blob: 8c3c4fe14ef93298fc58da2f631f659e1f277b9b [file] [log] [blame]
Steve Blocka7e24c12009-10-30 11:49:00 +00001# Copyright 2008 the V8 project authors. All rights reserved.
2# Redistribution and use in source and binary forms, with or without
3# modification, are permitted provided that the following conditions are
4# met:
5#
6# * Redistributions of source code must retain the above copyright
7# notice, this list of conditions and the following disclaimer.
8# * Redistributions in binary form must reproduce the above
9# copyright notice, this list of conditions and the following
10# disclaimer in the documentation and/or other materials provided
11# with the distribution.
12# * Neither the name of Google Inc. nor the names of its
13# contributors may be used to endorse or promote products derived
14# from this software without specific prior written permission.
15#
16# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28
29class Node(object):
30 """Nodes in the splay tree."""
31
32 def __init__(self, key, value):
33 self.key = key
34 self.value = value
35 self.left = None
36 self.right = None
37
38
39class KeyNotFoundError(Exception):
40 """KeyNotFoundError is raised when removing a non-existing node."""
41
42 def __init__(self, key):
43 self.key = key
44
45
46class SplayTree(object):
47 """The splay tree itself is just a reference to the root of the tree."""
48
49 def __init__(self):
50 """Create a new SplayTree."""
51 self.root = None
52
53 def IsEmpty(self):
54 """Is the SplayTree empty?"""
55 return not self.root
56
57 def Insert(self, key, value):
58 """Insert a new node in the SplayTree."""
59 # If the tree is empty, insert the new node.
60 if self.IsEmpty():
61 self.root = Node(key, value)
62 return
63 # Splay on the key to move the last node on the search path for
64 # the key to the root of the tree.
65 self.Splay(key)
66 # Ignore repeated insertions with the same key.
67 if self.root.key == key:
68 return
69 # Insert the new node.
70 node = Node(key, value)
71 if key > self.root.key:
72 node.left = self.root
73 node.right = self.root.right
74 self.root.right = None
75 else:
76 node.right = self.root
77 node.left = self.root.left
78 self.root.left = None
79 self.root = node
80
81 def Remove(self, key):
82 """Remove the node with the given key from the SplayTree."""
83 # Raise exception for key that is not found if the tree is empty.
84 if self.IsEmpty():
85 raise KeyNotFoundError(key)
86 # Splay on the key to move the node with the given key to the top.
87 self.Splay(key)
88 # Raise exception for key that is not found.
89 if self.root.key != key:
90 raise KeyNotFoundError(key)
91 removed = self.root
92 # Link out the root node.
93 if not self.root.left:
94 # No left child, so the new tree is just the right child.
95 self.root = self.root.right
96 else:
97 # Left child exists.
98 right = self.root.right
99 # Make the original left child the new root.
100 self.root = self.root.left
101 # Splay to make sure that the new root has an empty right child.
102 self.Splay(key)
103 # Insert the original right child as the right child of the new
104 # root.
105 self.root.right = right
106 return removed
107
108 def Find(self, key):
109 """Returns the node with the given key or None if no such node exists."""
110 if self.IsEmpty():
111 return None
112 self.Splay(key)
113 if self.root.key == key:
114 return self.root
115 return None
116
117 def FindMax(self):
118 """Returns the node with the largest key value."""
119 if self.IsEmpty():
120 return None
121 current = self.root
122 while current.right != None:
123 current = current.right
124 return current
125
126 # Returns the node with the smallest key value.
127 def FindMin(self):
128 if self.IsEmpty():
129 return None
130 current = self.root
131 while current.left != None:
132 current = current.left
133 return current
134
135 def FindGreatestsLessThan(self, key):
136 """Returns node with greatest key less than or equal to the given key."""
137 if self.IsEmpty():
138 return None
139 # Splay on the key to move the node with the given key or the last
140 # node on the search path to the top of the tree.
141 self.Splay(key)
142 # Now the result is either the root node or the greatest node in
143 # the left subtree.
144 if self.root.key <= key:
145 return self.root
146 else:
147 tmp = self.root
148 self.root = self.root.left
149 result = self.FindMax()
150 self.root = tmp
151 return result
152
153 def ExportValueList(self):
154 """Returns a list containing all the values of the nodes in the tree."""
155 result = []
156 nodes_to_visit = [self.root]
157 while len(nodes_to_visit) > 0:
158 node = nodes_to_visit.pop()
159 if not node:
160 continue
161 result.append(node.value)
162 nodes_to_visit.append(node.left)
163 nodes_to_visit.append(node.right)
164 return result
165
166 def Splay(self, key):
167 """Perform splay operation.
168
169 Perform the splay operation for the given key. Moves the node with
170 the given key to the top of the tree. If no node has the given
171 key, the last node on the search path is moved to the top of the
172 tree.
173
174 This uses the simplified top-down splaying algorithm from:
175
176 "Self-adjusting Binary Search Trees" by Sleator and Tarjan
177
178 """
179 if self.IsEmpty():
180 return
181 # Create a dummy node. The use of the dummy node is a bit
182 # counter-intuitive: The right child of the dummy node will hold
183 # the L tree of the algorithm. The left child of the dummy node
184 # will hold the R tree of the algorithm. Using a dummy node, left
185 # and right will always be nodes and we avoid special cases.
186 dummy = left = right = Node(None, None)
187 current = self.root
188 while True:
189 if key < current.key:
190 if not current.left:
191 break
192 if key < current.left.key:
193 # Rotate right.
194 tmp = current.left
195 current.left = tmp.right
196 tmp.right = current
197 current = tmp
198 if not current.left:
199 break
200 # Link right.
201 right.left = current
202 right = current
203 current = current.left
204 elif key > current.key:
205 if not current.right:
206 break
207 if key > current.right.key:
208 # Rotate left.
209 tmp = current.right
210 current.right = tmp.left
211 tmp.left = current
212 current = tmp
213 if not current.right:
214 break
215 # Link left.
216 left.right = current
217 left = current
218 current = current.right
219 else:
220 break
221 # Assemble.
222 left.right = current.left
223 right.left = current.right
224 current.left = dummy.right
225 current.right = dummy.left
226 self.root = current