blob: 71aacf9a3a118e3df2191c215c308159983c33b9 [file] [log] [blame]
Steve Block1e0659c2011-05-24 12:43:12 +01001// Copyright 2011 the V8 project authors. All rights reserved.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#if defined(V8_TARGET_ARCH_IA32)
31
Kristian Monsen80d68ea2010-09-08 11:05:35 +010032#include "bootstrapper.h"
Ben Murdoch257744e2011-11-30 15:57:28 +000033#include "code-stubs.h"
Steve Block44f0eee2011-05-26 01:26:41 +010034#include "isolate.h"
Ben Murdoch257744e2011-11-30 15:57:28 +000035#include "jsregexp.h"
Kristian Monsen80d68ea2010-09-08 11:05:35 +010036#include "regexp-macro-assembler.h"
37
38namespace v8 {
39namespace internal {
40
41#define __ ACCESS_MASM(masm)
Steve Block1e0659c2011-05-24 12:43:12 +010042
43void ToNumberStub::Generate(MacroAssembler* masm) {
44 // The ToNumber stub takes one argument in eax.
Ben Murdoch257744e2011-11-30 15:57:28 +000045 Label check_heap_number, call_builtin;
Ben Murdoch3fb3ca82011-12-02 17:19:32 +000046 __ JumpIfNotSmi(eax, &check_heap_number, Label::kNear);
Steve Block1e0659c2011-05-24 12:43:12 +010047 __ ret(0);
48
49 __ bind(&check_heap_number);
50 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
Steve Block44f0eee2011-05-26 01:26:41 +010051 Factory* factory = masm->isolate()->factory();
52 __ cmp(Operand(ebx), Immediate(factory->heap_number_map()));
Ben Murdoch257744e2011-11-30 15:57:28 +000053 __ j(not_equal, &call_builtin, Label::kNear);
Steve Block1e0659c2011-05-24 12:43:12 +010054 __ ret(0);
55
56 __ bind(&call_builtin);
57 __ pop(ecx); // Pop return address.
58 __ push(eax);
59 __ push(ecx); // Push return address.
60 __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_FUNCTION);
61}
62
63
Kristian Monsen80d68ea2010-09-08 11:05:35 +010064void FastNewClosureStub::Generate(MacroAssembler* masm) {
65 // Create a new closure from the given function info in new
66 // space. Set the context to the current context in esi.
67 Label gc;
68 __ AllocateInNewSpace(JSFunction::kSize, eax, ebx, ecx, &gc, TAG_OBJECT);
69
70 // Get the function info from the stack.
71 __ mov(edx, Operand(esp, 1 * kPointerSize));
72
Steve Block44f0eee2011-05-26 01:26:41 +010073 int map_index = strict_mode_ == kStrictMode
74 ? Context::STRICT_MODE_FUNCTION_MAP_INDEX
75 : Context::FUNCTION_MAP_INDEX;
76
Kristian Monsen80d68ea2010-09-08 11:05:35 +010077 // Compute the function map in the current global context and set that
78 // as the map of the allocated object.
79 __ mov(ecx, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX)));
80 __ mov(ecx, FieldOperand(ecx, GlobalObject::kGlobalContextOffset));
Steve Block44f0eee2011-05-26 01:26:41 +010081 __ mov(ecx, Operand(ecx, Context::SlotOffset(map_index)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +010082 __ mov(FieldOperand(eax, JSObject::kMapOffset), ecx);
83
84 // Initialize the rest of the function. We don't have to update the
85 // write barrier because the allocated object is in new space.
Steve Block44f0eee2011-05-26 01:26:41 +010086 Factory* factory = masm->isolate()->factory();
87 __ mov(ebx, Immediate(factory->empty_fixed_array()));
Kristian Monsen80d68ea2010-09-08 11:05:35 +010088 __ mov(FieldOperand(eax, JSObject::kPropertiesOffset), ebx);
89 __ mov(FieldOperand(eax, JSObject::kElementsOffset), ebx);
90 __ mov(FieldOperand(eax, JSFunction::kPrototypeOrInitialMapOffset),
Steve Block44f0eee2011-05-26 01:26:41 +010091 Immediate(factory->the_hole_value()));
Kristian Monsen80d68ea2010-09-08 11:05:35 +010092 __ mov(FieldOperand(eax, JSFunction::kSharedFunctionInfoOffset), edx);
93 __ mov(FieldOperand(eax, JSFunction::kContextOffset), esi);
94 __ mov(FieldOperand(eax, JSFunction::kLiteralsOffset), ebx);
Ben Murdochb0fe1622011-05-05 13:52:32 +010095 __ mov(FieldOperand(eax, JSFunction::kNextFunctionLinkOffset),
Steve Block44f0eee2011-05-26 01:26:41 +010096 Immediate(factory->undefined_value()));
Kristian Monsen80d68ea2010-09-08 11:05:35 +010097
98 // Initialize the code pointer in the function to be the one
99 // found in the shared function info object.
100 __ mov(edx, FieldOperand(edx, SharedFunctionInfo::kCodeOffset));
101 __ lea(edx, FieldOperand(edx, Code::kHeaderSize));
102 __ mov(FieldOperand(eax, JSFunction::kCodeEntryOffset), edx);
103
104 // Return and remove the on-stack parameter.
105 __ ret(1 * kPointerSize);
106
107 // Create a new closure through the slower runtime call.
108 __ bind(&gc);
109 __ pop(ecx); // Temporarily remove return address.
110 __ pop(edx);
111 __ push(esi);
112 __ push(edx);
Steve Block44f0eee2011-05-26 01:26:41 +0100113 __ push(Immediate(factory->false_value()));
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100114 __ push(ecx); // Restore return address.
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -0800115 __ TailCallRuntime(Runtime::kNewClosure, 3, 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100116}
117
118
119void FastNewContextStub::Generate(MacroAssembler* masm) {
120 // Try to allocate the context in new space.
121 Label gc;
122 int length = slots_ + Context::MIN_CONTEXT_SLOTS;
123 __ AllocateInNewSpace((length * kPointerSize) + FixedArray::kHeaderSize,
124 eax, ebx, ecx, &gc, TAG_OBJECT);
125
126 // Get the function from the stack.
127 __ mov(ecx, Operand(esp, 1 * kPointerSize));
128
129 // Setup the object header.
Steve Block44f0eee2011-05-26 01:26:41 +0100130 Factory* factory = masm->isolate()->factory();
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000131 __ mov(FieldOperand(eax, HeapObject::kMapOffset),
132 factory->function_context_map());
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100133 __ mov(FieldOperand(eax, Context::kLengthOffset),
134 Immediate(Smi::FromInt(length)));
135
136 // Setup the fixed slots.
Steve Block9fac8402011-05-12 15:51:54 +0100137 __ Set(ebx, Immediate(0)); // Set to NULL.
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100138 __ mov(Operand(eax, Context::SlotOffset(Context::CLOSURE_INDEX)), ecx);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000139 __ mov(Operand(eax, Context::SlotOffset(Context::PREVIOUS_INDEX)), esi);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100140 __ mov(Operand(eax, Context::SlotOffset(Context::EXTENSION_INDEX)), ebx);
141
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000142 // Copy the global object from the previous context.
143 __ mov(ebx, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100144 __ mov(Operand(eax, Context::SlotOffset(Context::GLOBAL_INDEX)), ebx);
145
146 // Initialize the rest of the slots to undefined.
Steve Block44f0eee2011-05-26 01:26:41 +0100147 __ mov(ebx, factory->undefined_value());
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100148 for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) {
149 __ mov(Operand(eax, Context::SlotOffset(i)), ebx);
150 }
151
152 // Return and remove the on-stack parameter.
153 __ mov(esi, Operand(eax));
154 __ ret(1 * kPointerSize);
155
156 // Need to collect. Call into runtime system.
157 __ bind(&gc);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000158 __ TailCallRuntime(Runtime::kNewFunctionContext, 1, 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100159}
160
161
162void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) {
163 // Stack layout on entry:
164 //
165 // [esp + kPointerSize]: constant elements.
166 // [esp + (2 * kPointerSize)]: literal index.
167 // [esp + (3 * kPointerSize)]: literals array.
168
169 // All sizes here are multiples of kPointerSize.
170 int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0;
171 int size = JSArray::kSize + elements_size;
172
173 // Load boilerplate object into ecx and check if we need to create a
174 // boilerplate.
175 Label slow_case;
176 __ mov(ecx, Operand(esp, 3 * kPointerSize));
177 __ mov(eax, Operand(esp, 2 * kPointerSize));
178 STATIC_ASSERT(kPointerSize == 4);
179 STATIC_ASSERT(kSmiTagSize == 1);
180 STATIC_ASSERT(kSmiTag == 0);
181 __ mov(ecx, FieldOperand(ecx, eax, times_half_pointer_size,
182 FixedArray::kHeaderSize));
Steve Block44f0eee2011-05-26 01:26:41 +0100183 Factory* factory = masm->isolate()->factory();
184 __ cmp(ecx, factory->undefined_value());
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100185 __ j(equal, &slow_case);
186
187 if (FLAG_debug_code) {
188 const char* message;
189 Handle<Map> expected_map;
190 if (mode_ == CLONE_ELEMENTS) {
191 message = "Expected (writable) fixed array";
Steve Block44f0eee2011-05-26 01:26:41 +0100192 expected_map = factory->fixed_array_map();
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100193 } else {
194 ASSERT(mode_ == COPY_ON_WRITE_ELEMENTS);
195 message = "Expected copy-on-write fixed array";
Steve Block44f0eee2011-05-26 01:26:41 +0100196 expected_map = factory->fixed_cow_array_map();
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100197 }
198 __ push(ecx);
199 __ mov(ecx, FieldOperand(ecx, JSArray::kElementsOffset));
200 __ cmp(FieldOperand(ecx, HeapObject::kMapOffset), expected_map);
201 __ Assert(equal, message);
202 __ pop(ecx);
203 }
204
205 // Allocate both the JS array and the elements array in one big
206 // allocation. This avoids multiple limit checks.
207 __ AllocateInNewSpace(size, eax, ebx, edx, &slow_case, TAG_OBJECT);
208
209 // Copy the JS array part.
210 for (int i = 0; i < JSArray::kSize; i += kPointerSize) {
211 if ((i != JSArray::kElementsOffset) || (length_ == 0)) {
212 __ mov(ebx, FieldOperand(ecx, i));
213 __ mov(FieldOperand(eax, i), ebx);
214 }
215 }
216
217 if (length_ > 0) {
218 // Get hold of the elements array of the boilerplate and setup the
219 // elements pointer in the resulting object.
220 __ mov(ecx, FieldOperand(ecx, JSArray::kElementsOffset));
221 __ lea(edx, Operand(eax, JSArray::kSize));
222 __ mov(FieldOperand(eax, JSArray::kElementsOffset), edx);
223
224 // Copy the elements array.
225 for (int i = 0; i < elements_size; i += kPointerSize) {
226 __ mov(ebx, FieldOperand(ecx, i));
227 __ mov(FieldOperand(edx, i), ebx);
228 }
229 }
230
231 // Return and remove the on-stack parameters.
232 __ ret(3 * kPointerSize);
233
234 __ bind(&slow_case);
235 __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1);
236}
237
238
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000239// The stub returns zero for false, and a non-zero value for true.
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100240void ToBooleanStub::Generate(MacroAssembler* masm) {
Ben Murdoch257744e2011-11-30 15:57:28 +0000241 Label false_result, true_result, not_string;
Ben Murdoch257744e2011-11-30 15:57:28 +0000242 Factory* factory = masm->isolate()->factory();
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000243 const Register map = edx;
244
245 __ mov(eax, Operand(esp, 1 * kPointerSize));
Ben Murdoch257744e2011-11-30 15:57:28 +0000246
247 // undefined -> false
248 __ cmp(eax, factory->undefined_value());
249 __ j(equal, &false_result);
250
251 // Boolean -> its value
Ben Murdoch257744e2011-11-30 15:57:28 +0000252 __ cmp(eax, factory->false_value());
253 __ j(equal, &false_result);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000254 __ cmp(eax, factory->true_value());
255 __ j(equal, &true_result);
Ben Murdoch257744e2011-11-30 15:57:28 +0000256
257 // Smis: 0 -> false, all other -> true
258 __ test(eax, Operand(eax));
259 __ j(zero, &false_result);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000260 __ JumpIfSmi(eax, &true_result);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100261
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000262 // 'null' -> false.
Steve Block44f0eee2011-05-26 01:26:41 +0100263 __ cmp(eax, factory->null_value());
Ben Murdoch257744e2011-11-30 15:57:28 +0000264 __ j(equal, &false_result, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100265
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000266 // Get the map of the heap object.
267 __ mov(map, FieldOperand(eax, HeapObject::kMapOffset));
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100268
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000269 // Undetectable -> false.
270 __ test_b(FieldOperand(map, Map::kBitFieldOffset),
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100271 1 << Map::kIsUndetectable);
Ben Murdoch257744e2011-11-30 15:57:28 +0000272 __ j(not_zero, &false_result, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100273
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000274 // JavaScript object -> true.
275 __ CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE);
Ben Murdoch257744e2011-11-30 15:57:28 +0000276 __ j(above_equal, &true_result, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100277
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000278 // String value -> false iff empty.
279 __ CmpInstanceType(map, FIRST_NONSTRING_TYPE);
Ben Murdoch257744e2011-11-30 15:57:28 +0000280 __ j(above_equal, &not_string, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100281 __ cmp(FieldOperand(eax, String::kLengthOffset), Immediate(0));
Ben Murdoch257744e2011-11-30 15:57:28 +0000282 __ j(zero, &false_result, Label::kNear);
283 __ jmp(&true_result, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100284
285 __ bind(&not_string);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000286 // HeapNumber -> false iff +0, -0, or NaN.
287 __ cmp(map, factory->heap_number_map());
Ben Murdoch257744e2011-11-30 15:57:28 +0000288 __ j(not_equal, &true_result, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100289 __ fldz();
290 __ fld_d(FieldOperand(eax, HeapNumber::kValueOffset));
291 __ FCmp();
Ben Murdoch257744e2011-11-30 15:57:28 +0000292 __ j(zero, &false_result, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100293 // Fall through to |true_result|.
294
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000295 // Return 1/0 for true/false in tos_.
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100296 __ bind(&true_result);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000297 __ mov(tos_, 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100298 __ ret(1 * kPointerSize);
299 __ bind(&false_result);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000300 __ mov(tos_, 0);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100301 __ ret(1 * kPointerSize);
302}
303
304
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100305class FloatingPointHelper : public AllStatic {
306 public:
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100307 enum ArgLocation {
308 ARGS_ON_STACK,
309 ARGS_IN_REGISTERS
310 };
311
312 // Code pattern for loading a floating point value. Input value must
313 // be either a smi or a heap number object (fp value). Requirements:
314 // operand in register number. Returns operand as floating point number
315 // on FPU stack.
316 static void LoadFloatOperand(MacroAssembler* masm, Register number);
317
318 // Code pattern for loading floating point values. Input values must
319 // be either smi or heap number objects (fp values). Requirements:
320 // operand_1 on TOS+1 or in edx, operand_2 on TOS+2 or in eax.
321 // Returns operands as floating point numbers on FPU stack.
322 static void LoadFloatOperands(MacroAssembler* masm,
323 Register scratch,
324 ArgLocation arg_location = ARGS_ON_STACK);
325
326 // Similar to LoadFloatOperand but assumes that both operands are smis.
327 // Expects operands in edx, eax.
328 static void LoadFloatSmis(MacroAssembler* masm, Register scratch);
329
330 // Test if operands are smi or number objects (fp). Requirements:
331 // operand_1 in eax, operand_2 in edx; falls through on float
332 // operands, jumps to the non_float label otherwise.
333 static void CheckFloatOperands(MacroAssembler* masm,
334 Label* non_float,
335 Register scratch);
336
Ben Murdochb0fe1622011-05-05 13:52:32 +0100337 // Checks that the two floating point numbers on top of the FPU stack
338 // have int32 values.
339 static void CheckFloatOperandsAreInt32(MacroAssembler* masm,
340 Label* non_int32);
341
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100342 // Takes the operands in edx and eax and loads them as integers in eax
343 // and ecx.
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100344 static void LoadUnknownsAsIntegers(MacroAssembler* masm,
345 bool use_sse3,
346 Label* operand_conversion_failure);
347
Ben Murdochb0fe1622011-05-05 13:52:32 +0100348 // Must only be called after LoadUnknownsAsIntegers. Assumes that the
349 // operands are pushed on the stack, and that their conversions to int32
350 // are in eax and ecx. Checks that the original numbers were in the int32
351 // range.
352 static void CheckLoadedIntegersWereInt32(MacroAssembler* masm,
353 bool use_sse3,
354 Label* not_int32);
355
356 // Assumes that operands are smis or heap numbers and loads them
357 // into xmm0 and xmm1. Operands are in edx and eax.
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100358 // Leaves operands unchanged.
359 static void LoadSSE2Operands(MacroAssembler* masm);
360
361 // Test if operands are numbers (smi or HeapNumber objects), and load
362 // them into xmm0 and xmm1 if they are. Jump to label not_numbers if
363 // either operand is not a number. Operands are in edx and eax.
364 // Leaves operands unchanged.
365 static void LoadSSE2Operands(MacroAssembler* masm, Label* not_numbers);
366
367 // Similar to LoadSSE2Operands but assumes that both operands are smis.
368 // Expects operands in edx, eax.
369 static void LoadSSE2Smis(MacroAssembler* masm, Register scratch);
Ben Murdochb0fe1622011-05-05 13:52:32 +0100370
371 // Checks that the two floating point numbers loaded into xmm0 and xmm1
372 // have int32 values.
373 static void CheckSSE2OperandsAreInt32(MacroAssembler* masm,
374 Label* non_int32,
375 Register scratch);
Kristian Monsen80d68ea2010-09-08 11:05:35 +0100376};
377
378
Ben Murdoch257744e2011-11-30 15:57:28 +0000379// Get the integer part of a heap number. Surprisingly, all this bit twiddling
380// is faster than using the built-in instructions on floating point registers.
381// Trashes edi and ebx. Dest is ecx. Source cannot be ecx or one of the
382// trashed registers.
383static void IntegerConvert(MacroAssembler* masm,
384 Register source,
385 bool use_sse3,
386 Label* conversion_failure) {
387 ASSERT(!source.is(ecx) && !source.is(edi) && !source.is(ebx));
388 Label done, right_exponent, normal_exponent;
389 Register scratch = ebx;
390 Register scratch2 = edi;
391 // Get exponent word.
392 __ mov(scratch, FieldOperand(source, HeapNumber::kExponentOffset));
393 // Get exponent alone in scratch2.
394 __ mov(scratch2, scratch);
395 __ and_(scratch2, HeapNumber::kExponentMask);
396 if (use_sse3) {
397 CpuFeatures::Scope scope(SSE3);
398 // Check whether the exponent is too big for a 64 bit signed integer.
399 static const uint32_t kTooBigExponent =
400 (HeapNumber::kExponentBias + 63) << HeapNumber::kExponentShift;
401 __ cmp(Operand(scratch2), Immediate(kTooBigExponent));
402 __ j(greater_equal, conversion_failure);
403 // Load x87 register with heap number.
404 __ fld_d(FieldOperand(source, HeapNumber::kValueOffset));
405 // Reserve space for 64 bit answer.
406 __ sub(Operand(esp), Immediate(sizeof(uint64_t))); // Nolint.
407 // Do conversion, which cannot fail because we checked the exponent.
408 __ fisttp_d(Operand(esp, 0));
409 __ mov(ecx, Operand(esp, 0)); // Load low word of answer into ecx.
410 __ add(Operand(esp), Immediate(sizeof(uint64_t))); // Nolint.
411 } else {
412 // Load ecx with zero. We use this either for the final shift or
413 // for the answer.
414 __ xor_(ecx, Operand(ecx));
415 // Check whether the exponent matches a 32 bit signed int that cannot be
416 // represented by a Smi. A non-smi 32 bit integer is 1.xxx * 2^30 so the
417 // exponent is 30 (biased). This is the exponent that we are fastest at and
418 // also the highest exponent we can handle here.
419 const uint32_t non_smi_exponent =
420 (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
421 __ cmp(Operand(scratch2), Immediate(non_smi_exponent));
422 // If we have a match of the int32-but-not-Smi exponent then skip some
423 // logic.
424 __ j(equal, &right_exponent);
425 // If the exponent is higher than that then go to slow case. This catches
426 // numbers that don't fit in a signed int32, infinities and NaNs.
427 __ j(less, &normal_exponent);
428
429 {
430 // Handle a big exponent. The only reason we have this code is that the
431 // >>> operator has a tendency to generate numbers with an exponent of 31.
432 const uint32_t big_non_smi_exponent =
433 (HeapNumber::kExponentBias + 31) << HeapNumber::kExponentShift;
434 __ cmp(Operand(scratch2), Immediate(big_non_smi_exponent));
435 __ j(not_equal, conversion_failure);
436 // We have the big exponent, typically from >>>. This means the number is
437 // in the range 2^31 to 2^32 - 1. Get the top bits of the mantissa.
438 __ mov(scratch2, scratch);
439 __ and_(scratch2, HeapNumber::kMantissaMask);
440 // Put back the implicit 1.
441 __ or_(scratch2, 1 << HeapNumber::kExponentShift);
442 // Shift up the mantissa bits to take up the space the exponent used to
443 // take. We just orred in the implicit bit so that took care of one and
444 // we want to use the full unsigned range so we subtract 1 bit from the
445 // shift distance.
446 const int big_shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 1;
447 __ shl(scratch2, big_shift_distance);
448 // Get the second half of the double.
449 __ mov(ecx, FieldOperand(source, HeapNumber::kMantissaOffset));
450 // Shift down 21 bits to get the most significant 11 bits or the low
451 // mantissa word.
452 __ shr(ecx, 32 - big_shift_distance);
453 __ or_(ecx, Operand(scratch2));
454 // We have the answer in ecx, but we may need to negate it.
455 __ test(scratch, Operand(scratch));
456 __ j(positive, &done);
457 __ neg(ecx);
458 __ jmp(&done);
459 }
460
461 __ bind(&normal_exponent);
462 // Exponent word in scratch, exponent part of exponent word in scratch2.
463 // Zero in ecx.
464 // We know the exponent is smaller than 30 (biased). If it is less than
465 // 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, ie
466 // it rounds to zero.
467 const uint32_t zero_exponent =
468 (HeapNumber::kExponentBias + 0) << HeapNumber::kExponentShift;
469 __ sub(Operand(scratch2), Immediate(zero_exponent));
470 // ecx already has a Smi zero.
471 __ j(less, &done);
472
473 // We have a shifted exponent between 0 and 30 in scratch2.
474 __ shr(scratch2, HeapNumber::kExponentShift);
475 __ mov(ecx, Immediate(30));
476 __ sub(ecx, Operand(scratch2));
477
478 __ bind(&right_exponent);
479 // Here ecx is the shift, scratch is the exponent word.
480 // Get the top bits of the mantissa.
481 __ and_(scratch, HeapNumber::kMantissaMask);
482 // Put back the implicit 1.
483 __ or_(scratch, 1 << HeapNumber::kExponentShift);
484 // Shift up the mantissa bits to take up the space the exponent used to
485 // take. We have kExponentShift + 1 significant bits int he low end of the
486 // word. Shift them to the top bits.
487 const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
488 __ shl(scratch, shift_distance);
489 // Get the second half of the double. For some exponents we don't
490 // actually need this because the bits get shifted out again, but
491 // it's probably slower to test than just to do it.
492 __ mov(scratch2, FieldOperand(source, HeapNumber::kMantissaOffset));
493 // Shift down 22 bits to get the most significant 10 bits or the low
494 // mantissa word.
495 __ shr(scratch2, 32 - shift_distance);
496 __ or_(scratch2, Operand(scratch));
497 // Move down according to the exponent.
498 __ shr_cl(scratch2);
499 // Now the unsigned answer is in scratch2. We need to move it to ecx and
500 // we may need to fix the sign.
501 Label negative;
502 __ xor_(ecx, Operand(ecx));
503 __ cmp(ecx, FieldOperand(source, HeapNumber::kExponentOffset));
504 __ j(greater, &negative, Label::kNear);
505 __ mov(ecx, scratch2);
506 __ jmp(&done, Label::kNear);
507 __ bind(&negative);
508 __ sub(ecx, Operand(scratch2));
509 __ bind(&done);
510 }
511}
512
513
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000514void UnaryOpStub::PrintName(StringStream* stream) {
Ben Murdoch257744e2011-11-30 15:57:28 +0000515 const char* op_name = Token::Name(op_);
516 const char* overwrite_name = NULL; // Make g++ happy.
517 switch (mode_) {
518 case UNARY_NO_OVERWRITE: overwrite_name = "Alloc"; break;
519 case UNARY_OVERWRITE: overwrite_name = "Overwrite"; break;
520 }
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000521 stream->Add("UnaryOpStub_%s_%s_%s",
522 op_name,
523 overwrite_name,
524 UnaryOpIC::GetName(operand_type_));
Ben Murdoch257744e2011-11-30 15:57:28 +0000525}
526
527
528// TODO(svenpanne): Use virtual functions instead of switch.
529void UnaryOpStub::Generate(MacroAssembler* masm) {
530 switch (operand_type_) {
531 case UnaryOpIC::UNINITIALIZED:
532 GenerateTypeTransition(masm);
533 break;
534 case UnaryOpIC::SMI:
535 GenerateSmiStub(masm);
536 break;
537 case UnaryOpIC::HEAP_NUMBER:
538 GenerateHeapNumberStub(masm);
539 break;
540 case UnaryOpIC::GENERIC:
541 GenerateGenericStub(masm);
542 break;
543 }
544}
545
546
547void UnaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
548 __ pop(ecx); // Save return address.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000549
550 __ push(eax); // the operand
Ben Murdoch257744e2011-11-30 15:57:28 +0000551 __ push(Immediate(Smi::FromInt(op_)));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000552 __ push(Immediate(Smi::FromInt(mode_)));
Ben Murdoch257744e2011-11-30 15:57:28 +0000553 __ push(Immediate(Smi::FromInt(operand_type_)));
554
555 __ push(ecx); // Push return address.
556
557 // Patch the caller to an appropriate specialized stub and return the
558 // operation result to the caller of the stub.
559 __ TailCallExternalReference(
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000560 ExternalReference(IC_Utility(IC::kUnaryOp_Patch), masm->isolate()), 4, 1);
Ben Murdoch257744e2011-11-30 15:57:28 +0000561}
562
563
564// TODO(svenpanne): Use virtual functions instead of switch.
565void UnaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
566 switch (op_) {
567 case Token::SUB:
568 GenerateSmiStubSub(masm);
569 break;
570 case Token::BIT_NOT:
571 GenerateSmiStubBitNot(masm);
572 break;
573 default:
574 UNREACHABLE();
575 }
576}
577
578
579void UnaryOpStub::GenerateSmiStubSub(MacroAssembler* masm) {
580 Label non_smi, undo, slow;
581 GenerateSmiCodeSub(masm, &non_smi, &undo, &slow,
582 Label::kNear, Label::kNear, Label::kNear);
583 __ bind(&undo);
584 GenerateSmiCodeUndo(masm);
585 __ bind(&non_smi);
586 __ bind(&slow);
587 GenerateTypeTransition(masm);
588}
589
590
591void UnaryOpStub::GenerateSmiStubBitNot(MacroAssembler* masm) {
592 Label non_smi;
593 GenerateSmiCodeBitNot(masm, &non_smi);
594 __ bind(&non_smi);
595 GenerateTypeTransition(masm);
596}
597
598
599void UnaryOpStub::GenerateSmiCodeSub(MacroAssembler* masm,
600 Label* non_smi,
601 Label* undo,
602 Label* slow,
603 Label::Distance non_smi_near,
604 Label::Distance undo_near,
605 Label::Distance slow_near) {
606 // Check whether the value is a smi.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000607 __ JumpIfNotSmi(eax, non_smi, non_smi_near);
Ben Murdoch257744e2011-11-30 15:57:28 +0000608
609 // We can't handle -0 with smis, so use a type transition for that case.
610 __ test(eax, Operand(eax));
611 __ j(zero, slow, slow_near);
612
613 // Try optimistic subtraction '0 - value', saving operand in eax for undo.
614 __ mov(edx, Operand(eax));
615 __ Set(eax, Immediate(0));
616 __ sub(eax, Operand(edx));
617 __ j(overflow, undo, undo_near);
618 __ ret(0);
619}
620
621
622void UnaryOpStub::GenerateSmiCodeBitNot(
623 MacroAssembler* masm,
624 Label* non_smi,
625 Label::Distance non_smi_near) {
626 // Check whether the value is a smi.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000627 __ JumpIfNotSmi(eax, non_smi, non_smi_near);
Ben Murdoch257744e2011-11-30 15:57:28 +0000628
629 // Flip bits and revert inverted smi-tag.
630 __ not_(eax);
631 __ and_(eax, ~kSmiTagMask);
632 __ ret(0);
633}
634
635
636void UnaryOpStub::GenerateSmiCodeUndo(MacroAssembler* masm) {
637 __ mov(eax, Operand(edx));
638}
639
640
641// TODO(svenpanne): Use virtual functions instead of switch.
642void UnaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) {
643 switch (op_) {
644 case Token::SUB:
645 GenerateHeapNumberStubSub(masm);
646 break;
647 case Token::BIT_NOT:
648 GenerateHeapNumberStubBitNot(masm);
649 break;
650 default:
651 UNREACHABLE();
652 }
653}
654
655
656void UnaryOpStub::GenerateHeapNumberStubSub(MacroAssembler* masm) {
657 Label non_smi, undo, slow, call_builtin;
658 GenerateSmiCodeSub(masm, &non_smi, &undo, &call_builtin, Label::kNear);
659 __ bind(&non_smi);
660 GenerateHeapNumberCodeSub(masm, &slow);
661 __ bind(&undo);
662 GenerateSmiCodeUndo(masm);
663 __ bind(&slow);
664 GenerateTypeTransition(masm);
665 __ bind(&call_builtin);
666 GenerateGenericCodeFallback(masm);
667}
668
669
670void UnaryOpStub::GenerateHeapNumberStubBitNot(
671 MacroAssembler* masm) {
672 Label non_smi, slow;
673 GenerateSmiCodeBitNot(masm, &non_smi, Label::kNear);
674 __ bind(&non_smi);
675 GenerateHeapNumberCodeBitNot(masm, &slow);
676 __ bind(&slow);
677 GenerateTypeTransition(masm);
678}
679
680
681void UnaryOpStub::GenerateHeapNumberCodeSub(MacroAssembler* masm,
682 Label* slow) {
683 __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset));
684 __ cmp(edx, masm->isolate()->factory()->heap_number_map());
685 __ j(not_equal, slow);
686
687 if (mode_ == UNARY_OVERWRITE) {
688 __ xor_(FieldOperand(eax, HeapNumber::kExponentOffset),
689 Immediate(HeapNumber::kSignMask)); // Flip sign.
690 } else {
691 __ mov(edx, Operand(eax));
692 // edx: operand
693
694 Label slow_allocate_heapnumber, heapnumber_allocated;
695 __ AllocateHeapNumber(eax, ebx, ecx, &slow_allocate_heapnumber);
696 __ jmp(&heapnumber_allocated);
697
698 __ bind(&slow_allocate_heapnumber);
699 __ EnterInternalFrame();
700 __ push(edx);
701 __ CallRuntime(Runtime::kNumberAlloc, 0);
702 __ pop(edx);
703 __ LeaveInternalFrame();
704
705 __ bind(&heapnumber_allocated);
706 // eax: allocated 'empty' number
707 __ mov(ecx, FieldOperand(edx, HeapNumber::kExponentOffset));
708 __ xor_(ecx, HeapNumber::kSignMask); // Flip sign.
709 __ mov(FieldOperand(eax, HeapNumber::kExponentOffset), ecx);
710 __ mov(ecx, FieldOperand(edx, HeapNumber::kMantissaOffset));
711 __ mov(FieldOperand(eax, HeapNumber::kMantissaOffset), ecx);
712 }
713 __ ret(0);
714}
715
716
717void UnaryOpStub::GenerateHeapNumberCodeBitNot(MacroAssembler* masm,
718 Label* slow) {
719 __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset));
720 __ cmp(edx, masm->isolate()->factory()->heap_number_map());
721 __ j(not_equal, slow);
722
723 // Convert the heap number in eax to an untagged integer in ecx.
724 IntegerConvert(masm, eax, CpuFeatures::IsSupported(SSE3), slow);
725
726 // Do the bitwise operation and check if the result fits in a smi.
727 Label try_float;
728 __ not_(ecx);
729 __ cmp(ecx, 0xc0000000);
730 __ j(sign, &try_float, Label::kNear);
731
732 // Tag the result as a smi and we're done.
733 STATIC_ASSERT(kSmiTagSize == 1);
734 __ lea(eax, Operand(ecx, times_2, kSmiTag));
735 __ ret(0);
736
737 // Try to store the result in a heap number.
738 __ bind(&try_float);
739 if (mode_ == UNARY_NO_OVERWRITE) {
740 Label slow_allocate_heapnumber, heapnumber_allocated;
741 __ mov(ebx, eax);
742 __ AllocateHeapNumber(eax, edx, edi, &slow_allocate_heapnumber);
743 __ jmp(&heapnumber_allocated);
744
745 __ bind(&slow_allocate_heapnumber);
746 __ EnterInternalFrame();
747 // Push the original HeapNumber on the stack. The integer value can't
748 // be stored since it's untagged and not in the smi range (so we can't
749 // smi-tag it). We'll recalculate the value after the GC instead.
750 __ push(ebx);
751 __ CallRuntime(Runtime::kNumberAlloc, 0);
752 // New HeapNumber is in eax.
753 __ pop(edx);
754 __ LeaveInternalFrame();
755 // IntegerConvert uses ebx and edi as scratch registers.
756 // This conversion won't go slow-case.
757 IntegerConvert(masm, edx, CpuFeatures::IsSupported(SSE3), slow);
758 __ not_(ecx);
759
760 __ bind(&heapnumber_allocated);
761 }
762 if (CpuFeatures::IsSupported(SSE2)) {
763 CpuFeatures::Scope use_sse2(SSE2);
764 __ cvtsi2sd(xmm0, Operand(ecx));
765 __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
766 } else {
767 __ push(ecx);
768 __ fild_s(Operand(esp, 0));
769 __ pop(ecx);
770 __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
771 }
772 __ ret(0);
773}
774
775
776// TODO(svenpanne): Use virtual functions instead of switch.
777void UnaryOpStub::GenerateGenericStub(MacroAssembler* masm) {
778 switch (op_) {
779 case Token::SUB:
780 GenerateGenericStubSub(masm);
781 break;
782 case Token::BIT_NOT:
783 GenerateGenericStubBitNot(masm);
784 break;
785 default:
786 UNREACHABLE();
787 }
788}
789
790
791void UnaryOpStub::GenerateGenericStubSub(MacroAssembler* masm) {
792 Label non_smi, undo, slow;
793 GenerateSmiCodeSub(masm, &non_smi, &undo, &slow, Label::kNear);
794 __ bind(&non_smi);
795 GenerateHeapNumberCodeSub(masm, &slow);
796 __ bind(&undo);
797 GenerateSmiCodeUndo(masm);
798 __ bind(&slow);
799 GenerateGenericCodeFallback(masm);
800}
801
802
803void UnaryOpStub::GenerateGenericStubBitNot(MacroAssembler* masm) {
804 Label non_smi, slow;
805 GenerateSmiCodeBitNot(masm, &non_smi, Label::kNear);
806 __ bind(&non_smi);
807 GenerateHeapNumberCodeBitNot(masm, &slow);
808 __ bind(&slow);
809 GenerateGenericCodeFallback(masm);
810}
811
812
813void UnaryOpStub::GenerateGenericCodeFallback(MacroAssembler* masm) {
814 // Handle the slow case by jumping to the corresponding JavaScript builtin.
815 __ pop(ecx); // pop return address.
816 __ push(eax);
817 __ push(ecx); // push return address
818 switch (op_) {
819 case Token::SUB:
820 __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION);
821 break;
822 case Token::BIT_NOT:
823 __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION);
824 break;
825 default:
826 UNREACHABLE();
827 }
828}
829
830
Ben Murdoch257744e2011-11-30 15:57:28 +0000831void BinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
Ben Murdochb0fe1622011-05-05 13:52:32 +0100832 __ pop(ecx); // Save return address.
833 __ push(edx);
834 __ push(eax);
835 // Left and right arguments are now on top.
836 // Push this stub's key. Although the operation and the type info are
837 // encoded into the key, the encoding is opaque, so push them too.
838 __ push(Immediate(Smi::FromInt(MinorKey())));
839 __ push(Immediate(Smi::FromInt(op_)));
840 __ push(Immediate(Smi::FromInt(operands_type_)));
841
842 __ push(ecx); // Push return address.
843
844 // Patch the caller to an appropriate specialized stub and return the
845 // operation result to the caller of the stub.
846 __ TailCallExternalReference(
Ben Murdoch257744e2011-11-30 15:57:28 +0000847 ExternalReference(IC_Utility(IC::kBinaryOp_Patch),
Steve Block44f0eee2011-05-26 01:26:41 +0100848 masm->isolate()),
Ben Murdochb0fe1622011-05-05 13:52:32 +0100849 5,
850 1);
851}
852
853
854// Prepare for a type transition runtime call when the args are already on
855// the stack, under the return address.
Ben Murdoch257744e2011-11-30 15:57:28 +0000856void BinaryOpStub::GenerateTypeTransitionWithSavedArgs(MacroAssembler* masm) {
Ben Murdochb0fe1622011-05-05 13:52:32 +0100857 __ pop(ecx); // Save return address.
858 // Left and right arguments are already on top of the stack.
859 // Push this stub's key. Although the operation and the type info are
860 // encoded into the key, the encoding is opaque, so push them too.
861 __ push(Immediate(Smi::FromInt(MinorKey())));
862 __ push(Immediate(Smi::FromInt(op_)));
863 __ push(Immediate(Smi::FromInt(operands_type_)));
864
865 __ push(ecx); // Push return address.
866
867 // Patch the caller to an appropriate specialized stub and return the
868 // operation result to the caller of the stub.
869 __ TailCallExternalReference(
Ben Murdoch257744e2011-11-30 15:57:28 +0000870 ExternalReference(IC_Utility(IC::kBinaryOp_Patch),
Steve Block44f0eee2011-05-26 01:26:41 +0100871 masm->isolate()),
Ben Murdochb0fe1622011-05-05 13:52:32 +0100872 5,
873 1);
874}
875
876
Ben Murdoch257744e2011-11-30 15:57:28 +0000877void BinaryOpStub::Generate(MacroAssembler* masm) {
Ben Murdochb0fe1622011-05-05 13:52:32 +0100878 switch (operands_type_) {
Ben Murdoch257744e2011-11-30 15:57:28 +0000879 case BinaryOpIC::UNINITIALIZED:
Ben Murdochb0fe1622011-05-05 13:52:32 +0100880 GenerateTypeTransition(masm);
881 break;
Ben Murdoch257744e2011-11-30 15:57:28 +0000882 case BinaryOpIC::SMI:
Ben Murdochb0fe1622011-05-05 13:52:32 +0100883 GenerateSmiStub(masm);
884 break;
Ben Murdoch257744e2011-11-30 15:57:28 +0000885 case BinaryOpIC::INT32:
Ben Murdochb0fe1622011-05-05 13:52:32 +0100886 GenerateInt32Stub(masm);
887 break;
Ben Murdoch257744e2011-11-30 15:57:28 +0000888 case BinaryOpIC::HEAP_NUMBER:
Ben Murdochb0fe1622011-05-05 13:52:32 +0100889 GenerateHeapNumberStub(masm);
890 break;
Ben Murdoch257744e2011-11-30 15:57:28 +0000891 case BinaryOpIC::ODDBALL:
Steve Block44f0eee2011-05-26 01:26:41 +0100892 GenerateOddballStub(masm);
893 break;
Ben Murdoch257744e2011-11-30 15:57:28 +0000894 case BinaryOpIC::BOTH_STRING:
895 GenerateBothStringStub(masm);
896 break;
897 case BinaryOpIC::STRING:
Ben Murdochb0fe1622011-05-05 13:52:32 +0100898 GenerateStringStub(masm);
899 break;
Ben Murdoch257744e2011-11-30 15:57:28 +0000900 case BinaryOpIC::GENERIC:
Ben Murdochb0fe1622011-05-05 13:52:32 +0100901 GenerateGeneric(masm);
902 break;
903 default:
904 UNREACHABLE();
905 }
906}
907
908
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000909void BinaryOpStub::PrintName(StringStream* stream) {
Ben Murdochb0fe1622011-05-05 13:52:32 +0100910 const char* op_name = Token::Name(op_);
911 const char* overwrite_name;
912 switch (mode_) {
913 case NO_OVERWRITE: overwrite_name = "Alloc"; break;
914 case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break;
915 case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break;
916 default: overwrite_name = "UnknownOverwrite"; break;
917 }
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000918 stream->Add("BinaryOpStub_%s_%s_%s",
919 op_name,
920 overwrite_name,
921 BinaryOpIC::GetName(operands_type_));
Ben Murdochb0fe1622011-05-05 13:52:32 +0100922}
923
924
Ben Murdoch257744e2011-11-30 15:57:28 +0000925void BinaryOpStub::GenerateSmiCode(
926 MacroAssembler* masm,
Ben Murdochb0fe1622011-05-05 13:52:32 +0100927 Label* slow,
928 SmiCodeGenerateHeapNumberResults allow_heapnumber_results) {
929 // 1. Move arguments into edx, eax except for DIV and MOD, which need the
930 // dividend in eax and edx free for the division. Use eax, ebx for those.
931 Comment load_comment(masm, "-- Load arguments");
932 Register left = edx;
933 Register right = eax;
934 if (op_ == Token::DIV || op_ == Token::MOD) {
935 left = eax;
936 right = ebx;
937 __ mov(ebx, eax);
938 __ mov(eax, edx);
939 }
940
941
942 // 2. Prepare the smi check of both operands by oring them together.
943 Comment smi_check_comment(masm, "-- Smi check arguments");
944 Label not_smis;
945 Register combined = ecx;
946 ASSERT(!left.is(combined) && !right.is(combined));
947 switch (op_) {
948 case Token::BIT_OR:
949 // Perform the operation into eax and smi check the result. Preserve
950 // eax in case the result is not a smi.
951 ASSERT(!left.is(ecx) && !right.is(ecx));
952 __ mov(ecx, right);
953 __ or_(right, Operand(left)); // Bitwise or is commutative.
954 combined = right;
955 break;
956
957 case Token::BIT_XOR:
958 case Token::BIT_AND:
959 case Token::ADD:
960 case Token::SUB:
961 case Token::MUL:
962 case Token::DIV:
963 case Token::MOD:
964 __ mov(combined, right);
965 __ or_(combined, Operand(left));
966 break;
967
968 case Token::SHL:
969 case Token::SAR:
970 case Token::SHR:
971 // Move the right operand into ecx for the shift operation, use eax
972 // for the smi check register.
973 ASSERT(!left.is(ecx) && !right.is(ecx));
974 __ mov(ecx, right);
975 __ or_(right, Operand(left));
976 combined = right;
977 break;
978
979 default:
980 break;
981 }
982
983 // 3. Perform the smi check of the operands.
984 STATIC_ASSERT(kSmiTag == 0); // Adjust zero check if not the case.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000985 __ JumpIfNotSmi(combined, &not_smis);
Ben Murdochb0fe1622011-05-05 13:52:32 +0100986
987 // 4. Operands are both smis, perform the operation leaving the result in
988 // eax and check the result if necessary.
989 Comment perform_smi(masm, "-- Perform smi operation");
990 Label use_fp_on_smis;
991 switch (op_) {
992 case Token::BIT_OR:
993 // Nothing to do.
994 break;
995
996 case Token::BIT_XOR:
997 ASSERT(right.is(eax));
998 __ xor_(right, Operand(left)); // Bitwise xor is commutative.
999 break;
1000
1001 case Token::BIT_AND:
1002 ASSERT(right.is(eax));
1003 __ and_(right, Operand(left)); // Bitwise and is commutative.
1004 break;
1005
1006 case Token::SHL:
1007 // Remove tags from operands (but keep sign).
1008 __ SmiUntag(left);
1009 __ SmiUntag(ecx);
1010 // Perform the operation.
1011 __ shl_cl(left);
1012 // Check that the *signed* result fits in a smi.
1013 __ cmp(left, 0xc0000000);
Ben Murdoch257744e2011-11-30 15:57:28 +00001014 __ j(sign, &use_fp_on_smis);
Ben Murdochb0fe1622011-05-05 13:52:32 +01001015 // Tag the result and store it in register eax.
1016 __ SmiTag(left);
1017 __ mov(eax, left);
1018 break;
1019
1020 case Token::SAR:
1021 // Remove tags from operands (but keep sign).
1022 __ SmiUntag(left);
1023 __ SmiUntag(ecx);
1024 // Perform the operation.
1025 __ sar_cl(left);
1026 // Tag the result and store it in register eax.
1027 __ SmiTag(left);
1028 __ mov(eax, left);
1029 break;
1030
1031 case Token::SHR:
1032 // Remove tags from operands (but keep sign).
1033 __ SmiUntag(left);
1034 __ SmiUntag(ecx);
1035 // Perform the operation.
1036 __ shr_cl(left);
1037 // Check that the *unsigned* result fits in a smi.
1038 // Neither of the two high-order bits can be set:
1039 // - 0x80000000: high bit would be lost when smi tagging.
1040 // - 0x40000000: this number would convert to negative when
1041 // Smi tagging these two cases can only happen with shifts
1042 // by 0 or 1 when handed a valid smi.
1043 __ test(left, Immediate(0xc0000000));
Ben Murdoch257744e2011-11-30 15:57:28 +00001044 __ j(not_zero, &use_fp_on_smis);
Ben Murdochb0fe1622011-05-05 13:52:32 +01001045 // Tag the result and store it in register eax.
1046 __ SmiTag(left);
1047 __ mov(eax, left);
1048 break;
1049
1050 case Token::ADD:
1051 ASSERT(right.is(eax));
1052 __ add(right, Operand(left)); // Addition is commutative.
Ben Murdoch257744e2011-11-30 15:57:28 +00001053 __ j(overflow, &use_fp_on_smis);
Ben Murdochb0fe1622011-05-05 13:52:32 +01001054 break;
1055
1056 case Token::SUB:
1057 __ sub(left, Operand(right));
Ben Murdoch257744e2011-11-30 15:57:28 +00001058 __ j(overflow, &use_fp_on_smis);
Ben Murdochb0fe1622011-05-05 13:52:32 +01001059 __ mov(eax, left);
1060 break;
1061
1062 case Token::MUL:
1063 // If the smi tag is 0 we can just leave the tag on one operand.
1064 STATIC_ASSERT(kSmiTag == 0); // Adjust code below if not the case.
1065 // We can't revert the multiplication if the result is not a smi
1066 // so save the right operand.
1067 __ mov(ebx, right);
1068 // Remove tag from one of the operands (but keep sign).
1069 __ SmiUntag(right);
1070 // Do multiplication.
1071 __ imul(right, Operand(left)); // Multiplication is commutative.
Ben Murdoch257744e2011-11-30 15:57:28 +00001072 __ j(overflow, &use_fp_on_smis);
Ben Murdochb0fe1622011-05-05 13:52:32 +01001073 // Check for negative zero result. Use combined = left | right.
1074 __ NegativeZeroTest(right, combined, &use_fp_on_smis);
1075 break;
1076
1077 case Token::DIV:
1078 // We can't revert the division if the result is not a smi so
1079 // save the left operand.
1080 __ mov(edi, left);
1081 // Check for 0 divisor.
1082 __ test(right, Operand(right));
Ben Murdoch257744e2011-11-30 15:57:28 +00001083 __ j(zero, &use_fp_on_smis);
Ben Murdochb0fe1622011-05-05 13:52:32 +01001084 // Sign extend left into edx:eax.
1085 ASSERT(left.is(eax));
1086 __ cdq();
1087 // Divide edx:eax by right.
1088 __ idiv(right);
1089 // Check for the corner case of dividing the most negative smi by
1090 // -1. We cannot use the overflow flag, since it is not set by idiv
1091 // instruction.
1092 STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
1093 __ cmp(eax, 0x40000000);
1094 __ j(equal, &use_fp_on_smis);
1095 // Check for negative zero result. Use combined = left | right.
1096 __ NegativeZeroTest(eax, combined, &use_fp_on_smis);
1097 // Check that the remainder is zero.
1098 __ test(edx, Operand(edx));
1099 __ j(not_zero, &use_fp_on_smis);
1100 // Tag the result and store it in register eax.
1101 __ SmiTag(eax);
1102 break;
1103
1104 case Token::MOD:
1105 // Check for 0 divisor.
1106 __ test(right, Operand(right));
Ben Murdoch257744e2011-11-30 15:57:28 +00001107 __ j(zero, &not_smis);
Ben Murdochb0fe1622011-05-05 13:52:32 +01001108
1109 // Sign extend left into edx:eax.
1110 ASSERT(left.is(eax));
1111 __ cdq();
1112 // Divide edx:eax by right.
1113 __ idiv(right);
1114 // Check for negative zero result. Use combined = left | right.
1115 __ NegativeZeroTest(edx, combined, slow);
1116 // Move remainder to register eax.
1117 __ mov(eax, edx);
1118 break;
1119
1120 default:
1121 UNREACHABLE();
1122 }
1123
1124 // 5. Emit return of result in eax. Some operations have registers pushed.
1125 switch (op_) {
1126 case Token::ADD:
1127 case Token::SUB:
1128 case Token::MUL:
1129 case Token::DIV:
1130 __ ret(0);
1131 break;
1132 case Token::MOD:
1133 case Token::BIT_OR:
1134 case Token::BIT_AND:
1135 case Token::BIT_XOR:
1136 case Token::SAR:
1137 case Token::SHL:
1138 case Token::SHR:
1139 __ ret(2 * kPointerSize);
1140 break;
1141 default:
1142 UNREACHABLE();
1143 }
1144
1145 // 6. For some operations emit inline code to perform floating point
1146 // operations on known smis (e.g., if the result of the operation
1147 // overflowed the smi range).
1148 if (allow_heapnumber_results == NO_HEAPNUMBER_RESULTS) {
1149 __ bind(&use_fp_on_smis);
1150 switch (op_) {
1151 // Undo the effects of some operations, and some register moves.
1152 case Token::SHL:
1153 // The arguments are saved on the stack, and only used from there.
1154 break;
1155 case Token::ADD:
1156 // Revert right = right + left.
1157 __ sub(right, Operand(left));
1158 break;
1159 case Token::SUB:
1160 // Revert left = left - right.
1161 __ add(left, Operand(right));
1162 break;
1163 case Token::MUL:
1164 // Right was clobbered but a copy is in ebx.
1165 __ mov(right, ebx);
1166 break;
1167 case Token::DIV:
1168 // Left was clobbered but a copy is in edi. Right is in ebx for
1169 // division. They should be in eax, ebx for jump to not_smi.
1170 __ mov(eax, edi);
1171 break;
1172 default:
1173 // No other operators jump to use_fp_on_smis.
1174 break;
1175 }
1176 __ jmp(&not_smis);
1177 } else {
1178 ASSERT(allow_heapnumber_results == ALLOW_HEAPNUMBER_RESULTS);
1179 switch (op_) {
Ben Murdoch257744e2011-11-30 15:57:28 +00001180 case Token::SHL:
1181 case Token::SHR: {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001182 Comment perform_float(masm, "-- Perform float operation on smis");
1183 __ bind(&use_fp_on_smis);
1184 // Result we want is in left == edx, so we can put the allocated heap
1185 // number in eax.
1186 __ AllocateHeapNumber(eax, ecx, ebx, slow);
1187 // Store the result in the HeapNumber and return.
Ben Murdoch257744e2011-11-30 15:57:28 +00001188 // It's OK to overwrite the arguments on the stack because we
1189 // are about to return.
1190 if (op_ == Token::SHR) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001191 __ mov(Operand(esp, 1 * kPointerSize), left);
Ben Murdoch257744e2011-11-30 15:57:28 +00001192 __ mov(Operand(esp, 2 * kPointerSize), Immediate(0));
1193 __ fild_d(Operand(esp, 1 * kPointerSize));
Ben Murdochb0fe1622011-05-05 13:52:32 +01001194 __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
Ben Murdoch257744e2011-11-30 15:57:28 +00001195 } else {
1196 ASSERT_EQ(Token::SHL, op_);
1197 if (CpuFeatures::IsSupported(SSE2)) {
1198 CpuFeatures::Scope use_sse2(SSE2);
1199 __ cvtsi2sd(xmm0, Operand(left));
1200 __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
1201 } else {
1202 __ mov(Operand(esp, 1 * kPointerSize), left);
1203 __ fild_s(Operand(esp, 1 * kPointerSize));
1204 __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
1205 }
Ben Murdochb0fe1622011-05-05 13:52:32 +01001206 }
Ben Murdoch257744e2011-11-30 15:57:28 +00001207 __ ret(2 * kPointerSize);
1208 break;
Ben Murdochb0fe1622011-05-05 13:52:32 +01001209 }
1210
1211 case Token::ADD:
1212 case Token::SUB:
1213 case Token::MUL:
1214 case Token::DIV: {
1215 Comment perform_float(masm, "-- Perform float operation on smis");
1216 __ bind(&use_fp_on_smis);
1217 // Restore arguments to edx, eax.
1218 switch (op_) {
1219 case Token::ADD:
1220 // Revert right = right + left.
1221 __ sub(right, Operand(left));
1222 break;
1223 case Token::SUB:
1224 // Revert left = left - right.
1225 __ add(left, Operand(right));
1226 break;
1227 case Token::MUL:
1228 // Right was clobbered but a copy is in ebx.
1229 __ mov(right, ebx);
1230 break;
1231 case Token::DIV:
1232 // Left was clobbered but a copy is in edi. Right is in ebx for
1233 // division.
1234 __ mov(edx, edi);
1235 __ mov(eax, right);
1236 break;
1237 default: UNREACHABLE();
1238 break;
1239 }
1240 __ AllocateHeapNumber(ecx, ebx, no_reg, slow);
Ben Murdoch8b112d22011-06-08 16:22:53 +01001241 if (CpuFeatures::IsSupported(SSE2)) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001242 CpuFeatures::Scope use_sse2(SSE2);
1243 FloatingPointHelper::LoadSSE2Smis(masm, ebx);
1244 switch (op_) {
1245 case Token::ADD: __ addsd(xmm0, xmm1); break;
1246 case Token::SUB: __ subsd(xmm0, xmm1); break;
1247 case Token::MUL: __ mulsd(xmm0, xmm1); break;
1248 case Token::DIV: __ divsd(xmm0, xmm1); break;
1249 default: UNREACHABLE();
1250 }
1251 __ movdbl(FieldOperand(ecx, HeapNumber::kValueOffset), xmm0);
1252 } else { // SSE2 not available, use FPU.
1253 FloatingPointHelper::LoadFloatSmis(masm, ebx);
1254 switch (op_) {
1255 case Token::ADD: __ faddp(1); break;
1256 case Token::SUB: __ fsubp(1); break;
1257 case Token::MUL: __ fmulp(1); break;
1258 case Token::DIV: __ fdivp(1); break;
1259 default: UNREACHABLE();
1260 }
1261 __ fstp_d(FieldOperand(ecx, HeapNumber::kValueOffset));
1262 }
1263 __ mov(eax, ecx);
1264 __ ret(0);
1265 break;
1266 }
1267
1268 default:
1269 break;
1270 }
1271 }
1272
1273 // 7. Non-smi operands, fall out to the non-smi code with the operands in
1274 // edx and eax.
1275 Comment done_comment(masm, "-- Enter non-smi code");
1276 __ bind(&not_smis);
1277 switch (op_) {
1278 case Token::BIT_OR:
1279 case Token::SHL:
1280 case Token::SAR:
1281 case Token::SHR:
1282 // Right operand is saved in ecx and eax was destroyed by the smi
1283 // check.
1284 __ mov(eax, ecx);
1285 break;
1286
1287 case Token::DIV:
1288 case Token::MOD:
1289 // Operands are in eax, ebx at this point.
1290 __ mov(edx, eax);
1291 __ mov(eax, ebx);
1292 break;
1293
1294 default:
1295 break;
1296 }
1297}
1298
1299
Ben Murdoch257744e2011-11-30 15:57:28 +00001300void BinaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001301 Label call_runtime;
1302
1303 switch (op_) {
1304 case Token::ADD:
1305 case Token::SUB:
1306 case Token::MUL:
1307 case Token::DIV:
1308 break;
1309 case Token::MOD:
1310 case Token::BIT_OR:
1311 case Token::BIT_AND:
1312 case Token::BIT_XOR:
1313 case Token::SAR:
1314 case Token::SHL:
1315 case Token::SHR:
1316 GenerateRegisterArgsPush(masm);
1317 break;
1318 default:
1319 UNREACHABLE();
1320 }
1321
Ben Murdoch257744e2011-11-30 15:57:28 +00001322 if (result_type_ == BinaryOpIC::UNINITIALIZED ||
1323 result_type_ == BinaryOpIC::SMI) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001324 GenerateSmiCode(masm, &call_runtime, NO_HEAPNUMBER_RESULTS);
1325 } else {
1326 GenerateSmiCode(masm, &call_runtime, ALLOW_HEAPNUMBER_RESULTS);
1327 }
1328 __ bind(&call_runtime);
1329 switch (op_) {
1330 case Token::ADD:
1331 case Token::SUB:
1332 case Token::MUL:
1333 case Token::DIV:
1334 GenerateTypeTransition(masm);
1335 break;
1336 case Token::MOD:
1337 case Token::BIT_OR:
1338 case Token::BIT_AND:
1339 case Token::BIT_XOR:
1340 case Token::SAR:
1341 case Token::SHL:
1342 case Token::SHR:
1343 GenerateTypeTransitionWithSavedArgs(masm);
1344 break;
1345 default:
1346 UNREACHABLE();
1347 }
1348}
1349
1350
Ben Murdoch257744e2011-11-30 15:57:28 +00001351void BinaryOpStub::GenerateStringStub(MacroAssembler* masm) {
1352 ASSERT(operands_type_ == BinaryOpIC::STRING);
Ben Murdochb0fe1622011-05-05 13:52:32 +01001353 ASSERT(op_ == Token::ADD);
Steve Block1e0659c2011-05-24 12:43:12 +01001354 // Try to add arguments as strings, otherwise, transition to the generic
Ben Murdoch257744e2011-11-30 15:57:28 +00001355 // BinaryOpIC type.
Steve Block1e0659c2011-05-24 12:43:12 +01001356 GenerateAddStrings(masm);
Ben Murdochb0fe1622011-05-05 13:52:32 +01001357 GenerateTypeTransition(masm);
1358}
1359
1360
Ben Murdoch257744e2011-11-30 15:57:28 +00001361void BinaryOpStub::GenerateBothStringStub(MacroAssembler* masm) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001362 Label call_runtime;
Ben Murdoch257744e2011-11-30 15:57:28 +00001363 ASSERT(operands_type_ == BinaryOpIC::BOTH_STRING);
1364 ASSERT(op_ == Token::ADD);
1365 // If both arguments are strings, call the string add stub.
1366 // Otherwise, do a transition.
1367
1368 // Registers containing left and right operands respectively.
1369 Register left = edx;
1370 Register right = eax;
1371
1372 // Test if left operand is a string.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001373 __ JumpIfSmi(left, &call_runtime);
Ben Murdoch257744e2011-11-30 15:57:28 +00001374 __ CmpObjectType(left, FIRST_NONSTRING_TYPE, ecx);
1375 __ j(above_equal, &call_runtime);
1376
1377 // Test if right operand is a string.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001378 __ JumpIfSmi(right, &call_runtime);
Ben Murdoch257744e2011-11-30 15:57:28 +00001379 __ CmpObjectType(right, FIRST_NONSTRING_TYPE, ecx);
1380 __ j(above_equal, &call_runtime);
1381
1382 StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB);
1383 GenerateRegisterArgsPush(masm);
1384 __ TailCallStub(&string_add_stub);
1385
1386 __ bind(&call_runtime);
1387 GenerateTypeTransition(masm);
1388}
1389
1390
1391void BinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) {
1392 Label call_runtime;
1393 ASSERT(operands_type_ == BinaryOpIC::INT32);
Ben Murdochb0fe1622011-05-05 13:52:32 +01001394
1395 // Floating point case.
1396 switch (op_) {
1397 case Token::ADD:
1398 case Token::SUB:
1399 case Token::MUL:
1400 case Token::DIV: {
1401 Label not_floats;
1402 Label not_int32;
Ben Murdoch8b112d22011-06-08 16:22:53 +01001403 if (CpuFeatures::IsSupported(SSE2)) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001404 CpuFeatures::Scope use_sse2(SSE2);
1405 FloatingPointHelper::LoadSSE2Operands(masm, &not_floats);
1406 FloatingPointHelper::CheckSSE2OperandsAreInt32(masm, &not_int32, ecx);
1407 switch (op_) {
1408 case Token::ADD: __ addsd(xmm0, xmm1); break;
1409 case Token::SUB: __ subsd(xmm0, xmm1); break;
1410 case Token::MUL: __ mulsd(xmm0, xmm1); break;
1411 case Token::DIV: __ divsd(xmm0, xmm1); break;
1412 default: UNREACHABLE();
1413 }
1414 // Check result type if it is currently Int32.
Ben Murdoch257744e2011-11-30 15:57:28 +00001415 if (result_type_ <= BinaryOpIC::INT32) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001416 __ cvttsd2si(ecx, Operand(xmm0));
1417 __ cvtsi2sd(xmm2, Operand(ecx));
1418 __ ucomisd(xmm0, xmm2);
1419 __ j(not_zero, &not_int32);
1420 __ j(carry, &not_int32);
1421 }
1422 GenerateHeapResultAllocation(masm, &call_runtime);
1423 __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
1424 __ ret(0);
1425 } else { // SSE2 not available, use FPU.
1426 FloatingPointHelper::CheckFloatOperands(masm, &not_floats, ebx);
1427 FloatingPointHelper::LoadFloatOperands(
1428 masm,
1429 ecx,
1430 FloatingPointHelper::ARGS_IN_REGISTERS);
1431 FloatingPointHelper::CheckFloatOperandsAreInt32(masm, &not_int32);
1432 switch (op_) {
1433 case Token::ADD: __ faddp(1); break;
1434 case Token::SUB: __ fsubp(1); break;
1435 case Token::MUL: __ fmulp(1); break;
1436 case Token::DIV: __ fdivp(1); break;
1437 default: UNREACHABLE();
1438 }
1439 Label after_alloc_failure;
1440 GenerateHeapResultAllocation(masm, &after_alloc_failure);
1441 __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
1442 __ ret(0);
1443 __ bind(&after_alloc_failure);
1444 __ ffree();
1445 __ jmp(&call_runtime);
1446 }
1447
1448 __ bind(&not_floats);
1449 __ bind(&not_int32);
1450 GenerateTypeTransition(masm);
1451 break;
1452 }
1453
1454 case Token::MOD: {
1455 // For MOD we go directly to runtime in the non-smi case.
1456 break;
1457 }
1458 case Token::BIT_OR:
1459 case Token::BIT_AND:
1460 case Token::BIT_XOR:
1461 case Token::SAR:
1462 case Token::SHL:
1463 case Token::SHR: {
1464 GenerateRegisterArgsPush(masm);
1465 Label not_floats;
1466 Label not_int32;
1467 Label non_smi_result;
1468 /* {
1469 CpuFeatures::Scope use_sse2(SSE2);
1470 FloatingPointHelper::LoadSSE2Operands(masm, &not_floats);
1471 FloatingPointHelper::CheckSSE2OperandsAreInt32(masm, &not_int32, ecx);
1472 }*/
1473 FloatingPointHelper::LoadUnknownsAsIntegers(masm,
1474 use_sse3_,
1475 &not_floats);
1476 FloatingPointHelper::CheckLoadedIntegersWereInt32(masm, use_sse3_,
1477 &not_int32);
1478 switch (op_) {
1479 case Token::BIT_OR: __ or_(eax, Operand(ecx)); break;
1480 case Token::BIT_AND: __ and_(eax, Operand(ecx)); break;
1481 case Token::BIT_XOR: __ xor_(eax, Operand(ecx)); break;
1482 case Token::SAR: __ sar_cl(eax); break;
1483 case Token::SHL: __ shl_cl(eax); break;
1484 case Token::SHR: __ shr_cl(eax); break;
1485 default: UNREACHABLE();
1486 }
1487 if (op_ == Token::SHR) {
1488 // Check if result is non-negative and fits in a smi.
1489 __ test(eax, Immediate(0xc0000000));
1490 __ j(not_zero, &call_runtime);
1491 } else {
1492 // Check if result fits in a smi.
1493 __ cmp(eax, 0xc0000000);
1494 __ j(negative, &non_smi_result);
1495 }
1496 // Tag smi result and return.
1497 __ SmiTag(eax);
1498 __ ret(2 * kPointerSize); // Drop two pushed arguments from the stack.
1499
1500 // All ops except SHR return a signed int32 that we load in
1501 // a HeapNumber.
1502 if (op_ != Token::SHR) {
1503 __ bind(&non_smi_result);
1504 // Allocate a heap number if needed.
1505 __ mov(ebx, Operand(eax)); // ebx: result
Ben Murdoch257744e2011-11-30 15:57:28 +00001506 Label skip_allocation;
Ben Murdochb0fe1622011-05-05 13:52:32 +01001507 switch (mode_) {
1508 case OVERWRITE_LEFT:
1509 case OVERWRITE_RIGHT:
1510 // If the operand was an object, we skip the
1511 // allocation of a heap number.
1512 __ mov(eax, Operand(esp, mode_ == OVERWRITE_RIGHT ?
1513 1 * kPointerSize : 2 * kPointerSize));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001514 __ JumpIfNotSmi(eax, &skip_allocation, Label::kNear);
Ben Murdochb0fe1622011-05-05 13:52:32 +01001515 // Fall through!
1516 case NO_OVERWRITE:
1517 __ AllocateHeapNumber(eax, ecx, edx, &call_runtime);
1518 __ bind(&skip_allocation);
1519 break;
1520 default: UNREACHABLE();
1521 }
1522 // Store the result in the HeapNumber and return.
Ben Murdoch8b112d22011-06-08 16:22:53 +01001523 if (CpuFeatures::IsSupported(SSE2)) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001524 CpuFeatures::Scope use_sse2(SSE2);
1525 __ cvtsi2sd(xmm0, Operand(ebx));
1526 __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
1527 } else {
1528 __ mov(Operand(esp, 1 * kPointerSize), ebx);
1529 __ fild_s(Operand(esp, 1 * kPointerSize));
1530 __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
1531 }
1532 __ ret(2 * kPointerSize); // Drop two pushed arguments from the stack.
1533 }
1534
1535 __ bind(&not_floats);
1536 __ bind(&not_int32);
1537 GenerateTypeTransitionWithSavedArgs(masm);
1538 break;
1539 }
1540 default: UNREACHABLE(); break;
1541 }
1542
1543 // If an allocation fails, or SHR or MOD hit a hard case,
1544 // use the runtime system to get the correct result.
1545 __ bind(&call_runtime);
1546
1547 switch (op_) {
1548 case Token::ADD:
1549 GenerateRegisterArgsPush(masm);
1550 __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
1551 break;
1552 case Token::SUB:
1553 GenerateRegisterArgsPush(masm);
1554 __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
1555 break;
1556 case Token::MUL:
1557 GenerateRegisterArgsPush(masm);
1558 __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
1559 break;
1560 case Token::DIV:
1561 GenerateRegisterArgsPush(masm);
1562 __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
1563 break;
1564 case Token::MOD:
1565 GenerateRegisterArgsPush(masm);
1566 __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
1567 break;
1568 case Token::BIT_OR:
1569 __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
1570 break;
1571 case Token::BIT_AND:
1572 __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
1573 break;
1574 case Token::BIT_XOR:
1575 __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
1576 break;
1577 case Token::SAR:
1578 __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
1579 break;
1580 case Token::SHL:
1581 __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
1582 break;
1583 case Token::SHR:
1584 __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
1585 break;
1586 default:
1587 UNREACHABLE();
1588 }
1589}
1590
1591
Ben Murdoch257744e2011-11-30 15:57:28 +00001592void BinaryOpStub::GenerateOddballStub(MacroAssembler* masm) {
Steve Block44f0eee2011-05-26 01:26:41 +01001593 if (op_ == Token::ADD) {
1594 // Handle string addition here, because it is the only operation
1595 // that does not do a ToNumber conversion on the operands.
1596 GenerateAddStrings(masm);
1597 }
1598
Ben Murdoch257744e2011-11-30 15:57:28 +00001599 Factory* factory = masm->isolate()->factory();
1600
Steve Block44f0eee2011-05-26 01:26:41 +01001601 // Convert odd ball arguments to numbers.
Ben Murdoch257744e2011-11-30 15:57:28 +00001602 Label check, done;
1603 __ cmp(edx, factory->undefined_value());
1604 __ j(not_equal, &check, Label::kNear);
Steve Block44f0eee2011-05-26 01:26:41 +01001605 if (Token::IsBitOp(op_)) {
1606 __ xor_(edx, Operand(edx));
1607 } else {
Ben Murdoch257744e2011-11-30 15:57:28 +00001608 __ mov(edx, Immediate(factory->nan_value()));
Steve Block44f0eee2011-05-26 01:26:41 +01001609 }
Ben Murdoch257744e2011-11-30 15:57:28 +00001610 __ jmp(&done, Label::kNear);
Steve Block44f0eee2011-05-26 01:26:41 +01001611 __ bind(&check);
Ben Murdoch257744e2011-11-30 15:57:28 +00001612 __ cmp(eax, factory->undefined_value());
1613 __ j(not_equal, &done, Label::kNear);
Steve Block44f0eee2011-05-26 01:26:41 +01001614 if (Token::IsBitOp(op_)) {
1615 __ xor_(eax, Operand(eax));
1616 } else {
Ben Murdoch257744e2011-11-30 15:57:28 +00001617 __ mov(eax, Immediate(factory->nan_value()));
Steve Block44f0eee2011-05-26 01:26:41 +01001618 }
1619 __ bind(&done);
1620
1621 GenerateHeapNumberStub(masm);
1622}
1623
1624
Ben Murdoch257744e2011-11-30 15:57:28 +00001625void BinaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001626 Label call_runtime;
Ben Murdochb0fe1622011-05-05 13:52:32 +01001627
1628 // Floating point case.
1629 switch (op_) {
1630 case Token::ADD:
1631 case Token::SUB:
1632 case Token::MUL:
1633 case Token::DIV: {
1634 Label not_floats;
Ben Murdoch8b112d22011-06-08 16:22:53 +01001635 if (CpuFeatures::IsSupported(SSE2)) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001636 CpuFeatures::Scope use_sse2(SSE2);
1637 FloatingPointHelper::LoadSSE2Operands(masm, &not_floats);
1638
1639 switch (op_) {
1640 case Token::ADD: __ addsd(xmm0, xmm1); break;
1641 case Token::SUB: __ subsd(xmm0, xmm1); break;
1642 case Token::MUL: __ mulsd(xmm0, xmm1); break;
1643 case Token::DIV: __ divsd(xmm0, xmm1); break;
1644 default: UNREACHABLE();
1645 }
1646 GenerateHeapResultAllocation(masm, &call_runtime);
1647 __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
1648 __ ret(0);
1649 } else { // SSE2 not available, use FPU.
1650 FloatingPointHelper::CheckFloatOperands(masm, &not_floats, ebx);
1651 FloatingPointHelper::LoadFloatOperands(
1652 masm,
1653 ecx,
1654 FloatingPointHelper::ARGS_IN_REGISTERS);
1655 switch (op_) {
1656 case Token::ADD: __ faddp(1); break;
1657 case Token::SUB: __ fsubp(1); break;
1658 case Token::MUL: __ fmulp(1); break;
1659 case Token::DIV: __ fdivp(1); break;
1660 default: UNREACHABLE();
1661 }
1662 Label after_alloc_failure;
1663 GenerateHeapResultAllocation(masm, &after_alloc_failure);
1664 __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
1665 __ ret(0);
1666 __ bind(&after_alloc_failure);
1667 __ ffree();
1668 __ jmp(&call_runtime);
1669 }
1670
1671 __ bind(&not_floats);
1672 GenerateTypeTransition(masm);
1673 break;
1674 }
1675
1676 case Token::MOD: {
1677 // For MOD we go directly to runtime in the non-smi case.
1678 break;
1679 }
1680 case Token::BIT_OR:
1681 case Token::BIT_AND:
1682 case Token::BIT_XOR:
1683 case Token::SAR:
1684 case Token::SHL:
1685 case Token::SHR: {
1686 GenerateRegisterArgsPush(masm);
1687 Label not_floats;
1688 Label non_smi_result;
1689 FloatingPointHelper::LoadUnknownsAsIntegers(masm,
1690 use_sse3_,
1691 &not_floats);
1692 switch (op_) {
1693 case Token::BIT_OR: __ or_(eax, Operand(ecx)); break;
1694 case Token::BIT_AND: __ and_(eax, Operand(ecx)); break;
1695 case Token::BIT_XOR: __ xor_(eax, Operand(ecx)); break;
1696 case Token::SAR: __ sar_cl(eax); break;
1697 case Token::SHL: __ shl_cl(eax); break;
1698 case Token::SHR: __ shr_cl(eax); break;
1699 default: UNREACHABLE();
1700 }
1701 if (op_ == Token::SHR) {
1702 // Check if result is non-negative and fits in a smi.
1703 __ test(eax, Immediate(0xc0000000));
1704 __ j(not_zero, &call_runtime);
1705 } else {
1706 // Check if result fits in a smi.
1707 __ cmp(eax, 0xc0000000);
1708 __ j(negative, &non_smi_result);
1709 }
1710 // Tag smi result and return.
1711 __ SmiTag(eax);
1712 __ ret(2 * kPointerSize); // Drop two pushed arguments from the stack.
1713
1714 // All ops except SHR return a signed int32 that we load in
1715 // a HeapNumber.
1716 if (op_ != Token::SHR) {
1717 __ bind(&non_smi_result);
1718 // Allocate a heap number if needed.
1719 __ mov(ebx, Operand(eax)); // ebx: result
Ben Murdoch257744e2011-11-30 15:57:28 +00001720 Label skip_allocation;
Ben Murdochb0fe1622011-05-05 13:52:32 +01001721 switch (mode_) {
1722 case OVERWRITE_LEFT:
1723 case OVERWRITE_RIGHT:
1724 // If the operand was an object, we skip the
1725 // allocation of a heap number.
1726 __ mov(eax, Operand(esp, mode_ == OVERWRITE_RIGHT ?
1727 1 * kPointerSize : 2 * kPointerSize));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001728 __ JumpIfNotSmi(eax, &skip_allocation, Label::kNear);
Ben Murdochb0fe1622011-05-05 13:52:32 +01001729 // Fall through!
1730 case NO_OVERWRITE:
1731 __ AllocateHeapNumber(eax, ecx, edx, &call_runtime);
1732 __ bind(&skip_allocation);
1733 break;
1734 default: UNREACHABLE();
1735 }
1736 // Store the result in the HeapNumber and return.
Ben Murdoch8b112d22011-06-08 16:22:53 +01001737 if (CpuFeatures::IsSupported(SSE2)) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001738 CpuFeatures::Scope use_sse2(SSE2);
1739 __ cvtsi2sd(xmm0, Operand(ebx));
1740 __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
1741 } else {
1742 __ mov(Operand(esp, 1 * kPointerSize), ebx);
1743 __ fild_s(Operand(esp, 1 * kPointerSize));
1744 __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
1745 }
1746 __ ret(2 * kPointerSize); // Drop two pushed arguments from the stack.
1747 }
1748
1749 __ bind(&not_floats);
1750 GenerateTypeTransitionWithSavedArgs(masm);
1751 break;
1752 }
1753 default: UNREACHABLE(); break;
1754 }
1755
1756 // If an allocation fails, or SHR or MOD hit a hard case,
1757 // use the runtime system to get the correct result.
1758 __ bind(&call_runtime);
1759
1760 switch (op_) {
1761 case Token::ADD:
1762 GenerateRegisterArgsPush(masm);
1763 __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
1764 break;
1765 case Token::SUB:
1766 GenerateRegisterArgsPush(masm);
1767 __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
1768 break;
1769 case Token::MUL:
1770 GenerateRegisterArgsPush(masm);
1771 __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
1772 break;
1773 case Token::DIV:
1774 GenerateRegisterArgsPush(masm);
1775 __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
1776 break;
1777 case Token::MOD:
1778 GenerateRegisterArgsPush(masm);
1779 __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
1780 break;
1781 case Token::BIT_OR:
1782 __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
1783 break;
1784 case Token::BIT_AND:
1785 __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
1786 break;
1787 case Token::BIT_XOR:
1788 __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
1789 break;
1790 case Token::SAR:
1791 __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
1792 break;
1793 case Token::SHL:
1794 __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
1795 break;
1796 case Token::SHR:
1797 __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
1798 break;
1799 default:
1800 UNREACHABLE();
1801 }
1802}
1803
1804
Ben Murdoch257744e2011-11-30 15:57:28 +00001805void BinaryOpStub::GenerateGeneric(MacroAssembler* masm) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001806 Label call_runtime;
1807
Steve Block44f0eee2011-05-26 01:26:41 +01001808 Counters* counters = masm->isolate()->counters();
1809 __ IncrementCounter(counters->generic_binary_stub_calls(), 1);
Ben Murdochb0fe1622011-05-05 13:52:32 +01001810
1811 switch (op_) {
1812 case Token::ADD:
1813 case Token::SUB:
1814 case Token::MUL:
1815 case Token::DIV:
1816 break;
1817 case Token::MOD:
1818 case Token::BIT_OR:
1819 case Token::BIT_AND:
1820 case Token::BIT_XOR:
1821 case Token::SAR:
1822 case Token::SHL:
1823 case Token::SHR:
1824 GenerateRegisterArgsPush(masm);
1825 break;
1826 default:
1827 UNREACHABLE();
1828 }
1829
1830 GenerateSmiCode(masm, &call_runtime, ALLOW_HEAPNUMBER_RESULTS);
1831
1832 // Floating point case.
1833 switch (op_) {
1834 case Token::ADD:
1835 case Token::SUB:
1836 case Token::MUL:
1837 case Token::DIV: {
1838 Label not_floats;
Ben Murdoch8b112d22011-06-08 16:22:53 +01001839 if (CpuFeatures::IsSupported(SSE2)) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001840 CpuFeatures::Scope use_sse2(SSE2);
1841 FloatingPointHelper::LoadSSE2Operands(masm, &not_floats);
1842
1843 switch (op_) {
1844 case Token::ADD: __ addsd(xmm0, xmm1); break;
1845 case Token::SUB: __ subsd(xmm0, xmm1); break;
1846 case Token::MUL: __ mulsd(xmm0, xmm1); break;
1847 case Token::DIV: __ divsd(xmm0, xmm1); break;
1848 default: UNREACHABLE();
1849 }
1850 GenerateHeapResultAllocation(masm, &call_runtime);
1851 __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
1852 __ ret(0);
1853 } else { // SSE2 not available, use FPU.
1854 FloatingPointHelper::CheckFloatOperands(masm, &not_floats, ebx);
1855 FloatingPointHelper::LoadFloatOperands(
1856 masm,
1857 ecx,
1858 FloatingPointHelper::ARGS_IN_REGISTERS);
1859 switch (op_) {
1860 case Token::ADD: __ faddp(1); break;
1861 case Token::SUB: __ fsubp(1); break;
1862 case Token::MUL: __ fmulp(1); break;
1863 case Token::DIV: __ fdivp(1); break;
1864 default: UNREACHABLE();
1865 }
1866 Label after_alloc_failure;
1867 GenerateHeapResultAllocation(masm, &after_alloc_failure);
1868 __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
1869 __ ret(0);
1870 __ bind(&after_alloc_failure);
1871 __ ffree();
1872 __ jmp(&call_runtime);
1873 }
1874 __ bind(&not_floats);
1875 break;
1876 }
1877 case Token::MOD: {
1878 // For MOD we go directly to runtime in the non-smi case.
1879 break;
1880 }
1881 case Token::BIT_OR:
1882 case Token::BIT_AND:
1883 case Token::BIT_XOR:
1884 case Token::SAR:
1885 case Token::SHL:
1886 case Token::SHR: {
1887 Label non_smi_result;
1888 FloatingPointHelper::LoadUnknownsAsIntegers(masm,
1889 use_sse3_,
1890 &call_runtime);
1891 switch (op_) {
1892 case Token::BIT_OR: __ or_(eax, Operand(ecx)); break;
1893 case Token::BIT_AND: __ and_(eax, Operand(ecx)); break;
1894 case Token::BIT_XOR: __ xor_(eax, Operand(ecx)); break;
1895 case Token::SAR: __ sar_cl(eax); break;
1896 case Token::SHL: __ shl_cl(eax); break;
1897 case Token::SHR: __ shr_cl(eax); break;
1898 default: UNREACHABLE();
1899 }
1900 if (op_ == Token::SHR) {
1901 // Check if result is non-negative and fits in a smi.
1902 __ test(eax, Immediate(0xc0000000));
1903 __ j(not_zero, &call_runtime);
1904 } else {
1905 // Check if result fits in a smi.
1906 __ cmp(eax, 0xc0000000);
1907 __ j(negative, &non_smi_result);
1908 }
1909 // Tag smi result and return.
1910 __ SmiTag(eax);
1911 __ ret(2 * kPointerSize); // Drop the arguments from the stack.
1912
1913 // All ops except SHR return a signed int32 that we load in
1914 // a HeapNumber.
1915 if (op_ != Token::SHR) {
1916 __ bind(&non_smi_result);
1917 // Allocate a heap number if needed.
1918 __ mov(ebx, Operand(eax)); // ebx: result
Ben Murdoch257744e2011-11-30 15:57:28 +00001919 Label skip_allocation;
Ben Murdochb0fe1622011-05-05 13:52:32 +01001920 switch (mode_) {
1921 case OVERWRITE_LEFT:
1922 case OVERWRITE_RIGHT:
1923 // If the operand was an object, we skip the
1924 // allocation of a heap number.
1925 __ mov(eax, Operand(esp, mode_ == OVERWRITE_RIGHT ?
1926 1 * kPointerSize : 2 * kPointerSize));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00001927 __ JumpIfNotSmi(eax, &skip_allocation, Label::kNear);
Ben Murdochb0fe1622011-05-05 13:52:32 +01001928 // Fall through!
1929 case NO_OVERWRITE:
1930 __ AllocateHeapNumber(eax, ecx, edx, &call_runtime);
1931 __ bind(&skip_allocation);
1932 break;
1933 default: UNREACHABLE();
1934 }
1935 // Store the result in the HeapNumber and return.
Ben Murdoch8b112d22011-06-08 16:22:53 +01001936 if (CpuFeatures::IsSupported(SSE2)) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01001937 CpuFeatures::Scope use_sse2(SSE2);
1938 __ cvtsi2sd(xmm0, Operand(ebx));
1939 __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
1940 } else {
1941 __ mov(Operand(esp, 1 * kPointerSize), ebx);
1942 __ fild_s(Operand(esp, 1 * kPointerSize));
1943 __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
1944 }
1945 __ ret(2 * kPointerSize);
1946 }
1947 break;
1948 }
1949 default: UNREACHABLE(); break;
1950 }
1951
1952 // If all else fails, use the runtime system to get the correct
1953 // result.
1954 __ bind(&call_runtime);
1955 switch (op_) {
1956 case Token::ADD: {
Steve Block1e0659c2011-05-24 12:43:12 +01001957 GenerateAddStrings(masm);
Ben Murdochb0fe1622011-05-05 13:52:32 +01001958 GenerateRegisterArgsPush(masm);
Ben Murdochb0fe1622011-05-05 13:52:32 +01001959 __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
1960 break;
1961 }
1962 case Token::SUB:
1963 GenerateRegisterArgsPush(masm);
1964 __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
1965 break;
1966 case Token::MUL:
1967 GenerateRegisterArgsPush(masm);
1968 __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
1969 break;
1970 case Token::DIV:
1971 GenerateRegisterArgsPush(masm);
1972 __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
1973 break;
1974 case Token::MOD:
1975 __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
1976 break;
1977 case Token::BIT_OR:
1978 __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
1979 break;
1980 case Token::BIT_AND:
1981 __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
1982 break;
1983 case Token::BIT_XOR:
1984 __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
1985 break;
1986 case Token::SAR:
1987 __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
1988 break;
1989 case Token::SHL:
1990 __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
1991 break;
1992 case Token::SHR:
1993 __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
1994 break;
1995 default:
1996 UNREACHABLE();
1997 }
1998}
1999
2000
Ben Murdoch257744e2011-11-30 15:57:28 +00002001void BinaryOpStub::GenerateAddStrings(MacroAssembler* masm) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002002 ASSERT(op_ == Token::ADD);
Ben Murdoch257744e2011-11-30 15:57:28 +00002003 Label left_not_string, call_runtime;
Steve Block1e0659c2011-05-24 12:43:12 +01002004
2005 // Registers containing left and right operands respectively.
2006 Register left = edx;
2007 Register right = eax;
2008
2009 // Test if left operand is a string.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002010 __ JumpIfSmi(left, &left_not_string, Label::kNear);
Steve Block1e0659c2011-05-24 12:43:12 +01002011 __ CmpObjectType(left, FIRST_NONSTRING_TYPE, ecx);
Ben Murdoch257744e2011-11-30 15:57:28 +00002012 __ j(above_equal, &left_not_string, Label::kNear);
Steve Block1e0659c2011-05-24 12:43:12 +01002013
2014 StringAddStub string_add_left_stub(NO_STRING_CHECK_LEFT_IN_STUB);
2015 GenerateRegisterArgsPush(masm);
2016 __ TailCallStub(&string_add_left_stub);
2017
2018 // Left operand is not a string, test right.
2019 __ bind(&left_not_string);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002020 __ JumpIfSmi(right, &call_runtime, Label::kNear);
Steve Block1e0659c2011-05-24 12:43:12 +01002021 __ CmpObjectType(right, FIRST_NONSTRING_TYPE, ecx);
Ben Murdoch257744e2011-11-30 15:57:28 +00002022 __ j(above_equal, &call_runtime, Label::kNear);
Steve Block1e0659c2011-05-24 12:43:12 +01002023
2024 StringAddStub string_add_right_stub(NO_STRING_CHECK_RIGHT_IN_STUB);
2025 GenerateRegisterArgsPush(masm);
2026 __ TailCallStub(&string_add_right_stub);
2027
2028 // Neither argument is a string.
2029 __ bind(&call_runtime);
2030}
2031
2032
Ben Murdoch257744e2011-11-30 15:57:28 +00002033void BinaryOpStub::GenerateHeapResultAllocation(
Ben Murdochb0fe1622011-05-05 13:52:32 +01002034 MacroAssembler* masm,
2035 Label* alloc_failure) {
2036 Label skip_allocation;
2037 OverwriteMode mode = mode_;
2038 switch (mode) {
2039 case OVERWRITE_LEFT: {
2040 // If the argument in edx is already an object, we skip the
2041 // allocation of a heap number.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002042 __ JumpIfNotSmi(edx, &skip_allocation, Label::kNear);
Ben Murdochb0fe1622011-05-05 13:52:32 +01002043 // Allocate a heap number for the result. Keep eax and edx intact
2044 // for the possible runtime call.
2045 __ AllocateHeapNumber(ebx, ecx, no_reg, alloc_failure);
2046 // Now edx can be overwritten losing one of the arguments as we are
2047 // now done and will not need it any more.
2048 __ mov(edx, Operand(ebx));
2049 __ bind(&skip_allocation);
2050 // Use object in edx as a result holder
2051 __ mov(eax, Operand(edx));
2052 break;
2053 }
2054 case OVERWRITE_RIGHT:
2055 // If the argument in eax is already an object, we skip the
2056 // allocation of a heap number.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002057 __ JumpIfNotSmi(eax, &skip_allocation, Label::kNear);
Ben Murdochb0fe1622011-05-05 13:52:32 +01002058 // Fall through!
2059 case NO_OVERWRITE:
2060 // Allocate a heap number for the result. Keep eax and edx intact
2061 // for the possible runtime call.
2062 __ AllocateHeapNumber(ebx, ecx, no_reg, alloc_failure);
2063 // Now eax can be overwritten losing one of the arguments as we are
2064 // now done and will not need it any more.
2065 __ mov(eax, ebx);
2066 __ bind(&skip_allocation);
2067 break;
2068 default: UNREACHABLE();
2069 }
2070}
2071
2072
Ben Murdoch257744e2011-11-30 15:57:28 +00002073void BinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01002074 __ pop(ecx);
2075 __ push(edx);
2076 __ push(eax);
2077 __ push(ecx);
2078}
2079
2080
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002081void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01002082 // TAGGED case:
2083 // Input:
2084 // esp[4]: tagged number input argument (should be number).
2085 // esp[0]: return address.
2086 // Output:
2087 // eax: tagged double result.
2088 // UNTAGGED case:
2089 // Input::
2090 // esp[0]: return address.
2091 // xmm1: untagged double input argument
2092 // Output:
2093 // xmm1: untagged double result.
2094
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002095 Label runtime_call;
2096 Label runtime_call_clear_stack;
Ben Murdochb0fe1622011-05-05 13:52:32 +01002097 Label skip_cache;
2098 const bool tagged = (argument_type_ == TAGGED);
2099 if (tagged) {
2100 // Test that eax is a number.
Ben Murdoch257744e2011-11-30 15:57:28 +00002101 Label input_not_smi;
2102 Label loaded;
Ben Murdochb0fe1622011-05-05 13:52:32 +01002103 __ mov(eax, Operand(esp, kPointerSize));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002104 __ JumpIfNotSmi(eax, &input_not_smi, Label::kNear);
Ben Murdochb0fe1622011-05-05 13:52:32 +01002105 // Input is a smi. Untag and load it onto the FPU stack.
2106 // Then load the low and high words of the double into ebx, edx.
2107 STATIC_ASSERT(kSmiTagSize == 1);
2108 __ sar(eax, 1);
2109 __ sub(Operand(esp), Immediate(2 * kPointerSize));
2110 __ mov(Operand(esp, 0), eax);
2111 __ fild_s(Operand(esp, 0));
2112 __ fst_d(Operand(esp, 0));
2113 __ pop(edx);
2114 __ pop(ebx);
Ben Murdoch257744e2011-11-30 15:57:28 +00002115 __ jmp(&loaded, Label::kNear);
Ben Murdochb0fe1622011-05-05 13:52:32 +01002116 __ bind(&input_not_smi);
2117 // Check if input is a HeapNumber.
2118 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
Steve Block44f0eee2011-05-26 01:26:41 +01002119 Factory* factory = masm->isolate()->factory();
2120 __ cmp(Operand(ebx), Immediate(factory->heap_number_map()));
Ben Murdochb0fe1622011-05-05 13:52:32 +01002121 __ j(not_equal, &runtime_call);
2122 // Input is a HeapNumber. Push it on the FPU stack and load its
2123 // low and high words into ebx, edx.
2124 __ fld_d(FieldOperand(eax, HeapNumber::kValueOffset));
2125 __ mov(edx, FieldOperand(eax, HeapNumber::kExponentOffset));
2126 __ mov(ebx, FieldOperand(eax, HeapNumber::kMantissaOffset));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002127
Ben Murdochb0fe1622011-05-05 13:52:32 +01002128 __ bind(&loaded);
2129 } else { // UNTAGGED.
Ben Murdoch8b112d22011-06-08 16:22:53 +01002130 if (CpuFeatures::IsSupported(SSE4_1)) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01002131 CpuFeatures::Scope sse4_scope(SSE4_1);
2132 __ pextrd(Operand(edx), xmm1, 0x1); // copy xmm1[63..32] to edx.
2133 } else {
2134 __ pshufd(xmm0, xmm1, 0x1);
2135 __ movd(Operand(edx), xmm0);
2136 }
2137 __ movd(Operand(ebx), xmm1);
2138 }
2139
2140 // ST[0] or xmm1 == double value
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002141 // ebx = low 32 bits of double value
2142 // edx = high 32 bits of double value
2143 // Compute hash (the shifts are arithmetic):
2144 // h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1);
2145 __ mov(ecx, ebx);
2146 __ xor_(ecx, Operand(edx));
2147 __ mov(eax, ecx);
2148 __ sar(eax, 16);
2149 __ xor_(ecx, Operand(eax));
2150 __ mov(eax, ecx);
2151 __ sar(eax, 8);
2152 __ xor_(ecx, Operand(eax));
Steve Block44f0eee2011-05-26 01:26:41 +01002153 ASSERT(IsPowerOf2(TranscendentalCache::SubCache::kCacheSize));
2154 __ and_(Operand(ecx),
2155 Immediate(TranscendentalCache::SubCache::kCacheSize - 1));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002156
Ben Murdochb0fe1622011-05-05 13:52:32 +01002157 // ST[0] or xmm1 == double value.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002158 // ebx = low 32 bits of double value.
2159 // edx = high 32 bits of double value.
2160 // ecx = TranscendentalCache::hash(double value).
Steve Block44f0eee2011-05-26 01:26:41 +01002161 ExternalReference cache_array =
2162 ExternalReference::transcendental_cache_array_address(masm->isolate());
2163 __ mov(eax, Immediate(cache_array));
2164 int cache_array_index =
2165 type_ * sizeof(masm->isolate()->transcendental_cache()->caches_[0]);
2166 __ mov(eax, Operand(eax, cache_array_index));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002167 // Eax points to the cache for the type type_.
2168 // If NULL, the cache hasn't been initialized yet, so go through runtime.
2169 __ test(eax, Operand(eax));
2170 __ j(zero, &runtime_call_clear_stack);
2171#ifdef DEBUG
2172 // Check that the layout of cache elements match expectations.
Steve Block44f0eee2011-05-26 01:26:41 +01002173 { TranscendentalCache::SubCache::Element test_elem[2];
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002174 char* elem_start = reinterpret_cast<char*>(&test_elem[0]);
2175 char* elem2_start = reinterpret_cast<char*>(&test_elem[1]);
2176 char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0]));
2177 char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1]));
2178 char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output));
2179 CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer.
2180 CHECK_EQ(0, elem_in0 - elem_start);
2181 CHECK_EQ(kIntSize, elem_in1 - elem_start);
2182 CHECK_EQ(2 * kIntSize, elem_out - elem_start);
2183 }
2184#endif
2185 // Find the address of the ecx'th entry in the cache, i.e., &eax[ecx*12].
2186 __ lea(ecx, Operand(ecx, ecx, times_2, 0));
2187 __ lea(ecx, Operand(eax, ecx, times_4, 0));
2188 // Check if cache matches: Double value is stored in uint32_t[2] array.
Ben Murdoch257744e2011-11-30 15:57:28 +00002189 Label cache_miss;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002190 __ cmp(ebx, Operand(ecx, 0));
Ben Murdoch257744e2011-11-30 15:57:28 +00002191 __ j(not_equal, &cache_miss, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002192 __ cmp(edx, Operand(ecx, kIntSize));
Ben Murdoch257744e2011-11-30 15:57:28 +00002193 __ j(not_equal, &cache_miss, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002194 // Cache hit!
2195 __ mov(eax, Operand(ecx, 2 * kIntSize));
Ben Murdochb0fe1622011-05-05 13:52:32 +01002196 if (tagged) {
2197 __ fstp(0);
2198 __ ret(kPointerSize);
2199 } else { // UNTAGGED.
2200 __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
2201 __ Ret();
2202 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002203
2204 __ bind(&cache_miss);
2205 // Update cache with new value.
2206 // We are short on registers, so use no_reg as scratch.
2207 // This gives slightly larger code.
Ben Murdochb0fe1622011-05-05 13:52:32 +01002208 if (tagged) {
2209 __ AllocateHeapNumber(eax, edi, no_reg, &runtime_call_clear_stack);
2210 } else { // UNTAGGED.
2211 __ AllocateHeapNumber(eax, edi, no_reg, &skip_cache);
2212 __ sub(Operand(esp), Immediate(kDoubleSize));
2213 __ movdbl(Operand(esp, 0), xmm1);
2214 __ fld_d(Operand(esp, 0));
2215 __ add(Operand(esp), Immediate(kDoubleSize));
2216 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002217 GenerateOperation(masm);
2218 __ mov(Operand(ecx, 0), ebx);
2219 __ mov(Operand(ecx, kIntSize), edx);
2220 __ mov(Operand(ecx, 2 * kIntSize), eax);
2221 __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
Ben Murdochb0fe1622011-05-05 13:52:32 +01002222 if (tagged) {
2223 __ ret(kPointerSize);
2224 } else { // UNTAGGED.
2225 __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
2226 __ Ret();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002227
Ben Murdochb0fe1622011-05-05 13:52:32 +01002228 // Skip cache and return answer directly, only in untagged case.
2229 __ bind(&skip_cache);
2230 __ sub(Operand(esp), Immediate(kDoubleSize));
2231 __ movdbl(Operand(esp, 0), xmm1);
2232 __ fld_d(Operand(esp, 0));
2233 GenerateOperation(masm);
2234 __ fstp_d(Operand(esp, 0));
2235 __ movdbl(xmm1, Operand(esp, 0));
2236 __ add(Operand(esp), Immediate(kDoubleSize));
2237 // We return the value in xmm1 without adding it to the cache, but
2238 // we cause a scavenging GC so that future allocations will succeed.
2239 __ EnterInternalFrame();
2240 // Allocate an unused object bigger than a HeapNumber.
2241 __ push(Immediate(Smi::FromInt(2 * kDoubleSize)));
2242 __ CallRuntimeSaveDoubles(Runtime::kAllocateInNewSpace);
2243 __ LeaveInternalFrame();
2244 __ Ret();
2245 }
2246
2247 // Call runtime, doing whatever allocation and cleanup is necessary.
2248 if (tagged) {
2249 __ bind(&runtime_call_clear_stack);
2250 __ fstp(0);
2251 __ bind(&runtime_call);
Steve Block44f0eee2011-05-26 01:26:41 +01002252 ExternalReference runtime =
2253 ExternalReference(RuntimeFunction(), masm->isolate());
2254 __ TailCallExternalReference(runtime, 1, 1);
Ben Murdochb0fe1622011-05-05 13:52:32 +01002255 } else { // UNTAGGED.
2256 __ bind(&runtime_call_clear_stack);
2257 __ bind(&runtime_call);
2258 __ AllocateHeapNumber(eax, edi, no_reg, &skip_cache);
2259 __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm1);
2260 __ EnterInternalFrame();
2261 __ push(eax);
2262 __ CallRuntime(RuntimeFunction(), 1);
2263 __ LeaveInternalFrame();
2264 __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
2265 __ Ret();
2266 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002267}
2268
2269
2270Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() {
2271 switch (type_) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002272 case TranscendentalCache::SIN: return Runtime::kMath_sin;
2273 case TranscendentalCache::COS: return Runtime::kMath_cos;
Ben Murdochb0fe1622011-05-05 13:52:32 +01002274 case TranscendentalCache::LOG: return Runtime::kMath_log;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002275 default:
2276 UNIMPLEMENTED();
2277 return Runtime::kAbort;
2278 }
2279}
2280
2281
2282void TranscendentalCacheStub::GenerateOperation(MacroAssembler* masm) {
2283 // Only free register is edi.
Ben Murdochb0fe1622011-05-05 13:52:32 +01002284 // Input value is on FP stack, and also in ebx/edx.
2285 // Input value is possibly in xmm1.
2286 // Address of result (a newly allocated HeapNumber) may be in eax.
2287 if (type_ == TranscendentalCache::SIN || type_ == TranscendentalCache::COS) {
2288 // Both fsin and fcos require arguments in the range +/-2^63 and
2289 // return NaN for infinities and NaN. They can share all code except
2290 // the actual fsin/fcos operation.
Ben Murdoch257744e2011-11-30 15:57:28 +00002291 Label in_range, done;
Ben Murdochb0fe1622011-05-05 13:52:32 +01002292 // If argument is outside the range -2^63..2^63, fsin/cos doesn't
2293 // work. We must reduce it to the appropriate range.
2294 __ mov(edi, edx);
2295 __ and_(Operand(edi), Immediate(0x7ff00000)); // Exponent only.
2296 int supported_exponent_limit =
2297 (63 + HeapNumber::kExponentBias) << HeapNumber::kExponentShift;
2298 __ cmp(Operand(edi), Immediate(supported_exponent_limit));
Ben Murdoch257744e2011-11-30 15:57:28 +00002299 __ j(below, &in_range, Label::kNear);
Ben Murdochb0fe1622011-05-05 13:52:32 +01002300 // Check for infinity and NaN. Both return NaN for sin.
2301 __ cmp(Operand(edi), Immediate(0x7ff00000));
Ben Murdoch257744e2011-11-30 15:57:28 +00002302 Label non_nan_result;
2303 __ j(not_equal, &non_nan_result, Label::kNear);
Ben Murdochb0fe1622011-05-05 13:52:32 +01002304 // Input is +/-Infinity or NaN. Result is NaN.
2305 __ fstp(0);
2306 // NaN is represented by 0x7ff8000000000000.
2307 __ push(Immediate(0x7ff80000));
2308 __ push(Immediate(0));
2309 __ fld_d(Operand(esp, 0));
2310 __ add(Operand(esp), Immediate(2 * kPointerSize));
Ben Murdoch257744e2011-11-30 15:57:28 +00002311 __ jmp(&done, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002312
Ben Murdochb0fe1622011-05-05 13:52:32 +01002313 __ bind(&non_nan_result);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002314
Ben Murdochb0fe1622011-05-05 13:52:32 +01002315 // Use fpmod to restrict argument to the range +/-2*PI.
2316 __ mov(edi, eax); // Save eax before using fnstsw_ax.
2317 __ fldpi();
2318 __ fadd(0);
2319 __ fld(1);
2320 // FPU Stack: input, 2*pi, input.
2321 {
Ben Murdoch257744e2011-11-30 15:57:28 +00002322 Label no_exceptions;
Ben Murdochb0fe1622011-05-05 13:52:32 +01002323 __ fwait();
2324 __ fnstsw_ax();
2325 // Clear if Illegal Operand or Zero Division exceptions are set.
2326 __ test(Operand(eax), Immediate(5));
Ben Murdoch257744e2011-11-30 15:57:28 +00002327 __ j(zero, &no_exceptions, Label::kNear);
Ben Murdochb0fe1622011-05-05 13:52:32 +01002328 __ fnclex();
2329 __ bind(&no_exceptions);
2330 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002331
Ben Murdochb0fe1622011-05-05 13:52:32 +01002332 // Compute st(0) % st(1)
2333 {
Ben Murdoch257744e2011-11-30 15:57:28 +00002334 Label partial_remainder_loop;
Ben Murdochb0fe1622011-05-05 13:52:32 +01002335 __ bind(&partial_remainder_loop);
2336 __ fprem1();
2337 __ fwait();
2338 __ fnstsw_ax();
2339 __ test(Operand(eax), Immediate(0x400 /* C2 */));
2340 // If C2 is set, computation only has partial result. Loop to
2341 // continue computation.
2342 __ j(not_zero, &partial_remainder_loop);
2343 }
2344 // FPU Stack: input, 2*pi, input % 2*pi
2345 __ fstp(2);
2346 __ fstp(0);
2347 __ mov(eax, edi); // Restore eax (allocated HeapNumber pointer).
2348
2349 // FPU Stack: input % 2*pi
2350 __ bind(&in_range);
2351 switch (type_) {
2352 case TranscendentalCache::SIN:
2353 __ fsin();
2354 break;
2355 case TranscendentalCache::COS:
2356 __ fcos();
2357 break;
2358 default:
2359 UNREACHABLE();
2360 }
2361 __ bind(&done);
2362 } else {
2363 ASSERT(type_ == TranscendentalCache::LOG);
2364 __ fldln2();
2365 __ fxch();
2366 __ fyl2x();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002367 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002368}
2369
2370
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002371// Input: edx, eax are the left and right objects of a bit op.
2372// Output: eax, ecx are left and right integers for a bit op.
2373void FloatingPointHelper::LoadUnknownsAsIntegers(MacroAssembler* masm,
2374 bool use_sse3,
2375 Label* conversion_failure) {
2376 // Check float operands.
2377 Label arg1_is_object, check_undefined_arg1;
2378 Label arg2_is_object, check_undefined_arg2;
2379 Label load_arg2, done;
2380
2381 // Test if arg1 is a Smi.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002382 __ JumpIfNotSmi(edx, &arg1_is_object);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002383
2384 __ SmiUntag(edx);
2385 __ jmp(&load_arg2);
2386
2387 // If the argument is undefined it converts to zero (ECMA-262, section 9.5).
2388 __ bind(&check_undefined_arg1);
Steve Block44f0eee2011-05-26 01:26:41 +01002389 Factory* factory = masm->isolate()->factory();
2390 __ cmp(edx, factory->undefined_value());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002391 __ j(not_equal, conversion_failure);
2392 __ mov(edx, Immediate(0));
2393 __ jmp(&load_arg2);
2394
2395 __ bind(&arg1_is_object);
2396 __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset));
Steve Block44f0eee2011-05-26 01:26:41 +01002397 __ cmp(ebx, factory->heap_number_map());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002398 __ j(not_equal, &check_undefined_arg1);
2399
2400 // Get the untagged integer version of the edx heap number in ecx.
Ben Murdoch257744e2011-11-30 15:57:28 +00002401 IntegerConvert(masm, edx, use_sse3, conversion_failure);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002402 __ mov(edx, ecx);
2403
2404 // Here edx has the untagged integer, eax has a Smi or a heap number.
2405 __ bind(&load_arg2);
2406
2407 // Test if arg2 is a Smi.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002408 __ JumpIfNotSmi(eax, &arg2_is_object);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002409
2410 __ SmiUntag(eax);
2411 __ mov(ecx, eax);
2412 __ jmp(&done);
2413
2414 // If the argument is undefined it converts to zero (ECMA-262, section 9.5).
2415 __ bind(&check_undefined_arg2);
Steve Block44f0eee2011-05-26 01:26:41 +01002416 __ cmp(eax, factory->undefined_value());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002417 __ j(not_equal, conversion_failure);
2418 __ mov(ecx, Immediate(0));
2419 __ jmp(&done);
2420
2421 __ bind(&arg2_is_object);
2422 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
Steve Block44f0eee2011-05-26 01:26:41 +01002423 __ cmp(ebx, factory->heap_number_map());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002424 __ j(not_equal, &check_undefined_arg2);
2425
2426 // Get the untagged integer version of the eax heap number in ecx.
Ben Murdoch257744e2011-11-30 15:57:28 +00002427 IntegerConvert(masm, eax, use_sse3, conversion_failure);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002428 __ bind(&done);
2429 __ mov(eax, edx);
2430}
2431
2432
Ben Murdochb0fe1622011-05-05 13:52:32 +01002433void FloatingPointHelper::CheckLoadedIntegersWereInt32(MacroAssembler* masm,
2434 bool use_sse3,
2435 Label* not_int32) {
2436 return;
2437}
2438
2439
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002440void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm,
2441 Register number) {
Ben Murdoch257744e2011-11-30 15:57:28 +00002442 Label load_smi, done;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002443
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002444 __ JumpIfSmi(number, &load_smi, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002445 __ fld_d(FieldOperand(number, HeapNumber::kValueOffset));
Ben Murdoch257744e2011-11-30 15:57:28 +00002446 __ jmp(&done, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002447
2448 __ bind(&load_smi);
2449 __ SmiUntag(number);
2450 __ push(number);
2451 __ fild_s(Operand(esp, 0));
2452 __ pop(number);
2453
2454 __ bind(&done);
2455}
2456
2457
2458void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm) {
Ben Murdoch257744e2011-11-30 15:57:28 +00002459 Label load_smi_edx, load_eax, load_smi_eax, done;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002460 // Load operand in edx into xmm0.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002461 __ JumpIfSmi(edx, &load_smi_edx, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002462 __ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
2463
2464 __ bind(&load_eax);
2465 // Load operand in eax into xmm1.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002466 __ JumpIfSmi(eax, &load_smi_eax, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002467 __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
Ben Murdoch257744e2011-11-30 15:57:28 +00002468 __ jmp(&done, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002469
2470 __ bind(&load_smi_edx);
2471 __ SmiUntag(edx); // Untag smi before converting to float.
2472 __ cvtsi2sd(xmm0, Operand(edx));
2473 __ SmiTag(edx); // Retag smi for heap number overwriting test.
2474 __ jmp(&load_eax);
2475
2476 __ bind(&load_smi_eax);
2477 __ SmiUntag(eax); // Untag smi before converting to float.
2478 __ cvtsi2sd(xmm1, Operand(eax));
2479 __ SmiTag(eax); // Retag smi for heap number overwriting test.
2480
2481 __ bind(&done);
2482}
2483
2484
2485void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm,
2486 Label* not_numbers) {
Ben Murdoch257744e2011-11-30 15:57:28 +00002487 Label load_smi_edx, load_eax, load_smi_eax, load_float_eax, done;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002488 // Load operand in edx into xmm0, or branch to not_numbers.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002489 __ JumpIfSmi(edx, &load_smi_edx, Label::kNear);
Steve Block44f0eee2011-05-26 01:26:41 +01002490 Factory* factory = masm->isolate()->factory();
2491 __ cmp(FieldOperand(edx, HeapObject::kMapOffset), factory->heap_number_map());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002492 __ j(not_equal, not_numbers); // Argument in edx is not a number.
2493 __ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
2494 __ bind(&load_eax);
2495 // Load operand in eax into xmm1, or branch to not_numbers.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002496 __ JumpIfSmi(eax, &load_smi_eax, Label::kNear);
Steve Block44f0eee2011-05-26 01:26:41 +01002497 __ cmp(FieldOperand(eax, HeapObject::kMapOffset), factory->heap_number_map());
Ben Murdoch257744e2011-11-30 15:57:28 +00002498 __ j(equal, &load_float_eax, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002499 __ jmp(not_numbers); // Argument in eax is not a number.
2500 __ bind(&load_smi_edx);
2501 __ SmiUntag(edx); // Untag smi before converting to float.
2502 __ cvtsi2sd(xmm0, Operand(edx));
2503 __ SmiTag(edx); // Retag smi for heap number overwriting test.
2504 __ jmp(&load_eax);
2505 __ bind(&load_smi_eax);
2506 __ SmiUntag(eax); // Untag smi before converting to float.
2507 __ cvtsi2sd(xmm1, Operand(eax));
2508 __ SmiTag(eax); // Retag smi for heap number overwriting test.
Ben Murdoch257744e2011-11-30 15:57:28 +00002509 __ jmp(&done, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002510 __ bind(&load_float_eax);
2511 __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
2512 __ bind(&done);
2513}
2514
2515
2516void FloatingPointHelper::LoadSSE2Smis(MacroAssembler* masm,
2517 Register scratch) {
2518 const Register left = edx;
2519 const Register right = eax;
2520 __ mov(scratch, left);
2521 ASSERT(!scratch.is(right)); // We're about to clobber scratch.
2522 __ SmiUntag(scratch);
2523 __ cvtsi2sd(xmm0, Operand(scratch));
2524
2525 __ mov(scratch, right);
2526 __ SmiUntag(scratch);
2527 __ cvtsi2sd(xmm1, Operand(scratch));
2528}
2529
2530
Ben Murdochb0fe1622011-05-05 13:52:32 +01002531void FloatingPointHelper::CheckSSE2OperandsAreInt32(MacroAssembler* masm,
2532 Label* non_int32,
2533 Register scratch) {
2534 __ cvttsd2si(scratch, Operand(xmm0));
2535 __ cvtsi2sd(xmm2, Operand(scratch));
2536 __ ucomisd(xmm0, xmm2);
2537 __ j(not_zero, non_int32);
2538 __ j(carry, non_int32);
2539 __ cvttsd2si(scratch, Operand(xmm1));
2540 __ cvtsi2sd(xmm2, Operand(scratch));
2541 __ ucomisd(xmm1, xmm2);
2542 __ j(not_zero, non_int32);
2543 __ j(carry, non_int32);
2544}
2545
2546
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002547void FloatingPointHelper::LoadFloatOperands(MacroAssembler* masm,
2548 Register scratch,
2549 ArgLocation arg_location) {
Ben Murdoch257744e2011-11-30 15:57:28 +00002550 Label load_smi_1, load_smi_2, done_load_1, done;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002551 if (arg_location == ARGS_IN_REGISTERS) {
2552 __ mov(scratch, edx);
2553 } else {
2554 __ mov(scratch, Operand(esp, 2 * kPointerSize));
2555 }
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002556 __ JumpIfSmi(scratch, &load_smi_1, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002557 __ fld_d(FieldOperand(scratch, HeapNumber::kValueOffset));
2558 __ bind(&done_load_1);
2559
2560 if (arg_location == ARGS_IN_REGISTERS) {
2561 __ mov(scratch, eax);
2562 } else {
2563 __ mov(scratch, Operand(esp, 1 * kPointerSize));
2564 }
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002565 __ JumpIfSmi(scratch, &load_smi_2, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002566 __ fld_d(FieldOperand(scratch, HeapNumber::kValueOffset));
Ben Murdoch257744e2011-11-30 15:57:28 +00002567 __ jmp(&done, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002568
2569 __ bind(&load_smi_1);
2570 __ SmiUntag(scratch);
2571 __ push(scratch);
2572 __ fild_s(Operand(esp, 0));
2573 __ pop(scratch);
2574 __ jmp(&done_load_1);
2575
2576 __ bind(&load_smi_2);
2577 __ SmiUntag(scratch);
2578 __ push(scratch);
2579 __ fild_s(Operand(esp, 0));
2580 __ pop(scratch);
2581
2582 __ bind(&done);
2583}
2584
2585
2586void FloatingPointHelper::LoadFloatSmis(MacroAssembler* masm,
2587 Register scratch) {
2588 const Register left = edx;
2589 const Register right = eax;
2590 __ mov(scratch, left);
2591 ASSERT(!scratch.is(right)); // We're about to clobber scratch.
2592 __ SmiUntag(scratch);
2593 __ push(scratch);
2594 __ fild_s(Operand(esp, 0));
2595
2596 __ mov(scratch, right);
2597 __ SmiUntag(scratch);
2598 __ mov(Operand(esp, 0), scratch);
2599 __ fild_s(Operand(esp, 0));
2600 __ pop(scratch);
2601}
2602
2603
2604void FloatingPointHelper::CheckFloatOperands(MacroAssembler* masm,
2605 Label* non_float,
2606 Register scratch) {
Ben Murdoch257744e2011-11-30 15:57:28 +00002607 Label test_other, done;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002608 // Test if both operands are floats or smi -> scratch=k_is_float;
2609 // Otherwise scratch = k_not_float.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002610 __ JumpIfSmi(edx, &test_other, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002611 __ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset));
Steve Block44f0eee2011-05-26 01:26:41 +01002612 Factory* factory = masm->isolate()->factory();
2613 __ cmp(scratch, factory->heap_number_map());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002614 __ j(not_equal, non_float); // argument in edx is not a number -> NaN
2615
2616 __ bind(&test_other);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002617 __ JumpIfSmi(eax, &done, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002618 __ mov(scratch, FieldOperand(eax, HeapObject::kMapOffset));
Steve Block44f0eee2011-05-26 01:26:41 +01002619 __ cmp(scratch, factory->heap_number_map());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002620 __ j(not_equal, non_float); // argument in eax is not a number -> NaN
2621
2622 // Fall-through: Both operands are numbers.
2623 __ bind(&done);
2624}
2625
2626
Ben Murdochb0fe1622011-05-05 13:52:32 +01002627void FloatingPointHelper::CheckFloatOperandsAreInt32(MacroAssembler* masm,
2628 Label* non_int32) {
2629 return;
2630}
2631
2632
Ben Murdochb0fe1622011-05-05 13:52:32 +01002633void MathPowStub::Generate(MacroAssembler* masm) {
2634 // Registers are used as follows:
2635 // edx = base
2636 // eax = exponent
2637 // ecx = temporary, result
2638
2639 CpuFeatures::Scope use_sse2(SSE2);
2640 Label allocate_return, call_runtime;
2641
2642 // Load input parameters.
2643 __ mov(edx, Operand(esp, 2 * kPointerSize));
2644 __ mov(eax, Operand(esp, 1 * kPointerSize));
2645
2646 // Save 1 in xmm3 - we need this several times later on.
2647 __ mov(ecx, Immediate(1));
2648 __ cvtsi2sd(xmm3, Operand(ecx));
2649
2650 Label exponent_nonsmi;
2651 Label base_nonsmi;
2652 // If the exponent is a heap number go to that specific case.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002653 __ JumpIfNotSmi(eax, &exponent_nonsmi);
2654 __ JumpIfNotSmi(edx, &base_nonsmi);
Ben Murdochb0fe1622011-05-05 13:52:32 +01002655
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002656 // Optimized version when both exponent and base are smis.
Ben Murdochb0fe1622011-05-05 13:52:32 +01002657 Label powi;
2658 __ SmiUntag(edx);
2659 __ cvtsi2sd(xmm0, Operand(edx));
2660 __ jmp(&powi);
2661 // exponent is smi and base is a heapnumber.
2662 __ bind(&base_nonsmi);
Steve Block44f0eee2011-05-26 01:26:41 +01002663 Factory* factory = masm->isolate()->factory();
Ben Murdochb0fe1622011-05-05 13:52:32 +01002664 __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
Steve Block44f0eee2011-05-26 01:26:41 +01002665 factory->heap_number_map());
Ben Murdochb0fe1622011-05-05 13:52:32 +01002666 __ j(not_equal, &call_runtime);
2667
2668 __ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
2669
2670 // Optimized version of pow if exponent is a smi.
2671 // xmm0 contains the base.
2672 __ bind(&powi);
2673 __ SmiUntag(eax);
2674
2675 // Save exponent in base as we need to check if exponent is negative later.
2676 // We know that base and exponent are in different registers.
2677 __ mov(edx, eax);
2678
2679 // Get absolute value of exponent.
Ben Murdoch257744e2011-11-30 15:57:28 +00002680 Label no_neg;
Ben Murdochb0fe1622011-05-05 13:52:32 +01002681 __ cmp(eax, 0);
Ben Murdoch257744e2011-11-30 15:57:28 +00002682 __ j(greater_equal, &no_neg, Label::kNear);
Ben Murdochb0fe1622011-05-05 13:52:32 +01002683 __ neg(eax);
2684 __ bind(&no_neg);
2685
2686 // Load xmm1 with 1.
2687 __ movsd(xmm1, xmm3);
Ben Murdoch257744e2011-11-30 15:57:28 +00002688 Label while_true;
2689 Label no_multiply;
Ben Murdochb0fe1622011-05-05 13:52:32 +01002690
2691 __ bind(&while_true);
2692 __ shr(eax, 1);
Ben Murdoch257744e2011-11-30 15:57:28 +00002693 __ j(not_carry, &no_multiply, Label::kNear);
Ben Murdochb0fe1622011-05-05 13:52:32 +01002694 __ mulsd(xmm1, xmm0);
2695 __ bind(&no_multiply);
Ben Murdochb0fe1622011-05-05 13:52:32 +01002696 __ mulsd(xmm0, xmm0);
2697 __ j(not_zero, &while_true);
2698
2699 // base has the original value of the exponent - if the exponent is
2700 // negative return 1/result.
2701 __ test(edx, Operand(edx));
2702 __ j(positive, &allocate_return);
2703 // Special case if xmm1 has reached infinity.
2704 __ mov(ecx, Immediate(0x7FB00000));
2705 __ movd(xmm0, Operand(ecx));
2706 __ cvtss2sd(xmm0, xmm0);
2707 __ ucomisd(xmm0, xmm1);
2708 __ j(equal, &call_runtime);
2709 __ divsd(xmm3, xmm1);
2710 __ movsd(xmm1, xmm3);
2711 __ jmp(&allocate_return);
2712
2713 // exponent (or both) is a heapnumber - no matter what we should now work
2714 // on doubles.
2715 __ bind(&exponent_nonsmi);
2716 __ cmp(FieldOperand(eax, HeapObject::kMapOffset),
Steve Block44f0eee2011-05-26 01:26:41 +01002717 factory->heap_number_map());
Ben Murdochb0fe1622011-05-05 13:52:32 +01002718 __ j(not_equal, &call_runtime);
2719 __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
2720 // Test if exponent is nan.
2721 __ ucomisd(xmm1, xmm1);
2722 __ j(parity_even, &call_runtime);
2723
Ben Murdoch257744e2011-11-30 15:57:28 +00002724 Label base_not_smi;
2725 Label handle_special_cases;
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002726 __ JumpIfNotSmi(edx, &base_not_smi, Label::kNear);
Ben Murdochb0fe1622011-05-05 13:52:32 +01002727 __ SmiUntag(edx);
2728 __ cvtsi2sd(xmm0, Operand(edx));
Ben Murdoch257744e2011-11-30 15:57:28 +00002729 __ jmp(&handle_special_cases, Label::kNear);
Ben Murdochb0fe1622011-05-05 13:52:32 +01002730
2731 __ bind(&base_not_smi);
2732 __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
Steve Block44f0eee2011-05-26 01:26:41 +01002733 factory->heap_number_map());
Ben Murdochb0fe1622011-05-05 13:52:32 +01002734 __ j(not_equal, &call_runtime);
2735 __ mov(ecx, FieldOperand(edx, HeapNumber::kExponentOffset));
2736 __ and_(ecx, HeapNumber::kExponentMask);
2737 __ cmp(Operand(ecx), Immediate(HeapNumber::kExponentMask));
2738 // base is NaN or +/-Infinity
2739 __ j(greater_equal, &call_runtime);
2740 __ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
2741
2742 // base is in xmm0 and exponent is in xmm1.
2743 __ bind(&handle_special_cases);
Ben Murdoch257744e2011-11-30 15:57:28 +00002744 Label not_minus_half;
Ben Murdochb0fe1622011-05-05 13:52:32 +01002745 // Test for -0.5.
2746 // Load xmm2 with -0.5.
2747 __ mov(ecx, Immediate(0xBF000000));
2748 __ movd(xmm2, Operand(ecx));
2749 __ cvtss2sd(xmm2, xmm2);
2750 // xmm2 now has -0.5.
2751 __ ucomisd(xmm2, xmm1);
Ben Murdoch257744e2011-11-30 15:57:28 +00002752 __ j(not_equal, &not_minus_half, Label::kNear);
Ben Murdochb0fe1622011-05-05 13:52:32 +01002753
2754 // Calculates reciprocal of square root.
Steve Block1e0659c2011-05-24 12:43:12 +01002755 // sqrtsd returns -0 when input is -0. ECMA spec requires +0.
Ben Murdoch257744e2011-11-30 15:57:28 +00002756 __ xorps(xmm1, xmm1);
Steve Block1e0659c2011-05-24 12:43:12 +01002757 __ addsd(xmm1, xmm0);
Ben Murdochb0fe1622011-05-05 13:52:32 +01002758 __ sqrtsd(xmm1, xmm1);
Steve Block1e0659c2011-05-24 12:43:12 +01002759 __ divsd(xmm3, xmm1);
2760 __ movsd(xmm1, xmm3);
Ben Murdochb0fe1622011-05-05 13:52:32 +01002761 __ jmp(&allocate_return);
2762
2763 // Test for 0.5.
2764 __ bind(&not_minus_half);
2765 // Load xmm2 with 0.5.
2766 // Since xmm3 is 1 and xmm2 is -0.5 this is simply xmm2 + xmm3.
2767 __ addsd(xmm2, xmm3);
2768 // xmm2 now has 0.5.
2769 __ ucomisd(xmm2, xmm1);
2770 __ j(not_equal, &call_runtime);
2771 // Calculates square root.
Steve Block1e0659c2011-05-24 12:43:12 +01002772 // sqrtsd returns -0 when input is -0. ECMA spec requires +0.
Ben Murdoch257744e2011-11-30 15:57:28 +00002773 __ xorps(xmm1, xmm1);
Steve Block1e0659c2011-05-24 12:43:12 +01002774 __ addsd(xmm1, xmm0);
Ben Murdochb0fe1622011-05-05 13:52:32 +01002775 __ sqrtsd(xmm1, xmm1);
2776
2777 __ bind(&allocate_return);
2778 __ AllocateHeapNumber(ecx, eax, edx, &call_runtime);
2779 __ movdbl(FieldOperand(ecx, HeapNumber::kValueOffset), xmm1);
2780 __ mov(eax, ecx);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01002781 __ ret(2 * kPointerSize);
Ben Murdochb0fe1622011-05-05 13:52:32 +01002782
2783 __ bind(&call_runtime);
2784 __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1);
2785}
2786
2787
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002788void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
2789 // The key is in edx and the parameter count is in eax.
2790
2791 // The displacement is used for skipping the frame pointer on the
2792 // stack. It is the offset of the last parameter (if any) relative
2793 // to the frame pointer.
2794 static const int kDisplacement = 1 * kPointerSize;
2795
2796 // Check that the key is a smi.
2797 Label slow;
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002798 __ JumpIfNotSmi(edx, &slow);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002799
2800 // Check if the calling frame is an arguments adaptor frame.
Ben Murdoch257744e2011-11-30 15:57:28 +00002801 Label adaptor;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002802 __ mov(ebx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
2803 __ mov(ecx, Operand(ebx, StandardFrameConstants::kContextOffset));
2804 __ cmp(Operand(ecx), Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
Ben Murdoch257744e2011-11-30 15:57:28 +00002805 __ j(equal, &adaptor, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002806
2807 // Check index against formal parameters count limit passed in
2808 // through register eax. Use unsigned comparison to get negative
2809 // check for free.
2810 __ cmp(edx, Operand(eax));
Ben Murdoch257744e2011-11-30 15:57:28 +00002811 __ j(above_equal, &slow);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002812
2813 // Read the argument from the stack and return it.
2814 STATIC_ASSERT(kSmiTagSize == 1);
2815 STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these.
2816 __ lea(ebx, Operand(ebp, eax, times_2, 0));
2817 __ neg(edx);
2818 __ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
2819 __ ret(0);
2820
2821 // Arguments adaptor case: Check index against actual arguments
2822 // limit found in the arguments adaptor frame. Use unsigned
2823 // comparison to get negative check for free.
2824 __ bind(&adaptor);
2825 __ mov(ecx, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset));
2826 __ cmp(edx, Operand(ecx));
Ben Murdoch257744e2011-11-30 15:57:28 +00002827 __ j(above_equal, &slow);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002828
2829 // Read the argument from the stack and return it.
2830 STATIC_ASSERT(kSmiTagSize == 1);
2831 STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these.
2832 __ lea(ebx, Operand(ebx, ecx, times_2, 0));
2833 __ neg(edx);
2834 __ mov(eax, Operand(ebx, edx, times_2, kDisplacement));
2835 __ ret(0);
2836
2837 // Slow-case: Handle non-smi or out-of-bounds access to arguments
2838 // by calling the runtime system.
2839 __ bind(&slow);
2840 __ pop(ebx); // Return address.
2841 __ push(edx);
2842 __ push(ebx);
2843 __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
2844}
2845
2846
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002847void ArgumentsAccessStub::GenerateNewNonStrictSlow(MacroAssembler* masm) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002848 // esp[0] : return address
2849 // esp[4] : number of parameters
2850 // esp[8] : receiver displacement
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002851 // esp[12] : function
Kristian Monsen80d68ea2010-09-08 11:05:35 +01002852
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00002853 // Check if the calling frame is an arguments adaptor frame.
2854 Label runtime;
2855 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
2856 __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
2857 __ cmp(Operand(ecx), Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
2858 __ j(not_equal, &runtime, Label::kNear);
2859
2860 // Patch the arguments.length and the parameters pointer.
2861 __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
2862 __ mov(Operand(esp, 1 * kPointerSize), ecx);
2863 __ lea(edx, Operand(edx, ecx, times_2,
2864 StandardFrameConstants::kCallerSPOffset));
2865 __ mov(Operand(esp, 2 * kPointerSize), edx);
2866
2867 __ bind(&runtime);
2868 __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
2869}
2870
2871
2872void ArgumentsAccessStub::GenerateNewNonStrictFast(MacroAssembler* masm) {
2873 // esp[0] : return address
2874 // esp[4] : number of parameters (tagged)
2875 // esp[8] : receiver displacement
2876 // esp[12] : function
2877
2878 // ebx = parameter count (tagged)
2879 __ mov(ebx, Operand(esp, 1 * kPointerSize));
2880
2881 // Check if the calling frame is an arguments adaptor frame.
2882 // TODO(rossberg): Factor out some of the bits that are shared with the other
2883 // Generate* functions.
2884 Label runtime;
2885 Label adaptor_frame, try_allocate;
2886 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
2887 __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
2888 __ cmp(Operand(ecx), Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
2889 __ j(equal, &adaptor_frame, Label::kNear);
2890
2891 // No adaptor, parameter count = argument count.
2892 __ mov(ecx, ebx);
2893 __ jmp(&try_allocate, Label::kNear);
2894
2895 // We have an adaptor frame. Patch the parameters pointer.
2896 __ bind(&adaptor_frame);
2897 __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
2898 __ lea(edx, Operand(edx, ecx, times_2,
2899 StandardFrameConstants::kCallerSPOffset));
2900 __ mov(Operand(esp, 2 * kPointerSize), edx);
2901
2902 // ebx = parameter count (tagged)
2903 // ecx = argument count (tagged)
2904 // esp[4] = parameter count (tagged)
2905 // esp[8] = address of receiver argument
2906 // Compute the mapped parameter count = min(ebx, ecx) in ebx.
2907 __ cmp(ebx, Operand(ecx));
2908 __ j(less_equal, &try_allocate, Label::kNear);
2909 __ mov(ebx, ecx);
2910
2911 __ bind(&try_allocate);
2912
2913 // Save mapped parameter count.
2914 __ push(ebx);
2915
2916 // Compute the sizes of backing store, parameter map, and arguments object.
2917 // 1. Parameter map, has 2 extra words containing context and backing store.
2918 const int kParameterMapHeaderSize =
2919 FixedArray::kHeaderSize + 2 * kPointerSize;
2920 Label no_parameter_map;
2921 __ test(ebx, Operand(ebx));
2922 __ j(zero, &no_parameter_map, Label::kNear);
2923 __ lea(ebx, Operand(ebx, times_2, kParameterMapHeaderSize));
2924 __ bind(&no_parameter_map);
2925
2926 // 2. Backing store.
2927 __ lea(ebx, Operand(ebx, ecx, times_2, FixedArray::kHeaderSize));
2928
2929 // 3. Arguments object.
2930 __ add(Operand(ebx), Immediate(Heap::kArgumentsObjectSize));
2931
2932 // Do the allocation of all three objects in one go.
2933 __ AllocateInNewSpace(ebx, eax, edx, edi, &runtime, TAG_OBJECT);
2934
2935 // eax = address of new object(s) (tagged)
2936 // ecx = argument count (tagged)
2937 // esp[0] = mapped parameter count (tagged)
2938 // esp[8] = parameter count (tagged)
2939 // esp[12] = address of receiver argument
2940 // Get the arguments boilerplate from the current (global) context into edi.
2941 Label has_mapped_parameters, copy;
2942 __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX)));
2943 __ mov(edi, FieldOperand(edi, GlobalObject::kGlobalContextOffset));
2944 __ mov(ebx, Operand(esp, 0 * kPointerSize));
2945 __ test(ebx, Operand(ebx));
2946 __ j(not_zero, &has_mapped_parameters, Label::kNear);
2947 __ mov(edi, Operand(edi,
2948 Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX)));
2949 __ jmp(&copy, Label::kNear);
2950
2951 __ bind(&has_mapped_parameters);
2952 __ mov(edi, Operand(edi,
2953 Context::SlotOffset(Context::ALIASED_ARGUMENTS_BOILERPLATE_INDEX)));
2954 __ bind(&copy);
2955
2956 // eax = address of new object (tagged)
2957 // ebx = mapped parameter count (tagged)
2958 // ecx = argument count (tagged)
2959 // edi = address of boilerplate object (tagged)
2960 // esp[0] = mapped parameter count (tagged)
2961 // esp[8] = parameter count (tagged)
2962 // esp[12] = address of receiver argument
2963 // Copy the JS object part.
2964 for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) {
2965 __ mov(edx, FieldOperand(edi, i));
2966 __ mov(FieldOperand(eax, i), edx);
2967 }
2968
2969 // Setup the callee in-object property.
2970 STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
2971 __ mov(edx, Operand(esp, 4 * kPointerSize));
2972 __ mov(FieldOperand(eax, JSObject::kHeaderSize +
2973 Heap::kArgumentsCalleeIndex * kPointerSize),
2974 edx);
2975
2976 // Use the length (smi tagged) and set that as an in-object property too.
2977 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
2978 __ mov(FieldOperand(eax, JSObject::kHeaderSize +
2979 Heap::kArgumentsLengthIndex * kPointerSize),
2980 ecx);
2981
2982 // Setup the elements pointer in the allocated arguments object.
2983 // If we allocated a parameter map, edi will point there, otherwise to the
2984 // backing store.
2985 __ lea(edi, Operand(eax, Heap::kArgumentsObjectSize));
2986 __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi);
2987
2988 // eax = address of new object (tagged)
2989 // ebx = mapped parameter count (tagged)
2990 // ecx = argument count (tagged)
2991 // edi = address of parameter map or backing store (tagged)
2992 // esp[0] = mapped parameter count (tagged)
2993 // esp[8] = parameter count (tagged)
2994 // esp[12] = address of receiver argument
2995 // Free a register.
2996 __ push(eax);
2997
2998 // Initialize parameter map. If there are no mapped arguments, we're done.
2999 Label skip_parameter_map;
3000 __ test(ebx, Operand(ebx));
3001 __ j(zero, &skip_parameter_map);
3002
3003 __ mov(FieldOperand(edi, FixedArray::kMapOffset),
3004 Immediate(FACTORY->non_strict_arguments_elements_map()));
3005 __ lea(eax, Operand(ebx, reinterpret_cast<intptr_t>(Smi::FromInt(2))));
3006 __ mov(FieldOperand(edi, FixedArray::kLengthOffset), eax);
3007 __ mov(FieldOperand(edi, FixedArray::kHeaderSize + 0 * kPointerSize), esi);
3008 __ lea(eax, Operand(edi, ebx, times_2, kParameterMapHeaderSize));
3009 __ mov(FieldOperand(edi, FixedArray::kHeaderSize + 1 * kPointerSize), eax);
3010
3011 // Copy the parameter slots and the holes in the arguments.
3012 // We need to fill in mapped_parameter_count slots. They index the context,
3013 // where parameters are stored in reverse order, at
3014 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
3015 // The mapped parameter thus need to get indices
3016 // MIN_CONTEXT_SLOTS+parameter_count-1 ..
3017 // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
3018 // We loop from right to left.
3019 Label parameters_loop, parameters_test;
3020 __ push(ecx);
3021 __ mov(eax, Operand(esp, 2 * kPointerSize));
3022 __ mov(ebx, Immediate(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
3023 __ add(ebx, Operand(esp, 4 * kPointerSize));
3024 __ sub(ebx, Operand(eax));
3025 __ mov(ecx, FACTORY->the_hole_value());
3026 __ mov(edx, edi);
3027 __ lea(edi, Operand(edi, eax, times_2, kParameterMapHeaderSize));
3028 // eax = loop variable (tagged)
3029 // ebx = mapping index (tagged)
3030 // ecx = the hole value
3031 // edx = address of parameter map (tagged)
3032 // edi = address of backing store (tagged)
3033 // esp[0] = argument count (tagged)
3034 // esp[4] = address of new object (tagged)
3035 // esp[8] = mapped parameter count (tagged)
3036 // esp[16] = parameter count (tagged)
3037 // esp[20] = address of receiver argument
3038 __ jmp(&parameters_test, Label::kNear);
3039
3040 __ bind(&parameters_loop);
3041 __ sub(Operand(eax), Immediate(Smi::FromInt(1)));
3042 __ mov(FieldOperand(edx, eax, times_2, kParameterMapHeaderSize), ebx);
3043 __ mov(FieldOperand(edi, eax, times_2, FixedArray::kHeaderSize), ecx);
3044 __ add(Operand(ebx), Immediate(Smi::FromInt(1)));
3045 __ bind(&parameters_test);
3046 __ test(eax, Operand(eax));
3047 __ j(not_zero, &parameters_loop, Label::kNear);
3048 __ pop(ecx);
3049
3050 __ bind(&skip_parameter_map);
3051
3052 // ecx = argument count (tagged)
3053 // edi = address of backing store (tagged)
3054 // esp[0] = address of new object (tagged)
3055 // esp[4] = mapped parameter count (tagged)
3056 // esp[12] = parameter count (tagged)
3057 // esp[16] = address of receiver argument
3058 // Copy arguments header and remaining slots (if there are any).
3059 __ mov(FieldOperand(edi, FixedArray::kMapOffset),
3060 Immediate(FACTORY->fixed_array_map()));
3061 __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx);
3062
3063 Label arguments_loop, arguments_test;
3064 __ mov(ebx, Operand(esp, 1 * kPointerSize));
3065 __ mov(edx, Operand(esp, 4 * kPointerSize));
3066 __ sub(Operand(edx), ebx); // Is there a smarter way to do negative scaling?
3067 __ sub(Operand(edx), ebx);
3068 __ jmp(&arguments_test, Label::kNear);
3069
3070 __ bind(&arguments_loop);
3071 __ sub(Operand(edx), Immediate(kPointerSize));
3072 __ mov(eax, Operand(edx, 0));
3073 __ mov(FieldOperand(edi, ebx, times_2, FixedArray::kHeaderSize), eax);
3074 __ add(Operand(ebx), Immediate(Smi::FromInt(1)));
3075
3076 __ bind(&arguments_test);
3077 __ cmp(ebx, Operand(ecx));
3078 __ j(less, &arguments_loop, Label::kNear);
3079
3080 // Restore.
3081 __ pop(eax); // Address of arguments object.
3082 __ pop(ebx); // Parameter count.
3083
3084 // Return and remove the on-stack parameters.
3085 __ ret(3 * kPointerSize);
3086
3087 // Do the runtime call to allocate the arguments object.
3088 __ bind(&runtime);
3089 __ pop(eax); // Remove saved parameter count.
3090 __ mov(Operand(esp, 1 * kPointerSize), ecx); // Patch argument count.
3091 __ TailCallRuntime(Runtime::kNewStrictArgumentsFast, 3, 1);
3092}
3093
3094
3095void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
3096 // esp[0] : return address
3097 // esp[4] : number of parameters
3098 // esp[8] : receiver displacement
3099 // esp[12] : function
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003100
3101 // Check if the calling frame is an arguments adaptor frame.
3102 Label adaptor_frame, try_allocate, runtime;
3103 __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
3104 __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset));
3105 __ cmp(Operand(ecx), Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
3106 __ j(equal, &adaptor_frame);
3107
3108 // Get the length from the frame.
3109 __ mov(ecx, Operand(esp, 1 * kPointerSize));
3110 __ jmp(&try_allocate);
3111
3112 // Patch the arguments.length and the parameters pointer.
3113 __ bind(&adaptor_frame);
3114 __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset));
3115 __ mov(Operand(esp, 1 * kPointerSize), ecx);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00003116 __ lea(edx, Operand(edx, ecx, times_2,
3117 StandardFrameConstants::kCallerSPOffset));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003118 __ mov(Operand(esp, 2 * kPointerSize), edx);
3119
3120 // Try the new space allocation. Start out with computing the size of
3121 // the arguments object and the elements array.
Ben Murdoch257744e2011-11-30 15:57:28 +00003122 Label add_arguments_object;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003123 __ bind(&try_allocate);
3124 __ test(ecx, Operand(ecx));
Ben Murdoch257744e2011-11-30 15:57:28 +00003125 __ j(zero, &add_arguments_object, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003126 __ lea(ecx, Operand(ecx, times_2, FixedArray::kHeaderSize));
3127 __ bind(&add_arguments_object);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00003128 __ add(Operand(ecx), Immediate(Heap::kArgumentsObjectSizeStrict));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003129
3130 // Do the allocation of both objects in one go.
3131 __ AllocateInNewSpace(ecx, eax, edx, ebx, &runtime, TAG_OBJECT);
3132
3133 // Get the arguments boilerplate from the current (global) context.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003134 __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX)));
3135 __ mov(edi, FieldOperand(edi, GlobalObject::kGlobalContextOffset));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00003136 const int offset =
3137 Context::SlotOffset(Context::STRICT_MODE_ARGUMENTS_BOILERPLATE_INDEX);
3138 __ mov(edi, Operand(edi, offset));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003139
3140 // Copy the JS object part.
3141 for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) {
3142 __ mov(ebx, FieldOperand(edi, i));
3143 __ mov(FieldOperand(eax, i), ebx);
3144 }
3145
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003146 // Get the length (smi tagged) and set that as an in-object property too.
Steve Block44f0eee2011-05-26 01:26:41 +01003147 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003148 __ mov(ecx, Operand(esp, 1 * kPointerSize));
Steve Block44f0eee2011-05-26 01:26:41 +01003149 __ mov(FieldOperand(eax, JSObject::kHeaderSize +
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00003150 Heap::kArgumentsLengthIndex * kPointerSize),
Steve Block44f0eee2011-05-26 01:26:41 +01003151 ecx);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003152
3153 // If there are no actual arguments, we're done.
3154 Label done;
3155 __ test(ecx, Operand(ecx));
3156 __ j(zero, &done);
3157
3158 // Get the parameters pointer from the stack.
3159 __ mov(edx, Operand(esp, 2 * kPointerSize));
3160
3161 // Setup the elements pointer in the allocated arguments object and
3162 // initialize the header in the elements fixed array.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00003163 __ lea(edi, Operand(eax, Heap::kArgumentsObjectSizeStrict));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003164 __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi);
3165 __ mov(FieldOperand(edi, FixedArray::kMapOffset),
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00003166 Immediate(FACTORY->fixed_array_map()));
Steve Block44f0eee2011-05-26 01:26:41 +01003167
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003168 __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx);
3169 // Untag the length for the loop below.
3170 __ SmiUntag(ecx);
3171
3172 // Copy the fixed array slots.
Ben Murdoch257744e2011-11-30 15:57:28 +00003173 Label loop;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003174 __ bind(&loop);
3175 __ mov(ebx, Operand(edx, -1 * kPointerSize)); // Skip receiver.
3176 __ mov(FieldOperand(edi, FixedArray::kHeaderSize), ebx);
3177 __ add(Operand(edi), Immediate(kPointerSize));
3178 __ sub(Operand(edx), Immediate(kPointerSize));
3179 __ dec(ecx);
3180 __ j(not_zero, &loop);
3181
3182 // Return and remove the on-stack parameters.
3183 __ bind(&done);
3184 __ ret(3 * kPointerSize);
3185
3186 // Do the runtime call to allocate the arguments object.
3187 __ bind(&runtime);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00003188 __ TailCallRuntime(Runtime::kNewStrictArgumentsFast, 3, 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003189}
3190
3191
3192void RegExpExecStub::Generate(MacroAssembler* masm) {
3193 // Just jump directly to runtime if native RegExp is not selected at compile
3194 // time or if regexp entry in generated code is turned off runtime switch or
3195 // at compilation.
3196#ifdef V8_INTERPRETED_REGEXP
3197 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
3198#else // V8_INTERPRETED_REGEXP
3199 if (!FLAG_regexp_entry_native) {
3200 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
3201 return;
3202 }
3203
3204 // Stack frame on entry.
3205 // esp[0]: return address
3206 // esp[4]: last_match_info (expected JSArray)
3207 // esp[8]: previous index
3208 // esp[12]: subject string
3209 // esp[16]: JSRegExp object
3210
3211 static const int kLastMatchInfoOffset = 1 * kPointerSize;
3212 static const int kPreviousIndexOffset = 2 * kPointerSize;
3213 static const int kSubjectOffset = 3 * kPointerSize;
3214 static const int kJSRegExpOffset = 4 * kPointerSize;
3215
3216 Label runtime, invoke_regexp;
3217
3218 // Ensure that a RegExp stack is allocated.
3219 ExternalReference address_of_regexp_stack_memory_address =
Steve Block44f0eee2011-05-26 01:26:41 +01003220 ExternalReference::address_of_regexp_stack_memory_address(
3221 masm->isolate());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003222 ExternalReference address_of_regexp_stack_memory_size =
Steve Block44f0eee2011-05-26 01:26:41 +01003223 ExternalReference::address_of_regexp_stack_memory_size(masm->isolate());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003224 __ mov(ebx, Operand::StaticVariable(address_of_regexp_stack_memory_size));
3225 __ test(ebx, Operand(ebx));
Ben Murdoch257744e2011-11-30 15:57:28 +00003226 __ j(zero, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003227
3228 // Check that the first argument is a JSRegExp object.
3229 __ mov(eax, Operand(esp, kJSRegExpOffset));
3230 STATIC_ASSERT(kSmiTag == 0);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00003231 __ JumpIfSmi(eax, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003232 __ CmpObjectType(eax, JS_REGEXP_TYPE, ecx);
3233 __ j(not_equal, &runtime);
3234 // Check that the RegExp has been compiled (data contains a fixed array).
3235 __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
3236 if (FLAG_debug_code) {
3237 __ test(ecx, Immediate(kSmiTagMask));
3238 __ Check(not_zero, "Unexpected type for RegExp data, FixedArray expected");
3239 __ CmpObjectType(ecx, FIXED_ARRAY_TYPE, ebx);
3240 __ Check(equal, "Unexpected type for RegExp data, FixedArray expected");
3241 }
3242
3243 // ecx: RegExp data (FixedArray)
3244 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
3245 __ mov(ebx, FieldOperand(ecx, JSRegExp::kDataTagOffset));
3246 __ cmp(Operand(ebx), Immediate(Smi::FromInt(JSRegExp::IRREGEXP)));
3247 __ j(not_equal, &runtime);
3248
3249 // ecx: RegExp data (FixedArray)
3250 // Check that the number of captures fit in the static offsets vector buffer.
3251 __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
3252 // Calculate number of capture registers (number_of_captures + 1) * 2. This
3253 // uses the asumption that smis are 2 * their untagged value.
3254 STATIC_ASSERT(kSmiTag == 0);
3255 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
3256 __ add(Operand(edx), Immediate(2)); // edx was a smi.
3257 // Check that the static offsets vector buffer is large enough.
3258 __ cmp(edx, OffsetsVector::kStaticOffsetsVectorSize);
3259 __ j(above, &runtime);
3260
3261 // ecx: RegExp data (FixedArray)
3262 // edx: Number of capture registers
3263 // Check that the second argument is a string.
3264 __ mov(eax, Operand(esp, kSubjectOffset));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00003265 __ JumpIfSmi(eax, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003266 Condition is_string = masm->IsObjectStringType(eax, ebx, ebx);
3267 __ j(NegateCondition(is_string), &runtime);
3268 // Get the length of the string to ebx.
3269 __ mov(ebx, FieldOperand(eax, String::kLengthOffset));
3270
3271 // ebx: Length of subject string as a smi
3272 // ecx: RegExp data (FixedArray)
3273 // edx: Number of capture registers
3274 // Check that the third argument is a positive smi less than the subject
3275 // string length. A negative value will be greater (unsigned comparison).
3276 __ mov(eax, Operand(esp, kPreviousIndexOffset));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00003277 __ JumpIfNotSmi(eax, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003278 __ cmp(eax, Operand(ebx));
3279 __ j(above_equal, &runtime);
3280
3281 // ecx: RegExp data (FixedArray)
3282 // edx: Number of capture registers
3283 // Check that the fourth object is a JSArray object.
3284 __ mov(eax, Operand(esp, kLastMatchInfoOffset));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00003285 __ JumpIfSmi(eax, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003286 __ CmpObjectType(eax, JS_ARRAY_TYPE, ebx);
3287 __ j(not_equal, &runtime);
3288 // Check that the JSArray is in fast case.
3289 __ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset));
3290 __ mov(eax, FieldOperand(ebx, HeapObject::kMapOffset));
Steve Block44f0eee2011-05-26 01:26:41 +01003291 Factory* factory = masm->isolate()->factory();
3292 __ cmp(eax, factory->fixed_array_map());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003293 __ j(not_equal, &runtime);
3294 // Check that the last match info has space for the capture registers and the
3295 // additional information.
3296 __ mov(eax, FieldOperand(ebx, FixedArray::kLengthOffset));
3297 __ SmiUntag(eax);
3298 __ add(Operand(edx), Immediate(RegExpImpl::kLastMatchOverhead));
3299 __ cmp(edx, Operand(eax));
3300 __ j(greater, &runtime);
3301
3302 // ecx: RegExp data (FixedArray)
3303 // Check the representation and encoding of the subject string.
3304 Label seq_ascii_string, seq_two_byte_string, check_code;
3305 __ mov(eax, Operand(esp, kSubjectOffset));
3306 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
3307 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
3308 // First check for flat two byte string.
3309 __ and_(ebx,
3310 kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask);
3311 STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
3312 __ j(zero, &seq_two_byte_string);
3313 // Any other flat string must be a flat ascii string.
3314 __ test(Operand(ebx),
3315 Immediate(kIsNotStringMask | kStringRepresentationMask));
3316 __ j(zero, &seq_ascii_string);
3317
3318 // Check for flat cons string.
3319 // A flat cons string is a cons string where the second part is the empty
3320 // string. In that case the subject string is just the first part of the cons
3321 // string. Also in this case the first part of the cons string is known to be
3322 // a sequential string or an external string.
3323 STATIC_ASSERT(kExternalStringTag != 0);
3324 STATIC_ASSERT((kConsStringTag & kExternalStringTag) == 0);
3325 __ test(Operand(ebx),
3326 Immediate(kIsNotStringMask | kExternalStringTag));
3327 __ j(not_zero, &runtime);
3328 // String is a cons string.
3329 __ mov(edx, FieldOperand(eax, ConsString::kSecondOffset));
Steve Block44f0eee2011-05-26 01:26:41 +01003330 __ cmp(Operand(edx), factory->empty_string());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003331 __ j(not_equal, &runtime);
3332 __ mov(eax, FieldOperand(eax, ConsString::kFirstOffset));
3333 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
3334 // String is a cons string with empty second part.
3335 // eax: first part of cons string.
3336 // ebx: map of first part of cons string.
3337 // Is first part a flat two byte string?
3338 __ test_b(FieldOperand(ebx, Map::kInstanceTypeOffset),
3339 kStringRepresentationMask | kStringEncodingMask);
3340 STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0);
3341 __ j(zero, &seq_two_byte_string);
3342 // Any other flat string must be ascii.
3343 __ test_b(FieldOperand(ebx, Map::kInstanceTypeOffset),
3344 kStringRepresentationMask);
3345 __ j(not_zero, &runtime);
3346
3347 __ bind(&seq_ascii_string);
3348 // eax: subject string (flat ascii)
3349 // ecx: RegExp data (FixedArray)
3350 __ mov(edx, FieldOperand(ecx, JSRegExp::kDataAsciiCodeOffset));
3351 __ Set(edi, Immediate(1)); // Type is ascii.
3352 __ jmp(&check_code);
3353
3354 __ bind(&seq_two_byte_string);
3355 // eax: subject string (flat two byte)
3356 // ecx: RegExp data (FixedArray)
3357 __ mov(edx, FieldOperand(ecx, JSRegExp::kDataUC16CodeOffset));
3358 __ Set(edi, Immediate(0)); // Type is two byte.
3359
3360 __ bind(&check_code);
3361 // Check that the irregexp code has been generated for the actual string
3362 // encoding. If it has, the field contains a code object otherwise it contains
Ben Murdoch257744e2011-11-30 15:57:28 +00003363 // a smi (code flushing support).
3364 __ JumpIfSmi(edx, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003365
3366 // eax: subject string
3367 // edx: code
3368 // edi: encoding of subject string (1 if ascii, 0 if two_byte);
3369 // Load used arguments before starting to push arguments for call to native
3370 // RegExp code to avoid handling changing stack height.
3371 __ mov(ebx, Operand(esp, kPreviousIndexOffset));
3372 __ SmiUntag(ebx); // Previous index from smi.
3373
3374 // eax: subject string
3375 // ebx: previous index
3376 // edx: code
3377 // edi: encoding of subject string (1 if ascii 0 if two_byte);
3378 // All checks done. Now push arguments for native regexp code.
Steve Block44f0eee2011-05-26 01:26:41 +01003379 Counters* counters = masm->isolate()->counters();
3380 __ IncrementCounter(counters->regexp_entry_native(), 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003381
Steve Block44f0eee2011-05-26 01:26:41 +01003382 // Isolates: note we add an additional parameter here (isolate pointer).
3383 static const int kRegExpExecuteArguments = 8;
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003384 __ EnterApiExitFrame(kRegExpExecuteArguments);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003385
Steve Block44f0eee2011-05-26 01:26:41 +01003386 // Argument 8: Pass current isolate address.
3387 __ mov(Operand(esp, 7 * kPointerSize),
3388 Immediate(ExternalReference::isolate_address()));
3389
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003390 // Argument 7: Indicate that this is a direct call from JavaScript.
3391 __ mov(Operand(esp, 6 * kPointerSize), Immediate(1));
3392
3393 // Argument 6: Start (high end) of backtracking stack memory area.
3394 __ mov(ecx, Operand::StaticVariable(address_of_regexp_stack_memory_address));
3395 __ add(ecx, Operand::StaticVariable(address_of_regexp_stack_memory_size));
3396 __ mov(Operand(esp, 5 * kPointerSize), ecx);
3397
3398 // Argument 5: static offsets vector buffer.
3399 __ mov(Operand(esp, 4 * kPointerSize),
Steve Block44f0eee2011-05-26 01:26:41 +01003400 Immediate(ExternalReference::address_of_static_offsets_vector(
3401 masm->isolate())));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003402
3403 // Argument 4: End of string data
3404 // Argument 3: Start of string data
Ben Murdoch257744e2011-11-30 15:57:28 +00003405 Label setup_two_byte, setup_rest;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003406 __ test(edi, Operand(edi));
3407 __ mov(edi, FieldOperand(eax, String::kLengthOffset));
Ben Murdoch257744e2011-11-30 15:57:28 +00003408 __ j(zero, &setup_two_byte, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003409 __ SmiUntag(edi);
3410 __ lea(ecx, FieldOperand(eax, edi, times_1, SeqAsciiString::kHeaderSize));
3411 __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4.
3412 __ lea(ecx, FieldOperand(eax, ebx, times_1, SeqAsciiString::kHeaderSize));
3413 __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3.
Ben Murdoch257744e2011-11-30 15:57:28 +00003414 __ jmp(&setup_rest, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003415
3416 __ bind(&setup_two_byte);
3417 STATIC_ASSERT(kSmiTag == 0);
3418 STATIC_ASSERT(kSmiTagSize == 1); // edi is smi (powered by 2).
3419 __ lea(ecx, FieldOperand(eax, edi, times_1, SeqTwoByteString::kHeaderSize));
3420 __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4.
3421 __ lea(ecx, FieldOperand(eax, ebx, times_2, SeqTwoByteString::kHeaderSize));
3422 __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3.
3423
3424 __ bind(&setup_rest);
3425
3426 // Argument 2: Previous index.
3427 __ mov(Operand(esp, 1 * kPointerSize), ebx);
3428
3429 // Argument 1: Subject string.
3430 __ mov(Operand(esp, 0 * kPointerSize), eax);
3431
3432 // Locate the code entry and call it.
3433 __ add(Operand(edx), Immediate(Code::kHeaderSize - kHeapObjectTag));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003434 __ call(Operand(edx));
3435
3436 // Drop arguments and come back to JS mode.
3437 __ LeaveApiExitFrame();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003438
3439 // Check the result.
3440 Label success;
3441 __ cmp(eax, NativeRegExpMacroAssembler::SUCCESS);
Ben Murdoch257744e2011-11-30 15:57:28 +00003442 __ j(equal, &success);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003443 Label failure;
3444 __ cmp(eax, NativeRegExpMacroAssembler::FAILURE);
Ben Murdoch257744e2011-11-30 15:57:28 +00003445 __ j(equal, &failure);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003446 __ cmp(eax, NativeRegExpMacroAssembler::EXCEPTION);
3447 // If not exception it can only be retry. Handle that in the runtime system.
3448 __ j(not_equal, &runtime);
3449 // Result must now be exception. If there is no pending exception already a
3450 // stack overflow (on the backtrack stack) was detected in RegExp code but
3451 // haven't created the exception yet. Handle that in the runtime system.
3452 // TODO(592): Rerunning the RegExp to get the stack overflow exception.
Steve Block44f0eee2011-05-26 01:26:41 +01003453 ExternalReference pending_exception(Isolate::k_pending_exception_address,
3454 masm->isolate());
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003455 __ mov(edx,
Steve Block44f0eee2011-05-26 01:26:41 +01003456 Operand::StaticVariable(ExternalReference::the_hole_value_location(
3457 masm->isolate())));
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003458 __ mov(eax, Operand::StaticVariable(pending_exception));
3459 __ cmp(edx, Operand(eax));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003460 __ j(equal, &runtime);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003461 // For exception, throw the exception again.
3462
3463 // Clear the pending exception variable.
3464 __ mov(Operand::StaticVariable(pending_exception), edx);
3465
3466 // Special handling of termination exceptions which are uncatchable
3467 // by javascript code.
Steve Block44f0eee2011-05-26 01:26:41 +01003468 __ cmp(eax, factory->termination_exception());
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003469 Label throw_termination_exception;
3470 __ j(equal, &throw_termination_exception);
3471
3472 // Handle normal exception by following handler chain.
3473 __ Throw(eax);
3474
3475 __ bind(&throw_termination_exception);
3476 __ ThrowUncatchable(TERMINATION, eax);
3477
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003478 __ bind(&failure);
Ben Murdoche0cee9b2011-05-25 10:26:03 +01003479 // For failure to match, return null.
Steve Block44f0eee2011-05-26 01:26:41 +01003480 __ mov(Operand(eax), factory->null_value());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003481 __ ret(4 * kPointerSize);
3482
3483 // Load RegExp data.
3484 __ bind(&success);
3485 __ mov(eax, Operand(esp, kJSRegExpOffset));
3486 __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset));
3487 __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset));
3488 // Calculate number of capture registers (number_of_captures + 1) * 2.
3489 STATIC_ASSERT(kSmiTag == 0);
3490 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
3491 __ add(Operand(edx), Immediate(2)); // edx was a smi.
3492
3493 // edx: Number of capture registers
3494 // Load last_match_info which is still known to be a fast case JSArray.
3495 __ mov(eax, Operand(esp, kLastMatchInfoOffset));
3496 __ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset));
3497
3498 // ebx: last_match_info backing store (FixedArray)
3499 // edx: number of capture registers
3500 // Store the capture count.
3501 __ SmiTag(edx); // Number of capture registers to smi.
3502 __ mov(FieldOperand(ebx, RegExpImpl::kLastCaptureCountOffset), edx);
3503 __ SmiUntag(edx); // Number of capture registers back from smi.
3504 // Store last subject and last input.
3505 __ mov(eax, Operand(esp, kSubjectOffset));
3506 __ mov(FieldOperand(ebx, RegExpImpl::kLastSubjectOffset), eax);
3507 __ mov(ecx, ebx);
3508 __ RecordWrite(ecx, RegExpImpl::kLastSubjectOffset, eax, edi);
3509 __ mov(eax, Operand(esp, kSubjectOffset));
3510 __ mov(FieldOperand(ebx, RegExpImpl::kLastInputOffset), eax);
3511 __ mov(ecx, ebx);
3512 __ RecordWrite(ecx, RegExpImpl::kLastInputOffset, eax, edi);
3513
3514 // Get the static offsets vector filled by the native regexp code.
3515 ExternalReference address_of_static_offsets_vector =
Steve Block44f0eee2011-05-26 01:26:41 +01003516 ExternalReference::address_of_static_offsets_vector(masm->isolate());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003517 __ mov(ecx, Immediate(address_of_static_offsets_vector));
3518
3519 // ebx: last_match_info backing store (FixedArray)
3520 // ecx: offsets vector
3521 // edx: number of capture registers
Ben Murdoch257744e2011-11-30 15:57:28 +00003522 Label next_capture, done;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003523 // Capture register counter starts from number of capture registers and
3524 // counts down until wraping after zero.
3525 __ bind(&next_capture);
3526 __ sub(Operand(edx), Immediate(1));
Ben Murdoch257744e2011-11-30 15:57:28 +00003527 __ j(negative, &done, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003528 // Read the value from the static offsets vector buffer.
3529 __ mov(edi, Operand(ecx, edx, times_int_size, 0));
3530 __ SmiTag(edi);
3531 // Store the smi value in the last match info.
3532 __ mov(FieldOperand(ebx,
3533 edx,
3534 times_pointer_size,
3535 RegExpImpl::kFirstCaptureOffset),
3536 edi);
3537 __ jmp(&next_capture);
3538 __ bind(&done);
3539
3540 // Return last match info.
3541 __ mov(eax, Operand(esp, kLastMatchInfoOffset));
3542 __ ret(4 * kPointerSize);
3543
3544 // Do the runtime call to execute the regexp.
3545 __ bind(&runtime);
3546 __ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
3547#endif // V8_INTERPRETED_REGEXP
3548}
3549
3550
Ben Murdochb0fe1622011-05-05 13:52:32 +01003551void RegExpConstructResultStub::Generate(MacroAssembler* masm) {
3552 const int kMaxInlineLength = 100;
3553 Label slowcase;
Ben Murdoch257744e2011-11-30 15:57:28 +00003554 Label done;
Ben Murdochb0fe1622011-05-05 13:52:32 +01003555 __ mov(ebx, Operand(esp, kPointerSize * 3));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00003556 __ JumpIfNotSmi(ebx, &slowcase);
Ben Murdochb0fe1622011-05-05 13:52:32 +01003557 __ cmp(Operand(ebx), Immediate(Smi::FromInt(kMaxInlineLength)));
3558 __ j(above, &slowcase);
3559 // Smi-tagging is equivalent to multiplying by 2.
3560 STATIC_ASSERT(kSmiTag == 0);
3561 STATIC_ASSERT(kSmiTagSize == 1);
3562 // Allocate RegExpResult followed by FixedArray with size in ebx.
3563 // JSArray: [Map][empty properties][Elements][Length-smi][index][input]
3564 // Elements: [Map][Length][..elements..]
3565 __ AllocateInNewSpace(JSRegExpResult::kSize + FixedArray::kHeaderSize,
3566 times_half_pointer_size,
3567 ebx, // In: Number of elements (times 2, being a smi)
3568 eax, // Out: Start of allocation (tagged).
3569 ecx, // Out: End of allocation.
3570 edx, // Scratch register
3571 &slowcase,
3572 TAG_OBJECT);
3573 // eax: Start of allocated area, object-tagged.
3574
3575 // Set JSArray map to global.regexp_result_map().
3576 // Set empty properties FixedArray.
3577 // Set elements to point to FixedArray allocated right after the JSArray.
3578 // Interleave operations for better latency.
3579 __ mov(edx, ContextOperand(esi, Context::GLOBAL_INDEX));
Steve Block44f0eee2011-05-26 01:26:41 +01003580 Factory* factory = masm->isolate()->factory();
3581 __ mov(ecx, Immediate(factory->empty_fixed_array()));
Ben Murdochb0fe1622011-05-05 13:52:32 +01003582 __ lea(ebx, Operand(eax, JSRegExpResult::kSize));
3583 __ mov(edx, FieldOperand(edx, GlobalObject::kGlobalContextOffset));
3584 __ mov(FieldOperand(eax, JSObject::kElementsOffset), ebx);
3585 __ mov(FieldOperand(eax, JSObject::kPropertiesOffset), ecx);
3586 __ mov(edx, ContextOperand(edx, Context::REGEXP_RESULT_MAP_INDEX));
3587 __ mov(FieldOperand(eax, HeapObject::kMapOffset), edx);
3588
3589 // Set input, index and length fields from arguments.
3590 __ mov(ecx, Operand(esp, kPointerSize * 1));
3591 __ mov(FieldOperand(eax, JSRegExpResult::kInputOffset), ecx);
3592 __ mov(ecx, Operand(esp, kPointerSize * 2));
3593 __ mov(FieldOperand(eax, JSRegExpResult::kIndexOffset), ecx);
3594 __ mov(ecx, Operand(esp, kPointerSize * 3));
3595 __ mov(FieldOperand(eax, JSArray::kLengthOffset), ecx);
3596
3597 // Fill out the elements FixedArray.
3598 // eax: JSArray.
3599 // ebx: FixedArray.
3600 // ecx: Number of elements in array, as smi.
3601
3602 // Set map.
3603 __ mov(FieldOperand(ebx, HeapObject::kMapOffset),
Steve Block44f0eee2011-05-26 01:26:41 +01003604 Immediate(factory->fixed_array_map()));
Ben Murdochb0fe1622011-05-05 13:52:32 +01003605 // Set length.
3606 __ mov(FieldOperand(ebx, FixedArray::kLengthOffset), ecx);
3607 // Fill contents of fixed-array with the-hole.
3608 __ SmiUntag(ecx);
Steve Block44f0eee2011-05-26 01:26:41 +01003609 __ mov(edx, Immediate(factory->the_hole_value()));
Ben Murdochb0fe1622011-05-05 13:52:32 +01003610 __ lea(ebx, FieldOperand(ebx, FixedArray::kHeaderSize));
3611 // Fill fixed array elements with hole.
3612 // eax: JSArray.
3613 // ecx: Number of elements to fill.
3614 // ebx: Start of elements in FixedArray.
3615 // edx: the hole.
3616 Label loop;
3617 __ test(ecx, Operand(ecx));
3618 __ bind(&loop);
Ben Murdoch257744e2011-11-30 15:57:28 +00003619 __ j(less_equal, &done, Label::kNear); // Jump if ecx is negative or zero.
Ben Murdochb0fe1622011-05-05 13:52:32 +01003620 __ sub(Operand(ecx), Immediate(1));
3621 __ mov(Operand(ebx, ecx, times_pointer_size, 0), edx);
3622 __ jmp(&loop);
3623
3624 __ bind(&done);
3625 __ ret(3 * kPointerSize);
3626
3627 __ bind(&slowcase);
3628 __ TailCallRuntime(Runtime::kRegExpConstructResult, 3, 1);
3629}
3630
3631
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003632void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
3633 Register object,
3634 Register result,
3635 Register scratch1,
3636 Register scratch2,
3637 bool object_is_smi,
3638 Label* not_found) {
3639 // Use of registers. Register result is used as a temporary.
3640 Register number_string_cache = result;
3641 Register mask = scratch1;
3642 Register scratch = scratch2;
3643
3644 // Load the number string cache.
Steve Block44f0eee2011-05-26 01:26:41 +01003645 ExternalReference roots_address =
3646 ExternalReference::roots_address(masm->isolate());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003647 __ mov(scratch, Immediate(Heap::kNumberStringCacheRootIndex));
3648 __ mov(number_string_cache,
3649 Operand::StaticArray(scratch, times_pointer_size, roots_address));
3650 // Make the hash mask from the length of the number string cache. It
3651 // contains two elements (number and string) for each cache entry.
3652 __ mov(mask, FieldOperand(number_string_cache, FixedArray::kLengthOffset));
3653 __ shr(mask, kSmiTagSize + 1); // Untag length and divide it by two.
3654 __ sub(Operand(mask), Immediate(1)); // Make mask.
3655
3656 // Calculate the entry in the number string cache. The hash value in the
3657 // number string cache for smis is just the smi value, and the hash for
3658 // doubles is the xor of the upper and lower words. See
3659 // Heap::GetNumberStringCache.
Ben Murdoch257744e2011-11-30 15:57:28 +00003660 Label smi_hash_calculated;
3661 Label load_result_from_cache;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003662 if (object_is_smi) {
3663 __ mov(scratch, object);
3664 __ SmiUntag(scratch);
3665 } else {
Ben Murdoch257744e2011-11-30 15:57:28 +00003666 Label not_smi;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003667 STATIC_ASSERT(kSmiTag == 0);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00003668 __ JumpIfNotSmi(object, &not_smi, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003669 __ mov(scratch, object);
3670 __ SmiUntag(scratch);
Ben Murdoch257744e2011-11-30 15:57:28 +00003671 __ jmp(&smi_hash_calculated, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003672 __ bind(&not_smi);
3673 __ cmp(FieldOperand(object, HeapObject::kMapOffset),
Steve Block44f0eee2011-05-26 01:26:41 +01003674 masm->isolate()->factory()->heap_number_map());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003675 __ j(not_equal, not_found);
3676 STATIC_ASSERT(8 == kDoubleSize);
3677 __ mov(scratch, FieldOperand(object, HeapNumber::kValueOffset));
3678 __ xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4));
3679 // Object is heap number and hash is now in scratch. Calculate cache index.
3680 __ and_(scratch, Operand(mask));
3681 Register index = scratch;
3682 Register probe = mask;
3683 __ mov(probe,
3684 FieldOperand(number_string_cache,
3685 index,
3686 times_twice_pointer_size,
3687 FixedArray::kHeaderSize));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00003688 __ JumpIfSmi(probe, not_found);
Ben Murdoch8b112d22011-06-08 16:22:53 +01003689 if (CpuFeatures::IsSupported(SSE2)) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003690 CpuFeatures::Scope fscope(SSE2);
3691 __ movdbl(xmm0, FieldOperand(object, HeapNumber::kValueOffset));
3692 __ movdbl(xmm1, FieldOperand(probe, HeapNumber::kValueOffset));
3693 __ ucomisd(xmm0, xmm1);
3694 } else {
3695 __ fld_d(FieldOperand(object, HeapNumber::kValueOffset));
3696 __ fld_d(FieldOperand(probe, HeapNumber::kValueOffset));
3697 __ FCmp();
3698 }
3699 __ j(parity_even, not_found); // Bail out if NaN is involved.
3700 __ j(not_equal, not_found); // The cache did not contain this value.
Ben Murdoch257744e2011-11-30 15:57:28 +00003701 __ jmp(&load_result_from_cache, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003702 }
3703
3704 __ bind(&smi_hash_calculated);
3705 // Object is smi and hash is now in scratch. Calculate cache index.
3706 __ and_(scratch, Operand(mask));
3707 Register index = scratch;
3708 // Check if the entry is the smi we are looking for.
3709 __ cmp(object,
3710 FieldOperand(number_string_cache,
3711 index,
3712 times_twice_pointer_size,
3713 FixedArray::kHeaderSize));
3714 __ j(not_equal, not_found);
3715
3716 // Get the result from the cache.
3717 __ bind(&load_result_from_cache);
3718 __ mov(result,
3719 FieldOperand(number_string_cache,
3720 index,
3721 times_twice_pointer_size,
3722 FixedArray::kHeaderSize + kPointerSize));
Steve Block44f0eee2011-05-26 01:26:41 +01003723 Counters* counters = masm->isolate()->counters();
3724 __ IncrementCounter(counters->number_to_string_native(), 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003725}
3726
3727
3728void NumberToStringStub::Generate(MacroAssembler* masm) {
3729 Label runtime;
3730
3731 __ mov(ebx, Operand(esp, kPointerSize));
3732
3733 // Generate code to lookup number in the number string cache.
3734 GenerateLookupNumberStringCache(masm, ebx, eax, ecx, edx, false, &runtime);
3735 __ ret(1 * kPointerSize);
3736
3737 __ bind(&runtime);
3738 // Handle number to string in the runtime system if not found in the cache.
3739 __ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1);
3740}
3741
3742
3743static int NegativeComparisonResult(Condition cc) {
3744 ASSERT(cc != equal);
3745 ASSERT((cc == less) || (cc == less_equal)
3746 || (cc == greater) || (cc == greater_equal));
3747 return (cc == greater || cc == greater_equal) ? LESS : GREATER;
3748}
3749
3750void CompareStub::Generate(MacroAssembler* masm) {
3751 ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg));
3752
3753 Label check_unequal_objects, done;
3754
Kristian Monsen0d5e1162010-09-30 15:31:59 +01003755 // Compare two smis if required.
3756 if (include_smi_compare_) {
3757 Label non_smi, smi_done;
3758 __ mov(ecx, Operand(edx));
3759 __ or_(ecx, Operand(eax));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00003760 __ JumpIfNotSmi(ecx, &non_smi);
Kristian Monsen0d5e1162010-09-30 15:31:59 +01003761 __ sub(edx, Operand(eax)); // Return on the result of the subtraction.
3762 __ j(no_overflow, &smi_done);
Ben Murdochf87a2032010-10-22 12:50:53 +01003763 __ not_(edx); // Correct sign in case of overflow. edx is never 0 here.
Kristian Monsen0d5e1162010-09-30 15:31:59 +01003764 __ bind(&smi_done);
3765 __ mov(eax, edx);
3766 __ ret(0);
3767 __ bind(&non_smi);
3768 } else if (FLAG_debug_code) {
3769 __ mov(ecx, Operand(edx));
3770 __ or_(ecx, Operand(eax));
3771 __ test(ecx, Immediate(kSmiTagMask));
3772 __ Assert(not_zero, "Unexpected smi operands.");
3773 }
3774
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003775 // NOTICE! This code is only reached after a smi-fast-case check, so
3776 // it is certain that at least one operand isn't a smi.
3777
3778 // Identical objects can be compared fast, but there are some tricky cases
3779 // for NaN and undefined.
3780 {
3781 Label not_identical;
3782 __ cmp(eax, Operand(edx));
3783 __ j(not_equal, &not_identical);
3784
3785 if (cc_ != equal) {
3786 // Check for undefined. undefined OP undefined is false even though
3787 // undefined == undefined.
Ben Murdoch257744e2011-11-30 15:57:28 +00003788 Label check_for_nan;
Steve Block44f0eee2011-05-26 01:26:41 +01003789 __ cmp(edx, masm->isolate()->factory()->undefined_value());
Ben Murdoch257744e2011-11-30 15:57:28 +00003790 __ j(not_equal, &check_for_nan, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003791 __ Set(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc_))));
3792 __ ret(0);
3793 __ bind(&check_for_nan);
3794 }
3795
Steve Block44f0eee2011-05-26 01:26:41 +01003796 // Test for NaN. Sadly, we can't just compare to factory->nan_value(),
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003797 // so we do the second best thing - test it ourselves.
3798 // Note: if cc_ != equal, never_nan_nan_ is not used.
3799 if (never_nan_nan_ && (cc_ == equal)) {
3800 __ Set(eax, Immediate(Smi::FromInt(EQUAL)));
3801 __ ret(0);
3802 } else {
Ben Murdoch257744e2011-11-30 15:57:28 +00003803 Label heap_number;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003804 __ cmp(FieldOperand(edx, HeapObject::kMapOffset),
Steve Block44f0eee2011-05-26 01:26:41 +01003805 Immediate(masm->isolate()->factory()->heap_number_map()));
Ben Murdoch257744e2011-11-30 15:57:28 +00003806 __ j(equal, &heap_number, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003807 if (cc_ != equal) {
3808 // Call runtime on identical JSObjects. Otherwise return equal.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00003809 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003810 __ j(above_equal, &not_identical);
3811 }
3812 __ Set(eax, Immediate(Smi::FromInt(EQUAL)));
3813 __ ret(0);
3814
3815 __ bind(&heap_number);
3816 // It is a heap number, so return non-equal if it's NaN and equal if
3817 // it's not NaN.
3818 // The representation of NaN values has all exponent bits (52..62) set,
3819 // and not all mantissa bits (0..51) clear.
3820 // We only accept QNaNs, which have bit 51 set.
3821 // Read top bits of double representation (second word of value).
3822
3823 // Value is a QNaN if value & kQuietNaNMask == kQuietNaNMask, i.e.,
3824 // all bits in the mask are set. We only need to check the word
3825 // that contains the exponent and high bit of the mantissa.
3826 STATIC_ASSERT(((kQuietNaNHighBitsMask << 1) & 0x80000000u) != 0);
3827 __ mov(edx, FieldOperand(edx, HeapNumber::kExponentOffset));
Steve Block9fac8402011-05-12 15:51:54 +01003828 __ Set(eax, Immediate(0));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003829 // Shift value and mask so kQuietNaNHighBitsMask applies to topmost
3830 // bits.
3831 __ add(edx, Operand(edx));
3832 __ cmp(edx, kQuietNaNHighBitsMask << 1);
3833 if (cc_ == equal) {
3834 STATIC_ASSERT(EQUAL != 1);
3835 __ setcc(above_equal, eax);
3836 __ ret(0);
3837 } else {
Ben Murdoch257744e2011-11-30 15:57:28 +00003838 Label nan;
3839 __ j(above_equal, &nan, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003840 __ Set(eax, Immediate(Smi::FromInt(EQUAL)));
3841 __ ret(0);
3842 __ bind(&nan);
3843 __ Set(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc_))));
3844 __ ret(0);
3845 }
3846 }
3847
3848 __ bind(&not_identical);
3849 }
3850
3851 // Strict equality can quickly decide whether objects are equal.
3852 // Non-strict object equality is slower, so it is handled later in the stub.
3853 if (cc_ == equal && strict_) {
3854 Label slow; // Fallthrough label.
Ben Murdoch257744e2011-11-30 15:57:28 +00003855 Label not_smis;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003856 // If we're doing a strict equality comparison, we don't have to do
3857 // type conversion, so we generate code to do fast comparison for objects
3858 // and oddballs. Non-smi numbers and strings still go through the usual
3859 // slow-case code.
3860 // If either is a Smi (we know that not both are), then they can only
3861 // be equal if the other is a HeapNumber. If so, use the slow case.
3862 STATIC_ASSERT(kSmiTag == 0);
3863 ASSERT_EQ(0, Smi::FromInt(0));
3864 __ mov(ecx, Immediate(kSmiTagMask));
3865 __ and_(ecx, Operand(eax));
3866 __ test(ecx, Operand(edx));
Ben Murdoch257744e2011-11-30 15:57:28 +00003867 __ j(not_zero, &not_smis, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003868 // One operand is a smi.
3869
3870 // Check whether the non-smi is a heap number.
3871 STATIC_ASSERT(kSmiTagMask == 1);
3872 // ecx still holds eax & kSmiTag, which is either zero or one.
3873 __ sub(Operand(ecx), Immediate(0x01));
3874 __ mov(ebx, edx);
3875 __ xor_(ebx, Operand(eax));
3876 __ and_(ebx, Operand(ecx)); // ebx holds either 0 or eax ^ edx.
3877 __ xor_(ebx, Operand(eax));
3878 // if eax was smi, ebx is now edx, else eax.
3879
3880 // Check if the non-smi operand is a heap number.
3881 __ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
Steve Block44f0eee2011-05-26 01:26:41 +01003882 Immediate(masm->isolate()->factory()->heap_number_map()));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003883 // If heap number, handle it in the slow case.
3884 __ j(equal, &slow);
3885 // Return non-equal (ebx is not zero)
3886 __ mov(eax, ebx);
3887 __ ret(0);
3888
3889 __ bind(&not_smis);
3890 // If either operand is a JSObject or an oddball value, then they are not
3891 // equal since their pointers are different
3892 // There is no test for undetectability in strict equality.
3893
3894 // Get the type of the first operand.
3895 // If the first object is a JS object, we have done pointer comparison.
Ben Murdoch257744e2011-11-30 15:57:28 +00003896 Label first_non_object;
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00003897 STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
3898 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
Ben Murdoch257744e2011-11-30 15:57:28 +00003899 __ j(below, &first_non_object, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003900
3901 // Return non-zero (eax is not zero)
Ben Murdoch257744e2011-11-30 15:57:28 +00003902 Label return_not_equal;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003903 STATIC_ASSERT(kHeapObjectTag != 0);
3904 __ bind(&return_not_equal);
3905 __ ret(0);
3906
3907 __ bind(&first_non_object);
3908 // Check for oddballs: true, false, null, undefined.
3909 __ CmpInstanceType(ecx, ODDBALL_TYPE);
3910 __ j(equal, &return_not_equal);
3911
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00003912 __ CmpObjectType(edx, FIRST_SPEC_OBJECT_TYPE, ecx);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003913 __ j(above_equal, &return_not_equal);
3914
3915 // Check for oddballs: true, false, null, undefined.
3916 __ CmpInstanceType(ecx, ODDBALL_TYPE);
3917 __ j(equal, &return_not_equal);
3918
3919 // Fall through to the general case.
3920 __ bind(&slow);
3921 }
3922
3923 // Generate the number comparison code.
3924 if (include_number_compare_) {
3925 Label non_number_comparison;
3926 Label unordered;
Ben Murdoch8b112d22011-06-08 16:22:53 +01003927 if (CpuFeatures::IsSupported(SSE2)) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003928 CpuFeatures::Scope use_sse2(SSE2);
3929 CpuFeatures::Scope use_cmov(CMOV);
3930
3931 FloatingPointHelper::LoadSSE2Operands(masm, &non_number_comparison);
3932 __ ucomisd(xmm0, xmm1);
3933
3934 // Don't base result on EFLAGS when a NaN is involved.
Ben Murdoch257744e2011-11-30 15:57:28 +00003935 __ j(parity_even, &unordered);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003936 // Return a result of -1, 0, or 1, based on EFLAGS.
3937 __ mov(eax, 0); // equal
3938 __ mov(ecx, Immediate(Smi::FromInt(1)));
3939 __ cmov(above, eax, Operand(ecx));
3940 __ mov(ecx, Immediate(Smi::FromInt(-1)));
3941 __ cmov(below, eax, Operand(ecx));
3942 __ ret(0);
3943 } else {
3944 FloatingPointHelper::CheckFloatOperands(
3945 masm, &non_number_comparison, ebx);
3946 FloatingPointHelper::LoadFloatOperand(masm, eax);
3947 FloatingPointHelper::LoadFloatOperand(masm, edx);
3948 __ FCmp();
3949
3950 // Don't base result on EFLAGS when a NaN is involved.
Ben Murdoch257744e2011-11-30 15:57:28 +00003951 __ j(parity_even, &unordered);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003952
Ben Murdoch257744e2011-11-30 15:57:28 +00003953 Label below_label, above_label;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003954 // Return a result of -1, 0, or 1, based on EFLAGS.
Ben Murdoch257744e2011-11-30 15:57:28 +00003955 __ j(below, &below_label);
3956 __ j(above, &above_label);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003957
Steve Block9fac8402011-05-12 15:51:54 +01003958 __ Set(eax, Immediate(0));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01003959 __ ret(0);
3960
3961 __ bind(&below_label);
3962 __ mov(eax, Immediate(Smi::FromInt(-1)));
3963 __ ret(0);
3964
3965 __ bind(&above_label);
3966 __ mov(eax, Immediate(Smi::FromInt(1)));
3967 __ ret(0);
3968 }
3969
3970 // If one of the numbers was NaN, then the result is always false.
3971 // The cc is never not-equal.
3972 __ bind(&unordered);
3973 ASSERT(cc_ != not_equal);
3974 if (cc_ == less || cc_ == less_equal) {
3975 __ mov(eax, Immediate(Smi::FromInt(1)));
3976 } else {
3977 __ mov(eax, Immediate(Smi::FromInt(-1)));
3978 }
3979 __ ret(0);
3980
3981 // The number comparison code did not provide a valid result.
3982 __ bind(&non_number_comparison);
3983 }
3984
3985 // Fast negative check for symbol-to-symbol equality.
3986 Label check_for_strings;
3987 if (cc_ == equal) {
3988 BranchIfNonSymbol(masm, &check_for_strings, eax, ecx);
3989 BranchIfNonSymbol(masm, &check_for_strings, edx, ecx);
3990
3991 // We've already checked for object identity, so if both operands
3992 // are symbols they aren't equal. Register eax already holds a
3993 // non-zero value, which indicates not equal, so just return.
3994 __ ret(0);
3995 }
3996
3997 __ bind(&check_for_strings);
3998
3999 __ JumpIfNotBothSequentialAsciiStrings(edx, eax, ecx, ebx,
4000 &check_unequal_objects);
4001
4002 // Inline comparison of ascii strings.
Ben Murdoch257744e2011-11-30 15:57:28 +00004003 if (cc_ == equal) {
4004 StringCompareStub::GenerateFlatAsciiStringEquals(masm,
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004005 edx,
4006 eax,
4007 ecx,
Ben Murdoch257744e2011-11-30 15:57:28 +00004008 ebx);
4009 } else {
4010 StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
4011 edx,
4012 eax,
4013 ecx,
4014 ebx,
4015 edi);
4016 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004017#ifdef DEBUG
4018 __ Abort("Unexpected fall-through from string comparison");
4019#endif
4020
4021 __ bind(&check_unequal_objects);
4022 if (cc_ == equal && !strict_) {
4023 // Non-strict equality. Objects are unequal if
4024 // they are both JSObjects and not undetectable,
4025 // and their pointers are different.
Ben Murdoch257744e2011-11-30 15:57:28 +00004026 Label not_both_objects;
4027 Label return_unequal;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004028 // At most one is a smi, so we can test for smi by adding the two.
4029 // A smi plus a heap object has the low bit set, a heap object plus
4030 // a heap object has the low bit clear.
4031 STATIC_ASSERT(kSmiTag == 0);
4032 STATIC_ASSERT(kSmiTagMask == 1);
4033 __ lea(ecx, Operand(eax, edx, times_1, 0));
4034 __ test(ecx, Immediate(kSmiTagMask));
Ben Murdoch257744e2011-11-30 15:57:28 +00004035 __ j(not_zero, &not_both_objects, Label::kNear);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004036 __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
Ben Murdoch257744e2011-11-30 15:57:28 +00004037 __ j(below, &not_both_objects, Label::kNear);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004038 __ CmpObjectType(edx, FIRST_SPEC_OBJECT_TYPE, ebx);
Ben Murdoch257744e2011-11-30 15:57:28 +00004039 __ j(below, &not_both_objects, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004040 // We do not bail out after this point. Both are JSObjects, and
4041 // they are equal if and only if both are undetectable.
4042 // The and of the undetectable flags is 1 if and only if they are equal.
4043 __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
4044 1 << Map::kIsUndetectable);
Ben Murdoch257744e2011-11-30 15:57:28 +00004045 __ j(zero, &return_unequal, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004046 __ test_b(FieldOperand(ebx, Map::kBitFieldOffset),
4047 1 << Map::kIsUndetectable);
Ben Murdoch257744e2011-11-30 15:57:28 +00004048 __ j(zero, &return_unequal, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004049 // The objects are both undetectable, so they both compare as the value
4050 // undefined, and are equal.
4051 __ Set(eax, Immediate(EQUAL));
4052 __ bind(&return_unequal);
4053 // Return non-equal by returning the non-zero object pointer in eax,
4054 // or return equal if we fell through to here.
4055 __ ret(0); // rax, rdx were pushed
4056 __ bind(&not_both_objects);
4057 }
4058
4059 // Push arguments below the return address.
4060 __ pop(ecx);
4061 __ push(edx);
4062 __ push(eax);
4063
4064 // Figure out which native to call and setup the arguments.
4065 Builtins::JavaScript builtin;
4066 if (cc_ == equal) {
4067 builtin = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
4068 } else {
4069 builtin = Builtins::COMPARE;
4070 __ push(Immediate(Smi::FromInt(NegativeComparisonResult(cc_))));
4071 }
4072
4073 // Restore return address on the stack.
4074 __ push(ecx);
4075
4076 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
4077 // tagged as a small integer.
4078 __ InvokeBuiltin(builtin, JUMP_FUNCTION);
4079}
4080
4081
4082void CompareStub::BranchIfNonSymbol(MacroAssembler* masm,
4083 Label* label,
4084 Register object,
4085 Register scratch) {
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004086 __ JumpIfSmi(object, label);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004087 __ mov(scratch, FieldOperand(object, HeapObject::kMapOffset));
4088 __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
4089 __ and_(scratch, kIsSymbolMask | kIsNotStringMask);
4090 __ cmp(scratch, kSymbolTag | kStringTag);
4091 __ j(not_equal, label);
4092}
4093
4094
4095void StackCheckStub::Generate(MacroAssembler* masm) {
Ben Murdochf87a2032010-10-22 12:50:53 +01004096 __ TailCallRuntime(Runtime::kStackGuard, 0, 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004097}
4098
4099
4100void CallFunctionStub::Generate(MacroAssembler* masm) {
4101 Label slow;
4102
Ben Murdoch257744e2011-11-30 15:57:28 +00004103 // The receiver might implicitly be the global object. This is
4104 // indicated by passing the hole as the receiver to the call
4105 // function stub.
4106 if (ReceiverMightBeImplicit()) {
4107 Label call;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004108 // Get the receiver from the stack.
4109 // +1 ~ return address
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004110 __ mov(eax, Operand(esp, (argc_ + 1) * kPointerSize));
Ben Murdoch257744e2011-11-30 15:57:28 +00004111 // Call as function is indicated with the hole.
4112 __ cmp(eax, masm->isolate()->factory()->the_hole_value());
4113 __ j(not_equal, &call, Label::kNear);
4114 // Patch the receiver on the stack with the global receiver object.
4115 __ mov(ebx, GlobalObjectOperand());
4116 __ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalReceiverOffset));
4117 __ mov(Operand(esp, (argc_ + 1) * kPointerSize), ebx);
4118 __ bind(&call);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004119 }
4120
4121 // Get the function to call from the stack.
4122 // +2 ~ receiver, return address
4123 __ mov(edi, Operand(esp, (argc_ + 2) * kPointerSize));
4124
4125 // Check that the function really is a JavaScript function.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004126 __ JumpIfSmi(edi, &slow);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004127 // Goto slow case if we do not have a function.
4128 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
Ben Murdoch257744e2011-11-30 15:57:28 +00004129 __ j(not_equal, &slow);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004130
4131 // Fast-case: Just invoke the function.
4132 ParameterCount actual(argc_);
Ben Murdoch257744e2011-11-30 15:57:28 +00004133
4134 if (ReceiverMightBeImplicit()) {
4135 Label call_as_function;
4136 __ cmp(eax, masm->isolate()->factory()->the_hole_value());
4137 __ j(equal, &call_as_function);
4138 __ InvokeFunction(edi,
4139 actual,
4140 JUMP_FUNCTION,
4141 NullCallWrapper(),
4142 CALL_AS_METHOD);
4143 __ bind(&call_as_function);
4144 }
4145 __ InvokeFunction(edi,
4146 actual,
4147 JUMP_FUNCTION,
4148 NullCallWrapper(),
4149 CALL_AS_FUNCTION);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004150
4151 // Slow-case: Non-function called.
4152 __ bind(&slow);
4153 // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
4154 // of the original receiver from the call site).
4155 __ mov(Operand(esp, (argc_ + 1) * kPointerSize), edi);
4156 __ Set(eax, Immediate(argc_));
4157 __ Set(ebx, Immediate(0));
4158 __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION);
Steve Block44f0eee2011-05-26 01:26:41 +01004159 Handle<Code> adaptor =
4160 masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004161 __ SetCallKind(ecx, CALL_AS_METHOD);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004162 __ jmp(adaptor, RelocInfo::CODE_TARGET);
4163}
4164
4165
Steve Block44f0eee2011-05-26 01:26:41 +01004166bool CEntryStub::NeedsImmovableCode() {
4167 return false;
4168}
4169
4170
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004171void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004172 __ Throw(eax);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004173}
4174
4175
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004176void CEntryStub::GenerateCore(MacroAssembler* masm,
4177 Label* throw_normal_exception,
4178 Label* throw_termination_exception,
4179 Label* throw_out_of_memory_exception,
4180 bool do_gc,
Steve Block1e0659c2011-05-24 12:43:12 +01004181 bool always_allocate_scope) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004182 // eax: result parameter for PerformGC, if any
4183 // ebx: pointer to C function (C callee-saved)
4184 // ebp: frame pointer (restored after C call)
4185 // esp: stack pointer (restored after C call)
4186 // edi: number of arguments including receiver (C callee-saved)
4187 // esi: pointer to the first argument (C callee-saved)
4188
4189 // Result returned in eax, or eax+edx if result_size_ is 2.
4190
4191 // Check stack alignment.
4192 if (FLAG_debug_code) {
4193 __ CheckStackAlignment();
4194 }
4195
4196 if (do_gc) {
4197 // Pass failure code returned from last attempt as first argument to
4198 // PerformGC. No need to use PrepareCallCFunction/CallCFunction here as the
4199 // stack alignment is known to be correct. This function takes one argument
4200 // which is passed on the stack, and we know that the stack has been
4201 // prepared to pass at least one argument.
4202 __ mov(Operand(esp, 0 * kPointerSize), eax); // Result.
4203 __ call(FUNCTION_ADDR(Runtime::PerformGC), RelocInfo::RUNTIME_ENTRY);
4204 }
4205
4206 ExternalReference scope_depth =
Steve Block44f0eee2011-05-26 01:26:41 +01004207 ExternalReference::heap_always_allocate_scope_depth(masm->isolate());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004208 if (always_allocate_scope) {
4209 __ inc(Operand::StaticVariable(scope_depth));
4210 }
4211
4212 // Call C function.
4213 __ mov(Operand(esp, 0 * kPointerSize), edi); // argc.
4214 __ mov(Operand(esp, 1 * kPointerSize), esi); // argv.
Steve Block44f0eee2011-05-26 01:26:41 +01004215 __ mov(Operand(esp, 2 * kPointerSize),
4216 Immediate(ExternalReference::isolate_address()));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004217 __ call(Operand(ebx));
4218 // Result is in eax or edx:eax - do not destroy these registers!
4219
4220 if (always_allocate_scope) {
4221 __ dec(Operand::StaticVariable(scope_depth));
4222 }
4223
4224 // Make sure we're not trying to return 'the hole' from the runtime
4225 // call as this may lead to crashes in the IC code later.
4226 if (FLAG_debug_code) {
Ben Murdoch257744e2011-11-30 15:57:28 +00004227 Label okay;
Steve Block44f0eee2011-05-26 01:26:41 +01004228 __ cmp(eax, masm->isolate()->factory()->the_hole_value());
Ben Murdoch257744e2011-11-30 15:57:28 +00004229 __ j(not_equal, &okay, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004230 __ int3();
4231 __ bind(&okay);
4232 }
4233
4234 // Check for failure result.
4235 Label failure_returned;
4236 STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
4237 __ lea(ecx, Operand(eax, 1));
4238 // Lower 2 bits of ecx are 0 iff eax has failure tag.
4239 __ test(ecx, Immediate(kFailureTagMask));
Ben Murdoch257744e2011-11-30 15:57:28 +00004240 __ j(zero, &failure_returned);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004241
Steve Block44f0eee2011-05-26 01:26:41 +01004242 ExternalReference pending_exception_address(
4243 Isolate::k_pending_exception_address, masm->isolate());
Steve Block1e0659c2011-05-24 12:43:12 +01004244
4245 // Check that there is no pending exception, otherwise we
4246 // should have returned some failure value.
4247 if (FLAG_debug_code) {
4248 __ push(edx);
4249 __ mov(edx, Operand::StaticVariable(
Steve Block44f0eee2011-05-26 01:26:41 +01004250 ExternalReference::the_hole_value_location(masm->isolate())));
Ben Murdoch257744e2011-11-30 15:57:28 +00004251 Label okay;
Steve Block1e0659c2011-05-24 12:43:12 +01004252 __ cmp(edx, Operand::StaticVariable(pending_exception_address));
4253 // Cannot use check here as it attempts to generate call into runtime.
Ben Murdoch257744e2011-11-30 15:57:28 +00004254 __ j(equal, &okay, Label::kNear);
Steve Block1e0659c2011-05-24 12:43:12 +01004255 __ int3();
4256 __ bind(&okay);
4257 __ pop(edx);
4258 }
4259
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004260 // Exit the JavaScript to C++ exit frame.
Ben Murdochb0fe1622011-05-05 13:52:32 +01004261 __ LeaveExitFrame(save_doubles_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004262 __ ret(0);
4263
4264 // Handling of failure.
4265 __ bind(&failure_returned);
4266
4267 Label retry;
4268 // If the returned exception is RETRY_AFTER_GC continue at retry label
4269 STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0);
4270 __ test(eax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
Ben Murdoch257744e2011-11-30 15:57:28 +00004271 __ j(zero, &retry);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004272
4273 // Special handling of out of memory exceptions.
4274 __ cmp(eax, reinterpret_cast<int32_t>(Failure::OutOfMemoryException()));
4275 __ j(equal, throw_out_of_memory_exception);
4276
4277 // Retrieve the pending exception and clear the variable.
Steve Block44f0eee2011-05-26 01:26:41 +01004278 ExternalReference the_hole_location =
4279 ExternalReference::the_hole_value_location(masm->isolate());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004280 __ mov(eax, Operand::StaticVariable(pending_exception_address));
Steve Block44f0eee2011-05-26 01:26:41 +01004281 __ mov(edx, Operand::StaticVariable(the_hole_location));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004282 __ mov(Operand::StaticVariable(pending_exception_address), edx);
4283
4284 // Special handling of termination exceptions which are uncatchable
4285 // by javascript code.
Steve Block44f0eee2011-05-26 01:26:41 +01004286 __ cmp(eax, masm->isolate()->factory()->termination_exception());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004287 __ j(equal, throw_termination_exception);
4288
4289 // Handle normal exception.
4290 __ jmp(throw_normal_exception);
4291
4292 // Retry.
4293 __ bind(&retry);
4294}
4295
4296
4297void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
4298 UncatchableExceptionType type) {
Ben Murdoche0cee9b2011-05-25 10:26:03 +01004299 __ ThrowUncatchable(type, eax);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004300}
4301
4302
4303void CEntryStub::Generate(MacroAssembler* masm) {
4304 // eax: number of arguments including receiver
4305 // ebx: pointer to C function (C callee-saved)
4306 // ebp: frame pointer (restored after C call)
4307 // esp: stack pointer (restored after C call)
4308 // esi: current context (C callee-saved)
4309 // edi: JS function of the caller (C callee-saved)
4310
4311 // NOTE: Invocations of builtins may return failure objects instead
4312 // of a proper result. The builtin entry handles this by performing
4313 // a garbage collection and retrying the builtin (twice).
4314
4315 // Enter the exit frame that transitions from JavaScript to C++.
Ben Murdochb0fe1622011-05-05 13:52:32 +01004316 __ EnterExitFrame(save_doubles_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004317
4318 // eax: result parameter for PerformGC, if any (setup below)
4319 // ebx: pointer to builtin function (C callee-saved)
4320 // ebp: frame pointer (restored after C call)
4321 // esp: stack pointer (restored after C call)
4322 // edi: number of arguments including receiver (C callee-saved)
4323 // esi: argv pointer (C callee-saved)
4324
4325 Label throw_normal_exception;
4326 Label throw_termination_exception;
4327 Label throw_out_of_memory_exception;
4328
4329 // Call into the runtime system.
4330 GenerateCore(masm,
4331 &throw_normal_exception,
4332 &throw_termination_exception,
4333 &throw_out_of_memory_exception,
4334 false,
4335 false);
4336
4337 // Do space-specific GC and retry runtime call.
4338 GenerateCore(masm,
4339 &throw_normal_exception,
4340 &throw_termination_exception,
4341 &throw_out_of_memory_exception,
4342 true,
4343 false);
4344
4345 // Do full GC and retry runtime call one final time.
4346 Failure* failure = Failure::InternalError();
4347 __ mov(eax, Immediate(reinterpret_cast<int32_t>(failure)));
4348 GenerateCore(masm,
4349 &throw_normal_exception,
4350 &throw_termination_exception,
4351 &throw_out_of_memory_exception,
4352 true,
4353 true);
4354
4355 __ bind(&throw_out_of_memory_exception);
4356 GenerateThrowUncatchable(masm, OUT_OF_MEMORY);
4357
4358 __ bind(&throw_termination_exception);
4359 GenerateThrowUncatchable(masm, TERMINATION);
4360
4361 __ bind(&throw_normal_exception);
4362 GenerateThrowTOS(masm);
4363}
4364
4365
4366void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
4367 Label invoke, exit;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004368 Label not_outermost_js, not_outermost_js_2;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004369
4370 // Setup frame.
4371 __ push(ebp);
4372 __ mov(ebp, Operand(esp));
4373
4374 // Push marker in two places.
4375 int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
4376 __ push(Immediate(Smi::FromInt(marker))); // context slot
4377 __ push(Immediate(Smi::FromInt(marker))); // function slot
4378 // Save callee-saved registers (C calling conventions).
4379 __ push(edi);
4380 __ push(esi);
4381 __ push(ebx);
4382
4383 // Save copies of the top frame descriptor on the stack.
Steve Block44f0eee2011-05-26 01:26:41 +01004384 ExternalReference c_entry_fp(Isolate::k_c_entry_fp_address, masm->isolate());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004385 __ push(Operand::StaticVariable(c_entry_fp));
4386
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004387 // If this is the outermost JS call, set js_entry_sp value.
Steve Block44f0eee2011-05-26 01:26:41 +01004388 ExternalReference js_entry_sp(Isolate::k_js_entry_sp_address,
4389 masm->isolate());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004390 __ cmp(Operand::StaticVariable(js_entry_sp), Immediate(0));
4391 __ j(not_equal, &not_outermost_js);
4392 __ mov(Operand::StaticVariable(js_entry_sp), ebp);
Steve Block053d10c2011-06-13 19:13:29 +01004393 __ push(Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
4394 Label cont;
4395 __ jmp(&cont);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004396 __ bind(&not_outermost_js);
Steve Block053d10c2011-06-13 19:13:29 +01004397 __ push(Immediate(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
4398 __ bind(&cont);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004399
4400 // Call a faked try-block that does the invoke.
4401 __ call(&invoke);
4402
4403 // Caught exception: Store result (exception) in the pending
4404 // exception field in the JSEnv and return a failure sentinel.
Steve Block44f0eee2011-05-26 01:26:41 +01004405 ExternalReference pending_exception(Isolate::k_pending_exception_address,
4406 masm->isolate());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004407 __ mov(Operand::StaticVariable(pending_exception), eax);
4408 __ mov(eax, reinterpret_cast<int32_t>(Failure::Exception()));
4409 __ jmp(&exit);
4410
4411 // Invoke: Link this frame into the handler chain.
4412 __ bind(&invoke);
4413 __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER);
4414
4415 // Clear any pending exceptions.
Steve Block44f0eee2011-05-26 01:26:41 +01004416 ExternalReference the_hole_location =
4417 ExternalReference::the_hole_value_location(masm->isolate());
4418 __ mov(edx, Operand::StaticVariable(the_hole_location));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004419 __ mov(Operand::StaticVariable(pending_exception), edx);
4420
4421 // Fake a receiver (NULL).
4422 __ push(Immediate(0)); // receiver
4423
4424 // Invoke the function by calling through JS entry trampoline
4425 // builtin and pop the faked function when we return. Notice that we
4426 // cannot store a reference to the trampoline code directly in this
4427 // stub, because the builtin stubs may not have been generated yet.
4428 if (is_construct) {
Steve Block44f0eee2011-05-26 01:26:41 +01004429 ExternalReference construct_entry(
4430 Builtins::kJSConstructEntryTrampoline,
4431 masm->isolate());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004432 __ mov(edx, Immediate(construct_entry));
4433 } else {
Steve Block44f0eee2011-05-26 01:26:41 +01004434 ExternalReference entry(Builtins::kJSEntryTrampoline,
4435 masm->isolate());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004436 __ mov(edx, Immediate(entry));
4437 }
4438 __ mov(edx, Operand(edx, 0)); // deref address
4439 __ lea(edx, FieldOperand(edx, Code::kHeaderSize));
4440 __ call(Operand(edx));
4441
4442 // Unlink this frame from the handler chain.
Steve Block053d10c2011-06-13 19:13:29 +01004443 __ PopTryHandler();
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004444
Steve Block053d10c2011-06-13 19:13:29 +01004445 __ bind(&exit);
Steve Block053d10c2011-06-13 19:13:29 +01004446 // Check if the current stack frame is marked as the outermost JS frame.
4447 __ pop(ebx);
4448 __ cmp(Operand(ebx),
4449 Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004450 __ j(not_equal, &not_outermost_js_2);
4451 __ mov(Operand::StaticVariable(js_entry_sp), Immediate(0));
4452 __ bind(&not_outermost_js_2);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004453
4454 // Restore the top frame descriptor from the stack.
Steve Block44f0eee2011-05-26 01:26:41 +01004455 __ pop(Operand::StaticVariable(ExternalReference(
4456 Isolate::k_c_entry_fp_address,
4457 masm->isolate())));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004458
4459 // Restore callee-saved registers (C calling conventions).
4460 __ pop(ebx);
4461 __ pop(esi);
4462 __ pop(edi);
4463 __ add(Operand(esp), Immediate(2 * kPointerSize)); // remove markers
4464
4465 // Restore frame pointer and return.
4466 __ pop(ebp);
4467 __ ret(0);
4468}
4469
4470
Ben Murdoch086aeea2011-05-13 15:57:08 +01004471// Generate stub code for instanceof.
4472// This code can patch a call site inlined cache of the instance of check,
4473// which looks like this.
4474//
4475// 81 ff XX XX XX XX cmp edi, <the hole, patched to a map>
4476// 75 0a jne <some near label>
4477// b8 XX XX XX XX mov eax, <the hole, patched to either true or false>
4478//
4479// If call site patching is requested the stack will have the delta from the
4480// return address to the cmp instruction just below the return address. This
4481// also means that call site patching can only take place with arguments in
4482// registers. TOS looks like this when call site patching is requested
4483//
4484// esp[0] : return address
4485// esp[4] : delta from return address to cmp instruction
4486//
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004487void InstanceofStub::Generate(MacroAssembler* masm) {
Ben Murdoch086aeea2011-05-13 15:57:08 +01004488 // Call site inlining and patching implies arguments in registers.
4489 ASSERT(HasArgsInRegisters() || !HasCallSiteInlineCheck());
4490
Ben Murdochb0fe1622011-05-05 13:52:32 +01004491 // Fixed register usage throughout the stub.
4492 Register object = eax; // Object (lhs).
4493 Register map = ebx; // Map of the object.
4494 Register function = edx; // Function (rhs).
4495 Register prototype = edi; // Prototype of the function.
4496 Register scratch = ecx;
4497
Ben Murdoch086aeea2011-05-13 15:57:08 +01004498 // Constants describing the call site code to patch.
4499 static const int kDeltaToCmpImmediate = 2;
4500 static const int kDeltaToMov = 8;
4501 static const int kDeltaToMovImmediate = 9;
4502 static const int8_t kCmpEdiImmediateByte1 = BitCast<int8_t, uint8_t>(0x81);
4503 static const int8_t kCmpEdiImmediateByte2 = BitCast<int8_t, uint8_t>(0xff);
4504 static const int8_t kMovEaxImmediateByte = BitCast<int8_t, uint8_t>(0xb8);
4505
Steve Block44f0eee2011-05-26 01:26:41 +01004506 ExternalReference roots_address =
4507 ExternalReference::roots_address(masm->isolate());
Ben Murdoch086aeea2011-05-13 15:57:08 +01004508
4509 ASSERT_EQ(object.code(), InstanceofStub::left().code());
4510 ASSERT_EQ(function.code(), InstanceofStub::right().code());
4511
Ben Murdochb0fe1622011-05-05 13:52:32 +01004512 // Get the object and function - they are always both needed.
4513 Label slow, not_js_object;
Ben Murdoch086aeea2011-05-13 15:57:08 +01004514 if (!HasArgsInRegisters()) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01004515 __ mov(object, Operand(esp, 2 * kPointerSize));
4516 __ mov(function, Operand(esp, 1 * kPointerSize));
4517 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004518
4519 // Check that the left hand is a JS object.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004520 __ JumpIfSmi(object, &not_js_object);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004521 __ IsObjectJSObjectType(object, map, scratch, &not_js_object);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004522
Ben Murdoch086aeea2011-05-13 15:57:08 +01004523 // If there is a call site cache don't look in the global cache, but do the
4524 // real lookup and update the call site cache.
4525 if (!HasCallSiteInlineCheck()) {
4526 // Look up the function and the map in the instanceof cache.
Ben Murdoch257744e2011-11-30 15:57:28 +00004527 Label miss;
Ben Murdoch086aeea2011-05-13 15:57:08 +01004528 __ mov(scratch, Immediate(Heap::kInstanceofCacheFunctionRootIndex));
4529 __ cmp(function,
4530 Operand::StaticArray(scratch, times_pointer_size, roots_address));
Ben Murdoch257744e2011-11-30 15:57:28 +00004531 __ j(not_equal, &miss, Label::kNear);
Ben Murdoch086aeea2011-05-13 15:57:08 +01004532 __ mov(scratch, Immediate(Heap::kInstanceofCacheMapRootIndex));
4533 __ cmp(map, Operand::StaticArray(
4534 scratch, times_pointer_size, roots_address));
Ben Murdoch257744e2011-11-30 15:57:28 +00004535 __ j(not_equal, &miss, Label::kNear);
Ben Murdoch086aeea2011-05-13 15:57:08 +01004536 __ mov(scratch, Immediate(Heap::kInstanceofCacheAnswerRootIndex));
4537 __ mov(eax, Operand::StaticArray(
4538 scratch, times_pointer_size, roots_address));
4539 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
4540 __ bind(&miss);
4541 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004542
Ben Murdochb0fe1622011-05-05 13:52:32 +01004543 // Get the prototype of the function.
4544 __ TryGetFunctionPrototype(function, prototype, scratch, &slow);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004545
4546 // Check that the function prototype is a JS object.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004547 __ JumpIfSmi(prototype, &slow);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004548 __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004549
Ben Murdoch086aeea2011-05-13 15:57:08 +01004550 // Update the global instanceof or call site inlined cache with the current
4551 // map and function. The cached answer will be set when it is known below.
4552 if (!HasCallSiteInlineCheck()) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01004553 __ mov(scratch, Immediate(Heap::kInstanceofCacheMapRootIndex));
4554 __ mov(Operand::StaticArray(scratch, times_pointer_size, roots_address), map);
4555 __ mov(scratch, Immediate(Heap::kInstanceofCacheFunctionRootIndex));
4556 __ mov(Operand::StaticArray(scratch, times_pointer_size, roots_address),
4557 function);
Ben Murdoch086aeea2011-05-13 15:57:08 +01004558 } else {
4559 // The constants for the code patching are based on no push instructions
4560 // at the call site.
4561 ASSERT(HasArgsInRegisters());
4562 // Get return address and delta to inlined map check.
4563 __ mov(scratch, Operand(esp, 0 * kPointerSize));
4564 __ sub(scratch, Operand(esp, 1 * kPointerSize));
4565 if (FLAG_debug_code) {
4566 __ cmpb(Operand(scratch, 0), kCmpEdiImmediateByte1);
4567 __ Assert(equal, "InstanceofStub unexpected call site cache (cmp 1)");
4568 __ cmpb(Operand(scratch, 1), kCmpEdiImmediateByte2);
4569 __ Assert(equal, "InstanceofStub unexpected call site cache (cmp 2)");
4570 }
4571 __ mov(Operand(scratch, kDeltaToCmpImmediate), map);
4572 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004573
Ben Murdochb0fe1622011-05-05 13:52:32 +01004574 // Loop through the prototype chain of the object looking for the function
4575 // prototype.
4576 __ mov(scratch, FieldOperand(map, Map::kPrototypeOffset));
Ben Murdoch257744e2011-11-30 15:57:28 +00004577 Label loop, is_instance, is_not_instance;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004578 __ bind(&loop);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004579 __ cmp(scratch, Operand(prototype));
Ben Murdoch257744e2011-11-30 15:57:28 +00004580 __ j(equal, &is_instance, Label::kNear);
Steve Block44f0eee2011-05-26 01:26:41 +01004581 Factory* factory = masm->isolate()->factory();
4582 __ cmp(Operand(scratch), Immediate(factory->null_value()));
Ben Murdoch257744e2011-11-30 15:57:28 +00004583 __ j(equal, &is_not_instance, Label::kNear);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004584 __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
4585 __ mov(scratch, FieldOperand(scratch, Map::kPrototypeOffset));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004586 __ jmp(&loop);
4587
4588 __ bind(&is_instance);
Ben Murdoch086aeea2011-05-13 15:57:08 +01004589 if (!HasCallSiteInlineCheck()) {
4590 __ Set(eax, Immediate(0));
4591 __ mov(scratch, Immediate(Heap::kInstanceofCacheAnswerRootIndex));
4592 __ mov(Operand::StaticArray(scratch,
4593 times_pointer_size, roots_address), eax);
4594 } else {
4595 // Get return address and delta to inlined map check.
Steve Block44f0eee2011-05-26 01:26:41 +01004596 __ mov(eax, factory->true_value());
Ben Murdoch086aeea2011-05-13 15:57:08 +01004597 __ mov(scratch, Operand(esp, 0 * kPointerSize));
4598 __ sub(scratch, Operand(esp, 1 * kPointerSize));
4599 if (FLAG_debug_code) {
4600 __ cmpb(Operand(scratch, kDeltaToMov), kMovEaxImmediateByte);
4601 __ Assert(equal, "InstanceofStub unexpected call site cache (mov)");
4602 }
4603 __ mov(Operand(scratch, kDeltaToMovImmediate), eax);
4604 if (!ReturnTrueFalseObject()) {
4605 __ Set(eax, Immediate(0));
4606 }
4607 }
4608 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004609
4610 __ bind(&is_not_instance);
Ben Murdoch086aeea2011-05-13 15:57:08 +01004611 if (!HasCallSiteInlineCheck()) {
4612 __ Set(eax, Immediate(Smi::FromInt(1)));
4613 __ mov(scratch, Immediate(Heap::kInstanceofCacheAnswerRootIndex));
4614 __ mov(Operand::StaticArray(
4615 scratch, times_pointer_size, roots_address), eax);
4616 } else {
4617 // Get return address and delta to inlined map check.
Steve Block44f0eee2011-05-26 01:26:41 +01004618 __ mov(eax, factory->false_value());
Ben Murdoch086aeea2011-05-13 15:57:08 +01004619 __ mov(scratch, Operand(esp, 0 * kPointerSize));
4620 __ sub(scratch, Operand(esp, 1 * kPointerSize));
4621 if (FLAG_debug_code) {
4622 __ cmpb(Operand(scratch, kDeltaToMov), kMovEaxImmediateByte);
4623 __ Assert(equal, "InstanceofStub unexpected call site cache (mov)");
4624 }
4625 __ mov(Operand(scratch, kDeltaToMovImmediate), eax);
4626 if (!ReturnTrueFalseObject()) {
4627 __ Set(eax, Immediate(Smi::FromInt(1)));
4628 }
4629 }
4630 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004631
4632 Label object_not_null, object_not_null_or_smi;
4633 __ bind(&not_js_object);
4634 // Before null, smi and string value checks, check that the rhs is a function
4635 // as for a non-function rhs an exception needs to be thrown.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004636 __ JumpIfSmi(function, &slow);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004637 __ CmpObjectType(function, JS_FUNCTION_TYPE, scratch);
Ben Murdoch257744e2011-11-30 15:57:28 +00004638 __ j(not_equal, &slow);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004639
4640 // Null is not instance of anything.
Steve Block44f0eee2011-05-26 01:26:41 +01004641 __ cmp(object, factory->null_value());
Ben Murdochb0fe1622011-05-05 13:52:32 +01004642 __ j(not_equal, &object_not_null);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004643 __ Set(eax, Immediate(Smi::FromInt(1)));
Ben Murdoch086aeea2011-05-13 15:57:08 +01004644 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004645
4646 __ bind(&object_not_null);
4647 // Smi values is not instance of anything.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004648 __ JumpIfNotSmi(object, &object_not_null_or_smi);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004649 __ Set(eax, Immediate(Smi::FromInt(1)));
Ben Murdoch086aeea2011-05-13 15:57:08 +01004650 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004651
4652 __ bind(&object_not_null_or_smi);
4653 // String values is not instance of anything.
4654 Condition is_string = masm->IsObjectStringType(object, scratch, scratch);
4655 __ j(NegateCondition(is_string), &slow);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004656 __ Set(eax, Immediate(Smi::FromInt(1)));
Ben Murdoch086aeea2011-05-13 15:57:08 +01004657 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004658
4659 // Slow-case: Go through the JavaScript implementation.
4660 __ bind(&slow);
Ben Murdoch086aeea2011-05-13 15:57:08 +01004661 if (!ReturnTrueFalseObject()) {
4662 // Tail call the builtin which returns 0 or 1.
4663 if (HasArgsInRegisters()) {
4664 // Push arguments below return address.
4665 __ pop(scratch);
4666 __ push(object);
4667 __ push(function);
4668 __ push(scratch);
4669 }
4670 __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
4671 } else {
4672 // Call the builtin and convert 0/1 to true/false.
4673 __ EnterInternalFrame();
Ben Murdochb0fe1622011-05-05 13:52:32 +01004674 __ push(object);
4675 __ push(function);
Ben Murdoch086aeea2011-05-13 15:57:08 +01004676 __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
4677 __ LeaveInternalFrame();
Ben Murdoch257744e2011-11-30 15:57:28 +00004678 Label true_value, done;
Ben Murdoch086aeea2011-05-13 15:57:08 +01004679 __ test(eax, Operand(eax));
Ben Murdoch257744e2011-11-30 15:57:28 +00004680 __ j(zero, &true_value, Label::kNear);
Steve Block44f0eee2011-05-26 01:26:41 +01004681 __ mov(eax, factory->false_value());
Ben Murdoch257744e2011-11-30 15:57:28 +00004682 __ jmp(&done, Label::kNear);
Ben Murdoch086aeea2011-05-13 15:57:08 +01004683 __ bind(&true_value);
Steve Block44f0eee2011-05-26 01:26:41 +01004684 __ mov(eax, factory->true_value());
Ben Murdoch086aeea2011-05-13 15:57:08 +01004685 __ bind(&done);
4686 __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize);
Ben Murdochb0fe1622011-05-05 13:52:32 +01004687 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004688}
4689
4690
Ben Murdoch086aeea2011-05-13 15:57:08 +01004691Register InstanceofStub::left() { return eax; }
4692
4693
4694Register InstanceofStub::right() { return edx; }
4695
4696
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004697int CompareStub::MinorKey() {
4698 // Encode the three parameters in a unique 16 bit value. To avoid duplicate
4699 // stubs the never NaN NaN condition is only taken into account if the
4700 // condition is equals.
4701 ASSERT(static_cast<unsigned>(cc_) < (1 << 12));
4702 ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg));
4703 return ConditionField::encode(static_cast<unsigned>(cc_))
4704 | RegisterField::encode(false) // lhs_ and rhs_ are not used
4705 | StrictField::encode(strict_)
4706 | NeverNanNanField::encode(cc_ == equal ? never_nan_nan_ : false)
Kristian Monsen0d5e1162010-09-30 15:31:59 +01004707 | IncludeNumberCompareField::encode(include_number_compare_)
4708 | IncludeSmiCompareField::encode(include_smi_compare_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004709}
4710
4711
4712// Unfortunately you have to run without snapshots to see most of these
4713// names in the profile since most compare stubs end up in the snapshot.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004714void CompareStub::PrintName(StringStream* stream) {
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004715 ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004716 const char* cc_name;
4717 switch (cc_) {
4718 case less: cc_name = "LT"; break;
4719 case greater: cc_name = "GT"; break;
4720 case less_equal: cc_name = "LE"; break;
4721 case greater_equal: cc_name = "GE"; break;
4722 case equal: cc_name = "EQ"; break;
4723 case not_equal: cc_name = "NE"; break;
4724 default: cc_name = "UnknownCondition"; break;
4725 }
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004726 bool is_equality = cc_ == equal || cc_ == not_equal;
4727 stream->Add("CompareStub_%s", cc_name);
4728 if (strict_ && is_equality) stream->Add("_STRICT");
4729 if (never_nan_nan_ && is_equality) stream->Add("_NO_NAN");
4730 if (!include_number_compare_) stream->Add("_NO_NUMBER");
4731 if (!include_smi_compare_) stream->Add("_NO_SMI");
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004732}
4733
4734
4735// -------------------------------------------------------------------------
4736// StringCharCodeAtGenerator
4737
4738void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
4739 Label flat_string;
4740 Label ascii_string;
4741 Label got_char_code;
4742
4743 // If the receiver is a smi trigger the non-string case.
4744 STATIC_ASSERT(kSmiTag == 0);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004745 __ JumpIfSmi(object_, receiver_not_string_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004746
4747 // Fetch the instance type of the receiver into result register.
4748 __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
4749 __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
4750 // If the receiver is not a string trigger the non-string case.
4751 __ test(result_, Immediate(kIsNotStringMask));
4752 __ j(not_zero, receiver_not_string_);
4753
4754 // If the index is non-smi trigger the non-smi case.
4755 STATIC_ASSERT(kSmiTag == 0);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004756 __ JumpIfNotSmi(index_, &index_not_smi_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004757
4758 // Put smi-tagged index into scratch register.
4759 __ mov(scratch_, index_);
4760 __ bind(&got_smi_index_);
4761
4762 // Check for index out of range.
4763 __ cmp(scratch_, FieldOperand(object_, String::kLengthOffset));
4764 __ j(above_equal, index_out_of_range_);
4765
4766 // We need special handling for non-flat strings.
4767 STATIC_ASSERT(kSeqStringTag == 0);
4768 __ test(result_, Immediate(kStringRepresentationMask));
4769 __ j(zero, &flat_string);
4770
4771 // Handle non-flat strings.
4772 __ test(result_, Immediate(kIsConsStringMask));
4773 __ j(zero, &call_runtime_);
4774
4775 // ConsString.
4776 // Check whether the right hand side is the empty string (i.e. if
4777 // this is really a flat string in a cons string). If that is not
4778 // the case we would rather go to the runtime system now to flatten
4779 // the string.
4780 __ cmp(FieldOperand(object_, ConsString::kSecondOffset),
Steve Block44f0eee2011-05-26 01:26:41 +01004781 Immediate(masm->isolate()->factory()->empty_string()));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004782 __ j(not_equal, &call_runtime_);
4783 // Get the first of the two strings and load its instance type.
4784 __ mov(object_, FieldOperand(object_, ConsString::kFirstOffset));
4785 __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
4786 __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
4787 // If the first cons component is also non-flat, then go to runtime.
4788 STATIC_ASSERT(kSeqStringTag == 0);
4789 __ test(result_, Immediate(kStringRepresentationMask));
4790 __ j(not_zero, &call_runtime_);
4791
4792 // Check for 1-byte or 2-byte string.
4793 __ bind(&flat_string);
4794 STATIC_ASSERT(kAsciiStringTag != 0);
4795 __ test(result_, Immediate(kStringEncodingMask));
4796 __ j(not_zero, &ascii_string);
4797
4798 // 2-byte string.
4799 // Load the 2-byte character code into the result register.
4800 STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
4801 __ movzx_w(result_, FieldOperand(object_,
4802 scratch_, times_1, // Scratch is smi-tagged.
4803 SeqTwoByteString::kHeaderSize));
4804 __ jmp(&got_char_code);
4805
4806 // ASCII string.
4807 // Load the byte into the result register.
4808 __ bind(&ascii_string);
4809 __ SmiUntag(scratch_);
4810 __ movzx_b(result_, FieldOperand(object_,
4811 scratch_, times_1,
4812 SeqAsciiString::kHeaderSize));
4813 __ bind(&got_char_code);
4814 __ SmiTag(result_);
4815 __ bind(&exit_);
4816}
4817
4818
4819void StringCharCodeAtGenerator::GenerateSlow(
4820 MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
4821 __ Abort("Unexpected fallthrough to CharCodeAt slow case");
4822
4823 // Index is not a smi.
4824 __ bind(&index_not_smi_);
4825 // If index is a heap number, try converting it to an integer.
Steve Block44f0eee2011-05-26 01:26:41 +01004826 __ CheckMap(index_,
4827 masm->isolate()->factory()->heap_number_map(),
4828 index_not_number_,
Ben Murdoch257744e2011-11-30 15:57:28 +00004829 DONT_DO_SMI_CHECK);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004830 call_helper.BeforeCall(masm);
4831 __ push(object_);
4832 __ push(index_);
4833 __ push(index_); // Consumed by runtime conversion function.
4834 if (index_flags_ == STRING_INDEX_IS_NUMBER) {
4835 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
4836 } else {
4837 ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
4838 // NumberToSmi discards numbers that are not exact integers.
4839 __ CallRuntime(Runtime::kNumberToSmi, 1);
4840 }
4841 if (!scratch_.is(eax)) {
4842 // Save the conversion result before the pop instructions below
4843 // have a chance to overwrite it.
4844 __ mov(scratch_, eax);
4845 }
4846 __ pop(index_);
4847 __ pop(object_);
4848 // Reload the instance type.
4849 __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset));
4850 __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
4851 call_helper.AfterCall(masm);
4852 // If index is still not a smi, it must be out of range.
4853 STATIC_ASSERT(kSmiTag == 0);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004854 __ JumpIfNotSmi(scratch_, index_out_of_range_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004855 // Otherwise, return to the fast path.
4856 __ jmp(&got_smi_index_);
4857
4858 // Call runtime. We get here when the receiver is a string and the
4859 // index is a number, but the code of getting the actual character
4860 // is too complex (e.g., when the string needs to be flattened).
4861 __ bind(&call_runtime_);
4862 call_helper.BeforeCall(masm);
4863 __ push(object_);
4864 __ push(index_);
4865 __ CallRuntime(Runtime::kStringCharCodeAt, 2);
4866 if (!result_.is(eax)) {
4867 __ mov(result_, eax);
4868 }
4869 call_helper.AfterCall(masm);
4870 __ jmp(&exit_);
4871
4872 __ Abort("Unexpected fallthrough from CharCodeAt slow case");
4873}
4874
4875
4876// -------------------------------------------------------------------------
4877// StringCharFromCodeGenerator
4878
4879void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
4880 // Fast case of Heap::LookupSingleCharacterStringFromCode.
4881 STATIC_ASSERT(kSmiTag == 0);
4882 STATIC_ASSERT(kSmiShiftSize == 0);
4883 ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1));
4884 __ test(code_,
4885 Immediate(kSmiTagMask |
4886 ((~String::kMaxAsciiCharCode) << kSmiTagSize)));
Ben Murdoch257744e2011-11-30 15:57:28 +00004887 __ j(not_zero, &slow_case_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004888
Steve Block44f0eee2011-05-26 01:26:41 +01004889 Factory* factory = masm->isolate()->factory();
4890 __ Set(result_, Immediate(factory->single_character_string_cache()));
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004891 STATIC_ASSERT(kSmiTag == 0);
4892 STATIC_ASSERT(kSmiTagSize == 1);
4893 STATIC_ASSERT(kSmiShiftSize == 0);
4894 // At this point code register contains smi tagged ascii char code.
4895 __ mov(result_, FieldOperand(result_,
4896 code_, times_half_pointer_size,
4897 FixedArray::kHeaderSize));
Steve Block44f0eee2011-05-26 01:26:41 +01004898 __ cmp(result_, factory->undefined_value());
Ben Murdoch257744e2011-11-30 15:57:28 +00004899 __ j(equal, &slow_case_);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004900 __ bind(&exit_);
4901}
4902
4903
4904void StringCharFromCodeGenerator::GenerateSlow(
4905 MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
4906 __ Abort("Unexpected fallthrough to CharFromCode slow case");
4907
4908 __ bind(&slow_case_);
4909 call_helper.BeforeCall(masm);
4910 __ push(code_);
4911 __ CallRuntime(Runtime::kCharFromCode, 1);
4912 if (!result_.is(eax)) {
4913 __ mov(result_, eax);
4914 }
4915 call_helper.AfterCall(masm);
4916 __ jmp(&exit_);
4917
4918 __ Abort("Unexpected fallthrough from CharFromCode slow case");
4919}
4920
4921
4922// -------------------------------------------------------------------------
4923// StringCharAtGenerator
4924
4925void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) {
4926 char_code_at_generator_.GenerateFast(masm);
4927 char_from_code_generator_.GenerateFast(masm);
4928}
4929
4930
4931void StringCharAtGenerator::GenerateSlow(
4932 MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
4933 char_code_at_generator_.GenerateSlow(masm, call_helper);
4934 char_from_code_generator_.GenerateSlow(masm, call_helper);
4935}
4936
4937
4938void StringAddStub::Generate(MacroAssembler* masm) {
Iain Merrick9ac36c92010-09-13 15:29:50 +01004939 Label string_add_runtime, call_builtin;
4940 Builtins::JavaScript builtin_id = Builtins::ADD;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004941
4942 // Load the two arguments.
4943 __ mov(eax, Operand(esp, 2 * kPointerSize)); // First argument.
4944 __ mov(edx, Operand(esp, 1 * kPointerSize)); // Second argument.
4945
4946 // Make sure that both arguments are strings if not known in advance.
Iain Merrick9ac36c92010-09-13 15:29:50 +01004947 if (flags_ == NO_STRING_ADD_FLAGS) {
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004948 __ JumpIfSmi(eax, &string_add_runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004949 __ CmpObjectType(eax, FIRST_NONSTRING_TYPE, ebx);
4950 __ j(above_equal, &string_add_runtime);
4951
4952 // First argument is a a string, test second.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00004953 __ JumpIfSmi(edx, &string_add_runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004954 __ CmpObjectType(edx, FIRST_NONSTRING_TYPE, ebx);
4955 __ j(above_equal, &string_add_runtime);
Iain Merrick9ac36c92010-09-13 15:29:50 +01004956 } else {
4957 // Here at least one of the arguments is definitely a string.
4958 // We convert the one that is not known to be a string.
4959 if ((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) == 0) {
4960 ASSERT((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) != 0);
4961 GenerateConvertArgument(masm, 2 * kPointerSize, eax, ebx, ecx, edi,
4962 &call_builtin);
4963 builtin_id = Builtins::STRING_ADD_RIGHT;
4964 } else if ((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) == 0) {
4965 ASSERT((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) != 0);
4966 GenerateConvertArgument(masm, 1 * kPointerSize, edx, ebx, ecx, edi,
4967 &call_builtin);
4968 builtin_id = Builtins::STRING_ADD_LEFT;
4969 }
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004970 }
4971
4972 // Both arguments are strings.
4973 // eax: first string
4974 // edx: second string
4975 // Check if either of the strings are empty. In that case return the other.
Ben Murdoch257744e2011-11-30 15:57:28 +00004976 Label second_not_zero_length, both_not_zero_length;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004977 __ mov(ecx, FieldOperand(edx, String::kLengthOffset));
4978 STATIC_ASSERT(kSmiTag == 0);
4979 __ test(ecx, Operand(ecx));
Ben Murdoch257744e2011-11-30 15:57:28 +00004980 __ j(not_zero, &second_not_zero_length, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004981 // Second string is empty, result is first string which is already in eax.
Steve Block44f0eee2011-05-26 01:26:41 +01004982 Counters* counters = masm->isolate()->counters();
4983 __ IncrementCounter(counters->string_add_native(), 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004984 __ ret(2 * kPointerSize);
4985 __ bind(&second_not_zero_length);
4986 __ mov(ebx, FieldOperand(eax, String::kLengthOffset));
4987 STATIC_ASSERT(kSmiTag == 0);
4988 __ test(ebx, Operand(ebx));
Ben Murdoch257744e2011-11-30 15:57:28 +00004989 __ j(not_zero, &both_not_zero_length, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004990 // First string is empty, result is second string which is in edx.
4991 __ mov(eax, edx);
Steve Block44f0eee2011-05-26 01:26:41 +01004992 __ IncrementCounter(counters->string_add_native(), 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01004993 __ ret(2 * kPointerSize);
4994
4995 // Both strings are non-empty.
4996 // eax: first string
4997 // ebx: length of first string as a smi
4998 // ecx: length of second string as a smi
4999 // edx: second string
5000 // Look at the length of the result of adding the two strings.
5001 Label string_add_flat_result, longer_than_two;
5002 __ bind(&both_not_zero_length);
5003 __ add(ebx, Operand(ecx));
5004 STATIC_ASSERT(Smi::kMaxValue == String::kMaxLength);
5005 // Handle exceptionally long strings in the runtime system.
5006 __ j(overflow, &string_add_runtime);
Steve Block44f0eee2011-05-26 01:26:41 +01005007 // Use the symbol table when adding two one character strings, as it
5008 // helps later optimizations to return a symbol here.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005009 __ cmp(Operand(ebx), Immediate(Smi::FromInt(2)));
5010 __ j(not_equal, &longer_than_two);
5011
5012 // Check that both strings are non-external ascii strings.
5013 __ JumpIfNotBothSequentialAsciiStrings(eax, edx, ebx, ecx,
5014 &string_add_runtime);
5015
Iain Merrick9ac36c92010-09-13 15:29:50 +01005016 // Get the two characters forming the new string.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005017 __ movzx_b(ebx, FieldOperand(eax, SeqAsciiString::kHeaderSize));
5018 __ movzx_b(ecx, FieldOperand(edx, SeqAsciiString::kHeaderSize));
5019
5020 // Try to lookup two character string in symbol table. If it is not found
5021 // just allocate a new one.
Iain Merrick9ac36c92010-09-13 15:29:50 +01005022 Label make_two_character_string, make_two_character_string_no_reload;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005023 StringHelper::GenerateTwoCharacterSymbolTableProbe(
Iain Merrick9ac36c92010-09-13 15:29:50 +01005024 masm, ebx, ecx, eax, edx, edi,
5025 &make_two_character_string_no_reload, &make_two_character_string);
Steve Block44f0eee2011-05-26 01:26:41 +01005026 __ IncrementCounter(counters->string_add_native(), 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005027 __ ret(2 * kPointerSize);
5028
Iain Merrick9ac36c92010-09-13 15:29:50 +01005029 // Allocate a two character string.
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005030 __ bind(&make_two_character_string);
Iain Merrick9ac36c92010-09-13 15:29:50 +01005031 // Reload the arguments.
5032 __ mov(eax, Operand(esp, 2 * kPointerSize)); // First argument.
5033 __ mov(edx, Operand(esp, 1 * kPointerSize)); // Second argument.
5034 // Get the two characters forming the new string.
5035 __ movzx_b(ebx, FieldOperand(eax, SeqAsciiString::kHeaderSize));
5036 __ movzx_b(ecx, FieldOperand(edx, SeqAsciiString::kHeaderSize));
5037 __ bind(&make_two_character_string_no_reload);
Steve Block44f0eee2011-05-26 01:26:41 +01005038 __ IncrementCounter(counters->string_add_make_two_char(), 1);
Iain Merrick9ac36c92010-09-13 15:29:50 +01005039 __ AllocateAsciiString(eax, // Result.
5040 2, // Length.
5041 edi, // Scratch 1.
5042 edx, // Scratch 2.
5043 &string_add_runtime);
5044 // Pack both characters in ebx.
5045 __ shl(ecx, kBitsPerByte);
5046 __ or_(ebx, Operand(ecx));
5047 // Set the characters in the new string.
5048 __ mov_w(FieldOperand(eax, SeqAsciiString::kHeaderSize), ebx);
Steve Block44f0eee2011-05-26 01:26:41 +01005049 __ IncrementCounter(counters->string_add_native(), 1);
Iain Merrick9ac36c92010-09-13 15:29:50 +01005050 __ ret(2 * kPointerSize);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005051
5052 __ bind(&longer_than_two);
5053 // Check if resulting string will be flat.
5054 __ cmp(Operand(ebx), Immediate(Smi::FromInt(String::kMinNonFlatLength)));
5055 __ j(below, &string_add_flat_result);
5056
5057 // If result is not supposed to be flat allocate a cons string object. If both
5058 // strings are ascii the result is an ascii cons string.
5059 Label non_ascii, allocated, ascii_data;
5060 __ mov(edi, FieldOperand(eax, HeapObject::kMapOffset));
5061 __ movzx_b(ecx, FieldOperand(edi, Map::kInstanceTypeOffset));
5062 __ mov(edi, FieldOperand(edx, HeapObject::kMapOffset));
5063 __ movzx_b(edi, FieldOperand(edi, Map::kInstanceTypeOffset));
5064 __ and_(ecx, Operand(edi));
5065 STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag);
5066 __ test(ecx, Immediate(kAsciiStringTag));
5067 __ j(zero, &non_ascii);
5068 __ bind(&ascii_data);
5069 // Allocate an acsii cons string.
5070 __ AllocateAsciiConsString(ecx, edi, no_reg, &string_add_runtime);
5071 __ bind(&allocated);
5072 // Fill the fields of the cons string.
5073 if (FLAG_debug_code) __ AbortIfNotSmi(ebx);
5074 __ mov(FieldOperand(ecx, ConsString::kLengthOffset), ebx);
5075 __ mov(FieldOperand(ecx, ConsString::kHashFieldOffset),
5076 Immediate(String::kEmptyHashField));
5077 __ mov(FieldOperand(ecx, ConsString::kFirstOffset), eax);
5078 __ mov(FieldOperand(ecx, ConsString::kSecondOffset), edx);
5079 __ mov(eax, ecx);
Steve Block44f0eee2011-05-26 01:26:41 +01005080 __ IncrementCounter(counters->string_add_native(), 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005081 __ ret(2 * kPointerSize);
5082 __ bind(&non_ascii);
5083 // At least one of the strings is two-byte. Check whether it happens
5084 // to contain only ascii characters.
5085 // ecx: first instance type AND second instance type.
5086 // edi: second instance type.
5087 __ test(ecx, Immediate(kAsciiDataHintMask));
5088 __ j(not_zero, &ascii_data);
5089 __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
5090 __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
5091 __ xor_(edi, Operand(ecx));
5092 STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0);
5093 __ and_(edi, kAsciiStringTag | kAsciiDataHintTag);
5094 __ cmp(edi, kAsciiStringTag | kAsciiDataHintTag);
5095 __ j(equal, &ascii_data);
5096 // Allocate a two byte cons string.
5097 __ AllocateConsString(ecx, edi, no_reg, &string_add_runtime);
5098 __ jmp(&allocated);
5099
5100 // Handle creating a flat result. First check that both strings are not
5101 // external strings.
5102 // eax: first string
5103 // ebx: length of resulting flat string as a smi
5104 // edx: second string
5105 __ bind(&string_add_flat_result);
5106 __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
5107 __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
5108 __ and_(ecx, kStringRepresentationMask);
5109 __ cmp(ecx, kExternalStringTag);
5110 __ j(equal, &string_add_runtime);
5111 __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset));
5112 __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
5113 __ and_(ecx, kStringRepresentationMask);
5114 __ cmp(ecx, kExternalStringTag);
5115 __ j(equal, &string_add_runtime);
5116 // Now check if both strings are ascii strings.
5117 // eax: first string
5118 // ebx: length of resulting flat string as a smi
5119 // edx: second string
5120 Label non_ascii_string_add_flat_result;
5121 STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag);
5122 __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
5123 __ test_b(FieldOperand(ecx, Map::kInstanceTypeOffset), kAsciiStringTag);
5124 __ j(zero, &non_ascii_string_add_flat_result);
5125 __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset));
5126 __ test_b(FieldOperand(ecx, Map::kInstanceTypeOffset), kAsciiStringTag);
5127 __ j(zero, &string_add_runtime);
5128
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005129 // Both strings are ascii strings. As they are short they are both flat.
5130 // ebx: length of resulting flat string as a smi
5131 __ SmiUntag(ebx);
5132 __ AllocateAsciiString(eax, ebx, ecx, edx, edi, &string_add_runtime);
5133 // eax: result string
5134 __ mov(ecx, eax);
5135 // Locate first character of result.
5136 __ add(Operand(ecx), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
5137 // Load first argument and locate first character.
5138 __ mov(edx, Operand(esp, 2 * kPointerSize));
5139 __ mov(edi, FieldOperand(edx, String::kLengthOffset));
5140 __ SmiUntag(edi);
5141 __ add(Operand(edx), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
5142 // eax: result string
5143 // ecx: first character of result
5144 // edx: first char of first argument
5145 // edi: length of first argument
5146 StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, true);
5147 // Load second argument and locate first character.
5148 __ mov(edx, Operand(esp, 1 * kPointerSize));
5149 __ mov(edi, FieldOperand(edx, String::kLengthOffset));
5150 __ SmiUntag(edi);
5151 __ add(Operand(edx), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
5152 // eax: result string
5153 // ecx: next character of result
5154 // edx: first char of second argument
5155 // edi: length of second argument
5156 StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, true);
Steve Block44f0eee2011-05-26 01:26:41 +01005157 __ IncrementCounter(counters->string_add_native(), 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005158 __ ret(2 * kPointerSize);
5159
5160 // Handle creating a flat two byte result.
5161 // eax: first string - known to be two byte
5162 // ebx: length of resulting flat string as a smi
5163 // edx: second string
5164 __ bind(&non_ascii_string_add_flat_result);
5165 __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset));
5166 __ test_b(FieldOperand(ecx, Map::kInstanceTypeOffset), kAsciiStringTag);
5167 __ j(not_zero, &string_add_runtime);
5168 // Both strings are two byte strings. As they are short they are both
5169 // flat.
5170 __ SmiUntag(ebx);
5171 __ AllocateTwoByteString(eax, ebx, ecx, edx, edi, &string_add_runtime);
5172 // eax: result string
5173 __ mov(ecx, eax);
5174 // Locate first character of result.
5175 __ add(Operand(ecx),
5176 Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
5177 // Load first argument and locate first character.
5178 __ mov(edx, Operand(esp, 2 * kPointerSize));
5179 __ mov(edi, FieldOperand(edx, String::kLengthOffset));
5180 __ SmiUntag(edi);
5181 __ add(Operand(edx),
5182 Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
5183 // eax: result string
5184 // ecx: first character of result
5185 // edx: first char of first argument
5186 // edi: length of first argument
5187 StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, false);
5188 // Load second argument and locate first character.
5189 __ mov(edx, Operand(esp, 1 * kPointerSize));
5190 __ mov(edi, FieldOperand(edx, String::kLengthOffset));
5191 __ SmiUntag(edi);
5192 __ add(Operand(edx), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
5193 // eax: result string
5194 // ecx: next character of result
5195 // edx: first char of second argument
5196 // edi: length of second argument
5197 StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, false);
Steve Block44f0eee2011-05-26 01:26:41 +01005198 __ IncrementCounter(counters->string_add_native(), 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005199 __ ret(2 * kPointerSize);
5200
5201 // Just jump to runtime to add the two strings.
5202 __ bind(&string_add_runtime);
5203 __ TailCallRuntime(Runtime::kStringAdd, 2, 1);
Iain Merrick9ac36c92010-09-13 15:29:50 +01005204
5205 if (call_builtin.is_linked()) {
5206 __ bind(&call_builtin);
5207 __ InvokeBuiltin(builtin_id, JUMP_FUNCTION);
5208 }
5209}
5210
5211
5212void StringAddStub::GenerateConvertArgument(MacroAssembler* masm,
5213 int stack_offset,
5214 Register arg,
5215 Register scratch1,
5216 Register scratch2,
5217 Register scratch3,
5218 Label* slow) {
5219 // First check if the argument is already a string.
5220 Label not_string, done;
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00005221 __ JumpIfSmi(arg, &not_string);
Iain Merrick9ac36c92010-09-13 15:29:50 +01005222 __ CmpObjectType(arg, FIRST_NONSTRING_TYPE, scratch1);
5223 __ j(below, &done);
5224
5225 // Check the number to string cache.
5226 Label not_cached;
5227 __ bind(&not_string);
5228 // Puts the cached result into scratch1.
5229 NumberToStringStub::GenerateLookupNumberStringCache(masm,
5230 arg,
5231 scratch1,
5232 scratch2,
5233 scratch3,
5234 false,
5235 &not_cached);
5236 __ mov(arg, scratch1);
5237 __ mov(Operand(esp, stack_offset), arg);
5238 __ jmp(&done);
5239
5240 // Check if the argument is a safe string wrapper.
5241 __ bind(&not_cached);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00005242 __ JumpIfSmi(arg, slow);
Iain Merrick9ac36c92010-09-13 15:29:50 +01005243 __ CmpObjectType(arg, JS_VALUE_TYPE, scratch1); // map -> scratch1.
5244 __ j(not_equal, slow);
5245 __ test_b(FieldOperand(scratch1, Map::kBitField2Offset),
5246 1 << Map::kStringWrapperSafeForDefaultValueOf);
5247 __ j(zero, slow);
5248 __ mov(arg, FieldOperand(arg, JSValue::kValueOffset));
5249 __ mov(Operand(esp, stack_offset), arg);
5250
5251 __ bind(&done);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005252}
5253
5254
5255void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
5256 Register dest,
5257 Register src,
5258 Register count,
5259 Register scratch,
5260 bool ascii) {
Ben Murdoch257744e2011-11-30 15:57:28 +00005261 Label loop;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005262 __ bind(&loop);
5263 // This loop just copies one character at a time, as it is only used for very
5264 // short strings.
5265 if (ascii) {
5266 __ mov_b(scratch, Operand(src, 0));
5267 __ mov_b(Operand(dest, 0), scratch);
5268 __ add(Operand(src), Immediate(1));
5269 __ add(Operand(dest), Immediate(1));
5270 } else {
5271 __ mov_w(scratch, Operand(src, 0));
5272 __ mov_w(Operand(dest, 0), scratch);
5273 __ add(Operand(src), Immediate(2));
5274 __ add(Operand(dest), Immediate(2));
5275 }
5276 __ sub(Operand(count), Immediate(1));
5277 __ j(not_zero, &loop);
5278}
5279
5280
5281void StringHelper::GenerateCopyCharactersREP(MacroAssembler* masm,
5282 Register dest,
5283 Register src,
5284 Register count,
5285 Register scratch,
5286 bool ascii) {
5287 // Copy characters using rep movs of doublewords.
5288 // The destination is aligned on a 4 byte boundary because we are
5289 // copying to the beginning of a newly allocated string.
5290 ASSERT(dest.is(edi)); // rep movs destination
5291 ASSERT(src.is(esi)); // rep movs source
5292 ASSERT(count.is(ecx)); // rep movs count
5293 ASSERT(!scratch.is(dest));
5294 ASSERT(!scratch.is(src));
5295 ASSERT(!scratch.is(count));
5296
5297 // Nothing to do for zero characters.
5298 Label done;
5299 __ test(count, Operand(count));
5300 __ j(zero, &done);
5301
5302 // Make count the number of bytes to copy.
5303 if (!ascii) {
5304 __ shl(count, 1);
5305 }
5306
5307 // Don't enter the rep movs if there are less than 4 bytes to copy.
Ben Murdoch257744e2011-11-30 15:57:28 +00005308 Label last_bytes;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005309 __ test(count, Immediate(~3));
Ben Murdoch257744e2011-11-30 15:57:28 +00005310 __ j(zero, &last_bytes, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005311
5312 // Copy from edi to esi using rep movs instruction.
5313 __ mov(scratch, count);
5314 __ sar(count, 2); // Number of doublewords to copy.
5315 __ cld();
5316 __ rep_movs();
5317
5318 // Find number of bytes left.
5319 __ mov(count, scratch);
5320 __ and_(count, 3);
5321
5322 // Check if there are more bytes to copy.
5323 __ bind(&last_bytes);
5324 __ test(count, Operand(count));
5325 __ j(zero, &done);
5326
5327 // Copy remaining characters.
Ben Murdoch257744e2011-11-30 15:57:28 +00005328 Label loop;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005329 __ bind(&loop);
5330 __ mov_b(scratch, Operand(src, 0));
5331 __ mov_b(Operand(dest, 0), scratch);
5332 __ add(Operand(src), Immediate(1));
5333 __ add(Operand(dest), Immediate(1));
5334 __ sub(Operand(count), Immediate(1));
5335 __ j(not_zero, &loop);
5336
5337 __ bind(&done);
5338}
5339
5340
5341void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
5342 Register c1,
5343 Register c2,
5344 Register scratch1,
5345 Register scratch2,
5346 Register scratch3,
Iain Merrick9ac36c92010-09-13 15:29:50 +01005347 Label* not_probed,
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005348 Label* not_found) {
5349 // Register scratch3 is the general scratch register in this function.
5350 Register scratch = scratch3;
5351
5352 // Make sure that both characters are not digits as such strings has a
5353 // different hash algorithm. Don't try to look for these in the symbol table.
Ben Murdoch257744e2011-11-30 15:57:28 +00005354 Label not_array_index;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005355 __ mov(scratch, c1);
5356 __ sub(Operand(scratch), Immediate(static_cast<int>('0')));
5357 __ cmp(Operand(scratch), Immediate(static_cast<int>('9' - '0')));
Ben Murdoch257744e2011-11-30 15:57:28 +00005358 __ j(above, &not_array_index, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005359 __ mov(scratch, c2);
5360 __ sub(Operand(scratch), Immediate(static_cast<int>('0')));
5361 __ cmp(Operand(scratch), Immediate(static_cast<int>('9' - '0')));
Iain Merrick9ac36c92010-09-13 15:29:50 +01005362 __ j(below_equal, not_probed);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005363
5364 __ bind(&not_array_index);
5365 // Calculate the two character string hash.
5366 Register hash = scratch1;
5367 GenerateHashInit(masm, hash, c1, scratch);
5368 GenerateHashAddCharacter(masm, hash, c2, scratch);
5369 GenerateHashGetHash(masm, hash, scratch);
5370
5371 // Collect the two characters in a register.
5372 Register chars = c1;
5373 __ shl(c2, kBitsPerByte);
5374 __ or_(chars, Operand(c2));
5375
5376 // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
5377 // hash: hash of two character string.
5378
5379 // Load the symbol table.
5380 Register symbol_table = c2;
Steve Block44f0eee2011-05-26 01:26:41 +01005381 ExternalReference roots_address =
5382 ExternalReference::roots_address(masm->isolate());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005383 __ mov(scratch, Immediate(Heap::kSymbolTableRootIndex));
5384 __ mov(symbol_table,
5385 Operand::StaticArray(scratch, times_pointer_size, roots_address));
5386
5387 // Calculate capacity mask from the symbol table capacity.
5388 Register mask = scratch2;
5389 __ mov(mask, FieldOperand(symbol_table, SymbolTable::kCapacityOffset));
5390 __ SmiUntag(mask);
5391 __ sub(Operand(mask), Immediate(1));
5392
5393 // Registers
5394 // chars: two character string, char 1 in byte 0 and char 2 in byte 1.
5395 // hash: hash of two character string
5396 // symbol_table: symbol table
5397 // mask: capacity mask
5398 // scratch: -
5399
5400 // Perform a number of probes in the symbol table.
5401 static const int kProbes = 4;
5402 Label found_in_symbol_table;
5403 Label next_probe[kProbes], next_probe_pop_mask[kProbes];
5404 for (int i = 0; i < kProbes; i++) {
5405 // Calculate entry in symbol table.
5406 __ mov(scratch, hash);
5407 if (i > 0) {
5408 __ add(Operand(scratch), Immediate(SymbolTable::GetProbeOffset(i)));
5409 }
5410 __ and_(scratch, Operand(mask));
5411
5412 // Load the entry from the symbol table.
5413 Register candidate = scratch; // Scratch register contains candidate.
5414 STATIC_ASSERT(SymbolTable::kEntrySize == 1);
5415 __ mov(candidate,
5416 FieldOperand(symbol_table,
5417 scratch,
5418 times_pointer_size,
5419 SymbolTable::kElementsStartOffset));
5420
5421 // If entry is undefined no string with this hash can be found.
Steve Block44f0eee2011-05-26 01:26:41 +01005422 Factory* factory = masm->isolate()->factory();
5423 __ cmp(candidate, factory->undefined_value());
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005424 __ j(equal, not_found);
Steve Block44f0eee2011-05-26 01:26:41 +01005425 __ cmp(candidate, factory->null_value());
5426 __ j(equal, &next_probe[i]);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005427
5428 // If length is not 2 the string is not a candidate.
5429 __ cmp(FieldOperand(candidate, String::kLengthOffset),
5430 Immediate(Smi::FromInt(2)));
5431 __ j(not_equal, &next_probe[i]);
5432
5433 // As we are out of registers save the mask on the stack and use that
5434 // register as a temporary.
5435 __ push(mask);
5436 Register temp = mask;
5437
5438 // Check that the candidate is a non-external ascii string.
5439 __ mov(temp, FieldOperand(candidate, HeapObject::kMapOffset));
5440 __ movzx_b(temp, FieldOperand(temp, Map::kInstanceTypeOffset));
5441 __ JumpIfInstanceTypeIsNotSequentialAscii(
5442 temp, temp, &next_probe_pop_mask[i]);
5443
5444 // Check if the two characters match.
5445 __ mov(temp, FieldOperand(candidate, SeqAsciiString::kHeaderSize));
5446 __ and_(temp, 0x0000ffff);
5447 __ cmp(chars, Operand(temp));
5448 __ j(equal, &found_in_symbol_table);
5449 __ bind(&next_probe_pop_mask[i]);
5450 __ pop(mask);
5451 __ bind(&next_probe[i]);
5452 }
5453
5454 // No matching 2 character string found by probing.
5455 __ jmp(not_found);
5456
5457 // Scratch register contains result when we fall through to here.
5458 Register result = scratch;
5459 __ bind(&found_in_symbol_table);
5460 __ pop(mask); // Pop saved mask from the stack.
5461 if (!result.is(eax)) {
5462 __ mov(eax, result);
5463 }
5464}
5465
5466
5467void StringHelper::GenerateHashInit(MacroAssembler* masm,
5468 Register hash,
5469 Register character,
5470 Register scratch) {
5471 // hash = character + (character << 10);
5472 __ mov(hash, character);
5473 __ shl(hash, 10);
5474 __ add(hash, Operand(character));
5475 // hash ^= hash >> 6;
5476 __ mov(scratch, hash);
5477 __ sar(scratch, 6);
5478 __ xor_(hash, Operand(scratch));
5479}
5480
5481
5482void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
5483 Register hash,
5484 Register character,
5485 Register scratch) {
5486 // hash += character;
5487 __ add(hash, Operand(character));
5488 // hash += hash << 10;
5489 __ mov(scratch, hash);
5490 __ shl(scratch, 10);
5491 __ add(hash, Operand(scratch));
5492 // hash ^= hash >> 6;
5493 __ mov(scratch, hash);
5494 __ sar(scratch, 6);
5495 __ xor_(hash, Operand(scratch));
5496}
5497
5498
5499void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
5500 Register hash,
5501 Register scratch) {
5502 // hash += hash << 3;
5503 __ mov(scratch, hash);
5504 __ shl(scratch, 3);
5505 __ add(hash, Operand(scratch));
5506 // hash ^= hash >> 11;
5507 __ mov(scratch, hash);
5508 __ sar(scratch, 11);
5509 __ xor_(hash, Operand(scratch));
5510 // hash += hash << 15;
5511 __ mov(scratch, hash);
5512 __ shl(scratch, 15);
5513 __ add(hash, Operand(scratch));
5514
5515 // if (hash == 0) hash = 27;
Ben Murdoch257744e2011-11-30 15:57:28 +00005516 Label hash_not_zero;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005517 __ test(hash, Operand(hash));
Ben Murdoch257744e2011-11-30 15:57:28 +00005518 __ j(not_zero, &hash_not_zero, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005519 __ mov(hash, Immediate(27));
5520 __ bind(&hash_not_zero);
5521}
5522
5523
5524void SubStringStub::Generate(MacroAssembler* masm) {
5525 Label runtime;
5526
5527 // Stack frame on entry.
5528 // esp[0]: return address
5529 // esp[4]: to
5530 // esp[8]: from
5531 // esp[12]: string
5532
5533 // Make sure first argument is a string.
5534 __ mov(eax, Operand(esp, 3 * kPointerSize));
5535 STATIC_ASSERT(kSmiTag == 0);
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00005536 __ JumpIfSmi(eax, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005537 Condition is_string = masm->IsObjectStringType(eax, ebx, ebx);
5538 __ j(NegateCondition(is_string), &runtime);
5539
5540 // eax: string
5541 // ebx: instance type
5542
5543 // Calculate length of sub string using the smi values.
5544 Label result_longer_than_two;
5545 __ mov(ecx, Operand(esp, 1 * kPointerSize)); // To index.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00005546 __ JumpIfNotSmi(ecx, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005547 __ mov(edx, Operand(esp, 2 * kPointerSize)); // From index.
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00005548 __ JumpIfNotSmi(edx, &runtime);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005549 __ sub(ecx, Operand(edx));
5550 __ cmp(ecx, FieldOperand(eax, String::kLengthOffset));
5551 Label return_eax;
5552 __ j(equal, &return_eax);
5553 // Special handling of sub-strings of length 1 and 2. One character strings
5554 // are handled in the runtime system (looked up in the single character
5555 // cache). Two character strings are looked for in the symbol cache.
5556 __ SmiUntag(ecx); // Result length is no longer smi.
5557 __ cmp(ecx, 2);
5558 __ j(greater, &result_longer_than_two);
5559 __ j(less, &runtime);
5560
5561 // Sub string of length 2 requested.
5562 // eax: string
5563 // ebx: instance type
5564 // ecx: sub string length (value is 2)
5565 // edx: from index (smi)
5566 __ JumpIfInstanceTypeIsNotSequentialAscii(ebx, ebx, &runtime);
5567
5568 // Get the two characters forming the sub string.
5569 __ SmiUntag(edx); // From index is no longer smi.
5570 __ movzx_b(ebx, FieldOperand(eax, edx, times_1, SeqAsciiString::kHeaderSize));
5571 __ movzx_b(ecx,
5572 FieldOperand(eax, edx, times_1, SeqAsciiString::kHeaderSize + 1));
5573
5574 // Try to lookup two character string in symbol table.
5575 Label make_two_character_string;
5576 StringHelper::GenerateTwoCharacterSymbolTableProbe(
Iain Merrick9ac36c92010-09-13 15:29:50 +01005577 masm, ebx, ecx, eax, edx, edi,
5578 &make_two_character_string, &make_two_character_string);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005579 __ ret(3 * kPointerSize);
5580
5581 __ bind(&make_two_character_string);
5582 // Setup registers for allocating the two character string.
5583 __ mov(eax, Operand(esp, 3 * kPointerSize));
5584 __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
5585 __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
5586 __ Set(ecx, Immediate(2));
5587
5588 __ bind(&result_longer_than_two);
5589 // eax: string
5590 // ebx: instance type
5591 // ecx: result string length
5592 // Check for flat ascii string
5593 Label non_ascii_flat;
5594 __ JumpIfInstanceTypeIsNotSequentialAscii(ebx, ebx, &non_ascii_flat);
5595
5596 // Allocate the result.
5597 __ AllocateAsciiString(eax, ecx, ebx, edx, edi, &runtime);
5598
5599 // eax: result string
5600 // ecx: result string length
5601 __ mov(edx, esi); // esi used by following code.
5602 // Locate first character of result.
5603 __ mov(edi, eax);
5604 __ add(Operand(edi), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
5605 // Load string argument and locate character of sub string start.
5606 __ mov(esi, Operand(esp, 3 * kPointerSize));
5607 __ add(Operand(esi), Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
5608 __ mov(ebx, Operand(esp, 2 * kPointerSize)); // from
5609 __ SmiUntag(ebx);
5610 __ add(esi, Operand(ebx));
5611
5612 // eax: result string
5613 // ecx: result length
5614 // edx: original value of esi
5615 // edi: first character of result
5616 // esi: character of sub string start
5617 StringHelper::GenerateCopyCharactersREP(masm, edi, esi, ecx, ebx, true);
5618 __ mov(esi, edx); // Restore esi.
Steve Block44f0eee2011-05-26 01:26:41 +01005619 Counters* counters = masm->isolate()->counters();
5620 __ IncrementCounter(counters->sub_string_native(), 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005621 __ ret(3 * kPointerSize);
5622
5623 __ bind(&non_ascii_flat);
5624 // eax: string
5625 // ebx: instance type & kStringRepresentationMask | kStringEncodingMask
5626 // ecx: result string length
5627 // Check for flat two byte string
5628 __ cmp(ebx, kSeqStringTag | kTwoByteStringTag);
5629 __ j(not_equal, &runtime);
5630
5631 // Allocate the result.
5632 __ AllocateTwoByteString(eax, ecx, ebx, edx, edi, &runtime);
5633
5634 // eax: result string
5635 // ecx: result string length
5636 __ mov(edx, esi); // esi used by following code.
5637 // Locate first character of result.
5638 __ mov(edi, eax);
5639 __ add(Operand(edi),
5640 Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
5641 // Load string argument and locate character of sub string start.
5642 __ mov(esi, Operand(esp, 3 * kPointerSize));
5643 __ add(Operand(esi),
5644 Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
5645 __ mov(ebx, Operand(esp, 2 * kPointerSize)); // from
5646 // As from is a smi it is 2 times the value which matches the size of a two
5647 // byte character.
5648 STATIC_ASSERT(kSmiTag == 0);
5649 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
5650 __ add(esi, Operand(ebx));
5651
5652 // eax: result string
5653 // ecx: result length
5654 // edx: original value of esi
5655 // edi: first character of result
5656 // esi: character of sub string start
5657 StringHelper::GenerateCopyCharactersREP(masm, edi, esi, ecx, ebx, false);
5658 __ mov(esi, edx); // Restore esi.
5659
5660 __ bind(&return_eax);
Steve Block44f0eee2011-05-26 01:26:41 +01005661 __ IncrementCounter(counters->sub_string_native(), 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005662 __ ret(3 * kPointerSize);
5663
5664 // Just jump to runtime to create the sub string.
5665 __ bind(&runtime);
5666 __ TailCallRuntime(Runtime::kSubString, 3, 1);
5667}
5668
5669
Ben Murdoch257744e2011-11-30 15:57:28 +00005670void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm,
5671 Register left,
5672 Register right,
5673 Register scratch1,
5674 Register scratch2) {
5675 Register length = scratch1;
5676
5677 // Compare lengths.
5678 Label strings_not_equal, check_zero_length;
5679 __ mov(length, FieldOperand(left, String::kLengthOffset));
5680 __ cmp(length, FieldOperand(right, String::kLengthOffset));
5681 __ j(equal, &check_zero_length, Label::kNear);
5682 __ bind(&strings_not_equal);
5683 __ Set(eax, Immediate(Smi::FromInt(NOT_EQUAL)));
5684 __ ret(0);
5685
5686 // Check if the length is zero.
5687 Label compare_chars;
5688 __ bind(&check_zero_length);
5689 STATIC_ASSERT(kSmiTag == 0);
5690 __ test(length, Operand(length));
5691 __ j(not_zero, &compare_chars, Label::kNear);
5692 __ Set(eax, Immediate(Smi::FromInt(EQUAL)));
5693 __ ret(0);
5694
5695 // Compare characters.
5696 __ bind(&compare_chars);
5697 GenerateAsciiCharsCompareLoop(masm, left, right, length, scratch2,
5698 &strings_not_equal, Label::kNear);
5699
5700 // Characters are equal.
5701 __ Set(eax, Immediate(Smi::FromInt(EQUAL)));
5702 __ ret(0);
5703}
5704
5705
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005706void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
5707 Register left,
5708 Register right,
5709 Register scratch1,
5710 Register scratch2,
5711 Register scratch3) {
Steve Block44f0eee2011-05-26 01:26:41 +01005712 Counters* counters = masm->isolate()->counters();
5713 __ IncrementCounter(counters->string_compare_native(), 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005714
5715 // Find minimum length.
Ben Murdoch257744e2011-11-30 15:57:28 +00005716 Label left_shorter;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005717 __ mov(scratch1, FieldOperand(left, String::kLengthOffset));
5718 __ mov(scratch3, scratch1);
5719 __ sub(scratch3, FieldOperand(right, String::kLengthOffset));
5720
5721 Register length_delta = scratch3;
5722
Ben Murdoch257744e2011-11-30 15:57:28 +00005723 __ j(less_equal, &left_shorter, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005724 // Right string is shorter. Change scratch1 to be length of right string.
5725 __ sub(scratch1, Operand(length_delta));
5726 __ bind(&left_shorter);
5727
5728 Register min_length = scratch1;
5729
5730 // If either length is zero, just compare lengths.
Ben Murdoch257744e2011-11-30 15:57:28 +00005731 Label compare_lengths;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005732 __ test(min_length, Operand(min_length));
Ben Murdoch257744e2011-11-30 15:57:28 +00005733 __ j(zero, &compare_lengths, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005734
Ben Murdoch257744e2011-11-30 15:57:28 +00005735 // Compare characters.
5736 Label result_not_equal;
5737 GenerateAsciiCharsCompareLoop(masm, left, right, min_length, scratch2,
5738 &result_not_equal, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005739
5740 // Compare lengths - strings up to min-length are equal.
5741 __ bind(&compare_lengths);
5742 __ test(length_delta, Operand(length_delta));
Ben Murdoch257744e2011-11-30 15:57:28 +00005743 __ j(not_zero, &result_not_equal, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005744
5745 // Result is EQUAL.
5746 STATIC_ASSERT(EQUAL == 0);
5747 STATIC_ASSERT(kSmiTag == 0);
5748 __ Set(eax, Immediate(Smi::FromInt(EQUAL)));
5749 __ ret(0);
5750
Ben Murdoch257744e2011-11-30 15:57:28 +00005751 Label result_greater;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005752 __ bind(&result_not_equal);
Ben Murdoch257744e2011-11-30 15:57:28 +00005753 __ j(greater, &result_greater, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005754
5755 // Result is LESS.
5756 __ Set(eax, Immediate(Smi::FromInt(LESS)));
5757 __ ret(0);
5758
5759 // Result is GREATER.
5760 __ bind(&result_greater);
5761 __ Set(eax, Immediate(Smi::FromInt(GREATER)));
5762 __ ret(0);
5763}
5764
5765
Ben Murdoch257744e2011-11-30 15:57:28 +00005766void StringCompareStub::GenerateAsciiCharsCompareLoop(
5767 MacroAssembler* masm,
5768 Register left,
5769 Register right,
5770 Register length,
5771 Register scratch,
5772 Label* chars_not_equal,
5773 Label::Distance chars_not_equal_near) {
5774 // Change index to run from -length to -1 by adding length to string
5775 // start. This means that loop ends when index reaches zero, which
5776 // doesn't need an additional compare.
5777 __ SmiUntag(length);
5778 __ lea(left,
5779 FieldOperand(left, length, times_1, SeqAsciiString::kHeaderSize));
5780 __ lea(right,
5781 FieldOperand(right, length, times_1, SeqAsciiString::kHeaderSize));
5782 __ neg(length);
5783 Register index = length; // index = -length;
5784
5785 // Compare loop.
5786 Label loop;
5787 __ bind(&loop);
5788 __ mov_b(scratch, Operand(left, index, times_1, 0));
5789 __ cmpb(scratch, Operand(right, index, times_1, 0));
5790 __ j(not_equal, chars_not_equal, chars_not_equal_near);
5791 __ add(Operand(index), Immediate(1));
5792 __ j(not_zero, &loop);
5793}
5794
5795
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005796void StringCompareStub::Generate(MacroAssembler* masm) {
5797 Label runtime;
5798
5799 // Stack frame on entry.
5800 // esp[0]: return address
5801 // esp[4]: right string
5802 // esp[8]: left string
5803
5804 __ mov(edx, Operand(esp, 2 * kPointerSize)); // left
5805 __ mov(eax, Operand(esp, 1 * kPointerSize)); // right
5806
Ben Murdoch257744e2011-11-30 15:57:28 +00005807 Label not_same;
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005808 __ cmp(edx, Operand(eax));
Ben Murdoch257744e2011-11-30 15:57:28 +00005809 __ j(not_equal, &not_same, Label::kNear);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005810 STATIC_ASSERT(EQUAL == 0);
5811 STATIC_ASSERT(kSmiTag == 0);
5812 __ Set(eax, Immediate(Smi::FromInt(EQUAL)));
Steve Block44f0eee2011-05-26 01:26:41 +01005813 __ IncrementCounter(masm->isolate()->counters()->string_compare_native(), 1);
Kristian Monsen80d68ea2010-09-08 11:05:35 +01005814 __ ret(2 * kPointerSize);
5815
5816 __ bind(&not_same);
5817
5818 // Check that both objects are sequential ascii strings.
5819 __ JumpIfNotBothSequentialAsciiStrings(edx, eax, ecx, ebx, &runtime);
5820
5821 // Compare flat ascii strings.
5822 // Drop arguments from the stack.
5823 __ pop(ecx);
5824 __ add(Operand(esp), Immediate(2 * kPointerSize));
5825 __ push(ecx);
5826 GenerateCompareFlatAsciiStrings(masm, edx, eax, ecx, ebx, edi);
5827
5828 // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
5829 // tagged as a small integer.
5830 __ bind(&runtime);
5831 __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
5832}
5833
Ben Murdochb0fe1622011-05-05 13:52:32 +01005834
Ben Murdochb0fe1622011-05-05 13:52:32 +01005835void ICCompareStub::GenerateSmis(MacroAssembler* masm) {
5836 ASSERT(state_ == CompareIC::SMIS);
Ben Murdoch257744e2011-11-30 15:57:28 +00005837 Label miss;
Ben Murdochb0fe1622011-05-05 13:52:32 +01005838 __ mov(ecx, Operand(edx));
5839 __ or_(ecx, Operand(eax));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00005840 __ JumpIfNotSmi(ecx, &miss, Label::kNear);
Ben Murdochb0fe1622011-05-05 13:52:32 +01005841
5842 if (GetCondition() == equal) {
5843 // For equality we do not care about the sign of the result.
5844 __ sub(eax, Operand(edx));
5845 } else {
Ben Murdoch257744e2011-11-30 15:57:28 +00005846 Label done;
Ben Murdochb0fe1622011-05-05 13:52:32 +01005847 __ sub(edx, Operand(eax));
Ben Murdoch257744e2011-11-30 15:57:28 +00005848 __ j(no_overflow, &done, Label::kNear);
Ben Murdochb0fe1622011-05-05 13:52:32 +01005849 // Correct sign of result in case of overflow.
5850 __ not_(edx);
5851 __ bind(&done);
5852 __ mov(eax, edx);
5853 }
5854 __ ret(0);
5855
5856 __ bind(&miss);
5857 GenerateMiss(masm);
5858}
5859
5860
5861void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) {
5862 ASSERT(state_ == CompareIC::HEAP_NUMBERS);
5863
Ben Murdoch257744e2011-11-30 15:57:28 +00005864 Label generic_stub;
5865 Label unordered;
5866 Label miss;
Ben Murdochb0fe1622011-05-05 13:52:32 +01005867 __ mov(ecx, Operand(edx));
5868 __ and_(ecx, Operand(eax));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00005869 __ JumpIfSmi(ecx, &generic_stub, Label::kNear);
Ben Murdochb0fe1622011-05-05 13:52:32 +01005870
5871 __ CmpObjectType(eax, HEAP_NUMBER_TYPE, ecx);
Ben Murdoch257744e2011-11-30 15:57:28 +00005872 __ j(not_equal, &miss, Label::kNear);
Ben Murdochb0fe1622011-05-05 13:52:32 +01005873 __ CmpObjectType(edx, HEAP_NUMBER_TYPE, ecx);
Ben Murdoch257744e2011-11-30 15:57:28 +00005874 __ j(not_equal, &miss, Label::kNear);
Ben Murdochb0fe1622011-05-05 13:52:32 +01005875
5876 // Inlining the double comparison and falling back to the general compare
5877 // stub if NaN is involved or SS2 or CMOV is unsupported.
Ben Murdoch8b112d22011-06-08 16:22:53 +01005878 if (CpuFeatures::IsSupported(SSE2) && CpuFeatures::IsSupported(CMOV)) {
Ben Murdochb0fe1622011-05-05 13:52:32 +01005879 CpuFeatures::Scope scope1(SSE2);
5880 CpuFeatures::Scope scope2(CMOV);
5881
5882 // Load left and right operand
5883 __ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset));
5884 __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset));
5885
5886 // Compare operands
5887 __ ucomisd(xmm0, xmm1);
5888
5889 // Don't base result on EFLAGS when a NaN is involved.
Ben Murdoch257744e2011-11-30 15:57:28 +00005890 __ j(parity_even, &unordered, Label::kNear);
Ben Murdochb0fe1622011-05-05 13:52:32 +01005891
5892 // Return a result of -1, 0, or 1, based on EFLAGS.
5893 // Performing mov, because xor would destroy the flag register.
5894 __ mov(eax, 0); // equal
5895 __ mov(ecx, Immediate(Smi::FromInt(1)));
5896 __ cmov(above, eax, Operand(ecx));
5897 __ mov(ecx, Immediate(Smi::FromInt(-1)));
5898 __ cmov(below, eax, Operand(ecx));
5899 __ ret(0);
5900
5901 __ bind(&unordered);
5902 }
5903
5904 CompareStub stub(GetCondition(), strict(), NO_COMPARE_FLAGS);
5905 __ bind(&generic_stub);
5906 __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
5907
5908 __ bind(&miss);
5909 GenerateMiss(masm);
5910}
5911
5912
Ben Murdoch257744e2011-11-30 15:57:28 +00005913void ICCompareStub::GenerateSymbols(MacroAssembler* masm) {
5914 ASSERT(state_ == CompareIC::SYMBOLS);
5915 ASSERT(GetCondition() == equal);
5916
5917 // Registers containing left and right operands respectively.
5918 Register left = edx;
5919 Register right = eax;
5920 Register tmp1 = ecx;
5921 Register tmp2 = ebx;
5922
5923 // Check that both operands are heap objects.
5924 Label miss;
5925 __ mov(tmp1, Operand(left));
5926 STATIC_ASSERT(kSmiTag == 0);
5927 __ and_(tmp1, Operand(right));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00005928 __ JumpIfSmi(tmp1, &miss, Label::kNear);
Ben Murdoch257744e2011-11-30 15:57:28 +00005929
5930 // Check that both operands are symbols.
5931 __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
5932 __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
5933 __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
5934 __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
5935 STATIC_ASSERT(kSymbolTag != 0);
5936 __ and_(tmp1, Operand(tmp2));
5937 __ test(tmp1, Immediate(kIsSymbolMask));
5938 __ j(zero, &miss, Label::kNear);
5939
5940 // Symbols are compared by identity.
5941 Label done;
5942 __ cmp(left, Operand(right));
5943 // Make sure eax is non-zero. At this point input operands are
5944 // guaranteed to be non-zero.
5945 ASSERT(right.is(eax));
5946 __ j(not_equal, &done, Label::kNear);
5947 STATIC_ASSERT(EQUAL == 0);
5948 STATIC_ASSERT(kSmiTag == 0);
5949 __ Set(eax, Immediate(Smi::FromInt(EQUAL)));
5950 __ bind(&done);
5951 __ ret(0);
5952
5953 __ bind(&miss);
5954 GenerateMiss(masm);
5955}
5956
5957
5958void ICCompareStub::GenerateStrings(MacroAssembler* masm) {
5959 ASSERT(state_ == CompareIC::STRINGS);
5960 ASSERT(GetCondition() == equal);
5961 Label miss;
5962
5963 // Registers containing left and right operands respectively.
5964 Register left = edx;
5965 Register right = eax;
5966 Register tmp1 = ecx;
5967 Register tmp2 = ebx;
5968 Register tmp3 = edi;
5969
5970 // Check that both operands are heap objects.
5971 __ mov(tmp1, Operand(left));
5972 STATIC_ASSERT(kSmiTag == 0);
5973 __ and_(tmp1, Operand(right));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00005974 __ JumpIfSmi(tmp1, &miss);
Ben Murdoch257744e2011-11-30 15:57:28 +00005975
5976 // Check that both operands are strings. This leaves the instance
5977 // types loaded in tmp1 and tmp2.
5978 __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset));
5979 __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset));
5980 __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
5981 __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
5982 __ mov(tmp3, tmp1);
5983 STATIC_ASSERT(kNotStringTag != 0);
5984 __ or_(tmp3, Operand(tmp2));
5985 __ test(tmp3, Immediate(kIsNotStringMask));
5986 __ j(not_zero, &miss);
5987
5988 // Fast check for identical strings.
5989 Label not_same;
5990 __ cmp(left, Operand(right));
5991 __ j(not_equal, &not_same, Label::kNear);
5992 STATIC_ASSERT(EQUAL == 0);
5993 STATIC_ASSERT(kSmiTag == 0);
5994 __ Set(eax, Immediate(Smi::FromInt(EQUAL)));
5995 __ ret(0);
5996
5997 // Handle not identical strings.
5998 __ bind(&not_same);
5999
6000 // Check that both strings are symbols. If they are, we're done
6001 // because we already know they are not identical.
6002 Label do_compare;
6003 STATIC_ASSERT(kSymbolTag != 0);
6004 __ and_(tmp1, Operand(tmp2));
6005 __ test(tmp1, Immediate(kIsSymbolMask));
6006 __ j(zero, &do_compare, Label::kNear);
6007 // Make sure eax is non-zero. At this point input operands are
6008 // guaranteed to be non-zero.
6009 ASSERT(right.is(eax));
6010 __ ret(0);
6011
6012 // Check that both strings are sequential ASCII.
6013 Label runtime;
6014 __ bind(&do_compare);
6015 __ JumpIfNotBothSequentialAsciiStrings(left, right, tmp1, tmp2, &runtime);
6016
6017 // Compare flat ASCII strings. Returns when done.
6018 StringCompareStub::GenerateFlatAsciiStringEquals(
6019 masm, left, right, tmp1, tmp2);
6020
6021 // Handle more complex cases in runtime.
6022 __ bind(&runtime);
6023 __ pop(tmp1); // Return address.
6024 __ push(left);
6025 __ push(right);
6026 __ push(tmp1);
6027 __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
6028
6029 __ bind(&miss);
6030 GenerateMiss(masm);
6031}
6032
6033
Ben Murdochb0fe1622011-05-05 13:52:32 +01006034void ICCompareStub::GenerateObjects(MacroAssembler* masm) {
6035 ASSERT(state_ == CompareIC::OBJECTS);
Ben Murdoch257744e2011-11-30 15:57:28 +00006036 Label miss;
Ben Murdochb0fe1622011-05-05 13:52:32 +01006037 __ mov(ecx, Operand(edx));
6038 __ and_(ecx, Operand(eax));
Ben Murdoch3fb3ca82011-12-02 17:19:32 +00006039 __ JumpIfSmi(ecx, &miss, Label::kNear);
Ben Murdochb0fe1622011-05-05 13:52:32 +01006040
6041 __ CmpObjectType(eax, JS_OBJECT_TYPE, ecx);
Ben Murdoch257744e2011-11-30 15:57:28 +00006042 __ j(not_equal, &miss, Label::kNear);
Ben Murdochb0fe1622011-05-05 13:52:32 +01006043 __ CmpObjectType(edx, JS_OBJECT_TYPE, ecx);
Ben Murdoch257744e2011-11-30 15:57:28 +00006044 __ j(not_equal, &miss, Label::kNear);
Ben Murdochb0fe1622011-05-05 13:52:32 +01006045
6046 ASSERT(GetCondition() == equal);
6047 __ sub(eax, Operand(edx));
6048 __ ret(0);
6049
6050 __ bind(&miss);
6051 GenerateMiss(masm);
6052}
6053
6054
6055void ICCompareStub::GenerateMiss(MacroAssembler* masm) {
6056 // Save the registers.
6057 __ pop(ecx);
6058 __ push(edx);
6059 __ push(eax);
6060 __ push(ecx);
6061
6062 // Call the runtime system in a fresh internal frame.
Steve Block44f0eee2011-05-26 01:26:41 +01006063 ExternalReference miss = ExternalReference(IC_Utility(IC::kCompareIC_Miss),
6064 masm->isolate());
Ben Murdochb0fe1622011-05-05 13:52:32 +01006065 __ EnterInternalFrame();
6066 __ push(edx);
6067 __ push(eax);
6068 __ push(Immediate(Smi::FromInt(op_)));
6069 __ CallExternalReference(miss, 3);
6070 __ LeaveInternalFrame();
6071
6072 // Compute the entry point of the rewritten stub.
6073 __ lea(edi, FieldOperand(eax, Code::kHeaderSize));
6074
6075 // Restore registers.
6076 __ pop(ecx);
6077 __ pop(eax);
6078 __ pop(edx);
6079 __ push(ecx);
6080
6081 // Do a tail call to the rewritten stub.
6082 __ jmp(Operand(edi));
6083}
6084
6085
Ben Murdoch257744e2011-11-30 15:57:28 +00006086// Helper function used to check that the dictionary doesn't contain
6087// the property. This function may return false negatives, so miss_label
6088// must always call a backup property check that is complete.
6089// This function is safe to call if the receiver has fast properties.
6090// Name must be a symbol and receiver must be a heap object.
6091MaybeObject* StringDictionaryLookupStub::GenerateNegativeLookup(
6092 MacroAssembler* masm,
6093 Label* miss,
6094 Label* done,
6095 Register properties,
6096 String* name,
6097 Register r0) {
6098 ASSERT(name->IsSymbol());
6099
6100 // If names of slots in range from 1 to kProbes - 1 for the hash value are
6101 // not equal to the name and kProbes-th slot is not used (its name is the
6102 // undefined value), it guarantees the hash table doesn't contain the
6103 // property. It's true even if some slots represent deleted properties
6104 // (their names are the null value).
6105 for (int i = 0; i < kInlinedProbes; i++) {
6106 // Compute the masked index: (hash + i + i * i) & mask.
6107 Register index = r0;
6108 // Capacity is smi 2^n.
6109 __ mov(index, FieldOperand(properties, kCapacityOffset));
6110 __ dec(index);
6111 __ and_(Operand(index),
6112 Immediate(Smi::FromInt(name->Hash() +
6113 StringDictionary::GetProbeOffset(i))));
6114
6115 // Scale the index by multiplying by the entry size.
6116 ASSERT(StringDictionary::kEntrySize == 3);
6117 __ lea(index, Operand(index, index, times_2, 0)); // index *= 3.
6118 Register entity_name = r0;
6119 // Having undefined at this place means the name is not contained.
6120 ASSERT_EQ(kSmiTagSize, 1);
6121 __ mov(entity_name, Operand(properties, index, times_half_pointer_size,
6122 kElementsStartOffset - kHeapObjectTag));
6123 __ cmp(entity_name, masm->isolate()->factory()->undefined_value());
6124 __ j(equal, done);
6125
6126 // Stop if found the property.
6127 __ cmp(entity_name, Handle<String>(name));
6128 __ j(equal, miss);
6129
6130 // Check if the entry name is not a symbol.
6131 __ mov(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset));
6132 __ test_b(FieldOperand(entity_name, Map::kInstanceTypeOffset),
6133 kIsSymbolMask);
6134 __ j(zero, miss);
6135 }
6136
6137 StringDictionaryLookupStub stub(properties,
6138 r0,
6139 r0,
6140 StringDictionaryLookupStub::NEGATIVE_LOOKUP);
6141 __ push(Immediate(Handle<Object>(name)));
6142 __ push(Immediate(name->Hash()));
6143 MaybeObject* result = masm->TryCallStub(&stub);
6144 if (result->IsFailure()) return result;
6145 __ test(r0, Operand(r0));
6146 __ j(not_zero, miss);
6147 __ jmp(done);
6148 return result;
6149}
6150
6151
6152// Probe the string dictionary in the |elements| register. Jump to the
6153// |done| label if a property with the given name is found leaving the
6154// index into the dictionary in |r0|. Jump to the |miss| label
6155// otherwise.
6156void StringDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
6157 Label* miss,
6158 Label* done,
6159 Register elements,
6160 Register name,
6161 Register r0,
6162 Register r1) {
6163 // Assert that name contains a string.
6164 if (FLAG_debug_code) __ AbortIfNotString(name);
6165
6166 __ mov(r1, FieldOperand(elements, kCapacityOffset));
6167 __ shr(r1, kSmiTagSize); // convert smi to int
6168 __ dec(r1);
6169
6170 // Generate an unrolled loop that performs a few probes before
6171 // giving up. Measurements done on Gmail indicate that 2 probes
6172 // cover ~93% of loads from dictionaries.
6173 for (int i = 0; i < kInlinedProbes; i++) {
6174 // Compute the masked index: (hash + i + i * i) & mask.
6175 __ mov(r0, FieldOperand(name, String::kHashFieldOffset));
6176 __ shr(r0, String::kHashShift);
6177 if (i > 0) {
6178 __ add(Operand(r0), Immediate(StringDictionary::GetProbeOffset(i)));
6179 }
6180 __ and_(r0, Operand(r1));
6181
6182 // Scale the index by multiplying by the entry size.
6183 ASSERT(StringDictionary::kEntrySize == 3);
6184 __ lea(r0, Operand(r0, r0, times_2, 0)); // r0 = r0 * 3
6185
6186 // Check if the key is identical to the name.
6187 __ cmp(name, Operand(elements,
6188 r0,
6189 times_4,
6190 kElementsStartOffset - kHeapObjectTag));
6191 __ j(equal, done);
6192 }
6193
6194 StringDictionaryLookupStub stub(elements,
6195 r1,
6196 r0,
6197 POSITIVE_LOOKUP);
6198 __ push(name);
6199 __ mov(r0, FieldOperand(name, String::kHashFieldOffset));
6200 __ shr(r0, String::kHashShift);
6201 __ push(r0);
6202 __ CallStub(&stub);
6203
6204 __ test(r1, Operand(r1));
6205 __ j(zero, miss);
6206 __ jmp(done);
6207}
6208
6209
6210void StringDictionaryLookupStub::Generate(MacroAssembler* masm) {
6211 // Stack frame on entry:
6212 // esp[0 * kPointerSize]: return address.
6213 // esp[1 * kPointerSize]: key's hash.
6214 // esp[2 * kPointerSize]: key.
6215 // Registers:
6216 // dictionary_: StringDictionary to probe.
6217 // result_: used as scratch.
6218 // index_: will hold an index of entry if lookup is successful.
6219 // might alias with result_.
6220 // Returns:
6221 // result_ is zero if lookup failed, non zero otherwise.
6222
6223 Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
6224
6225 Register scratch = result_;
6226
6227 __ mov(scratch, FieldOperand(dictionary_, kCapacityOffset));
6228 __ dec(scratch);
6229 __ SmiUntag(scratch);
6230 __ push(scratch);
6231
6232 // If names of slots in range from 1 to kProbes - 1 for the hash value are
6233 // not equal to the name and kProbes-th slot is not used (its name is the
6234 // undefined value), it guarantees the hash table doesn't contain the
6235 // property. It's true even if some slots represent deleted properties
6236 // (their names are the null value).
6237 for (int i = kInlinedProbes; i < kTotalProbes; i++) {
6238 // Compute the masked index: (hash + i + i * i) & mask.
6239 __ mov(scratch, Operand(esp, 2 * kPointerSize));
6240 if (i > 0) {
6241 __ add(Operand(scratch),
6242 Immediate(StringDictionary::GetProbeOffset(i)));
6243 }
6244 __ and_(scratch, Operand(esp, 0));
6245
6246 // Scale the index by multiplying by the entry size.
6247 ASSERT(StringDictionary::kEntrySize == 3);
6248 __ lea(index_, Operand(scratch, scratch, times_2, 0)); // index *= 3.
6249
6250 // Having undefined at this place means the name is not contained.
6251 ASSERT_EQ(kSmiTagSize, 1);
6252 __ mov(scratch, Operand(dictionary_,
6253 index_,
6254 times_pointer_size,
6255 kElementsStartOffset - kHeapObjectTag));
6256 __ cmp(scratch, masm->isolate()->factory()->undefined_value());
6257 __ j(equal, &not_in_dictionary);
6258
6259 // Stop if found the property.
6260 __ cmp(scratch, Operand(esp, 3 * kPointerSize));
6261 __ j(equal, &in_dictionary);
6262
6263 if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) {
6264 // If we hit a non symbol key during negative lookup
6265 // we have to bailout as this key might be equal to the
6266 // key we are looking for.
6267
6268 // Check if the entry name is not a symbol.
6269 __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
6270 __ test_b(FieldOperand(scratch, Map::kInstanceTypeOffset),
6271 kIsSymbolMask);
6272 __ j(zero, &maybe_in_dictionary);
6273 }
6274 }
6275
6276 __ bind(&maybe_in_dictionary);
6277 // If we are doing negative lookup then probing failure should be
6278 // treated as a lookup success. For positive lookup probing failure
6279 // should be treated as lookup failure.
6280 if (mode_ == POSITIVE_LOOKUP) {
6281 __ mov(result_, Immediate(0));
6282 __ Drop(1);
6283 __ ret(2 * kPointerSize);
6284 }
6285
6286 __ bind(&in_dictionary);
6287 __ mov(result_, Immediate(1));
6288 __ Drop(1);
6289 __ ret(2 * kPointerSize);
6290
6291 __ bind(&not_in_dictionary);
6292 __ mov(result_, Immediate(0));
6293 __ Drop(1);
6294 __ ret(2 * kPointerSize);
6295}
6296
6297
Kristian Monsen80d68ea2010-09-08 11:05:35 +01006298#undef __
6299
6300} } // namespace v8::internal
6301
6302#endif // V8_TARGET_ARCH_IA32