blob: 59fd8994053c6dd23caeca33eee7dc318e0cb063 [file] [log] [blame]
Ben Murdochc5610432016-08-08 18:44:38 +01001// Copyright 2016 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "src/compiler/memory-optimizer.h"
6
7#include "src/compiler/js-graph.h"
8#include "src/compiler/linkage.h"
9#include "src/compiler/node-matchers.h"
10#include "src/compiler/node-properties.h"
11#include "src/compiler/node.h"
12#include "src/compiler/simplified-operator.h"
13
14namespace v8 {
15namespace internal {
16namespace compiler {
17
18MemoryOptimizer::MemoryOptimizer(JSGraph* jsgraph, Zone* zone)
19 : jsgraph_(jsgraph),
20 empty_state_(AllocationState::Empty(zone)),
21 pending_(zone),
22 tokens_(zone),
23 zone_(zone) {}
24
25void MemoryOptimizer::Optimize() {
26 EnqueueUses(graph()->start(), empty_state());
27 while (!tokens_.empty()) {
28 Token const token = tokens_.front();
29 tokens_.pop();
30 VisitNode(token.node, token.state);
31 }
32 DCHECK(pending_.empty());
33 DCHECK(tokens_.empty());
34}
35
36MemoryOptimizer::AllocationGroup::AllocationGroup(Node* node,
37 PretenureFlag pretenure,
38 Zone* zone)
39 : node_ids_(zone), pretenure_(pretenure), size_(nullptr) {
40 node_ids_.insert(node->id());
41}
42
43MemoryOptimizer::AllocationGroup::AllocationGroup(Node* node,
44 PretenureFlag pretenure,
45 Node* size, Zone* zone)
46 : node_ids_(zone), pretenure_(pretenure), size_(size) {
47 node_ids_.insert(node->id());
48}
49
50void MemoryOptimizer::AllocationGroup::Add(Node* node) {
51 node_ids_.insert(node->id());
52}
53
54bool MemoryOptimizer::AllocationGroup::Contains(Node* node) const {
55 return node_ids_.find(node->id()) != node_ids_.end();
56}
57
58MemoryOptimizer::AllocationState::AllocationState()
59 : group_(nullptr), size_(std::numeric_limits<int>::max()), top_(nullptr) {}
60
61MemoryOptimizer::AllocationState::AllocationState(AllocationGroup* group)
62 : group_(group), size_(std::numeric_limits<int>::max()), top_(nullptr) {}
63
64MemoryOptimizer::AllocationState::AllocationState(AllocationGroup* group,
65 int size, Node* top)
66 : group_(group), size_(size), top_(top) {}
67
68bool MemoryOptimizer::AllocationState::IsNewSpaceAllocation() const {
69 return group() && group()->IsNewSpaceAllocation();
70}
71
72void MemoryOptimizer::VisitNode(Node* node, AllocationState const* state) {
73 DCHECK(!node->IsDead());
74 DCHECK_LT(0, node->op()->EffectInputCount());
75 switch (node->opcode()) {
76 case IrOpcode::kAllocate:
77 return VisitAllocate(node, state);
78 case IrOpcode::kCall:
79 return VisitCall(node, state);
80 case IrOpcode::kLoadElement:
81 return VisitLoadElement(node, state);
82 case IrOpcode::kLoadField:
83 return VisitLoadField(node, state);
84 case IrOpcode::kStoreElement:
85 return VisitStoreElement(node, state);
86 case IrOpcode::kStoreField:
87 return VisitStoreField(node, state);
88 case IrOpcode::kCheckedLoad:
89 case IrOpcode::kCheckedStore:
90 case IrOpcode::kIfException:
91 case IrOpcode::kLoad:
92 case IrOpcode::kStore:
93 return VisitOtherEffect(node, state);
94 default:
95 break;
96 }
97 DCHECK_EQ(0, node->op()->EffectOutputCount());
98}
99
100void MemoryOptimizer::VisitAllocate(Node* node, AllocationState const* state) {
101 DCHECK_EQ(IrOpcode::kAllocate, node->opcode());
102 Node* value;
103 Node* size = node->InputAt(0);
104 Node* effect = node->InputAt(1);
105 Node* control = node->InputAt(2);
106 PretenureFlag pretenure = OpParameter<PretenureFlag>(node->op());
107
108 // Determine the top/limit addresses.
109 Node* top_address = jsgraph()->ExternalConstant(
110 pretenure == NOT_TENURED
111 ? ExternalReference::new_space_allocation_top_address(isolate())
112 : ExternalReference::old_space_allocation_top_address(isolate()));
113 Node* limit_address = jsgraph()->ExternalConstant(
114 pretenure == NOT_TENURED
115 ? ExternalReference::new_space_allocation_limit_address(isolate())
116 : ExternalReference::old_space_allocation_limit_address(isolate()));
117
118 // Check if we can fold this allocation into a previous allocation represented
119 // by the incoming {state}.
120 Int32Matcher m(size);
121 if (m.HasValue() && m.Value() < Page::kMaxRegularHeapObjectSize) {
122 int32_t const object_size = m.Value();
123 if (state->size() <= Page::kMaxRegularHeapObjectSize - object_size &&
124 state->group()->pretenure() == pretenure) {
125 // We can fold this Allocate {node} into the allocation {group}
126 // represented by the given {state}. Compute the upper bound for
127 // the new {state}.
128 int32_t const state_size = state->size() + object_size;
129
130 // Update the reservation check to the actual maximum upper bound.
131 AllocationGroup* const group = state->group();
132 if (OpParameter<int32_t>(group->size()) < state_size) {
133 NodeProperties::ChangeOp(group->size(),
134 common()->Int32Constant(state_size));
135 }
136
137 // Update the allocation top with the new object allocation.
138 // TODO(bmeurer): Defer writing back top as much as possible.
139 Node* top = graph()->NewNode(machine()->IntAdd(), state->top(),
140 jsgraph()->IntPtrConstant(object_size));
141 effect = graph()->NewNode(
142 machine()->Store(StoreRepresentation(
143 MachineType::PointerRepresentation(), kNoWriteBarrier)),
144 top_address, jsgraph()->IntPtrConstant(0), top, effect, control);
145
146 // Compute the effective inner allocated address.
147 value = graph()->NewNode(
148 machine()->BitcastWordToTagged(),
149 graph()->NewNode(machine()->IntAdd(), state->top(),
150 jsgraph()->IntPtrConstant(kHeapObjectTag)));
151
152 // Extend the allocation {group}.
153 group->Add(value);
154 state = AllocationState::Open(group, state_size, top, zone());
155 } else {
156 // Setup a mutable reservation size node; will be patched as we fold
157 // additional allocations into this new group.
158 Node* size = graph()->NewNode(common()->Int32Constant(object_size));
159
160 // Load allocation top and limit.
161 Node* top = effect =
162 graph()->NewNode(machine()->Load(MachineType::Pointer()), top_address,
163 jsgraph()->IntPtrConstant(0), effect, control);
164 Node* limit = effect = graph()->NewNode(
165 machine()->Load(MachineType::Pointer()), limit_address,
166 jsgraph()->IntPtrConstant(0), effect, control);
167
168 // Check if we need to collect garbage before we can start bump pointer
169 // allocation (always done for folded allocations).
170 Node* check = graph()->NewNode(
171 machine()->UintLessThan(),
172 graph()->NewNode(
173 machine()->IntAdd(), top,
174 machine()->Is64()
175 ? graph()->NewNode(machine()->ChangeInt32ToInt64(), size)
176 : size),
177 limit);
178 Node* branch =
179 graph()->NewNode(common()->Branch(BranchHint::kTrue), check, control);
180
181 Node* if_true = graph()->NewNode(common()->IfTrue(), branch);
182 Node* etrue = effect;
183 Node* vtrue = top;
184
185 Node* if_false = graph()->NewNode(common()->IfFalse(), branch);
186 Node* efalse = effect;
187 Node* vfalse;
188 {
189 Node* target = pretenure == NOT_TENURED
190 ? jsgraph()->AllocateInNewSpaceStubConstant()
191 : jsgraph()->AllocateInOldSpaceStubConstant();
192 if (!allocate_operator_.is_set()) {
193 CallDescriptor* descriptor =
194 Linkage::GetAllocateCallDescriptor(graph()->zone());
195 allocate_operator_.set(common()->Call(descriptor));
196 }
197 vfalse = efalse = graph()->NewNode(allocate_operator_.get(), target,
198 size, efalse, if_false);
199 vfalse = graph()->NewNode(machine()->IntSub(), vfalse,
200 jsgraph()->IntPtrConstant(kHeapObjectTag));
201 }
202
203 control = graph()->NewNode(common()->Merge(2), if_true, if_false);
204 effect = graph()->NewNode(common()->EffectPhi(2), etrue, efalse, control);
205 value = graph()->NewNode(
206 common()->Phi(MachineType::PointerRepresentation(), 2), vtrue, vfalse,
207 control);
208
209 // Compute the new top and write it back.
210 top = graph()->NewNode(machine()->IntAdd(), value,
211 jsgraph()->IntPtrConstant(object_size));
212 effect = graph()->NewNode(
213 machine()->Store(StoreRepresentation(
214 MachineType::PointerRepresentation(), kNoWriteBarrier)),
215 top_address, jsgraph()->IntPtrConstant(0), top, effect, control);
216
217 // Compute the initial object address.
218 value = graph()->NewNode(
219 machine()->BitcastWordToTagged(),
220 graph()->NewNode(machine()->IntAdd(), value,
221 jsgraph()->IntPtrConstant(kHeapObjectTag)));
222
223 // Start a new allocation group.
224 AllocationGroup* group =
225 new (zone()) AllocationGroup(value, pretenure, size, zone());
226 state = AllocationState::Open(group, object_size, top, zone());
227 }
228 } else {
229 // Load allocation top and limit.
230 Node* top = effect =
231 graph()->NewNode(machine()->Load(MachineType::Pointer()), top_address,
232 jsgraph()->IntPtrConstant(0), effect, control);
233 Node* limit = effect =
234 graph()->NewNode(machine()->Load(MachineType::Pointer()), limit_address,
235 jsgraph()->IntPtrConstant(0), effect, control);
236
237 // Compute the new top.
238 Node* new_top = graph()->NewNode(
239 machine()->IntAdd(), top,
240 machine()->Is64()
241 ? graph()->NewNode(machine()->ChangeInt32ToInt64(), size)
242 : size);
243
244 // Check if we can do bump pointer allocation here.
245 Node* check = graph()->NewNode(machine()->UintLessThan(), new_top, limit);
246 Node* branch =
247 graph()->NewNode(common()->Branch(BranchHint::kTrue), check, control);
248
249 Node* if_true = graph()->NewNode(common()->IfTrue(), branch);
250 Node* etrue = effect;
251 Node* vtrue;
252 {
253 etrue = graph()->NewNode(
254 machine()->Store(StoreRepresentation(
255 MachineType::PointerRepresentation(), kNoWriteBarrier)),
256 top_address, jsgraph()->IntPtrConstant(0), new_top, etrue, if_true);
257 vtrue = graph()->NewNode(
258 machine()->BitcastWordToTagged(),
259 graph()->NewNode(machine()->IntAdd(), top,
260 jsgraph()->IntPtrConstant(kHeapObjectTag)));
261 }
262
263 Node* if_false = graph()->NewNode(common()->IfFalse(), branch);
264 Node* efalse = effect;
265 Node* vfalse;
266 {
267 Node* target = pretenure == NOT_TENURED
268 ? jsgraph()->AllocateInNewSpaceStubConstant()
269 : jsgraph()->AllocateInOldSpaceStubConstant();
270 if (!allocate_operator_.is_set()) {
271 CallDescriptor* descriptor =
272 Linkage::GetAllocateCallDescriptor(graph()->zone());
273 allocate_operator_.set(common()->Call(descriptor));
274 }
275 vfalse = efalse = graph()->NewNode(allocate_operator_.get(), target, size,
276 efalse, if_false);
277 }
278
279 control = graph()->NewNode(common()->Merge(2), if_true, if_false);
280 effect = graph()->NewNode(common()->EffectPhi(2), etrue, efalse, control);
281 value = graph()->NewNode(common()->Phi(MachineRepresentation::kTagged, 2),
282 vtrue, vfalse, control);
283
284 // Create an unfoldable allocation group.
285 AllocationGroup* group =
286 new (zone()) AllocationGroup(value, pretenure, zone());
287 state = AllocationState::Closed(group, zone());
288 }
289
290 // Replace all effect uses of {node} with the {effect}, enqueue the
291 // effect uses for further processing, and replace all value uses of
292 // {node} with the {value}.
293 for (Edge edge : node->use_edges()) {
294 if (NodeProperties::IsEffectEdge(edge)) {
295 EnqueueUse(edge.from(), edge.index(), state);
296 edge.UpdateTo(effect);
297 } else {
298 DCHECK(NodeProperties::IsValueEdge(edge));
299 edge.UpdateTo(value);
300 }
301 }
302
303 // Kill the {node} to make sure we don't leave dangling dead uses.
304 node->Kill();
305}
306
307void MemoryOptimizer::VisitCall(Node* node, AllocationState const* state) {
308 DCHECK_EQ(IrOpcode::kCall, node->opcode());
309 // If the call can allocate, we start with a fresh state.
310 if (!(CallDescriptorOf(node->op())->flags() & CallDescriptor::kNoAllocate)) {
311 state = empty_state();
312 }
313 EnqueueUses(node, state);
314}
315
316void MemoryOptimizer::VisitLoadElement(Node* node,
317 AllocationState const* state) {
318 DCHECK_EQ(IrOpcode::kLoadElement, node->opcode());
319 ElementAccess const& access = ElementAccessOf(node->op());
320 Node* index = node->InputAt(1);
321 node->ReplaceInput(1, ComputeIndex(access, index));
322 NodeProperties::ChangeOp(node, machine()->Load(access.machine_type));
323 EnqueueUses(node, state);
324}
325
326void MemoryOptimizer::VisitLoadField(Node* node, AllocationState const* state) {
327 DCHECK_EQ(IrOpcode::kLoadField, node->opcode());
328 FieldAccess const& access = FieldAccessOf(node->op());
329 Node* offset = jsgraph()->IntPtrConstant(access.offset - access.tag());
330 node->InsertInput(graph()->zone(), 1, offset);
331 NodeProperties::ChangeOp(node, machine()->Load(access.machine_type));
332 EnqueueUses(node, state);
333}
334
335void MemoryOptimizer::VisitStoreElement(Node* node,
336 AllocationState const* state) {
337 DCHECK_EQ(IrOpcode::kStoreElement, node->opcode());
338 ElementAccess const& access = ElementAccessOf(node->op());
339 Node* object = node->InputAt(0);
340 Node* index = node->InputAt(1);
341 WriteBarrierKind write_barrier_kind =
342 ComputeWriteBarrierKind(object, state, access.write_barrier_kind);
343 node->ReplaceInput(1, ComputeIndex(access, index));
344 NodeProperties::ChangeOp(
345 node, machine()->Store(StoreRepresentation(
346 access.machine_type.representation(), write_barrier_kind)));
347 EnqueueUses(node, state);
348}
349
350void MemoryOptimizer::VisitStoreField(Node* node,
351 AllocationState const* state) {
352 DCHECK_EQ(IrOpcode::kStoreField, node->opcode());
353 FieldAccess const& access = FieldAccessOf(node->op());
354 Node* object = node->InputAt(0);
355 WriteBarrierKind write_barrier_kind =
356 ComputeWriteBarrierKind(object, state, access.write_barrier_kind);
357 Node* offset = jsgraph()->IntPtrConstant(access.offset - access.tag());
358 node->InsertInput(graph()->zone(), 1, offset);
359 NodeProperties::ChangeOp(
360 node, machine()->Store(StoreRepresentation(
361 access.machine_type.representation(), write_barrier_kind)));
362 EnqueueUses(node, state);
363}
364
365void MemoryOptimizer::VisitOtherEffect(Node* node,
366 AllocationState const* state) {
367 EnqueueUses(node, state);
368}
369
370Node* MemoryOptimizer::ComputeIndex(ElementAccess const& access, Node* key) {
371 Node* index = key;
372 int element_size_shift =
373 ElementSizeLog2Of(access.machine_type.representation());
374 if (element_size_shift) {
375 index = graph()->NewNode(machine()->Word32Shl(), index,
376 jsgraph()->Int32Constant(element_size_shift));
377 }
378 const int fixed_offset = access.header_size - access.tag();
379 if (fixed_offset) {
380 index = graph()->NewNode(machine()->Int32Add(), index,
381 jsgraph()->Int32Constant(fixed_offset));
382 }
383 if (machine()->Is64()) {
384 // TODO(turbofan): This is probably only correct for typed arrays, and only
385 // if the typed arrays are at most 2GiB in size, which happens to match
386 // exactly our current situation.
387 index = graph()->NewNode(machine()->ChangeUint32ToUint64(), index);
388 }
389 return index;
390}
391
392WriteBarrierKind MemoryOptimizer::ComputeWriteBarrierKind(
393 Node* object, AllocationState const* state,
394 WriteBarrierKind write_barrier_kind) {
395 if (state->IsNewSpaceAllocation() && state->group()->Contains(object)) {
396 write_barrier_kind = kNoWriteBarrier;
397 }
398 return write_barrier_kind;
399}
400
401MemoryOptimizer::AllocationState const* MemoryOptimizer::MergeStates(
402 AllocationStates const& states) {
403 // Check if all states are the same; or at least if all allocation
404 // states belong to the same allocation group.
405 AllocationState const* state = states.front();
406 AllocationGroup* group = state->group();
407 for (size_t i = 1; i < states.size(); ++i) {
408 if (states[i] != state) state = nullptr;
409 if (states[i]->group() != group) group = nullptr;
410 }
411 if (state == nullptr) {
412 if (group != nullptr) {
413 // We cannot fold any more allocations into this group, but we can still
414 // eliminate write barriers on stores to this group.
415 // TODO(bmeurer): We could potentially just create a Phi here to merge
416 // the various tops; but we need to pay special attention not to create
417 // an unschedulable graph.
418 state = AllocationState::Closed(group, zone());
419 } else {
420 // The states are from different allocation groups.
421 state = empty_state();
422 }
423 }
424 return state;
425}
426
427void MemoryOptimizer::EnqueueMerge(Node* node, int index,
428 AllocationState const* state) {
429 DCHECK_EQ(IrOpcode::kEffectPhi, node->opcode());
430 int const input_count = node->InputCount() - 1;
431 DCHECK_LT(0, input_count);
432 Node* const control = node->InputAt(input_count);
433 if (control->opcode() == IrOpcode::kLoop) {
434 // For loops we always start with an empty state at the beginning.
435 if (index == 0) EnqueueUses(node, empty_state());
436 } else {
437 DCHECK_EQ(IrOpcode::kMerge, control->opcode());
438 // Check if we already know about this pending merge.
439 NodeId const id = node->id();
440 auto it = pending_.find(id);
441 if (it == pending_.end()) {
442 // Insert a new pending merge.
443 it = pending_.insert(std::make_pair(id, AllocationStates(zone()))).first;
444 }
445 // Add the next input state.
446 it->second.push_back(state);
447 // Check if states for all inputs are available by now.
448 if (it->second.size() == static_cast<size_t>(input_count)) {
449 // All inputs to this effect merge are done, merge the states given all
450 // input constraints, drop the pending merge and enqueue uses of the
451 // EffectPhi {node}.
452 state = MergeStates(it->second);
453 EnqueueUses(node, state);
454 pending_.erase(it);
455 }
456 }
457}
458
459void MemoryOptimizer::EnqueueUses(Node* node, AllocationState const* state) {
460 for (Edge const edge : node->use_edges()) {
461 if (NodeProperties::IsEffectEdge(edge)) {
462 EnqueueUse(edge.from(), edge.index(), state);
463 }
464 }
465}
466
467void MemoryOptimizer::EnqueueUse(Node* node, int index,
468 AllocationState const* state) {
469 if (node->opcode() == IrOpcode::kEffectPhi) {
470 // An EffectPhi represents a merge of different effect chains, which
471 // needs special handling depending on whether the merge is part of a
472 // loop or just a normal control join.
473 EnqueueMerge(node, index, state);
474 } else {
475 Token token = {node, state};
476 tokens_.push(token);
477 }
478}
479
480Graph* MemoryOptimizer::graph() const { return jsgraph()->graph(); }
481
482Isolate* MemoryOptimizer::isolate() const { return jsgraph()->isolate(); }
483
484CommonOperatorBuilder* MemoryOptimizer::common() const {
485 return jsgraph()->common();
486}
487
488MachineOperatorBuilder* MemoryOptimizer::machine() const {
489 return jsgraph()->machine();
490}
491
492} // namespace compiler
493} // namespace internal
494} // namespace v8