ = 0; |
| 1359 | objects_ = 0; |
| 1360 | reference_decoder_ = NULL; |
| 1361 | #ifdef DEBUG |
| 1362 | expect_debug_information_ = false; |
| 1363 | #endif |
| 1364 | } |
| 1365 | |
| 1366 | |
| 1367 | Deserializer::~Deserializer() { |
| 1368 | if (reference_decoder_) delete reference_decoder_; |
| 1369 | } |
| 1370 | |
| 1371 | |
| 1372 | void Deserializer::ExpectEncodedAddress(Address expected) { |
| 1373 | Address a = GetEncodedAddress(); |
| 1374 | USE(a); |
| 1375 | ASSERT(a == expected); |
| 1376 | } |
| 1377 | |
| 1378 | |
| 1379 | #ifdef DEBUG |
| 1380 | void Deserializer::Synchronize(const char* tag) { |
| 1381 | if (expect_debug_information_) { |
| 1382 | char buf[kMaxTagLength]; |
| 1383 | reader_.ExpectC('S'); |
| 1384 | int length = reader_.GetInt(); |
| 1385 | ASSERT(length <= kMaxTagLength); |
| 1386 | reader_.GetBytes(reinterpret_cast<Address>(buf), length); |
| 1387 | ASSERT_EQ(strlen(tag), length); |
| 1388 | ASSERT(strncmp(tag, buf, length) == 0); |
| 1389 | } |
| 1390 | } |
| 1391 | #endif |
| 1392 | |
| 1393 | |
| 1394 | void Deserializer::Deserialize() { |
| 1395 | // No active threads. |
| 1396 | ASSERT_EQ(NULL, ThreadState::FirstInUse()); |
| 1397 | // No active handles. |
| 1398 | ASSERT(HandleScopeImplementer::instance()->blocks()->is_empty()); |
| 1399 | reference_decoder_ = new ExternalReferenceDecoder(); |
| 1400 | // By setting linear allocation only, we forbid the use of free list |
| 1401 | // allocation which is not predicted by SimulatedAddress. |
| 1402 | GetHeader(); |
| 1403 | Heap::IterateRoots(this); |
| 1404 | GetContextStack(); |
| 1405 | } |
| 1406 | |
| 1407 | |
| 1408 | void Deserializer::VisitPointers(Object** start, Object** end) { |
| 1409 | bool root = root_; |
| 1410 | root_ = false; |
| 1411 | for (Object** p = start; p < end; ++p) { |
| 1412 | if (root) { |
| 1413 | roots_++; |
| 1414 | // Read the next object or pointer from the stream |
| 1415 | // pointer in the stream. |
| 1416 | int c = reader_.GetC(); |
| 1417 | if (c == '[') { |
| 1418 | *p = GetObject(); // embedded object |
| 1419 | } else { |
| 1420 | ASSERT(c == 'P'); // pointer to previously serialized object |
| 1421 | *p = Resolve(reader_.GetAddress()); |
| 1422 | } |
| 1423 | } else { |
| 1424 | // A pointer internal to a HeapObject that we've already |
| 1425 | // read: resolve it to a true address (or Smi) |
| 1426 | *p = Resolve(reinterpret_cast<Address>(*p)); |
| 1427 | } |
| 1428 | } |
| 1429 | root_ = root; |
| 1430 | } |
| 1431 | |
| 1432 | |
| 1433 | void Deserializer::VisitCodeTarget(RelocInfo* rinfo) { |
| 1434 | ASSERT(RelocInfo::IsCodeTarget(rinfo->rmode())); |
| 1435 | Address encoded_address = reinterpret_cast<Address>(rinfo->target_object()); |
| 1436 | Code* target_object = reinterpret_cast<Code*>(Resolve(encoded_address)); |
| 1437 | rinfo->set_target_address(target_object->instruction_start()); |
| 1438 | } |
| 1439 | |
| 1440 | |
| 1441 | void Deserializer::VisitExternalReferences(Address* start, Address* end) { |
| 1442 | for (Address* p = start; p < end; ++p) { |
| 1443 | uint32_t code = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(*p)); |
| 1444 | *p = reference_decoder_->Decode(code); |
| 1445 | } |
| 1446 | } |
| 1447 | |
| 1448 | |
| 1449 | void Deserializer::VisitRuntimeEntry(RelocInfo* rinfo) { |
| 1450 | uint32_t* pc = reinterpret_cast<uint32_t*>(rinfo->target_address_address()); |
| 1451 | uint32_t encoding = *pc; |
| 1452 | Address target = reference_decoder_->Decode(encoding); |
| 1453 | rinfo->set_target_address(target); |
| 1454 | } |
| 1455 | |
| 1456 | |
| 1457 | void Deserializer::GetFlags() { |
| 1458 | reader_.ExpectC('F'); |
| 1459 | int argc = reader_.GetInt() + 1; |
| 1460 | char** argv = NewArray<char*>(argc); |
| 1461 | reader_.ExpectC('['); |
| 1462 | for (int i = 1; i < argc; i++) { |
| 1463 | if (i > 1) reader_.ExpectC('|'); |
| 1464 | argv[i] = reader_.GetString(); |
| 1465 | } |
| 1466 | reader_.ExpectC(']'); |
| 1467 | has_log_ = false; |
| 1468 | for (int i = 1; i < argc; i++) { |
| 1469 | if (strcmp("--log_code", argv[i]) == 0) { |
| 1470 | has_log_ = true; |
| 1471 | } else if (strcmp("--nouse_ic", argv[i]) == 0) { |
| 1472 | FLAG_use_ic = false; |
| 1473 | } else if (strcmp("--debug_code", argv[i]) == 0) { |
| 1474 | FLAG_debug_code = true; |
| 1475 | } else if (strcmp("--nolazy", argv[i]) == 0) { |
| 1476 | FLAG_lazy = false; |
| 1477 | } |
| 1478 | DeleteArray(argv[i]); |
| 1479 | } |
| 1480 | |
| 1481 | DeleteArray(argv); |
| 1482 | } |
| 1483 | |
| 1484 | |
| 1485 | void Deserializer::GetLog() { |
| 1486 | if (has_log_) { |
| 1487 | reader_.ExpectC('L'); |
| 1488 | char* snapshot_log = reader_.GetString(); |
| 1489 | #ifdef ENABLE_LOGGING_AND_PROFILING |
| 1490 | if (FLAG_log_code) { |
| 1491 | LOG(Preamble(snapshot_log)); |
| 1492 | } |
| 1493 | #endif |
| 1494 | DeleteArray(snapshot_log); |
| 1495 | } |
| 1496 | } |
| 1497 | |
| 1498 | |
| 1499 | static void InitPagedSpace(PagedSpace* space, |
| 1500 | int capacity, |
| 1501 | List<Page*>* page_list) { |
| 1502 | if (!space->EnsureCapacity(capacity)) { |
| 1503 | V8::FatalProcessOutOfMemory("InitPagedSpace"); |
| 1504 | } |
| 1505 | PageIterator it(space, PageIterator::ALL_PAGES); |
| 1506 | while (it.has_next()) page_list->Add(it.next()); |
| 1507 | } |
| 1508 | |
| 1509 | |
| 1510 | void Deserializer::GetHeader() { |
| 1511 | reader_.ExpectC('D'); |
| 1512 | #ifdef DEBUG |
| 1513 | expect_debug_information_ = reader_.GetC() == '1'; |
| 1514 | #else |
| 1515 | // In release mode, don't attempt to read a snapshot containing |
| 1516 | // synchronization tags. |
| 1517 | if (reader_.GetC() != '0') FATAL("Snapshot contains synchronization tags."); |
| 1518 | #endif |
| 1519 | #ifdef V8_NATIVE_REGEXP |
| 1520 | reader_.ExpectC('N'); |
| 1521 | #else // Interpreted regexp. |
| 1522 | reader_.ExpectC('I'); |
| 1523 | #endif |
| 1524 | // Ensure sufficient capacity in paged memory spaces to avoid growth |
| 1525 | // during deserialization. |
| 1526 | reader_.ExpectC('S'); |
| 1527 | reader_.ExpectC('['); |
| 1528 | InitPagedSpace(Heap::old_pointer_space(), |
| 1529 | reader_.GetInt(), |
| 1530 | &old_pointer_pages_); |
| 1531 | reader_.ExpectC('|'); |
| 1532 | InitPagedSpace(Heap::old_data_space(), reader_.GetInt(), &old_data_pages_); |
| 1533 | reader_.ExpectC('|'); |
| 1534 | InitPagedSpace(Heap::code_space(), reader_.GetInt(), &code_pages_); |
| 1535 | reader_.ExpectC('|'); |
| 1536 | InitPagedSpace(Heap::map_space(), reader_.GetInt(), &map_pages_); |
| 1537 | reader_.ExpectC('|'); |
| 1538 | InitPagedSpace(Heap::cell_space(), reader_.GetInt(), &cell_pages_); |
| 1539 | reader_.ExpectC(']'); |
| 1540 | // Create placeholders for global handles later to be fill during |
| 1541 | // IterateRoots. |
| 1542 | reader_.ExpectC('G'); |
| 1543 | reader_.ExpectC('['); |
| 1544 | int c = reader_.GetC(); |
| 1545 | while (c != ']') { |
| 1546 | ASSERT(c == 'N'); |
| 1547 | global_handles_.Add(GlobalHandles::Create(NULL).location()); |
| 1548 | c = reader_.GetC(); |
| 1549 | } |
| 1550 | } |
| 1551 | |
| 1552 | |
| 1553 | void Deserializer::GetGlobalHandleStack(List<Handle<Object> >* stack) { |
| 1554 | reader_.ExpectC('['); |
| 1555 | int length = reader_.GetInt(); |
| 1556 | for (int i = 0; i < length; i++) { |
| 1557 | reader_.ExpectC('|'); |
| 1558 | int gh_index = reader_.GetInt(); |
| 1559 | stack->Add(global_handles_[gh_index]); |
| 1560 | } |
| 1561 | reader_.ExpectC(']'); |
| 1562 | } |
| 1563 | |
| 1564 | |
| 1565 | void Deserializer::GetContextStack() { |
| 1566 | reader_.ExpectC('C'); |
| 1567 | CHECK_EQ(reader_.GetC(), '['); |
| 1568 | int count = reader_.GetInt(); |
| 1569 | List<Context*> entered_contexts(count); |
| 1570 | if (count > 0) { |
| 1571 | Object** start = reinterpret_cast<Object**>(&entered_contexts.first()); |
| 1572 | VisitPointers(start, start + count); |
| 1573 | } |
| 1574 | reader_.ExpectC(']'); |
| 1575 | for (int i = 0; i < count; i++) { |
| 1576 | HandleScopeImplementer::instance()->SaveContext(entered_contexts[i]); |
| 1577 | } |
| 1578 | } |
| 1579 | |
| 1580 | |
| 1581 | Address Deserializer::GetEncodedAddress() { |
| 1582 | reader_.ExpectC('P'); |
| 1583 | return reader_.GetAddress(); |
| 1584 | } |
| 1585 | |
| 1586 | |
| 1587 | Object* Deserializer::GetObject() { |
| 1588 | // Read the prologue: type, size and encoded address. |
| 1589 | InstanceType type = static_cast<InstanceType>(reader_.GetInt()); |
| 1590 | int size = reader_.GetInt() << kObjectAlignmentBits; |
| 1591 | Address a = GetEncodedAddress(); |
| 1592 | |
| 1593 | // Get a raw object of the right size in the right space. |
| 1594 | AllocationSpace space = GetSpace(a); |
| 1595 | Object* o; |
| 1596 | if (IsLargeExecutableObject(a)) { |
| 1597 | o = Heap::lo_space()->AllocateRawCode(size); |
| 1598 | } else if (IsLargeFixedArray(a)) { |
| 1599 | o = Heap::lo_space()->AllocateRawFixedArray(size); |
| 1600 | } else { |
| 1601 | AllocationSpace retry_space = (space == NEW_SPACE) |
| 1602 | ? Heap::TargetSpaceId(type) |
| 1603 | : space; |
| 1604 | o = Heap::AllocateRaw(size, space, retry_space); |
| 1605 | } |
| 1606 | ASSERT(!o->IsFailure()); |
| 1607 | // Check that the simulation of heap allocation was correct. |
| 1608 | ASSERT(o == Resolve(a)); |
| 1609 | |
| 1610 | // Read any recursively embedded objects. |
| 1611 | int c = reader_.GetC(); |
| 1612 | while (c == '[') { |
| 1613 | GetObject(); |
| 1614 | c = reader_.GetC(); |
| 1615 | } |
| 1616 | ASSERT(c == '|'); |
| 1617 | |
| 1618 | HeapObject* obj = reinterpret_cast<HeapObject*>(o); |
| 1619 | // Read the uninterpreted contents of the object after the map |
| 1620 | reader_.GetBytes(obj->address(), size); |
| 1621 | #ifdef DEBUG |
| 1622 | if (expect_debug_information_) { |
| 1623 | // Read in the epilogue to check that we're still synchronized |
| 1624 | ExpectEncodedAddress(a); |
| 1625 | reader_.ExpectC(']'); |
| 1626 | } |
| 1627 | #endif |
| 1628 | |
| 1629 | // Resolve the encoded pointers we just read in. |
| 1630 | // Same as obj->Iterate(this), but doesn't rely on the map pointer being set. |
| 1631 | VisitPointer(reinterpret_cast<Object**>(obj->address())); |
| 1632 | obj->IterateBody(type, size, this); |
| 1633 | |
| 1634 | if (type == CODE_TYPE) { |
| 1635 | LOG(CodeMoveEvent(a, obj->address())); |
| 1636 | } |
| 1637 | objects_++; |
| 1638 | return o; |
| 1639 | } |
| 1640 | |
| 1641 | |
| 1642 | static inline Object* ResolvePaged(int page_index, |
| 1643 | int page_offset, |
| 1644 | PagedSpace* space, |
| 1645 | List<Page*>* page_list) { |
| 1646 | ASSERT(page_index < page_list->length()); |
| 1647 | Address address = (*page_list)[page_index]->OffsetToAddress(page_offset); |
| 1648 | return HeapObject::FromAddress(address); |
| 1649 | } |
| 1650 | |
| 1651 | |
| 1652 | template<typename T> |
| 1653 | void ConcatReversed(List<T>* target, const List<T>& source) { |
| 1654 | for (int i = source.length() - 1; i >= 0; i--) { |
| 1655 | target->Add(source[i]); |
| 1656 | } |
| 1657 | } |
| 1658 | |
| 1659 | |
| 1660 | Object* Deserializer::Resolve(Address encoded) { |
| 1661 | Object* o = reinterpret_cast<Object*>(encoded); |
| 1662 | if (o->IsSmi()) return o; |
| 1663 | |
| 1664 | // Encoded addresses of HeapObjects always have 'HeapObject' tags. |
| 1665 | ASSERT(o->IsHeapObject()); |
| 1666 | |
| 1667 | switch (GetSpace(encoded)) { |
| 1668 | // For Map space and Old space, we cache the known Pages in map_pages, |
| 1669 | // old_pointer_pages and old_data_pages. Even though MapSpace keeps a list |
| 1670 | // of page addresses, we don't rely on it since GetObject uses AllocateRaw, |
| 1671 | // and that appears not to update the page list. |
| 1672 | case MAP_SPACE: |
| 1673 | return ResolvePaged(PageIndex(encoded), PageOffset(encoded), |
| 1674 | Heap::map_space(), &map_pages_); |
| 1675 | case CELL_SPACE: |
| 1676 | return ResolvePaged(PageIndex(encoded), PageOffset(encoded), |
| 1677 | Heap::cell_space(), &cell_pages_); |
| 1678 | case OLD_POINTER_SPACE: |
| 1679 | return ResolvePaged(PageIndex(encoded), PageOffset(encoded), |
| 1680 | Heap::old_pointer_space(), &old_pointer_pages_); |
| 1681 | case OLD_DATA_SPACE: |
| 1682 | return ResolvePaged(PageIndex(encoded), PageOffset(encoded), |
| 1683 | Heap::old_data_space(), &old_data_pages_); |
| 1684 | case CODE_SPACE: |
| 1685 | return ResolvePaged(PageIndex(encoded), PageOffset(encoded), |
| 1686 | Heap::code_space(), &code_pages_); |
| 1687 | case NEW_SPACE: |
| 1688 | return HeapObject::FromAddress(Heap::NewSpaceStart() + |
| 1689 | NewSpaceOffset(encoded)); |
| 1690 | case LO_SPACE: |
| 1691 | // Cache the known large_objects, allocated one per 'page' |
| 1692 | int index = LargeObjectIndex(encoded); |
| 1693 | if (index >= large_objects_.length()) { |
| 1694 | int new_object_count = |
| 1695 | Heap::lo_space()->PageCount() - large_objects_.length(); |
| 1696 | List<Object*> new_objects(new_object_count); |
| 1697 | LargeObjectIterator it(Heap::lo_space()); |
| 1698 | for (int i = 0; i < new_object_count; i++) { |
| 1699 | new_objects.Add(it.next()); |
| 1700 | } |
| 1701 | #ifdef DEBUG |
| 1702 | for (int i = large_objects_.length() - 1; i >= 0; i--) { |
| 1703 | ASSERT(it.next() == large_objects_[i]); |
| 1704 | } |
| 1705 | #endif |
| 1706 | ConcatReversed(&large_objects_, new_objects); |
| 1707 | ASSERT(index < large_objects_.length()); |
| 1708 | } |
| 1709 | return large_objects_[index]; // s.page_offset() is ignored. |
| 1710 | } |
| 1711 | UNREACHABLE(); |
| 1712 | return NULL; |
| 1713 | } |
| 1714 | |
| 1715 | |
| 1716 | } } // namespace v8::internal |