Emily Bernier | d0a1eb7 | 2015-03-24 16:35:39 -0400 | [diff] [blame] | 1 | // Copyright 2014 the V8 project authors. All rights reserved. |
| 2 | // Use of this source code is governed by a BSD-style license that can be |
| 3 | // found in the LICENSE file. |
| 4 | |
| 5 | #include "src/v8.h" |
| 6 | |
| 7 | #include "src/arguments.h" |
| 8 | #include "src/base/bits.h" |
| 9 | #include "src/bootstrapper.h" |
| 10 | #include "src/codegen.h" |
| 11 | #include "src/runtime/runtime-utils.h" |
| 12 | |
| 13 | |
| 14 | #ifndef _STLP_VENDOR_CSTD |
| 15 | // STLPort doesn't import fpclassify and isless into the std namespace. |
| 16 | using std::fpclassify; |
| 17 | using std::isless; |
| 18 | #endif |
| 19 | |
| 20 | namespace v8 { |
| 21 | namespace internal { |
| 22 | |
| 23 | RUNTIME_FUNCTION(Runtime_NumberToRadixString) { |
| 24 | HandleScope scope(isolate); |
| 25 | DCHECK(args.length() == 2); |
| 26 | CONVERT_SMI_ARG_CHECKED(radix, 1); |
| 27 | RUNTIME_ASSERT(2 <= radix && radix <= 36); |
| 28 | |
| 29 | // Fast case where the result is a one character string. |
| 30 | if (args[0]->IsSmi()) { |
| 31 | int value = args.smi_at(0); |
| 32 | if (value >= 0 && value < radix) { |
| 33 | // Character array used for conversion. |
| 34 | static const char kCharTable[] = "0123456789abcdefghijklmnopqrstuvwxyz"; |
| 35 | return *isolate->factory()->LookupSingleCharacterStringFromCode( |
| 36 | kCharTable[value]); |
| 37 | } |
| 38 | } |
| 39 | |
| 40 | // Slow case. |
| 41 | CONVERT_DOUBLE_ARG_CHECKED(value, 0); |
| 42 | if (std::isnan(value)) { |
| 43 | return isolate->heap()->nan_string(); |
| 44 | } |
| 45 | if (std::isinf(value)) { |
| 46 | if (value < 0) { |
| 47 | return isolate->heap()->minus_infinity_string(); |
| 48 | } |
| 49 | return isolate->heap()->infinity_string(); |
| 50 | } |
| 51 | char* str = DoubleToRadixCString(value, radix); |
| 52 | Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str); |
| 53 | DeleteArray(str); |
| 54 | return *result; |
| 55 | } |
| 56 | |
| 57 | |
| 58 | RUNTIME_FUNCTION(Runtime_NumberToFixed) { |
| 59 | HandleScope scope(isolate); |
| 60 | DCHECK(args.length() == 2); |
| 61 | |
| 62 | CONVERT_DOUBLE_ARG_CHECKED(value, 0); |
| 63 | CONVERT_DOUBLE_ARG_CHECKED(f_number, 1); |
| 64 | int f = FastD2IChecked(f_number); |
| 65 | // See DoubleToFixedCString for these constants: |
| 66 | RUNTIME_ASSERT(f >= 0 && f <= 20); |
| 67 | RUNTIME_ASSERT(!Double(value).IsSpecial()); |
| 68 | char* str = DoubleToFixedCString(value, f); |
| 69 | Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str); |
| 70 | DeleteArray(str); |
| 71 | return *result; |
| 72 | } |
| 73 | |
| 74 | |
| 75 | RUNTIME_FUNCTION(Runtime_NumberToExponential) { |
| 76 | HandleScope scope(isolate); |
| 77 | DCHECK(args.length() == 2); |
| 78 | |
| 79 | CONVERT_DOUBLE_ARG_CHECKED(value, 0); |
| 80 | CONVERT_DOUBLE_ARG_CHECKED(f_number, 1); |
| 81 | int f = FastD2IChecked(f_number); |
| 82 | RUNTIME_ASSERT(f >= -1 && f <= 20); |
| 83 | RUNTIME_ASSERT(!Double(value).IsSpecial()); |
| 84 | char* str = DoubleToExponentialCString(value, f); |
| 85 | Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str); |
| 86 | DeleteArray(str); |
| 87 | return *result; |
| 88 | } |
| 89 | |
| 90 | |
| 91 | RUNTIME_FUNCTION(Runtime_NumberToPrecision) { |
| 92 | HandleScope scope(isolate); |
| 93 | DCHECK(args.length() == 2); |
| 94 | |
| 95 | CONVERT_DOUBLE_ARG_CHECKED(value, 0); |
| 96 | CONVERT_DOUBLE_ARG_CHECKED(f_number, 1); |
| 97 | int f = FastD2IChecked(f_number); |
| 98 | RUNTIME_ASSERT(f >= 1 && f <= 21); |
| 99 | RUNTIME_ASSERT(!Double(value).IsSpecial()); |
| 100 | char* str = DoubleToPrecisionCString(value, f); |
| 101 | Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str); |
| 102 | DeleteArray(str); |
| 103 | return *result; |
| 104 | } |
| 105 | |
| 106 | |
| 107 | RUNTIME_FUNCTION(Runtime_IsValidSmi) { |
| 108 | SealHandleScope shs(isolate); |
| 109 | DCHECK(args.length() == 1); |
| 110 | |
| 111 | CONVERT_NUMBER_CHECKED(int32_t, number, Int32, args[0]); |
| 112 | return isolate->heap()->ToBoolean(Smi::IsValid(number)); |
| 113 | } |
| 114 | |
| 115 | |
| 116 | static bool AreDigits(const uint8_t* s, int from, int to) { |
| 117 | for (int i = from; i < to; i++) { |
| 118 | if (s[i] < '0' || s[i] > '9') return false; |
| 119 | } |
| 120 | |
| 121 | return true; |
| 122 | } |
| 123 | |
| 124 | |
| 125 | static int ParseDecimalInteger(const uint8_t* s, int from, int to) { |
| 126 | DCHECK(to - from < 10); // Overflow is not possible. |
| 127 | DCHECK(from < to); |
| 128 | int d = s[from] - '0'; |
| 129 | |
| 130 | for (int i = from + 1; i < to; i++) { |
| 131 | d = 10 * d + (s[i] - '0'); |
| 132 | } |
| 133 | |
| 134 | return d; |
| 135 | } |
| 136 | |
| 137 | |
| 138 | RUNTIME_FUNCTION(Runtime_StringToNumber) { |
| 139 | HandleScope handle_scope(isolate); |
| 140 | DCHECK(args.length() == 1); |
| 141 | CONVERT_ARG_HANDLE_CHECKED(String, subject, 0); |
| 142 | subject = String::Flatten(subject); |
| 143 | |
| 144 | // Fast case: short integer or some sorts of junk values. |
| 145 | if (subject->IsSeqOneByteString()) { |
| 146 | int len = subject->length(); |
| 147 | if (len == 0) return Smi::FromInt(0); |
| 148 | |
| 149 | DisallowHeapAllocation no_gc; |
| 150 | uint8_t const* data = Handle<SeqOneByteString>::cast(subject)->GetChars(); |
| 151 | bool minus = (data[0] == '-'); |
| 152 | int start_pos = (minus ? 1 : 0); |
| 153 | |
| 154 | if (start_pos == len) { |
| 155 | return isolate->heap()->nan_value(); |
| 156 | } else if (data[start_pos] > '9') { |
| 157 | // Fast check for a junk value. A valid string may start from a |
| 158 | // whitespace, a sign ('+' or '-'), the decimal point, a decimal digit |
| 159 | // or the 'I' character ('Infinity'). All of that have codes not greater |
| 160 | // than '9' except 'I' and . |
| 161 | if (data[start_pos] != 'I' && data[start_pos] != 0xa0) { |
| 162 | return isolate->heap()->nan_value(); |
| 163 | } |
| 164 | } else if (len - start_pos < 10 && AreDigits(data, start_pos, len)) { |
| 165 | // The maximal/minimal smi has 10 digits. If the string has less digits |
| 166 | // we know it will fit into the smi-data type. |
| 167 | int d = ParseDecimalInteger(data, start_pos, len); |
| 168 | if (minus) { |
| 169 | if (d == 0) return isolate->heap()->minus_zero_value(); |
| 170 | d = -d; |
| 171 | } else if (!subject->HasHashCode() && len <= String::kMaxArrayIndexSize && |
| 172 | (len == 1 || data[0] != '0')) { |
| 173 | // String hash is not calculated yet but all the data are present. |
| 174 | // Update the hash field to speed up sequential convertions. |
| 175 | uint32_t hash = StringHasher::MakeArrayIndexHash(d, len); |
| 176 | #ifdef DEBUG |
| 177 | subject->Hash(); // Force hash calculation. |
| 178 | DCHECK_EQ(static_cast<int>(subject->hash_field()), |
| 179 | static_cast<int>(hash)); |
| 180 | #endif |
| 181 | subject->set_hash_field(hash); |
| 182 | } |
| 183 | return Smi::FromInt(d); |
| 184 | } |
| 185 | } |
| 186 | |
| 187 | // Slower case. |
| 188 | int flags = ALLOW_HEX; |
| 189 | if (FLAG_harmony_numeric_literals) { |
| 190 | // The current spec draft has not updated "ToNumber Applied to the String |
| 191 | // Type", https://bugs.ecmascript.org/show_bug.cgi?id=1584 |
| 192 | flags |= ALLOW_OCTAL | ALLOW_BINARY; |
| 193 | } |
| 194 | |
| 195 | return *isolate->factory()->NewNumber( |
| 196 | StringToDouble(isolate->unicode_cache(), subject, flags)); |
| 197 | } |
| 198 | |
| 199 | |
| 200 | RUNTIME_FUNCTION(Runtime_StringParseInt) { |
| 201 | HandleScope handle_scope(isolate); |
| 202 | DCHECK(args.length() == 2); |
| 203 | CONVERT_ARG_HANDLE_CHECKED(String, subject, 0); |
| 204 | CONVERT_NUMBER_CHECKED(int, radix, Int32, args[1]); |
| 205 | RUNTIME_ASSERT(radix == 0 || (2 <= radix && radix <= 36)); |
| 206 | |
| 207 | subject = String::Flatten(subject); |
| 208 | double value; |
| 209 | |
| 210 | { |
| 211 | DisallowHeapAllocation no_gc; |
| 212 | String::FlatContent flat = subject->GetFlatContent(); |
| 213 | |
| 214 | // ECMA-262 section 15.1.2.3, empty string is NaN |
| 215 | if (flat.IsOneByte()) { |
| 216 | value = |
| 217 | StringToInt(isolate->unicode_cache(), flat.ToOneByteVector(), radix); |
| 218 | } else { |
| 219 | value = StringToInt(isolate->unicode_cache(), flat.ToUC16Vector(), radix); |
| 220 | } |
| 221 | } |
| 222 | |
| 223 | return *isolate->factory()->NewNumber(value); |
| 224 | } |
| 225 | |
| 226 | |
| 227 | RUNTIME_FUNCTION(Runtime_StringParseFloat) { |
| 228 | HandleScope shs(isolate); |
| 229 | DCHECK(args.length() == 1); |
| 230 | CONVERT_ARG_HANDLE_CHECKED(String, subject, 0); |
| 231 | |
| 232 | double value = StringToDouble(isolate->unicode_cache(), subject, |
| 233 | ALLOW_TRAILING_JUNK, base::OS::nan_value()); |
| 234 | |
| 235 | return *isolate->factory()->NewNumber(value); |
| 236 | } |
| 237 | |
| 238 | |
| 239 | RUNTIME_FUNCTION(Runtime_NumberToStringRT) { |
| 240 | HandleScope scope(isolate); |
| 241 | DCHECK(args.length() == 1); |
| 242 | CONVERT_NUMBER_ARG_HANDLE_CHECKED(number, 0); |
| 243 | |
| 244 | return *isolate->factory()->NumberToString(number); |
| 245 | } |
| 246 | |
| 247 | |
| 248 | RUNTIME_FUNCTION(Runtime_NumberToStringSkipCache) { |
| 249 | HandleScope scope(isolate); |
| 250 | DCHECK(args.length() == 1); |
| 251 | CONVERT_NUMBER_ARG_HANDLE_CHECKED(number, 0); |
| 252 | |
| 253 | return *isolate->factory()->NumberToString(number, false); |
| 254 | } |
| 255 | |
| 256 | |
| 257 | RUNTIME_FUNCTION(Runtime_NumberToInteger) { |
| 258 | HandleScope scope(isolate); |
| 259 | DCHECK(args.length() == 1); |
| 260 | |
| 261 | CONVERT_DOUBLE_ARG_CHECKED(number, 0); |
| 262 | return *isolate->factory()->NewNumber(DoubleToInteger(number)); |
| 263 | } |
| 264 | |
| 265 | |
| 266 | RUNTIME_FUNCTION(Runtime_NumberToIntegerMapMinusZero) { |
| 267 | HandleScope scope(isolate); |
| 268 | DCHECK(args.length() == 1); |
| 269 | |
| 270 | CONVERT_DOUBLE_ARG_CHECKED(number, 0); |
| 271 | double double_value = DoubleToInteger(number); |
| 272 | // Map both -0 and +0 to +0. |
| 273 | if (double_value == 0) double_value = 0; |
| 274 | |
| 275 | return *isolate->factory()->NewNumber(double_value); |
| 276 | } |
| 277 | |
| 278 | |
| 279 | RUNTIME_FUNCTION(Runtime_NumberToJSUint32) { |
| 280 | HandleScope scope(isolate); |
| 281 | DCHECK(args.length() == 1); |
| 282 | |
| 283 | CONVERT_NUMBER_CHECKED(int32_t, number, Uint32, args[0]); |
| 284 | return *isolate->factory()->NewNumberFromUint(number); |
| 285 | } |
| 286 | |
| 287 | |
| 288 | RUNTIME_FUNCTION(Runtime_NumberToJSInt32) { |
| 289 | HandleScope scope(isolate); |
| 290 | DCHECK(args.length() == 1); |
| 291 | |
| 292 | CONVERT_DOUBLE_ARG_CHECKED(number, 0); |
| 293 | return *isolate->factory()->NewNumberFromInt(DoubleToInt32(number)); |
| 294 | } |
| 295 | |
| 296 | |
| 297 | // Converts a Number to a Smi, if possible. Returns NaN if the number is not |
| 298 | // a small integer. |
| 299 | RUNTIME_FUNCTION(Runtime_NumberToSmi) { |
| 300 | SealHandleScope shs(isolate); |
| 301 | DCHECK(args.length() == 1); |
| 302 | CONVERT_ARG_CHECKED(Object, obj, 0); |
| 303 | if (obj->IsSmi()) { |
| 304 | return obj; |
| 305 | } |
| 306 | if (obj->IsHeapNumber()) { |
| 307 | double value = HeapNumber::cast(obj)->value(); |
| 308 | int int_value = FastD2I(value); |
| 309 | if (value == FastI2D(int_value) && Smi::IsValid(int_value)) { |
| 310 | return Smi::FromInt(int_value); |
| 311 | } |
| 312 | } |
| 313 | return isolate->heap()->nan_value(); |
| 314 | } |
| 315 | |
| 316 | |
| 317 | RUNTIME_FUNCTION(Runtime_NumberAdd) { |
| 318 | HandleScope scope(isolate); |
| 319 | DCHECK(args.length() == 2); |
| 320 | |
| 321 | CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
| 322 | CONVERT_DOUBLE_ARG_CHECKED(y, 1); |
| 323 | return *isolate->factory()->NewNumber(x + y); |
| 324 | } |
| 325 | |
| 326 | |
| 327 | RUNTIME_FUNCTION(Runtime_NumberSub) { |
| 328 | HandleScope scope(isolate); |
| 329 | DCHECK(args.length() == 2); |
| 330 | |
| 331 | CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
| 332 | CONVERT_DOUBLE_ARG_CHECKED(y, 1); |
| 333 | return *isolate->factory()->NewNumber(x - y); |
| 334 | } |
| 335 | |
| 336 | |
| 337 | RUNTIME_FUNCTION(Runtime_NumberMul) { |
| 338 | HandleScope scope(isolate); |
| 339 | DCHECK(args.length() == 2); |
| 340 | |
| 341 | CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
| 342 | CONVERT_DOUBLE_ARG_CHECKED(y, 1); |
| 343 | return *isolate->factory()->NewNumber(x * y); |
| 344 | } |
| 345 | |
| 346 | |
| 347 | RUNTIME_FUNCTION(Runtime_NumberUnaryMinus) { |
| 348 | HandleScope scope(isolate); |
| 349 | DCHECK(args.length() == 1); |
| 350 | |
| 351 | CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
| 352 | return *isolate->factory()->NewNumber(-x); |
| 353 | } |
| 354 | |
| 355 | |
| 356 | RUNTIME_FUNCTION(Runtime_NumberDiv) { |
| 357 | HandleScope scope(isolate); |
| 358 | DCHECK(args.length() == 2); |
| 359 | |
| 360 | CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
| 361 | CONVERT_DOUBLE_ARG_CHECKED(y, 1); |
| 362 | return *isolate->factory()->NewNumber(x / y); |
| 363 | } |
| 364 | |
| 365 | |
| 366 | RUNTIME_FUNCTION(Runtime_NumberMod) { |
| 367 | HandleScope scope(isolate); |
| 368 | DCHECK(args.length() == 2); |
| 369 | |
| 370 | CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
| 371 | CONVERT_DOUBLE_ARG_CHECKED(y, 1); |
| 372 | return *isolate->factory()->NewNumber(modulo(x, y)); |
| 373 | } |
| 374 | |
| 375 | |
| 376 | RUNTIME_FUNCTION(Runtime_NumberImul) { |
| 377 | HandleScope scope(isolate); |
| 378 | DCHECK(args.length() == 2); |
| 379 | |
| 380 | // We rely on implementation-defined behavior below, but at least not on |
| 381 | // undefined behavior. |
| 382 | CONVERT_NUMBER_CHECKED(uint32_t, x, Int32, args[0]); |
| 383 | CONVERT_NUMBER_CHECKED(uint32_t, y, Int32, args[1]); |
| 384 | int32_t product = static_cast<int32_t>(x * y); |
| 385 | return *isolate->factory()->NewNumberFromInt(product); |
| 386 | } |
| 387 | |
| 388 | |
| 389 | RUNTIME_FUNCTION(Runtime_NumberOr) { |
| 390 | HandleScope scope(isolate); |
| 391 | DCHECK(args.length() == 2); |
| 392 | |
| 393 | CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]); |
| 394 | CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]); |
| 395 | return *isolate->factory()->NewNumberFromInt(x | y); |
| 396 | } |
| 397 | |
| 398 | |
| 399 | RUNTIME_FUNCTION(Runtime_NumberAnd) { |
| 400 | HandleScope scope(isolate); |
| 401 | DCHECK(args.length() == 2); |
| 402 | |
| 403 | CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]); |
| 404 | CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]); |
| 405 | return *isolate->factory()->NewNumberFromInt(x & y); |
| 406 | } |
| 407 | |
| 408 | |
| 409 | RUNTIME_FUNCTION(Runtime_NumberXor) { |
| 410 | HandleScope scope(isolate); |
| 411 | DCHECK(args.length() == 2); |
| 412 | |
| 413 | CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]); |
| 414 | CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]); |
| 415 | return *isolate->factory()->NewNumberFromInt(x ^ y); |
| 416 | } |
| 417 | |
| 418 | |
| 419 | RUNTIME_FUNCTION(Runtime_NumberShl) { |
| 420 | HandleScope scope(isolate); |
| 421 | DCHECK(args.length() == 2); |
| 422 | |
| 423 | CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]); |
| 424 | CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]); |
| 425 | return *isolate->factory()->NewNumberFromInt(x << (y & 0x1f)); |
| 426 | } |
| 427 | |
| 428 | |
| 429 | RUNTIME_FUNCTION(Runtime_NumberShr) { |
| 430 | HandleScope scope(isolate); |
| 431 | DCHECK(args.length() == 2); |
| 432 | |
| 433 | CONVERT_NUMBER_CHECKED(uint32_t, x, Uint32, args[0]); |
| 434 | CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]); |
| 435 | return *isolate->factory()->NewNumberFromUint(x >> (y & 0x1f)); |
| 436 | } |
| 437 | |
| 438 | |
| 439 | RUNTIME_FUNCTION(Runtime_NumberSar) { |
| 440 | HandleScope scope(isolate); |
| 441 | DCHECK(args.length() == 2); |
| 442 | |
| 443 | CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]); |
| 444 | CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]); |
| 445 | return *isolate->factory()->NewNumberFromInt( |
| 446 | ArithmeticShiftRight(x, y & 0x1f)); |
| 447 | } |
| 448 | |
| 449 | |
| 450 | RUNTIME_FUNCTION(Runtime_NumberEquals) { |
| 451 | SealHandleScope shs(isolate); |
| 452 | DCHECK(args.length() == 2); |
| 453 | |
| 454 | CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
| 455 | CONVERT_DOUBLE_ARG_CHECKED(y, 1); |
| 456 | if (std::isnan(x)) return Smi::FromInt(NOT_EQUAL); |
| 457 | if (std::isnan(y)) return Smi::FromInt(NOT_EQUAL); |
| 458 | if (x == y) return Smi::FromInt(EQUAL); |
| 459 | Object* result; |
| 460 | if ((fpclassify(x) == FP_ZERO) && (fpclassify(y) == FP_ZERO)) { |
| 461 | result = Smi::FromInt(EQUAL); |
| 462 | } else { |
| 463 | result = Smi::FromInt(NOT_EQUAL); |
| 464 | } |
| 465 | return result; |
| 466 | } |
| 467 | |
| 468 | |
| 469 | RUNTIME_FUNCTION(Runtime_NumberCompare) { |
| 470 | SealHandleScope shs(isolate); |
| 471 | DCHECK(args.length() == 3); |
| 472 | |
| 473 | CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
| 474 | CONVERT_DOUBLE_ARG_CHECKED(y, 1); |
| 475 | CONVERT_ARG_HANDLE_CHECKED(Object, uncomparable_result, 2) |
| 476 | if (std::isnan(x) || std::isnan(y)) return *uncomparable_result; |
| 477 | if (x == y) return Smi::FromInt(EQUAL); |
| 478 | if (isless(x, y)) return Smi::FromInt(LESS); |
| 479 | return Smi::FromInt(GREATER); |
| 480 | } |
| 481 | |
| 482 | |
| 483 | // Compare two Smis as if they were converted to strings and then |
| 484 | // compared lexicographically. |
| 485 | RUNTIME_FUNCTION(Runtime_SmiLexicographicCompare) { |
| 486 | SealHandleScope shs(isolate); |
| 487 | DCHECK(args.length() == 2); |
| 488 | CONVERT_SMI_ARG_CHECKED(x_value, 0); |
| 489 | CONVERT_SMI_ARG_CHECKED(y_value, 1); |
| 490 | |
| 491 | // If the integers are equal so are the string representations. |
| 492 | if (x_value == y_value) return Smi::FromInt(EQUAL); |
| 493 | |
| 494 | // If one of the integers is zero the normal integer order is the |
| 495 | // same as the lexicographic order of the string representations. |
| 496 | if (x_value == 0 || y_value == 0) |
| 497 | return Smi::FromInt(x_value < y_value ? LESS : GREATER); |
| 498 | |
| 499 | // If only one of the integers is negative the negative number is |
| 500 | // smallest because the char code of '-' is less than the char code |
| 501 | // of any digit. Otherwise, we make both values positive. |
| 502 | |
| 503 | // Use unsigned values otherwise the logic is incorrect for -MIN_INT on |
| 504 | // architectures using 32-bit Smis. |
| 505 | uint32_t x_scaled = x_value; |
| 506 | uint32_t y_scaled = y_value; |
| 507 | if (x_value < 0 || y_value < 0) { |
| 508 | if (y_value >= 0) return Smi::FromInt(LESS); |
| 509 | if (x_value >= 0) return Smi::FromInt(GREATER); |
| 510 | x_scaled = -x_value; |
| 511 | y_scaled = -y_value; |
| 512 | } |
| 513 | |
| 514 | static const uint32_t kPowersOf10[] = { |
| 515 | 1, 10, 100, 1000, |
| 516 | 10 * 1000, 100 * 1000, 1000 * 1000, 10 * 1000 * 1000, |
| 517 | 100 * 1000 * 1000, 1000 * 1000 * 1000}; |
| 518 | |
| 519 | // If the integers have the same number of decimal digits they can be |
| 520 | // compared directly as the numeric order is the same as the |
| 521 | // lexicographic order. If one integer has fewer digits, it is scaled |
| 522 | // by some power of 10 to have the same number of digits as the longer |
| 523 | // integer. If the scaled integers are equal it means the shorter |
| 524 | // integer comes first in the lexicographic order. |
| 525 | |
| 526 | // From http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10 |
| 527 | int x_log2 = 31 - base::bits::CountLeadingZeros32(x_scaled); |
| 528 | int x_log10 = ((x_log2 + 1) * 1233) >> 12; |
| 529 | x_log10 -= x_scaled < kPowersOf10[x_log10]; |
| 530 | |
| 531 | int y_log2 = 31 - base::bits::CountLeadingZeros32(y_scaled); |
| 532 | int y_log10 = ((y_log2 + 1) * 1233) >> 12; |
| 533 | y_log10 -= y_scaled < kPowersOf10[y_log10]; |
| 534 | |
| 535 | int tie = EQUAL; |
| 536 | |
| 537 | if (x_log10 < y_log10) { |
| 538 | // X has fewer digits. We would like to simply scale up X but that |
| 539 | // might overflow, e.g when comparing 9 with 1_000_000_000, 9 would |
| 540 | // be scaled up to 9_000_000_000. So we scale up by the next |
| 541 | // smallest power and scale down Y to drop one digit. It is OK to |
| 542 | // drop one digit from the longer integer since the final digit is |
| 543 | // past the length of the shorter integer. |
| 544 | x_scaled *= kPowersOf10[y_log10 - x_log10 - 1]; |
| 545 | y_scaled /= 10; |
| 546 | tie = LESS; |
| 547 | } else if (y_log10 < x_log10) { |
| 548 | y_scaled *= kPowersOf10[x_log10 - y_log10 - 1]; |
| 549 | x_scaled /= 10; |
| 550 | tie = GREATER; |
| 551 | } |
| 552 | |
| 553 | if (x_scaled < y_scaled) return Smi::FromInt(LESS); |
| 554 | if (x_scaled > y_scaled) return Smi::FromInt(GREATER); |
| 555 | return Smi::FromInt(tie); |
| 556 | } |
| 557 | |
| 558 | |
| 559 | RUNTIME_FUNCTION(Runtime_GetRootNaN) { |
| 560 | SealHandleScope shs(isolate); |
| 561 | DCHECK(args.length() == 0); |
| 562 | RUNTIME_ASSERT(isolate->bootstrapper()->IsActive()); |
| 563 | return isolate->heap()->nan_value(); |
| 564 | } |
| 565 | |
| 566 | |
| 567 | RUNTIME_FUNCTION(Runtime_MaxSmi) { |
| 568 | SealHandleScope shs(isolate); |
| 569 | DCHECK(args.length() == 0); |
| 570 | return Smi::FromInt(Smi::kMaxValue); |
| 571 | } |
| 572 | |
| 573 | |
| 574 | RUNTIME_FUNCTION(RuntimeReference_NumberToString) { |
| 575 | SealHandleScope shs(isolate); |
| 576 | return __RT_impl_Runtime_NumberToStringRT(args, isolate); |
| 577 | } |
| 578 | |
| 579 | |
| 580 | RUNTIME_FUNCTION(RuntimeReference_IsSmi) { |
| 581 | SealHandleScope shs(isolate); |
| 582 | DCHECK(args.length() == 1); |
| 583 | CONVERT_ARG_CHECKED(Object, obj, 0); |
| 584 | return isolate->heap()->ToBoolean(obj->IsSmi()); |
| 585 | } |
| 586 | |
| 587 | |
| 588 | RUNTIME_FUNCTION(RuntimeReference_IsNonNegativeSmi) { |
| 589 | SealHandleScope shs(isolate); |
| 590 | DCHECK(args.length() == 1); |
| 591 | CONVERT_ARG_CHECKED(Object, obj, 0); |
| 592 | return isolate->heap()->ToBoolean(obj->IsSmi() && |
| 593 | Smi::cast(obj)->value() >= 0); |
| 594 | } |
| 595 | } |
| 596 | } // namespace v8::internal |