blob: 8bbdcb2f2e59a83d80f482bf78aa543d3939f5d9 [file] [log] [blame]
Ben Murdoch589d6972011-11-30 16:04:58 +00001// Copyright 2011 the V8 project authors. All rights reserved.
Steve Blocka7e24c12009-10-30 11:49:00 +00002// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28// Platform specific code for Win32.
Steve Blocka7e24c12009-10-30 11:49:00 +000029
Ben Murdochb0fe1622011-05-05 13:52:32 +010030#define V8_WIN32_HEADERS_FULL
31#include "win32-headers.h"
Steve Blocka7e24c12009-10-30 11:49:00 +000032
33#include "v8.h"
34
35#include "platform.h"
Ben Murdochb0fe1622011-05-05 13:52:32 +010036#include "vm-state-inl.h"
Steve Blocka7e24c12009-10-30 11:49:00 +000037
Steve Blocka7e24c12009-10-30 11:49:00 +000038#ifdef _MSC_VER
39
Steve Blocka7e24c12009-10-30 11:49:00 +000040// Case-insensitive bounded string comparisons. Use stricmp() on Win32. Usually
41// defined in strings.h.
42int strncasecmp(const char* s1, const char* s2, int n) {
43 return _strnicmp(s1, s2, n);
44}
45
46#endif // _MSC_VER
47
48
49// Extra functions for MinGW. Most of these are the _s functions which are in
50// the Microsoft Visual Studio C++ CRT.
51#ifdef __MINGW32__
52
53int localtime_s(tm* out_tm, const time_t* time) {
54 tm* posix_local_time_struct = localtime(time);
55 if (posix_local_time_struct == NULL) return 1;
56 *out_tm = *posix_local_time_struct;
57 return 0;
58}
59
60
61// Not sure this the correct interpretation of _mkgmtime
62time_t _mkgmtime(tm* timeptr) {
63 return mktime(timeptr);
64}
65
66
67int fopen_s(FILE** pFile, const char* filename, const char* mode) {
68 *pFile = fopen(filename, mode);
69 return *pFile != NULL ? 0 : 1;
70}
71
72
Ben Murdoch3fb3ca82011-12-02 17:19:32 +000073#define _TRUNCATE 0
74#define STRUNCATE 80
75
Steve Blocka7e24c12009-10-30 11:49:00 +000076int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count,
77 const char* format, va_list argptr) {
Ben Murdoch3fb3ca82011-12-02 17:19:32 +000078 ASSERT(count == _TRUNCATE);
Steve Blocka7e24c12009-10-30 11:49:00 +000079 return _vsnprintf(buffer, sizeOfBuffer, format, argptr);
80}
Steve Blocka7e24c12009-10-30 11:49:00 +000081
82
Ben Murdoch3fb3ca82011-12-02 17:19:32 +000083int strncpy_s(char* dest, size_t dest_size, const char* source, size_t count) {
84 CHECK(source != NULL);
85 CHECK(dest != NULL);
86 CHECK_GT(dest_size, 0);
87
88 if (count == _TRUNCATE) {
89 while (dest_size > 0 && *source != 0) {
90 *(dest++) = *(source++);
91 --dest_size;
92 }
93 if (dest_size == 0) {
94 *(dest - 1) = 0;
95 return STRUNCATE;
96 }
97 } else {
98 while (dest_size > 0 && count > 0 && *source != 0) {
99 *(dest++) = *(source++);
100 --dest_size;
101 --count;
102 }
103 }
104 CHECK_GT(dest_size, 0);
105 *dest = 0;
Steve Blocka7e24c12009-10-30 11:49:00 +0000106 return 0;
107}
108
Ben Murdochb0fe1622011-05-05 13:52:32 +0100109
110inline void MemoryBarrier() {
111 int barrier = 0;
112 __asm__ __volatile__("xchgl %%eax,%0 ":"=r" (barrier));
113}
114
Steve Blocka7e24c12009-10-30 11:49:00 +0000115#endif // __MINGW32__
116
117// Generate a pseudo-random number in the range 0-2^31-1. Usually
118// defined in stdlib.h. Missing in both Microsoft Visual Studio C++ and MinGW.
119int random() {
120 return rand();
121}
122
123
124namespace v8 {
125namespace internal {
126
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000127intptr_t OS::MaxVirtualMemory() {
128 return 0;
129}
130
131
Steve Blocka7e24c12009-10-30 11:49:00 +0000132double ceiling(double x) {
133 return ceil(x);
134}
135
Steve Block44f0eee2011-05-26 01:26:41 +0100136
137static Mutex* limit_mutex = NULL;
138
Ben Murdoch8b112d22011-06-08 16:22:53 +0100139#if defined(V8_TARGET_ARCH_IA32)
140static OS::MemCopyFunction memcopy_function = NULL;
141static Mutex* memcopy_function_mutex = OS::CreateMutex();
142// Defined in codegen-ia32.cc.
143OS::MemCopyFunction CreateMemCopyFunction();
144
145// Copy memory area to disjoint memory area.
146void OS::MemCopy(void* dest, const void* src, size_t size) {
147 if (memcopy_function == NULL) {
148 ScopedLock lock(memcopy_function_mutex);
149 if (memcopy_function == NULL) {
150 OS::MemCopyFunction temp = CreateMemCopyFunction();
151 MemoryBarrier();
152 memcopy_function = temp;
153 }
154 }
155 // Note: here we rely on dependent reads being ordered. This is true
156 // on all architectures we currently support.
157 (*memcopy_function)(dest, src, size);
158#ifdef DEBUG
159 CHECK_EQ(0, memcmp(dest, src, size));
160#endif
161}
162#endif // V8_TARGET_ARCH_IA32
Steve Block44f0eee2011-05-26 01:26:41 +0100163
Steve Block3ce2e202009-11-05 08:53:23 +0000164#ifdef _WIN64
165typedef double (*ModuloFunction)(double, double);
Ben Murdoch8b112d22011-06-08 16:22:53 +0100166static ModuloFunction modulo_function = NULL;
167static Mutex* modulo_function_mutex = OS::CreateMutex();
Steve Block3ce2e202009-11-05 08:53:23 +0000168// Defined in codegen-x64.cc.
169ModuloFunction CreateModuloFunction();
170
171double modulo(double x, double y) {
Ben Murdoch8b112d22011-06-08 16:22:53 +0100172 if (modulo_function == NULL) {
173 ScopedLock lock(modulo_function_mutex);
174 if (modulo_function == NULL) {
175 ModuloFunction temp = CreateModuloFunction();
176 MemoryBarrier();
177 modulo_function = temp;
178 }
179 }
180 // Note: here we rely on dependent reads being ordered. This is true
181 // on all architectures we currently support.
182 return (*modulo_function)(x, y);
Steve Block3ce2e202009-11-05 08:53:23 +0000183}
184#else // Win32
185
186double modulo(double x, double y) {
187 // Workaround MS fmod bugs. ECMA-262 says:
188 // dividend is finite and divisor is an infinity => result equals dividend
189 // dividend is a zero and divisor is nonzero finite => result equals dividend
190 if (!(isfinite(x) && (!isfinite(y) && !isnan(y))) &&
191 !(x == 0 && (y != 0 && isfinite(y)))) {
192 x = fmod(x, y);
193 }
194 return x;
195}
196
197#endif // _WIN64
198
Steve Blocka7e24c12009-10-30 11:49:00 +0000199// ----------------------------------------------------------------------------
200// The Time class represents time on win32. A timestamp is represented as
201// a 64-bit integer in 100 nano-seconds since January 1, 1601 (UTC). JavaScript
202// timestamps are represented as a doubles in milliseconds since 00:00:00 UTC,
203// January 1, 1970.
204
205class Time {
206 public:
207 // Constructors.
208 Time();
209 explicit Time(double jstime);
210 Time(int year, int mon, int day, int hour, int min, int sec);
211
212 // Convert timestamp to JavaScript representation.
213 double ToJSTime();
214
215 // Set timestamp to current time.
216 void SetToCurrentTime();
217
218 // Returns the local timezone offset in milliseconds east of UTC. This is
219 // the number of milliseconds you must add to UTC to get local time, i.e.
220 // LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This
221 // routine also takes into account whether daylight saving is effect
222 // at the time.
223 int64_t LocalOffset();
224
225 // Returns the daylight savings time offset for the time in milliseconds.
226 int64_t DaylightSavingsOffset();
227
228 // Returns a string identifying the current timezone for the
229 // timestamp taking into account daylight saving.
230 char* LocalTimezone();
231
232 private:
233 // Constants for time conversion.
234 static const int64_t kTimeEpoc = 116444736000000000LL;
235 static const int64_t kTimeScaler = 10000;
236 static const int64_t kMsPerMinute = 60000;
237
238 // Constants for timezone information.
239 static const int kTzNameSize = 128;
240 static const bool kShortTzNames = false;
241
242 // Timezone information. We need to have static buffers for the
243 // timezone names because we return pointers to these in
244 // LocalTimezone().
245 static bool tz_initialized_;
246 static TIME_ZONE_INFORMATION tzinfo_;
247 static char std_tz_name_[kTzNameSize];
248 static char dst_tz_name_[kTzNameSize];
249
250 // Initialize the timezone information (if not already done).
251 static void TzSet();
252
253 // Guess the name of the timezone from the bias.
254 static const char* GuessTimezoneNameFromBias(int bias);
255
256 // Return whether or not daylight savings time is in effect at this time.
257 bool InDST();
258
259 // Return the difference (in milliseconds) between this timestamp and
260 // another timestamp.
261 int64_t Diff(Time* other);
262
263 // Accessor for FILETIME representation.
264 FILETIME& ft() { return time_.ft_; }
265
266 // Accessor for integer representation.
267 int64_t& t() { return time_.t_; }
268
269 // Although win32 uses 64-bit integers for representing timestamps,
270 // these are packed into a FILETIME structure. The FILETIME structure
271 // is just a struct representing a 64-bit integer. The TimeStamp union
272 // allows access to both a FILETIME and an integer representation of
273 // the timestamp.
274 union TimeStamp {
275 FILETIME ft_;
276 int64_t t_;
277 };
278
279 TimeStamp time_;
280};
281
282// Static variables.
283bool Time::tz_initialized_ = false;
284TIME_ZONE_INFORMATION Time::tzinfo_;
285char Time::std_tz_name_[kTzNameSize];
286char Time::dst_tz_name_[kTzNameSize];
287
288
289// Initialize timestamp to start of epoc.
290Time::Time() {
291 t() = 0;
292}
293
294
295// Initialize timestamp from a JavaScript timestamp.
296Time::Time(double jstime) {
297 t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc;
298}
299
300
301// Initialize timestamp from date/time components.
302Time::Time(int year, int mon, int day, int hour, int min, int sec) {
303 SYSTEMTIME st;
304 st.wYear = year;
305 st.wMonth = mon;
306 st.wDay = day;
307 st.wHour = hour;
308 st.wMinute = min;
309 st.wSecond = sec;
310 st.wMilliseconds = 0;
311 SystemTimeToFileTime(&st, &ft());
312}
313
314
315// Convert timestamp to JavaScript timestamp.
316double Time::ToJSTime() {
317 return static_cast<double>((t() - kTimeEpoc) / kTimeScaler);
318}
319
320
321// Guess the name of the timezone from the bias.
322// The guess is very biased towards the northern hemisphere.
323const char* Time::GuessTimezoneNameFromBias(int bias) {
324 static const int kHour = 60;
325 switch (-bias) {
326 case -9*kHour: return "Alaska";
327 case -8*kHour: return "Pacific";
328 case -7*kHour: return "Mountain";
329 case -6*kHour: return "Central";
330 case -5*kHour: return "Eastern";
331 case -4*kHour: return "Atlantic";
332 case 0*kHour: return "GMT";
333 case +1*kHour: return "Central Europe";
334 case +2*kHour: return "Eastern Europe";
335 case +3*kHour: return "Russia";
336 case +5*kHour + 30: return "India";
337 case +8*kHour: return "China";
338 case +9*kHour: return "Japan";
339 case +12*kHour: return "New Zealand";
340 default: return "Local";
341 }
342}
343
344
345// Initialize timezone information. The timezone information is obtained from
346// windows. If we cannot get the timezone information we fall back to CET.
347// Please notice that this code is not thread-safe.
348void Time::TzSet() {
349 // Just return if timezone information has already been initialized.
350 if (tz_initialized_) return;
351
352 // Initialize POSIX time zone data.
353 _tzset();
354 // Obtain timezone information from operating system.
355 memset(&tzinfo_, 0, sizeof(tzinfo_));
356 if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) {
357 // If we cannot get timezone information we fall back to CET.
358 tzinfo_.Bias = -60;
359 tzinfo_.StandardDate.wMonth = 10;
360 tzinfo_.StandardDate.wDay = 5;
361 tzinfo_.StandardDate.wHour = 3;
362 tzinfo_.StandardBias = 0;
363 tzinfo_.DaylightDate.wMonth = 3;
364 tzinfo_.DaylightDate.wDay = 5;
365 tzinfo_.DaylightDate.wHour = 2;
366 tzinfo_.DaylightBias = -60;
367 }
368
369 // Make standard and DST timezone names.
Ben Murdoch257744e2011-11-30 15:57:28 +0000370 WideCharToMultiByte(CP_UTF8, 0, tzinfo_.StandardName, -1,
371 std_tz_name_, kTzNameSize, NULL, NULL);
Steve Blocka7e24c12009-10-30 11:49:00 +0000372 std_tz_name_[kTzNameSize - 1] = '\0';
Ben Murdoch257744e2011-11-30 15:57:28 +0000373 WideCharToMultiByte(CP_UTF8, 0, tzinfo_.DaylightName, -1,
374 dst_tz_name_, kTzNameSize, NULL, NULL);
Steve Blocka7e24c12009-10-30 11:49:00 +0000375 dst_tz_name_[kTzNameSize - 1] = '\0';
376
377 // If OS returned empty string or resource id (like "@tzres.dll,-211")
378 // simply guess the name from the UTC bias of the timezone.
379 // To properly resolve the resource identifier requires a library load,
380 // which is not possible in a sandbox.
381 if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') {
382 OS::SNPrintF(Vector<char>(std_tz_name_, kTzNameSize - 1),
383 "%s Standard Time",
384 GuessTimezoneNameFromBias(tzinfo_.Bias));
385 }
386 if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') {
387 OS::SNPrintF(Vector<char>(dst_tz_name_, kTzNameSize - 1),
388 "%s Daylight Time",
389 GuessTimezoneNameFromBias(tzinfo_.Bias));
390 }
391
392 // Timezone information initialized.
393 tz_initialized_ = true;
394}
395
396
397// Return the difference in milliseconds between this and another timestamp.
398int64_t Time::Diff(Time* other) {
399 return (t() - other->t()) / kTimeScaler;
400}
401
402
403// Set timestamp to current time.
404void Time::SetToCurrentTime() {
405 // The default GetSystemTimeAsFileTime has a ~15.5ms resolution.
406 // Because we're fast, we like fast timers which have at least a
407 // 1ms resolution.
408 //
409 // timeGetTime() provides 1ms granularity when combined with
410 // timeBeginPeriod(). If the host application for v8 wants fast
411 // timers, it can use timeBeginPeriod to increase the resolution.
412 //
413 // Using timeGetTime() has a drawback because it is a 32bit value
414 // and hence rolls-over every ~49days.
415 //
416 // To use the clock, we use GetSystemTimeAsFileTime as our base;
417 // and then use timeGetTime to extrapolate current time from the
418 // start time. To deal with rollovers, we resync the clock
419 // any time when more than kMaxClockElapsedTime has passed or
420 // whenever timeGetTime creates a rollover.
421
422 static bool initialized = false;
423 static TimeStamp init_time;
424 static DWORD init_ticks;
425 static const int64_t kHundredNanosecondsPerSecond = 10000000;
426 static const int64_t kMaxClockElapsedTime =
427 60*kHundredNanosecondsPerSecond; // 1 minute
428
429 // If we are uninitialized, we need to resync the clock.
430 bool needs_resync = !initialized;
431
432 // Get the current time.
433 TimeStamp time_now;
434 GetSystemTimeAsFileTime(&time_now.ft_);
435 DWORD ticks_now = timeGetTime();
436
437 // Check if we need to resync due to clock rollover.
438 needs_resync |= ticks_now < init_ticks;
439
440 // Check if we need to resync due to elapsed time.
441 needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime;
442
443 // Resync the clock if necessary.
444 if (needs_resync) {
445 GetSystemTimeAsFileTime(&init_time.ft_);
446 init_ticks = ticks_now = timeGetTime();
447 initialized = true;
448 }
449
450 // Finally, compute the actual time. Why is this so hard.
451 DWORD elapsed = ticks_now - init_ticks;
452 this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000);
453}
454
455
456// Return the local timezone offset in milliseconds east of UTC. This
457// takes into account whether daylight saving is in effect at the time.
458// Only times in the 32-bit Unix range may be passed to this function.
459// Also, adding the time-zone offset to the input must not overflow.
Andrei Popescu31002712010-02-23 13:46:05 +0000460// The function EquivalentTime() in date.js guarantees this.
Steve Blocka7e24c12009-10-30 11:49:00 +0000461int64_t Time::LocalOffset() {
462 // Initialize timezone information, if needed.
463 TzSet();
464
465 Time rounded_to_second(*this);
466 rounded_to_second.t() = rounded_to_second.t() / 1000 / kTimeScaler *
467 1000 * kTimeScaler;
468 // Convert to local time using POSIX localtime function.
469 // Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime()
470 // very slow. Other browsers use localtime().
471
472 // Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to
473 // POSIX seconds past 1/1/1970 0:00:00.
474 double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000;
475 if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) {
476 return 0;
477 }
478 // Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int.
479 time_t posix_time = static_cast<time_t>(unchecked_posix_time);
480
481 // Convert to local time, as struct with fields for day, hour, year, etc.
482 tm posix_local_time_struct;
483 if (localtime_s(&posix_local_time_struct, &posix_time)) return 0;
484 // Convert local time in struct to POSIX time as if it were a UTC time.
485 time_t local_posix_time = _mkgmtime(&posix_local_time_struct);
486 Time localtime(1000.0 * local_posix_time);
487
488 return localtime.Diff(&rounded_to_second);
489}
490
491
492// Return whether or not daylight savings time is in effect at this time.
493bool Time::InDST() {
494 // Initialize timezone information, if needed.
495 TzSet();
496
497 // Determine if DST is in effect at the specified time.
498 bool in_dst = false;
499 if (tzinfo_.StandardDate.wMonth != 0 || tzinfo_.DaylightDate.wMonth != 0) {
500 // Get the local timezone offset for the timestamp in milliseconds.
501 int64_t offset = LocalOffset();
502
503 // Compute the offset for DST. The bias parameters in the timezone info
504 // are specified in minutes. These must be converted to milliseconds.
505 int64_t dstofs = -(tzinfo_.Bias + tzinfo_.DaylightBias) * kMsPerMinute;
506
507 // If the local time offset equals the timezone bias plus the daylight
508 // bias then DST is in effect.
509 in_dst = offset == dstofs;
510 }
511
512 return in_dst;
513}
514
515
516// Return the daylight savings time offset for this time.
517int64_t Time::DaylightSavingsOffset() {
518 return InDST() ? 60 * kMsPerMinute : 0;
519}
520
521
522// Returns a string identifying the current timezone for the
523// timestamp taking into account daylight saving.
524char* Time::LocalTimezone() {
525 // Return the standard or DST time zone name based on whether daylight
526 // saving is in effect at the given time.
527 return InDST() ? dst_tz_name_ : std_tz_name_;
528}
529
530
531void OS::Setup() {
532 // Seed the random number generator.
533 // Convert the current time to a 64-bit integer first, before converting it
534 // to an unsigned. Going directly can cause an overflow and the seed to be
535 // set to all ones. The seed will be identical for different instances that
536 // call this setup code within the same millisecond.
537 uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis());
538 srand(static_cast<unsigned int>(seed));
Steve Block44f0eee2011-05-26 01:26:41 +0100539 limit_mutex = CreateMutex();
Steve Blocka7e24c12009-10-30 11:49:00 +0000540}
541
542
543// Returns the accumulated user time for thread.
544int OS::GetUserTime(uint32_t* secs, uint32_t* usecs) {
545 FILETIME dummy;
546 uint64_t usertime;
547
548 // Get the amount of time that the thread has executed in user mode.
549 if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy,
550 reinterpret_cast<FILETIME*>(&usertime))) return -1;
551
552 // Adjust the resolution to micro-seconds.
553 usertime /= 10;
554
555 // Convert to seconds and microseconds
556 *secs = static_cast<uint32_t>(usertime / 1000000);
557 *usecs = static_cast<uint32_t>(usertime % 1000000);
558 return 0;
559}
560
561
562// Returns current time as the number of milliseconds since
563// 00:00:00 UTC, January 1, 1970.
564double OS::TimeCurrentMillis() {
565 Time t;
566 t.SetToCurrentTime();
567 return t.ToJSTime();
568}
569
570// Returns the tickcounter based on timeGetTime.
571int64_t OS::Ticks() {
572 return timeGetTime() * 1000; // Convert to microseconds.
573}
574
575
576// Returns a string identifying the current timezone taking into
577// account daylight saving.
578const char* OS::LocalTimezone(double time) {
579 return Time(time).LocalTimezone();
580}
581
582
583// Returns the local time offset in milliseconds east of UTC without
584// taking daylight savings time into account.
585double OS::LocalTimeOffset() {
586 // Use current time, rounded to the millisecond.
587 Time t(TimeCurrentMillis());
588 // Time::LocalOffset inlcudes any daylight savings offset, so subtract it.
589 return static_cast<double>(t.LocalOffset() - t.DaylightSavingsOffset());
590}
591
592
593// Returns the daylight savings offset in milliseconds for the given
594// time.
595double OS::DaylightSavingsOffset(double time) {
596 int64_t offset = Time(time).DaylightSavingsOffset();
597 return static_cast<double>(offset);
598}
599
600
Iain Merrick75681382010-08-19 15:07:18 +0100601int OS::GetLastError() {
602 return ::GetLastError();
603}
604
605
Steve Blocka7e24c12009-10-30 11:49:00 +0000606// ----------------------------------------------------------------------------
607// Win32 console output.
608//
609// If a Win32 application is linked as a console application it has a normal
610// standard output and standard error. In this case normal printf works fine
611// for output. However, if the application is linked as a GUI application,
612// the process doesn't have a console, and therefore (debugging) output is lost.
613// This is the case if we are embedded in a windows program (like a browser).
614// In order to be able to get debug output in this case the the debugging
615// facility using OutputDebugString. This output goes to the active debugger
616// for the process (if any). Else the output can be monitored using DBMON.EXE.
617
618enum OutputMode {
619 UNKNOWN, // Output method has not yet been determined.
620 CONSOLE, // Output is written to stdout.
621 ODS // Output is written to debug facility.
622};
623
624static OutputMode output_mode = UNKNOWN; // Current output mode.
625
626
627// Determine if the process has a console for output.
628static bool HasConsole() {
629 // Only check the first time. Eventual race conditions are not a problem,
630 // because all threads will eventually determine the same mode.
631 if (output_mode == UNKNOWN) {
632 // We cannot just check that the standard output is attached to a console
633 // because this would fail if output is redirected to a file. Therefore we
634 // say that a process does not have an output console if either the
635 // standard output handle is invalid or its file type is unknown.
636 if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE &&
637 GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN)
638 output_mode = CONSOLE;
639 else
640 output_mode = ODS;
641 }
642 return output_mode == CONSOLE;
643}
644
645
646static void VPrintHelper(FILE* stream, const char* format, va_list args) {
647 if (HasConsole()) {
648 vfprintf(stream, format, args);
649 } else {
650 // It is important to use safe print here in order to avoid
651 // overflowing the buffer. We might truncate the output, but this
652 // does not crash.
653 EmbeddedVector<char, 4096> buffer;
654 OS::VSNPrintF(buffer, format, args);
655 OutputDebugStringA(buffer.start());
656 }
657}
658
659
660FILE* OS::FOpen(const char* path, const char* mode) {
661 FILE* result;
662 if (fopen_s(&result, path, mode) == 0) {
663 return result;
664 } else {
665 return NULL;
666 }
667}
668
669
Steve Block1e0659c2011-05-24 12:43:12 +0100670bool OS::Remove(const char* path) {
671 return (DeleteFileA(path) != 0);
672}
673
674
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000675FILE* OS::OpenTemporaryFile() {
676 // tmpfile_s tries to use the root dir, don't use it.
677 char tempPathBuffer[MAX_PATH];
678 DWORD path_result = 0;
679 path_result = GetTempPathA(MAX_PATH, tempPathBuffer);
680 if (path_result > MAX_PATH || path_result == 0) return NULL;
681 UINT name_result = 0;
682 char tempNameBuffer[MAX_PATH];
683 name_result = GetTempFileNameA(tempPathBuffer, "", 0, tempNameBuffer);
684 if (name_result == 0) return NULL;
685 FILE* result = FOpen(tempNameBuffer, "w+"); // Same mode as tmpfile uses.
686 if (result != NULL) {
687 Remove(tempNameBuffer); // Delete on close.
688 }
689 return result;
690}
691
692
Steve Blocka7e24c12009-10-30 11:49:00 +0000693// Open log file in binary mode to avoid /n -> /r/n conversion.
Steve Block44f0eee2011-05-26 01:26:41 +0100694const char* const OS::LogFileOpenMode = "wb";
Steve Blocka7e24c12009-10-30 11:49:00 +0000695
696
697// Print (debug) message to console.
698void OS::Print(const char* format, ...) {
699 va_list args;
700 va_start(args, format);
701 VPrint(format, args);
702 va_end(args);
703}
704
705
706void OS::VPrint(const char* format, va_list args) {
707 VPrintHelper(stdout, format, args);
708}
709
710
Ben Murdochb0fe1622011-05-05 13:52:32 +0100711void OS::FPrint(FILE* out, const char* format, ...) {
712 va_list args;
713 va_start(args, format);
714 VFPrint(out, format, args);
715 va_end(args);
716}
717
718
719void OS::VFPrint(FILE* out, const char* format, va_list args) {
720 VPrintHelper(out, format, args);
721}
722
723
Steve Blocka7e24c12009-10-30 11:49:00 +0000724// Print error message to console.
725void OS::PrintError(const char* format, ...) {
726 va_list args;
727 va_start(args, format);
728 VPrintError(format, args);
729 va_end(args);
730}
731
732
733void OS::VPrintError(const char* format, va_list args) {
734 VPrintHelper(stderr, format, args);
735}
736
737
738int OS::SNPrintF(Vector<char> str, const char* format, ...) {
739 va_list args;
740 va_start(args, format);
741 int result = VSNPrintF(str, format, args);
742 va_end(args);
743 return result;
744}
745
746
747int OS::VSNPrintF(Vector<char> str, const char* format, va_list args) {
748 int n = _vsnprintf_s(str.start(), str.length(), _TRUNCATE, format, args);
749 // Make sure to zero-terminate the string if the output was
750 // truncated or if there was an error.
751 if (n < 0 || n >= str.length()) {
Ben Murdochb0fe1622011-05-05 13:52:32 +0100752 if (str.length() > 0)
753 str[str.length() - 1] = '\0';
Steve Blocka7e24c12009-10-30 11:49:00 +0000754 return -1;
755 } else {
756 return n;
757 }
758}
759
760
761char* OS::StrChr(char* str, int c) {
762 return const_cast<char*>(strchr(str, c));
763}
764
765
766void OS::StrNCpy(Vector<char> dest, const char* src, size_t n) {
Steve Block44f0eee2011-05-26 01:26:41 +0100767 // Use _TRUNCATE or strncpy_s crashes (by design) if buffer is too small.
768 size_t buffer_size = static_cast<size_t>(dest.length());
769 if (n + 1 > buffer_size) // count for trailing '\0'
770 n = _TRUNCATE;
Steve Blocka7e24c12009-10-30 11:49:00 +0000771 int result = strncpy_s(dest.start(), dest.length(), src, n);
772 USE(result);
Steve Block44f0eee2011-05-26 01:26:41 +0100773 ASSERT(result == 0 || (n == _TRUNCATE && result == STRUNCATE));
Steve Blocka7e24c12009-10-30 11:49:00 +0000774}
775
776
777// We keep the lowest and highest addresses mapped as a quick way of
778// determining that pointers are outside the heap (used mostly in assertions
779// and verification). The estimate is conservative, ie, not all addresses in
780// 'allocated' space are actually allocated to our heap. The range is
781// [lowest, highest), inclusive on the low and and exclusive on the high end.
782static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
783static void* highest_ever_allocated = reinterpret_cast<void*>(0);
784
785
786static void UpdateAllocatedSpaceLimits(void* address, int size) {
Steve Block44f0eee2011-05-26 01:26:41 +0100787 ASSERT(limit_mutex != NULL);
788 ScopedLock lock(limit_mutex);
789
Steve Blocka7e24c12009-10-30 11:49:00 +0000790 lowest_ever_allocated = Min(lowest_ever_allocated, address);
791 highest_ever_allocated =
792 Max(highest_ever_allocated,
793 reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
794}
795
796
797bool OS::IsOutsideAllocatedSpace(void* pointer) {
798 if (pointer < lowest_ever_allocated || pointer >= highest_ever_allocated)
799 return true;
800 // Ask the Windows API
801 if (IsBadWritePtr(pointer, 1))
802 return true;
803 return false;
804}
805
806
807// Get the system's page size used by VirtualAlloc() or the next power
808// of two. The reason for always returning a power of two is that the
809// rounding up in OS::Allocate expects that.
810static size_t GetPageSize() {
811 static size_t page_size = 0;
812 if (page_size == 0) {
813 SYSTEM_INFO info;
814 GetSystemInfo(&info);
815 page_size = RoundUpToPowerOf2(info.dwPageSize);
816 }
817 return page_size;
818}
819
820
821// The allocation alignment is the guaranteed alignment for
822// VirtualAlloc'ed blocks of memory.
823size_t OS::AllocateAlignment() {
824 static size_t allocate_alignment = 0;
825 if (allocate_alignment == 0) {
826 SYSTEM_INFO info;
827 GetSystemInfo(&info);
828 allocate_alignment = info.dwAllocationGranularity;
829 }
830 return allocate_alignment;
831}
832
833
Ben Murdoch592a9fc2012-03-05 11:04:45 +0000834intptr_t OS::CommitPageSize() {
835 return 4096;
836}
837
838
839static void* GetRandomAddr() {
840 Isolate* isolate = Isolate::UncheckedCurrent();
841 // Note that the current isolate isn't set up in a call path via
842 // CpuFeatures::Probe. We don't care about randomization in this case because
843 // the code page is immediately freed.
844 if (isolate != NULL) {
845 // The address range used to randomize RWX allocations in OS::Allocate
846 // Try not to map pages into the default range that windows loads DLLs
847 // Use a multiple of 64k to prevent committing unused memory.
848 // Note: This does not guarantee RWX regions will be within the
849 // range kAllocationRandomAddressMin to kAllocationRandomAddressMax
850#ifdef V8_HOST_ARCH_64_BIT
851 static const intptr_t kAllocationRandomAddressMin = 0x0000000080000000;
852 static const intptr_t kAllocationRandomAddressMax = 0x000003FFFFFF0000;
853#else
854 static const intptr_t kAllocationRandomAddressMin = 0x04000000;
855 static const intptr_t kAllocationRandomAddressMax = 0x3FFF0000;
856#endif
857 uintptr_t address = (V8::RandomPrivate(isolate) << kPageSizeBits)
858 | kAllocationRandomAddressMin;
859 address &= kAllocationRandomAddressMax;
860 return reinterpret_cast<void *>(address);
861 }
862 return NULL;
863}
864
865
866static void* RandomizedVirtualAlloc(size_t size, int action, int protection) {
867 LPVOID base = NULL;
868
869 if (protection == PAGE_EXECUTE_READWRITE || protection == PAGE_NOACCESS) {
870 // For exectutable pages try and randomize the allocation address
871 for (size_t attempts = 0; base == NULL && attempts < 3; ++attempts) {
872 base = VirtualAlloc(GetRandomAddr(), size, action, protection);
873 }
874 }
875
876 // After three attempts give up and let the OS find an address to use.
877 if (base == NULL) base = VirtualAlloc(NULL, size, action, protection);
878
879 return base;
880}
881
882
Steve Blocka7e24c12009-10-30 11:49:00 +0000883void* OS::Allocate(const size_t requested,
884 size_t* allocated,
885 bool is_executable) {
886 // VirtualAlloc rounds allocated size to page size automatically.
Steve Blockd0582a62009-12-15 09:54:21 +0000887 size_t msize = RoundUp(requested, static_cast<int>(GetPageSize()));
Steve Blocka7e24c12009-10-30 11:49:00 +0000888
889 // Windows XP SP2 allows Data Excution Prevention (DEP).
890 int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
Ben Murdochbb769b22010-08-11 14:56:33 +0100891
Ben Murdoch592a9fc2012-03-05 11:04:45 +0000892 LPVOID mbase = RandomizedVirtualAlloc(msize,
893 MEM_COMMIT | MEM_RESERVE,
894 prot);
Ben Murdochbb769b22010-08-11 14:56:33 +0100895
Steve Blocka7e24c12009-10-30 11:49:00 +0000896 if (mbase == NULL) {
Steve Block44f0eee2011-05-26 01:26:41 +0100897 LOG(ISOLATE, StringEvent("OS::Allocate", "VirtualAlloc failed"));
Steve Blocka7e24c12009-10-30 11:49:00 +0000898 return NULL;
899 }
900
901 ASSERT(IsAligned(reinterpret_cast<size_t>(mbase), OS::AllocateAlignment()));
902
903 *allocated = msize;
Steve Blockd0582a62009-12-15 09:54:21 +0000904 UpdateAllocatedSpaceLimits(mbase, static_cast<int>(msize));
Steve Blocka7e24c12009-10-30 11:49:00 +0000905 return mbase;
906}
907
908
909void OS::Free(void* address, const size_t size) {
910 // TODO(1240712): VirtualFree has a return value which is ignored here.
911 VirtualFree(address, 0, MEM_RELEASE);
912 USE(size);
913}
914
915
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000916void OS::ProtectCode(void* address, const size_t size) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000917 DWORD old_protect;
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000918 VirtualProtect(address, size, PAGE_EXECUTE_READ, &old_protect);
Steve Blocka7e24c12009-10-30 11:49:00 +0000919}
920
921
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000922void OS::Guard(void* address, const size_t size) {
923 DWORD oldprotect;
924 VirtualProtect(address, size, PAGE_READONLY | PAGE_GUARD, &oldprotect);
Steve Blocka7e24c12009-10-30 11:49:00 +0000925}
926
Steve Blocka7e24c12009-10-30 11:49:00 +0000927
928void OS::Sleep(int milliseconds) {
929 ::Sleep(milliseconds);
930}
931
932
933void OS::Abort() {
934 if (!IsDebuggerPresent()) {
935#ifdef _MSC_VER
936 // Make the MSVCRT do a silent abort.
937 _set_abort_behavior(0, _WRITE_ABORT_MSG);
938 _set_abort_behavior(0, _CALL_REPORTFAULT);
939#endif // _MSC_VER
940 abort();
941 } else {
942 DebugBreak();
943 }
944}
945
946
947void OS::DebugBreak() {
948#ifdef _MSC_VER
949 __debugbreak();
950#else
951 ::DebugBreak();
952#endif
953}
954
955
956class Win32MemoryMappedFile : public OS::MemoryMappedFile {
957 public:
Steve Block1e0659c2011-05-24 12:43:12 +0100958 Win32MemoryMappedFile(HANDLE file,
959 HANDLE file_mapping,
960 void* memory,
961 int size)
962 : file_(file),
963 file_mapping_(file_mapping),
964 memory_(memory),
965 size_(size) { }
Steve Blocka7e24c12009-10-30 11:49:00 +0000966 virtual ~Win32MemoryMappedFile();
967 virtual void* memory() { return memory_; }
Steve Block1e0659c2011-05-24 12:43:12 +0100968 virtual int size() { return size_; }
Steve Blocka7e24c12009-10-30 11:49:00 +0000969 private:
970 HANDLE file_;
971 HANDLE file_mapping_;
972 void* memory_;
Steve Block1e0659c2011-05-24 12:43:12 +0100973 int size_;
Steve Blocka7e24c12009-10-30 11:49:00 +0000974};
975
976
Steve Block1e0659c2011-05-24 12:43:12 +0100977OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
978 // Open a physical file
979 HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
980 FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL);
Ben Murdoche0cee9b2011-05-25 10:26:03 +0100981 if (file == INVALID_HANDLE_VALUE) return NULL;
Steve Block1e0659c2011-05-24 12:43:12 +0100982
983 int size = static_cast<int>(GetFileSize(file, NULL));
984
985 // Create a file mapping for the physical file
986 HANDLE file_mapping = CreateFileMapping(file, NULL,
987 PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
988 if (file_mapping == NULL) return NULL;
989
990 // Map a view of the file into memory
991 void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
992 return new Win32MemoryMappedFile(file, file_mapping, memory, size);
993}
994
995
Steve Blocka7e24c12009-10-30 11:49:00 +0000996OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
997 void* initial) {
998 // Open a physical file
999 HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
1000 FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, 0, NULL);
1001 if (file == NULL) return NULL;
1002 // Create a file mapping for the physical file
1003 HANDLE file_mapping = CreateFileMapping(file, NULL,
1004 PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
1005 if (file_mapping == NULL) return NULL;
1006 // Map a view of the file into memory
1007 void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
1008 if (memory) memmove(memory, initial, size);
Steve Block1e0659c2011-05-24 12:43:12 +01001009 return new Win32MemoryMappedFile(file, file_mapping, memory, size);
Steve Blocka7e24c12009-10-30 11:49:00 +00001010}
1011
1012
1013Win32MemoryMappedFile::~Win32MemoryMappedFile() {
1014 if (memory_ != NULL)
1015 UnmapViewOfFile(memory_);
1016 CloseHandle(file_mapping_);
1017 CloseHandle(file_);
1018}
1019
1020
1021// The following code loads functions defined in DbhHelp.h and TlHelp32.h
1022// dynamically. This is to avoid being depending on dbghelp.dll and
1023// tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to
1024// kernel32.dll at some point so loading functions defines in TlHelp32.h
1025// dynamically might not be necessary any more - for some versions of Windows?).
1026
1027// Function pointers to functions dynamically loaded from dbghelp.dll.
1028#define DBGHELP_FUNCTION_LIST(V) \
1029 V(SymInitialize) \
1030 V(SymGetOptions) \
1031 V(SymSetOptions) \
1032 V(SymGetSearchPath) \
1033 V(SymLoadModule64) \
1034 V(StackWalk64) \
1035 V(SymGetSymFromAddr64) \
1036 V(SymGetLineFromAddr64) \
1037 V(SymFunctionTableAccess64) \
1038 V(SymGetModuleBase64)
1039
1040// Function pointers to functions dynamically loaded from dbghelp.dll.
1041#define TLHELP32_FUNCTION_LIST(V) \
1042 V(CreateToolhelp32Snapshot) \
1043 V(Module32FirstW) \
1044 V(Module32NextW)
1045
1046// Define the decoration to use for the type and variable name used for
1047// dynamically loaded DLL function..
1048#define DLL_FUNC_TYPE(name) _##name##_
1049#define DLL_FUNC_VAR(name) _##name
1050
1051// Define the type for each dynamically loaded DLL function. The function
1052// definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros
1053// from the Windows include files are redefined here to have the function
1054// definitions to be as close to the ones in the original .h files as possible.
1055#ifndef IN
1056#define IN
1057#endif
1058#ifndef VOID
1059#define VOID void
1060#endif
1061
1062// DbgHelp isn't supported on MinGW yet
1063#ifndef __MINGW32__
1064// DbgHelp.h functions.
1065typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymInitialize))(IN HANDLE hProcess,
1066 IN PSTR UserSearchPath,
1067 IN BOOL fInvadeProcess);
1068typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymGetOptions))(VOID);
1069typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymSetOptions))(IN DWORD SymOptions);
1070typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSearchPath))(
1071 IN HANDLE hProcess,
1072 OUT PSTR SearchPath,
1073 IN DWORD SearchPathLength);
1074typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymLoadModule64))(
1075 IN HANDLE hProcess,
1076 IN HANDLE hFile,
1077 IN PSTR ImageName,
1078 IN PSTR ModuleName,
1079 IN DWORD64 BaseOfDll,
1080 IN DWORD SizeOfDll);
1081typedef BOOL (__stdcall *DLL_FUNC_TYPE(StackWalk64))(
1082 DWORD MachineType,
1083 HANDLE hProcess,
1084 HANDLE hThread,
1085 LPSTACKFRAME64 StackFrame,
1086 PVOID ContextRecord,
1087 PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine,
1088 PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine,
1089 PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine,
1090 PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress);
1091typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSymFromAddr64))(
1092 IN HANDLE hProcess,
1093 IN DWORD64 qwAddr,
1094 OUT PDWORD64 pdwDisplacement,
1095 OUT PIMAGEHLP_SYMBOL64 Symbol);
1096typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetLineFromAddr64))(
1097 IN HANDLE hProcess,
1098 IN DWORD64 qwAddr,
1099 OUT PDWORD pdwDisplacement,
1100 OUT PIMAGEHLP_LINE64 Line64);
1101// DbgHelp.h typedefs. Implementation found in dbghelp.dll.
1102typedef PVOID (__stdcall *DLL_FUNC_TYPE(SymFunctionTableAccess64))(
1103 HANDLE hProcess,
1104 DWORD64 AddrBase); // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64
1105typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymGetModuleBase64))(
1106 HANDLE hProcess,
1107 DWORD64 AddrBase); // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64
1108
1109// TlHelp32.h functions.
1110typedef HANDLE (__stdcall *DLL_FUNC_TYPE(CreateToolhelp32Snapshot))(
1111 DWORD dwFlags,
1112 DWORD th32ProcessID);
1113typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32FirstW))(HANDLE hSnapshot,
1114 LPMODULEENTRY32W lpme);
1115typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32NextW))(HANDLE hSnapshot,
1116 LPMODULEENTRY32W lpme);
1117
1118#undef IN
1119#undef VOID
1120
1121// Declare a variable for each dynamically loaded DLL function.
1122#define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = NULL;
1123DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION)
1124TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)
1125#undef DEF_DLL_FUNCTION
1126
1127// Load the functions. This function has a lot of "ugly" macros in order to
1128// keep down code duplication.
1129
1130static bool LoadDbgHelpAndTlHelp32() {
1131 static bool dbghelp_loaded = false;
1132
1133 if (dbghelp_loaded) return true;
1134
1135 HMODULE module;
1136
1137 // Load functions from the dbghelp.dll module.
1138 module = LoadLibrary(TEXT("dbghelp.dll"));
1139 if (module == NULL) {
1140 return false;
1141 }
1142
1143#define LOAD_DLL_FUNC(name) \
1144 DLL_FUNC_VAR(name) = \
1145 reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
1146
1147DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC)
1148
1149#undef LOAD_DLL_FUNC
1150
1151 // Load functions from the kernel32.dll module (the TlHelp32.h function used
1152 // to be in tlhelp32.dll but are now moved to kernel32.dll).
1153 module = LoadLibrary(TEXT("kernel32.dll"));
1154 if (module == NULL) {
1155 return false;
1156 }
1157
1158#define LOAD_DLL_FUNC(name) \
1159 DLL_FUNC_VAR(name) = \
1160 reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
1161
1162TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC)
1163
1164#undef LOAD_DLL_FUNC
1165
1166 // Check that all functions where loaded.
1167 bool result =
1168#define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != NULL) &&
1169
1170DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED)
1171TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED)
1172
1173#undef DLL_FUNC_LOADED
1174 true;
1175
1176 dbghelp_loaded = result;
1177 return result;
1178 // NOTE: The modules are never unloaded and will stay around until the
1179 // application is closed.
1180}
1181
1182
1183// Load the symbols for generating stack traces.
1184static bool LoadSymbols(HANDLE process_handle) {
1185 static bool symbols_loaded = false;
1186
1187 if (symbols_loaded) return true;
1188
1189 BOOL ok;
1190
1191 // Initialize the symbol engine.
1192 ok = _SymInitialize(process_handle, // hProcess
1193 NULL, // UserSearchPath
Ben Murdochb0fe1622011-05-05 13:52:32 +01001194 false); // fInvadeProcess
Steve Blocka7e24c12009-10-30 11:49:00 +00001195 if (!ok) return false;
1196
1197 DWORD options = _SymGetOptions();
1198 options |= SYMOPT_LOAD_LINES;
1199 options |= SYMOPT_FAIL_CRITICAL_ERRORS;
1200 options = _SymSetOptions(options);
1201
1202 char buf[OS::kStackWalkMaxNameLen] = {0};
1203 ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen);
1204 if (!ok) {
1205 int err = GetLastError();
1206 PrintF("%d\n", err);
1207 return false;
1208 }
1209
1210 HANDLE snapshot = _CreateToolhelp32Snapshot(
1211 TH32CS_SNAPMODULE, // dwFlags
1212 GetCurrentProcessId()); // th32ProcessId
1213 if (snapshot == INVALID_HANDLE_VALUE) return false;
1214 MODULEENTRY32W module_entry;
1215 module_entry.dwSize = sizeof(module_entry); // Set the size of the structure.
1216 BOOL cont = _Module32FirstW(snapshot, &module_entry);
1217 while (cont) {
1218 DWORD64 base;
1219 // NOTE the SymLoadModule64 function has the peculiarity of accepting a
1220 // both unicode and ASCII strings even though the parameter is PSTR.
1221 base = _SymLoadModule64(
1222 process_handle, // hProcess
1223 0, // hFile
1224 reinterpret_cast<PSTR>(module_entry.szExePath), // ImageName
1225 reinterpret_cast<PSTR>(module_entry.szModule), // ModuleName
1226 reinterpret_cast<DWORD64>(module_entry.modBaseAddr), // BaseOfDll
1227 module_entry.modBaseSize); // SizeOfDll
1228 if (base == 0) {
1229 int err = GetLastError();
1230 if (err != ERROR_MOD_NOT_FOUND &&
1231 err != ERROR_INVALID_HANDLE) return false;
1232 }
Steve Block44f0eee2011-05-26 01:26:41 +01001233 LOG(i::Isolate::Current(),
1234 SharedLibraryEvent(
Steve Blocka7e24c12009-10-30 11:49:00 +00001235 module_entry.szExePath,
1236 reinterpret_cast<unsigned int>(module_entry.modBaseAddr),
1237 reinterpret_cast<unsigned int>(module_entry.modBaseAddr +
1238 module_entry.modBaseSize)));
1239 cont = _Module32NextW(snapshot, &module_entry);
1240 }
1241 CloseHandle(snapshot);
1242
1243 symbols_loaded = true;
1244 return true;
1245}
1246
1247
1248void OS::LogSharedLibraryAddresses() {
1249 // SharedLibraryEvents are logged when loading symbol information.
1250 // Only the shared libraries loaded at the time of the call to
1251 // LogSharedLibraryAddresses are logged. DLLs loaded after
1252 // initialization are not accounted for.
1253 if (!LoadDbgHelpAndTlHelp32()) return;
1254 HANDLE process_handle = GetCurrentProcess();
1255 LoadSymbols(process_handle);
1256}
1257
1258
Ben Murdochf87a2032010-10-22 12:50:53 +01001259void OS::SignalCodeMovingGC() {
1260}
1261
1262
Steve Blocka7e24c12009-10-30 11:49:00 +00001263// Walk the stack using the facilities in dbghelp.dll and tlhelp32.dll
1264
1265// Switch off warning 4748 (/GS can not protect parameters and local variables
1266// from local buffer overrun because optimizations are disabled in function) as
1267// it is triggered by the use of inline assembler.
1268#pragma warning(push)
1269#pragma warning(disable : 4748)
1270int OS::StackWalk(Vector<OS::StackFrame> frames) {
1271 BOOL ok;
1272
1273 // Load the required functions from DLL's.
1274 if (!LoadDbgHelpAndTlHelp32()) return kStackWalkError;
1275
1276 // Get the process and thread handles.
1277 HANDLE process_handle = GetCurrentProcess();
1278 HANDLE thread_handle = GetCurrentThread();
1279
1280 // Read the symbols.
1281 if (!LoadSymbols(process_handle)) return kStackWalkError;
1282
1283 // Capture current context.
1284 CONTEXT context;
Steve Blockd0582a62009-12-15 09:54:21 +00001285 RtlCaptureContext(&context);
Steve Blocka7e24c12009-10-30 11:49:00 +00001286
1287 // Initialize the stack walking
1288 STACKFRAME64 stack_frame;
1289 memset(&stack_frame, 0, sizeof(stack_frame));
1290#ifdef _WIN64
1291 stack_frame.AddrPC.Offset = context.Rip;
1292 stack_frame.AddrFrame.Offset = context.Rbp;
1293 stack_frame.AddrStack.Offset = context.Rsp;
1294#else
1295 stack_frame.AddrPC.Offset = context.Eip;
1296 stack_frame.AddrFrame.Offset = context.Ebp;
1297 stack_frame.AddrStack.Offset = context.Esp;
1298#endif
1299 stack_frame.AddrPC.Mode = AddrModeFlat;
1300 stack_frame.AddrFrame.Mode = AddrModeFlat;
1301 stack_frame.AddrStack.Mode = AddrModeFlat;
1302 int frames_count = 0;
1303
1304 // Collect stack frames.
1305 int frames_size = frames.length();
1306 while (frames_count < frames_size) {
1307 ok = _StackWalk64(
1308 IMAGE_FILE_MACHINE_I386, // MachineType
1309 process_handle, // hProcess
1310 thread_handle, // hThread
1311 &stack_frame, // StackFrame
1312 &context, // ContextRecord
1313 NULL, // ReadMemoryRoutine
1314 _SymFunctionTableAccess64, // FunctionTableAccessRoutine
1315 _SymGetModuleBase64, // GetModuleBaseRoutine
1316 NULL); // TranslateAddress
1317 if (!ok) break;
1318
1319 // Store the address.
1320 ASSERT((stack_frame.AddrPC.Offset >> 32) == 0); // 32-bit address.
1321 frames[frames_count].address =
1322 reinterpret_cast<void*>(stack_frame.AddrPC.Offset);
1323
1324 // Try to locate a symbol for this frame.
1325 DWORD64 symbol_displacement;
Ben Murdoch589d6972011-11-30 16:04:58 +00001326 SmartArrayPointer<IMAGEHLP_SYMBOL64> symbol(
Kristian Monsen25f61362010-05-21 11:50:48 +01001327 NewArray<IMAGEHLP_SYMBOL64>(kStackWalkMaxNameLen));
1328 if (symbol.is_empty()) return kStackWalkError; // Out of memory.
1329 memset(*symbol, 0, sizeof(IMAGEHLP_SYMBOL64) + kStackWalkMaxNameLen);
1330 (*symbol)->SizeOfStruct = sizeof(IMAGEHLP_SYMBOL64);
1331 (*symbol)->MaxNameLength = kStackWalkMaxNameLen;
Steve Blocka7e24c12009-10-30 11:49:00 +00001332 ok = _SymGetSymFromAddr64(process_handle, // hProcess
1333 stack_frame.AddrPC.Offset, // Address
1334 &symbol_displacement, // Displacement
Kristian Monsen25f61362010-05-21 11:50:48 +01001335 *symbol); // Symbol
Steve Blocka7e24c12009-10-30 11:49:00 +00001336 if (ok) {
1337 // Try to locate more source information for the symbol.
1338 IMAGEHLP_LINE64 Line;
1339 memset(&Line, 0, sizeof(Line));
1340 Line.SizeOfStruct = sizeof(Line);
1341 DWORD line_displacement;
1342 ok = _SymGetLineFromAddr64(
1343 process_handle, // hProcess
1344 stack_frame.AddrPC.Offset, // dwAddr
1345 &line_displacement, // pdwDisplacement
1346 &Line); // Line
1347 // Format a text representation of the frame based on the information
1348 // available.
1349 if (ok) {
1350 SNPrintF(MutableCStrVector(frames[frames_count].text,
1351 kStackWalkMaxTextLen),
1352 "%s %s:%d:%d",
Kristian Monsen25f61362010-05-21 11:50:48 +01001353 (*symbol)->Name, Line.FileName, Line.LineNumber,
Steve Blocka7e24c12009-10-30 11:49:00 +00001354 line_displacement);
1355 } else {
1356 SNPrintF(MutableCStrVector(frames[frames_count].text,
1357 kStackWalkMaxTextLen),
1358 "%s",
Kristian Monsen25f61362010-05-21 11:50:48 +01001359 (*symbol)->Name);
Steve Blocka7e24c12009-10-30 11:49:00 +00001360 }
1361 // Make sure line termination is in place.
1362 frames[frames_count].text[kStackWalkMaxTextLen - 1] = '\0';
1363 } else {
1364 // No text representation of this frame
1365 frames[frames_count].text[0] = '\0';
1366
1367 // Continue if we are just missing a module (for non C/C++ frames a
1368 // module will never be found).
1369 int err = GetLastError();
1370 if (err != ERROR_MOD_NOT_FOUND) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001371 break;
1372 }
1373 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001374
1375 frames_count++;
1376 }
1377
1378 // Return the number of frames filled in.
1379 return frames_count;
1380}
1381
1382// Restore warnings to previous settings.
1383#pragma warning(pop)
1384
1385#else // __MINGW32__
1386void OS::LogSharedLibraryAddresses() { }
Ben Murdochb0fe1622011-05-05 13:52:32 +01001387void OS::SignalCodeMovingGC() { }
Steve Blocka7e24c12009-10-30 11:49:00 +00001388int OS::StackWalk(Vector<OS::StackFrame> frames) { return 0; }
1389#endif // __MINGW32__
1390
1391
Steve Blockd0582a62009-12-15 09:54:21 +00001392uint64_t OS::CpuFeaturesImpliedByPlatform() {
1393 return 0; // Windows runs on anything.
1394}
1395
1396
Steve Blocka7e24c12009-10-30 11:49:00 +00001397double OS::nan_value() {
1398#ifdef _MSC_VER
Steve Blockd0582a62009-12-15 09:54:21 +00001399 // Positive Quiet NaN with no payload (aka. Indeterminate) has all bits
1400 // in mask set, so value equals mask.
1401 static const __int64 nanval = kQuietNaNMask;
Steve Blocka7e24c12009-10-30 11:49:00 +00001402 return *reinterpret_cast<const double*>(&nanval);
1403#else // _MSC_VER
1404 return NAN;
1405#endif // _MSC_VER
1406}
1407
1408
1409int OS::ActivationFrameAlignment() {
1410#ifdef _WIN64
1411 return 16; // Windows 64-bit ABI requires the stack to be 16-byte aligned.
1412#else
1413 return 8; // Floating-point math runs faster with 8-byte alignment.
1414#endif
1415}
1416
1417
Leon Clarkef7060e22010-06-03 12:02:55 +01001418void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) {
1419 MemoryBarrier();
1420 *ptr = value;
1421}
1422
1423
Ben Murdoch592a9fc2012-03-05 11:04:45 +00001424VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { }
Steve Blocka7e24c12009-10-30 11:49:00 +00001425
1426
Ben Murdoch592a9fc2012-03-05 11:04:45 +00001427VirtualMemory::VirtualMemory(size_t size)
1428 : address_(ReserveRegion(size)), size_(size) { }
1429
1430
1431VirtualMemory::VirtualMemory(size_t size, size_t alignment)
1432 : address_(NULL), size_(0) {
1433 ASSERT(IsAligned(alignment, static_cast<intptr_t>(OS::AllocateAlignment())));
1434 size_t request_size = RoundUp(size + alignment,
1435 static_cast<intptr_t>(OS::AllocateAlignment()));
1436 void* address = ReserveRegion(request_size);
1437 if (address == NULL) return;
1438 Address base = RoundUp(static_cast<Address>(address), alignment);
1439 // Try reducing the size by freeing and then reallocating a specific area.
1440 bool result = ReleaseRegion(address, request_size);
1441 USE(result);
1442 ASSERT(result);
1443 address = VirtualAlloc(base, size, MEM_RESERVE, PAGE_NOACCESS);
1444 if (address != NULL) {
1445 request_size = size;
1446 ASSERT(base == static_cast<Address>(address));
1447 } else {
1448 // Resizing failed, just go with a bigger area.
1449 address = ReserveRegion(request_size);
1450 if (address == NULL) return;
1451 }
1452 address_ = address;
1453 size_ = request_size;
Steve Blocka7e24c12009-10-30 11:49:00 +00001454}
1455
1456
1457VirtualMemory::~VirtualMemory() {
1458 if (IsReserved()) {
Ben Murdoch592a9fc2012-03-05 11:04:45 +00001459 bool result = ReleaseRegion(address_, size_);
1460 ASSERT(result);
1461 USE(result);
Steve Blocka7e24c12009-10-30 11:49:00 +00001462 }
1463}
1464
1465
Ben Murdoch592a9fc2012-03-05 11:04:45 +00001466bool VirtualMemory::IsReserved() {
1467 return address_ != NULL;
1468}
Steve Blocka7e24c12009-10-30 11:49:00 +00001469
Ben Murdoch592a9fc2012-03-05 11:04:45 +00001470
1471void VirtualMemory::Reset() {
1472 address_ = NULL;
1473 size_ = 0;
1474}
1475
1476
1477bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
1478 if (CommitRegion(address, size, is_executable)) {
1479 UpdateAllocatedSpaceLimits(address, static_cast<int>(size));
1480 return true;
1481 }
1482 return false;
Steve Blocka7e24c12009-10-30 11:49:00 +00001483}
1484
1485
1486bool VirtualMemory::Uncommit(void* address, size_t size) {
1487 ASSERT(IsReserved());
Ben Murdoch592a9fc2012-03-05 11:04:45 +00001488 return UncommitRegion(address, size);
1489}
1490
1491
1492void* VirtualMemory::ReserveRegion(size_t size) {
1493 return RandomizedVirtualAlloc(size, MEM_RESERVE, PAGE_NOACCESS);
1494}
1495
1496
1497bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) {
1498 int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
1499 if (NULL == VirtualAlloc(base, size, MEM_COMMIT, prot)) {
1500 return false;
1501 }
1502
1503 UpdateAllocatedSpaceLimits(base, static_cast<int>(size));
1504 return true;
1505}
1506
1507
1508bool VirtualMemory::Guard(void* address) {
1509 if (NULL == VirtualAlloc(address,
1510 OS::CommitPageSize(),
1511 MEM_COMMIT,
1512 PAGE_READONLY | PAGE_GUARD)) {
1513 return false;
1514 }
1515 return true;
1516}
1517
1518
1519bool VirtualMemory::UncommitRegion(void* base, size_t size) {
1520 return VirtualFree(base, size, MEM_DECOMMIT) != 0;
1521}
1522
1523
1524bool VirtualMemory::ReleaseRegion(void* base, size_t size) {
1525 return VirtualFree(base, 0, MEM_RELEASE) != 0;
Steve Blocka7e24c12009-10-30 11:49:00 +00001526}
1527
1528
1529// ----------------------------------------------------------------------------
1530// Win32 thread support.
1531
1532// Definition of invalid thread handle and id.
1533static const HANDLE kNoThread = INVALID_HANDLE_VALUE;
Steve Blocka7e24c12009-10-30 11:49:00 +00001534
1535// Entry point for threads. The supplied argument is a pointer to the thread
1536// object. The entry function dispatches to the run method in the thread
1537// object. It is important that this function has __stdcall calling
1538// convention.
1539static unsigned int __stdcall ThreadEntry(void* arg) {
1540 Thread* thread = reinterpret_cast<Thread*>(arg);
Steve Blocka7e24c12009-10-30 11:49:00 +00001541 thread->Run();
1542 return 0;
1543}
1544
1545
Steve Blocka7e24c12009-10-30 11:49:00 +00001546class Thread::PlatformData : public Malloced {
1547 public:
1548 explicit PlatformData(HANDLE thread) : thread_(thread) {}
1549 HANDLE thread_;
Ben Murdoch592a9fc2012-03-05 11:04:45 +00001550 unsigned thread_id_;
Steve Blocka7e24c12009-10-30 11:49:00 +00001551};
1552
1553
1554// Initialize a Win32 thread object. The thread has an invalid thread
1555// handle until it is started.
1556
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001557Thread::Thread(const Options& options)
1558 : stack_size_(options.stack_size) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001559 data_ = new PlatformData(kNoThread);
Steve Block44f0eee2011-05-26 01:26:41 +01001560 set_name(options.name);
Steve Block9fac8402011-05-12 15:51:54 +01001561}
1562
1563
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001564Thread::Thread(const char* name)
1565 : stack_size_(0) {
Steve Block9fac8402011-05-12 15:51:54 +01001566 data_ = new PlatformData(kNoThread);
1567 set_name(name);
1568}
1569
1570
1571void Thread::set_name(const char* name) {
Ben Murdochb8e0da22011-05-16 14:20:40 +01001572 OS::StrNCpy(Vector<char>(name_, sizeof(name_)), name, strlen(name));
Steve Block9fac8402011-05-12 15:51:54 +01001573 name_[sizeof(name_) - 1] = '\0';
Steve Blocka7e24c12009-10-30 11:49:00 +00001574}
1575
1576
1577// Close our own handle for the thread.
1578Thread::~Thread() {
1579 if (data_->thread_ != kNoThread) CloseHandle(data_->thread_);
1580 delete data_;
1581}
1582
1583
1584// Create a new thread. It is important to use _beginthreadex() instead of
1585// the Win32 function CreateThread(), because the CreateThread() does not
1586// initialize thread specific structures in the C runtime library.
1587void Thread::Start() {
1588 data_->thread_ = reinterpret_cast<HANDLE>(
1589 _beginthreadex(NULL,
Steve Block44f0eee2011-05-26 01:26:41 +01001590 static_cast<unsigned>(stack_size_),
Steve Blocka7e24c12009-10-30 11:49:00 +00001591 ThreadEntry,
1592 this,
1593 0,
Ben Murdoch592a9fc2012-03-05 11:04:45 +00001594 &data_->thread_id_));
Steve Blocka7e24c12009-10-30 11:49:00 +00001595}
1596
1597
1598// Wait for thread to terminate.
1599void Thread::Join() {
Ben Murdoch592a9fc2012-03-05 11:04:45 +00001600 if (data_->thread_id_ != GetCurrentThreadId()) {
1601 WaitForSingleObject(data_->thread_, INFINITE);
1602 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001603}
1604
1605
1606Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
1607 DWORD result = TlsAlloc();
1608 ASSERT(result != TLS_OUT_OF_INDEXES);
1609 return static_cast<LocalStorageKey>(result);
1610}
1611
1612
1613void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
1614 BOOL result = TlsFree(static_cast<DWORD>(key));
1615 USE(result);
1616 ASSERT(result);
1617}
1618
1619
1620void* Thread::GetThreadLocal(LocalStorageKey key) {
1621 return TlsGetValue(static_cast<DWORD>(key));
1622}
1623
1624
1625void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
1626 BOOL result = TlsSetValue(static_cast<DWORD>(key), value);
1627 USE(result);
1628 ASSERT(result);
1629}
1630
1631
1632
1633void Thread::YieldCPU() {
1634 Sleep(0);
1635}
1636
1637
1638// ----------------------------------------------------------------------------
1639// Win32 mutex support.
1640//
1641// On Win32 mutexes are implemented using CRITICAL_SECTION objects. These are
1642// faster than Win32 Mutex objects because they are implemented using user mode
1643// atomic instructions. Therefore we only do ring transitions if there is lock
1644// contention.
1645
1646class Win32Mutex : public Mutex {
1647 public:
Steve Blocka7e24c12009-10-30 11:49:00 +00001648 Win32Mutex() { InitializeCriticalSection(&cs_); }
1649
Ben Murdochb0fe1622011-05-05 13:52:32 +01001650 virtual ~Win32Mutex() { DeleteCriticalSection(&cs_); }
Steve Blocka7e24c12009-10-30 11:49:00 +00001651
Ben Murdochb0fe1622011-05-05 13:52:32 +01001652 virtual int Lock() {
Steve Blocka7e24c12009-10-30 11:49:00 +00001653 EnterCriticalSection(&cs_);
1654 return 0;
1655 }
1656
Ben Murdochb0fe1622011-05-05 13:52:32 +01001657 virtual int Unlock() {
Steve Blocka7e24c12009-10-30 11:49:00 +00001658 LeaveCriticalSection(&cs_);
1659 return 0;
1660 }
1661
Ben Murdochb0fe1622011-05-05 13:52:32 +01001662
1663 virtual bool TryLock() {
1664 // Returns non-zero if critical section is entered successfully entered.
1665 return TryEnterCriticalSection(&cs_);
1666 }
1667
Steve Blocka7e24c12009-10-30 11:49:00 +00001668 private:
1669 CRITICAL_SECTION cs_; // Critical section used for mutex
1670};
1671
1672
1673Mutex* OS::CreateMutex() {
1674 return new Win32Mutex();
1675}
1676
1677
1678// ----------------------------------------------------------------------------
1679// Win32 semaphore support.
1680//
1681// On Win32 semaphores are implemented using Win32 Semaphore objects. The
1682// semaphores are anonymous. Also, the semaphores are initialized to have
1683// no upper limit on count.
1684
1685
1686class Win32Semaphore : public Semaphore {
1687 public:
1688 explicit Win32Semaphore(int count) {
1689 sem = ::CreateSemaphoreA(NULL, count, 0x7fffffff, NULL);
1690 }
1691
1692 ~Win32Semaphore() {
1693 CloseHandle(sem);
1694 }
1695
1696 void Wait() {
1697 WaitForSingleObject(sem, INFINITE);
1698 }
1699
1700 bool Wait(int timeout) {
1701 // Timeout in Windows API is in milliseconds.
1702 DWORD millis_timeout = timeout / 1000;
1703 return WaitForSingleObject(sem, millis_timeout) != WAIT_TIMEOUT;
1704 }
1705
1706 void Signal() {
1707 LONG dummy;
1708 ReleaseSemaphore(sem, 1, &dummy);
1709 }
1710
1711 private:
1712 HANDLE sem;
1713};
1714
1715
1716Semaphore* OS::CreateSemaphore(int count) {
1717 return new Win32Semaphore(count);
1718}
1719
1720
1721// ----------------------------------------------------------------------------
1722// Win32 socket support.
1723//
1724
1725class Win32Socket : public Socket {
1726 public:
1727 explicit Win32Socket() {
1728 // Create the socket.
1729 socket_ = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
1730 }
1731 explicit Win32Socket(SOCKET socket): socket_(socket) { }
1732 virtual ~Win32Socket() { Shutdown(); }
1733
1734 // Server initialization.
1735 bool Bind(const int port);
1736 bool Listen(int backlog) const;
1737 Socket* Accept() const;
1738
1739 // Client initialization.
1740 bool Connect(const char* host, const char* port);
1741
1742 // Shutdown socket for both read and write.
1743 bool Shutdown();
1744
1745 // Data Transimission
1746 int Send(const char* data, int len) const;
1747 int Receive(char* data, int len) const;
1748
1749 bool SetReuseAddress(bool reuse_address);
1750
1751 bool IsValid() const { return socket_ != INVALID_SOCKET; }
1752
1753 private:
1754 SOCKET socket_;
1755};
1756
1757
1758bool Win32Socket::Bind(const int port) {
1759 if (!IsValid()) {
1760 return false;
1761 }
1762
1763 sockaddr_in addr;
1764 memset(&addr, 0, sizeof(addr));
1765 addr.sin_family = AF_INET;
1766 addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
1767 addr.sin_port = htons(port);
1768 int status = bind(socket_,
1769 reinterpret_cast<struct sockaddr *>(&addr),
1770 sizeof(addr));
1771 return status == 0;
1772}
1773
1774
1775bool Win32Socket::Listen(int backlog) const {
1776 if (!IsValid()) {
1777 return false;
1778 }
1779
1780 int status = listen(socket_, backlog);
1781 return status == 0;
1782}
1783
1784
1785Socket* Win32Socket::Accept() const {
1786 if (!IsValid()) {
1787 return NULL;
1788 }
1789
1790 SOCKET socket = accept(socket_, NULL, NULL);
1791 if (socket == INVALID_SOCKET) {
1792 return NULL;
1793 } else {
1794 return new Win32Socket(socket);
1795 }
1796}
1797
1798
1799bool Win32Socket::Connect(const char* host, const char* port) {
1800 if (!IsValid()) {
1801 return false;
1802 }
1803
1804 // Lookup host and port.
1805 struct addrinfo *result = NULL;
1806 struct addrinfo hints;
1807 memset(&hints, 0, sizeof(addrinfo));
1808 hints.ai_family = AF_INET;
1809 hints.ai_socktype = SOCK_STREAM;
1810 hints.ai_protocol = IPPROTO_TCP;
1811 int status = getaddrinfo(host, port, &hints, &result);
1812 if (status != 0) {
1813 return false;
1814 }
1815
1816 // Connect.
Steve Blockd0582a62009-12-15 09:54:21 +00001817 status = connect(socket_,
1818 result->ai_addr,
1819 static_cast<int>(result->ai_addrlen));
Steve Blocka7e24c12009-10-30 11:49:00 +00001820 freeaddrinfo(result);
1821 return status == 0;
1822}
1823
1824
1825bool Win32Socket::Shutdown() {
1826 if (IsValid()) {
1827 // Shutdown socket for both read and write.
1828 int status = shutdown(socket_, SD_BOTH);
1829 closesocket(socket_);
1830 socket_ = INVALID_SOCKET;
1831 return status == SOCKET_ERROR;
1832 }
1833 return true;
1834}
1835
1836
1837int Win32Socket::Send(const char* data, int len) const {
1838 int status = send(socket_, data, len, 0);
1839 return status;
1840}
1841
1842
1843int Win32Socket::Receive(char* data, int len) const {
1844 int status = recv(socket_, data, len, 0);
1845 return status;
1846}
1847
1848
1849bool Win32Socket::SetReuseAddress(bool reuse_address) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001850 BOOL on = reuse_address ? true : false;
Steve Blocka7e24c12009-10-30 11:49:00 +00001851 int status = setsockopt(socket_, SOL_SOCKET, SO_REUSEADDR,
1852 reinterpret_cast<char*>(&on), sizeof(on));
1853 return status == SOCKET_ERROR;
1854}
1855
1856
1857bool Socket::Setup() {
1858 // Initialize Winsock32
1859 int err;
1860 WSADATA winsock_data;
1861 WORD version_requested = MAKEWORD(1, 0);
1862 err = WSAStartup(version_requested, &winsock_data);
1863 if (err != 0) {
1864 PrintF("Unable to initialize Winsock, err = %d\n", Socket::LastError());
1865 }
1866
1867 return err == 0;
1868}
1869
1870
1871int Socket::LastError() {
1872 return WSAGetLastError();
1873}
1874
1875
1876uint16_t Socket::HToN(uint16_t value) {
1877 return htons(value);
1878}
1879
1880
1881uint16_t Socket::NToH(uint16_t value) {
1882 return ntohs(value);
1883}
1884
1885
1886uint32_t Socket::HToN(uint32_t value) {
1887 return htonl(value);
1888}
1889
1890
1891uint32_t Socket::NToH(uint32_t value) {
1892 return ntohl(value);
1893}
1894
1895
1896Socket* OS::CreateSocket() {
1897 return new Win32Socket();
1898}
1899
1900
Steve Blocka7e24c12009-10-30 11:49:00 +00001901// ----------------------------------------------------------------------------
1902// Win32 profiler support.
Steve Blocka7e24c12009-10-30 11:49:00 +00001903
1904class Sampler::PlatformData : public Malloced {
1905 public:
Ben Murdochb0fe1622011-05-05 13:52:32 +01001906 // Get a handle to the calling thread. This is the thread that we are
1907 // going to profile. We need to make a copy of the handle because we are
1908 // going to use it in the sampler thread. Using GetThreadHandle() will
1909 // not work in this case. We're using OpenThread because DuplicateHandle
1910 // for some reason doesn't work in Chrome's sandbox.
Steve Block44f0eee2011-05-26 01:26:41 +01001911 PlatformData() : profiled_thread_(OpenThread(THREAD_GET_CONTEXT |
1912 THREAD_SUSPEND_RESUME |
1913 THREAD_QUERY_INFORMATION,
1914 false,
1915 GetCurrentThreadId())) {}
Steve Blocka7e24c12009-10-30 11:49:00 +00001916
Steve Block44f0eee2011-05-26 01:26:41 +01001917 ~PlatformData() {
1918 if (profiled_thread_ != NULL) {
1919 CloseHandle(profiled_thread_);
1920 profiled_thread_ = NULL;
1921 }
1922 }
1923
1924 HANDLE profiled_thread() { return profiled_thread_; }
1925
1926 private:
1927 HANDLE profiled_thread_;
1928};
1929
1930
1931class SamplerThread : public Thread {
1932 public:
1933 explicit SamplerThread(int interval)
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001934 : Thread("SamplerThread"),
Steve Block44f0eee2011-05-26 01:26:41 +01001935 interval_(interval) {}
1936
1937 static void AddActiveSampler(Sampler* sampler) {
1938 ScopedLock lock(mutex_);
1939 SamplerRegistry::AddActiveSampler(sampler);
1940 if (instance_ == NULL) {
1941 instance_ = new SamplerThread(sampler->interval());
1942 instance_->Start();
1943 } else {
1944 ASSERT(instance_->interval_ == sampler->interval());
1945 }
1946 }
1947
1948 static void RemoveActiveSampler(Sampler* sampler) {
1949 ScopedLock lock(mutex_);
1950 SamplerRegistry::RemoveActiveSampler(sampler);
1951 if (SamplerRegistry::GetState() == SamplerRegistry::HAS_NO_SAMPLERS) {
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001952 RuntimeProfiler::StopRuntimeProfilerThreadBeforeShutdown(instance_);
Steve Block44f0eee2011-05-26 01:26:41 +01001953 delete instance_;
1954 instance_ = NULL;
1955 }
1956 }
1957
1958 // Implement Thread::Run().
1959 virtual void Run() {
1960 SamplerRegistry::State state;
1961 while ((state = SamplerRegistry::GetState()) !=
1962 SamplerRegistry::HAS_NO_SAMPLERS) {
1963 bool cpu_profiling_enabled =
1964 (state == SamplerRegistry::HAS_CPU_PROFILING_SAMPLERS);
1965 bool runtime_profiler_enabled = RuntimeProfiler::IsEnabled();
1966 // When CPU profiling is enabled both JavaScript and C++ code is
1967 // profiled. We must not suspend.
1968 if (!cpu_profiling_enabled) {
1969 if (rate_limiter_.SuspendIfNecessary()) continue;
1970 }
1971 if (cpu_profiling_enabled) {
1972 if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile, this)) {
1973 return;
1974 }
1975 }
1976 if (runtime_profiler_enabled) {
1977 if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile, NULL)) {
1978 return;
1979 }
1980 }
1981 OS::Sleep(interval_);
1982 }
1983 }
1984
1985 static void DoCpuProfile(Sampler* sampler, void* raw_sampler_thread) {
1986 if (!sampler->isolate()->IsInitialized()) return;
1987 if (!sampler->IsProfiling()) return;
1988 SamplerThread* sampler_thread =
1989 reinterpret_cast<SamplerThread*>(raw_sampler_thread);
1990 sampler_thread->SampleContext(sampler);
1991 }
1992
1993 static void DoRuntimeProfile(Sampler* sampler, void* ignored) {
1994 if (!sampler->isolate()->IsInitialized()) return;
1995 sampler->isolate()->runtime_profiler()->NotifyTick();
1996 }
1997
1998 void SampleContext(Sampler* sampler) {
1999 HANDLE profiled_thread = sampler->platform_data()->profiled_thread();
2000 if (profiled_thread == NULL) return;
2001
2002 // Context used for sampling the register state of the profiled thread.
2003 CONTEXT context;
2004 memset(&context, 0, sizeof(context));
2005
2006 TickSample sample_obj;
2007 TickSample* sample = CpuProfiler::TickSampleEvent(sampler->isolate());
2008 if (sample == NULL) sample = &sample_obj;
2009
2010 static const DWORD kSuspendFailed = static_cast<DWORD>(-1);
2011 if (SuspendThread(profiled_thread) == kSuspendFailed) return;
2012 sample->state = sampler->isolate()->current_vm_state();
2013
2014 context.ContextFlags = CONTEXT_FULL;
2015 if (GetThreadContext(profiled_thread, &context) != 0) {
2016#if V8_HOST_ARCH_X64
2017 sample->pc = reinterpret_cast<Address>(context.Rip);
2018 sample->sp = reinterpret_cast<Address>(context.Rsp);
2019 sample->fp = reinterpret_cast<Address>(context.Rbp);
2020#else
2021 sample->pc = reinterpret_cast<Address>(context.Eip);
2022 sample->sp = reinterpret_cast<Address>(context.Esp);
2023 sample->fp = reinterpret_cast<Address>(context.Ebp);
2024#endif
2025 sampler->SampleStack(sample);
2026 sampler->Tick(sample);
2027 }
2028 ResumeThread(profiled_thread);
2029 }
2030
2031 const int interval_;
2032 RuntimeProfilerRateLimiter rate_limiter_;
2033
2034 // Protects the process wide state below.
2035 static Mutex* mutex_;
2036 static SamplerThread* instance_;
2037
2038 DISALLOW_COPY_AND_ASSIGN(SamplerThread);
2039};
2040
2041
2042Mutex* SamplerThread::mutex_ = OS::CreateMutex();
2043SamplerThread* SamplerThread::instance_ = NULL;
2044
2045
2046Sampler::Sampler(Isolate* isolate, int interval)
2047 : isolate_(isolate),
2048 interval_(interval),
2049 profiling_(false),
2050 active_(false),
2051 samples_taken_(0) {
2052 data_ = new PlatformData;
2053}
2054
2055
2056Sampler::~Sampler() {
2057 ASSERT(!IsActive());
2058 delete data_;
2059}
2060
2061
2062void Sampler::Start() {
2063 ASSERT(!IsActive());
Ben Murdochb0fe1622011-05-05 13:52:32 +01002064 SetActive(true);
Steve Block44f0eee2011-05-26 01:26:41 +01002065 SamplerThread::AddActiveSampler(this);
Steve Blocka7e24c12009-10-30 11:49:00 +00002066}
2067
2068
Steve Blocka7e24c12009-10-30 11:49:00 +00002069void Sampler::Stop() {
Steve Block44f0eee2011-05-26 01:26:41 +01002070 ASSERT(IsActive());
2071 SamplerThread::RemoveActiveSampler(this);
Ben Murdochb0fe1622011-05-05 13:52:32 +01002072 SetActive(false);
Steve Blocka7e24c12009-10-30 11:49:00 +00002073}
2074
Steve Blocka7e24c12009-10-30 11:49:00 +00002075
2076} } // namespace v8::internal