blob: f84e80d1f5bbb29a9870111fbab98b3b8611d4c0 [file] [log] [blame]
Leon Clarked91b9f72010-01-27 17:25:45 +00001// Copyright 2006-2009 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28// Platform specific code for Solaris 10 goes here. For the POSIX comaptible
29// parts the implementation is in platform-posix.cc.
30
31#ifdef __sparc
32# error "V8 does not support the SPARC CPU architecture."
33#endif
34
35#include <sys/stack.h> // for stack alignment
36#include <unistd.h> // getpagesize(), usleep()
37#include <sys/mman.h> // mmap()
Leon Clarkef7060e22010-06-03 12:02:55 +010038#include <ucontext.h> // walkstack(), getcontext()
39#include <dlfcn.h> // dladdr
Leon Clarked91b9f72010-01-27 17:25:45 +000040#include <pthread.h>
41#include <sched.h> // for sched_yield
42#include <semaphore.h>
43#include <time.h>
44#include <sys/time.h> // gettimeofday(), timeradd()
45#include <errno.h>
46#include <ieeefp.h> // finite()
47#include <signal.h> // sigemptyset(), etc
48
49
50#undef MAP_TYPE
51
52#include "v8.h"
53
54#include "platform.h"
Ben Murdochb0fe1622011-05-05 13:52:32 +010055#include "vm-state-inl.h"
Leon Clarked91b9f72010-01-27 17:25:45 +000056
57
Leon Clarkef7060e22010-06-03 12:02:55 +010058// It seems there is a bug in some Solaris distributions (experienced in
59// SunOS 5.10 Generic_141445-09) which make it difficult or impossible to
60// access signbit() despite the availability of other C99 math functions.
61#ifndef signbit
62// Test sign - usually defined in math.h
63int signbit(double x) {
64 // We need to take care of the special case of both positive and negative
65 // versions of zero.
66 if (x == 0) {
67 return fpclass(x) & FP_NZERO;
68 } else {
69 // This won't detect negative NaN but that should be okay since we don't
70 // assume that behavior.
71 return x < 0;
72 }
73}
74#endif // signbit
75
Leon Clarked91b9f72010-01-27 17:25:45 +000076namespace v8 {
77namespace internal {
78
79
80// 0 is never a valid thread id on Solaris since the main thread is 1 and
81// subsequent have their ids incremented from there
82static const pthread_t kNoThread = (pthread_t) 0;
83
84
85double ceiling(double x) {
86 return ceil(x);
87}
88
89
90void OS::Setup() {
91 // Seed the random number generator.
92 // Convert the current time to a 64-bit integer first, before converting it
93 // to an unsigned. Going directly will cause an overflow and the seed to be
94 // set to all ones. The seed will be identical for different instances that
95 // call this setup code within the same millisecond.
96 uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis());
97 srandom(static_cast<unsigned int>(seed));
98}
99
100
101uint64_t OS::CpuFeaturesImpliedByPlatform() {
102 return 0; // Solaris runs on a lot of things.
103}
104
105
106int OS::ActivationFrameAlignment() {
107 return STACK_ALIGN;
108}
109
110
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100111void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) {
112 __asm__ __volatile__("" : : : "memory");
113 *ptr = value;
114}
115
116
Leon Clarked91b9f72010-01-27 17:25:45 +0000117const char* OS::LocalTimezone(double time) {
118 if (isnan(time)) return "";
119 time_t tv = static_cast<time_t>(floor(time/msPerSecond));
120 struct tm* t = localtime(&tv);
121 if (NULL == t) return "";
122 return tzname[0]; // The location of the timezone string on Solaris.
123}
124
125
126double OS::LocalTimeOffset() {
127 // On Solaris, struct tm does not contain a tm_gmtoff field.
128 time_t utc = time(NULL);
129 ASSERT(utc != -1);
130 struct tm* loc = localtime(&utc);
131 ASSERT(loc != NULL);
132 return static_cast<double>((mktime(loc) - utc) * msPerSecond);
133}
134
135
136// We keep the lowest and highest addresses mapped as a quick way of
137// determining that pointers are outside the heap (used mostly in assertions
138// and verification). The estimate is conservative, ie, not all addresses in
139// 'allocated' space are actually allocated to our heap. The range is
140// [lowest, highest), inclusive on the low and and exclusive on the high end.
141static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
142static void* highest_ever_allocated = reinterpret_cast<void*>(0);
143
144
145static void UpdateAllocatedSpaceLimits(void* address, int size) {
146 lowest_ever_allocated = Min(lowest_ever_allocated, address);
147 highest_ever_allocated =
148 Max(highest_ever_allocated,
149 reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
150}
151
152
153bool OS::IsOutsideAllocatedSpace(void* address) {
154 return address < lowest_ever_allocated || address >= highest_ever_allocated;
155}
156
157
158size_t OS::AllocateAlignment() {
159 return static_cast<size_t>(getpagesize());
160}
161
162
163void* OS::Allocate(const size_t requested,
164 size_t* allocated,
165 bool is_executable) {
166 const size_t msize = RoundUp(requested, getpagesize());
167 int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
168 void* mbase = mmap(NULL, msize, prot, MAP_PRIVATE | MAP_ANON, -1, 0);
169
170 if (mbase == MAP_FAILED) {
171 LOG(StringEvent("OS::Allocate", "mmap failed"));
172 return NULL;
173 }
174 *allocated = msize;
175 UpdateAllocatedSpaceLimits(mbase, msize);
176 return mbase;
177}
178
179
180void OS::Free(void* address, const size_t size) {
181 // TODO(1240712): munmap has a return value which is ignored here.
182 int result = munmap(address, size);
183 USE(result);
184 ASSERT(result == 0);
185}
186
187
188#ifdef ENABLE_HEAP_PROTECTION
189
190void OS::Protect(void* address, size_t size) {
191 // TODO(1240712): mprotect has a return value which is ignored here.
192 mprotect(address, size, PROT_READ);
193}
194
195
196void OS::Unprotect(void* address, size_t size, bool is_executable) {
197 // TODO(1240712): mprotect has a return value which is ignored here.
198 int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
199 mprotect(address, size, prot);
200}
201
202#endif
203
204
205void OS::Sleep(int milliseconds) {
206 useconds_t ms = static_cast<useconds_t>(milliseconds);
207 usleep(1000 * ms);
208}
209
210
211void OS::Abort() {
212 // Redirect to std abort to signal abnormal program termination.
213 abort();
214}
215
216
217void OS::DebugBreak() {
218 asm("int $3");
219}
220
221
222class PosixMemoryMappedFile : public OS::MemoryMappedFile {
223 public:
224 PosixMemoryMappedFile(FILE* file, void* memory, int size)
225 : file_(file), memory_(memory), size_(size) { }
226 virtual ~PosixMemoryMappedFile();
227 virtual void* memory() { return memory_; }
228 private:
229 FILE* file_;
230 void* memory_;
231 int size_;
232};
233
234
235OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
236 void* initial) {
237 FILE* file = fopen(name, "w+");
238 if (file == NULL) return NULL;
239 int result = fwrite(initial, size, 1, file);
240 if (result < 1) {
241 fclose(file);
242 return NULL;
243 }
244 void* memory =
245 mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0);
246 return new PosixMemoryMappedFile(file, memory, size);
247}
248
249
250PosixMemoryMappedFile::~PosixMemoryMappedFile() {
251 if (memory_) munmap(memory_, size_);
252 fclose(file_);
253}
254
255
256void OS::LogSharedLibraryAddresses() {
257}
258
259
Ben Murdochf87a2032010-10-22 12:50:53 +0100260void OS::SignalCodeMovingGC() {
261}
262
263
Leon Clarkef7060e22010-06-03 12:02:55 +0100264struct StackWalker {
265 Vector<OS::StackFrame>& frames;
266 int index;
267};
268
269
270static int StackWalkCallback(uintptr_t pc, int signo, void* data) {
271 struct StackWalker* walker = static_cast<struct StackWalker*>(data);
272 Dl_info info;
273
274 int i = walker->index;
275
276 walker->frames[i].address = reinterpret_cast<void*>(pc);
277
278 // Make sure line termination is in place.
279 walker->frames[i].text[OS::kStackWalkMaxTextLen - 1] = '\0';
280
281 Vector<char> text = MutableCStrVector(walker->frames[i].text,
282 OS::kStackWalkMaxTextLen);
283
284 if (dladdr(reinterpret_cast<void*>(pc), &info) == 0) {
285 OS::SNPrintF(text, "[0x%p]", pc);
286 } else if ((info.dli_fname != NULL && info.dli_sname != NULL)) {
287 // We have symbol info.
288 OS::SNPrintF(text, "%s'%s+0x%x", info.dli_fname, info.dli_sname, pc);
289 } else {
290 // No local symbol info.
291 OS::SNPrintF(text,
292 "%s'0x%p [0x%p]",
293 info.dli_fname,
294 pc - reinterpret_cast<uintptr_t>(info.dli_fbase),
295 pc);
296 }
297 walker->index++;
298 return 0;
299}
300
301
Leon Clarked91b9f72010-01-27 17:25:45 +0000302int OS::StackWalk(Vector<OS::StackFrame> frames) {
Leon Clarkef7060e22010-06-03 12:02:55 +0100303 ucontext_t ctx;
304 struct StackWalker walker = { frames, 0 };
Leon Clarked91b9f72010-01-27 17:25:45 +0000305
Leon Clarkef7060e22010-06-03 12:02:55 +0100306 if (getcontext(&ctx) < 0) return kStackWalkError;
Leon Clarked91b9f72010-01-27 17:25:45 +0000307
Leon Clarkef7060e22010-06-03 12:02:55 +0100308 if (!walkcontext(&ctx, StackWalkCallback, &walker)) {
Leon Clarked91b9f72010-01-27 17:25:45 +0000309 return kStackWalkError;
310 }
311
Leon Clarkef7060e22010-06-03 12:02:55 +0100312 return walker.index;
Leon Clarked91b9f72010-01-27 17:25:45 +0000313}
314
315
316// Constants used for mmap.
317static const int kMmapFd = -1;
318static const int kMmapFdOffset = 0;
319
320
321VirtualMemory::VirtualMemory(size_t size) {
322 address_ = mmap(NULL, size, PROT_NONE,
323 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
324 kMmapFd, kMmapFdOffset);
325 size_ = size;
326}
327
328
329VirtualMemory::~VirtualMemory() {
330 if (IsReserved()) {
331 if (0 == munmap(address(), size())) address_ = MAP_FAILED;
332 }
333}
334
335
336bool VirtualMemory::IsReserved() {
337 return address_ != MAP_FAILED;
338}
339
340
341bool VirtualMemory::Commit(void* address, size_t size, bool executable) {
342 int prot = PROT_READ | PROT_WRITE | (executable ? PROT_EXEC : 0);
343 if (MAP_FAILED == mmap(address, size, prot,
344 MAP_PRIVATE | MAP_ANON | MAP_FIXED,
345 kMmapFd, kMmapFdOffset)) {
346 return false;
347 }
348
349 UpdateAllocatedSpaceLimits(address, size);
350 return true;
351}
352
353
354bool VirtualMemory::Uncommit(void* address, size_t size) {
355 return mmap(address, size, PROT_NONE,
356 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | MAP_FIXED,
357 kMmapFd, kMmapFdOffset) != MAP_FAILED;
358}
359
360
361class ThreadHandle::PlatformData : public Malloced {
362 public:
363 explicit PlatformData(ThreadHandle::Kind kind) {
364 Initialize(kind);
365 }
366
367 void Initialize(ThreadHandle::Kind kind) {
368 switch (kind) {
369 case ThreadHandle::SELF: thread_ = pthread_self(); break;
370 case ThreadHandle::INVALID: thread_ = kNoThread; break;
371 }
372 }
373
374 pthread_t thread_; // Thread handle for pthread.
375};
376
377
378ThreadHandle::ThreadHandle(Kind kind) {
379 data_ = new PlatformData(kind);
380}
381
382
383void ThreadHandle::Initialize(ThreadHandle::Kind kind) {
384 data_->Initialize(kind);
385}
386
387
388ThreadHandle::~ThreadHandle() {
389 delete data_;
390}
391
392
393bool ThreadHandle::IsSelf() const {
394 return pthread_equal(data_->thread_, pthread_self());
395}
396
397
398bool ThreadHandle::IsValid() const {
399 return data_->thread_ != kNoThread;
400}
401
402
403Thread::Thread() : ThreadHandle(ThreadHandle::INVALID) {
404}
405
406
407Thread::~Thread() {
408}
409
410
411static void* ThreadEntry(void* arg) {
412 Thread* thread = reinterpret_cast<Thread*>(arg);
413 // This is also initialized by the first argument to pthread_create() but we
414 // don't know which thread will run first (the original thread or the new
415 // one) so we initialize it here too.
416 thread->thread_handle_data()->thread_ = pthread_self();
417 ASSERT(thread->IsValid());
418 thread->Run();
419 return NULL;
420}
421
422
423void Thread::Start() {
424 pthread_create(&thread_handle_data()->thread_, NULL, ThreadEntry, this);
425 ASSERT(IsValid());
426}
427
428
429void Thread::Join() {
430 pthread_join(thread_handle_data()->thread_, NULL);
431}
432
433
434Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
435 pthread_key_t key;
436 int result = pthread_key_create(&key, NULL);
437 USE(result);
438 ASSERT(result == 0);
439 return static_cast<LocalStorageKey>(key);
440}
441
442
443void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
444 pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
445 int result = pthread_key_delete(pthread_key);
446 USE(result);
447 ASSERT(result == 0);
448}
449
450
451void* Thread::GetThreadLocal(LocalStorageKey key) {
452 pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
453 return pthread_getspecific(pthread_key);
454}
455
456
457void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
458 pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
459 pthread_setspecific(pthread_key, value);
460}
461
462
463void Thread::YieldCPU() {
464 sched_yield();
465}
466
467
468class SolarisMutex : public Mutex {
469 public:
470
471 SolarisMutex() {
472 pthread_mutexattr_t attr;
473 pthread_mutexattr_init(&attr);
474 pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
475 pthread_mutex_init(&mutex_, &attr);
476 }
477
478 ~SolarisMutex() { pthread_mutex_destroy(&mutex_); }
479
480 int Lock() { return pthread_mutex_lock(&mutex_); }
481
482 int Unlock() { return pthread_mutex_unlock(&mutex_); }
483
484 private:
485 pthread_mutex_t mutex_;
486};
487
488
489Mutex* OS::CreateMutex() {
490 return new SolarisMutex();
491}
492
493
494class SolarisSemaphore : public Semaphore {
495 public:
496 explicit SolarisSemaphore(int count) { sem_init(&sem_, 0, count); }
497 virtual ~SolarisSemaphore() { sem_destroy(&sem_); }
498
499 virtual void Wait();
500 virtual bool Wait(int timeout);
501 virtual void Signal() { sem_post(&sem_); }
502 private:
503 sem_t sem_;
504};
505
506
507void SolarisSemaphore::Wait() {
508 while (true) {
509 int result = sem_wait(&sem_);
510 if (result == 0) return; // Successfully got semaphore.
511 CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup.
512 }
513}
514
515
516#ifndef TIMEVAL_TO_TIMESPEC
517#define TIMEVAL_TO_TIMESPEC(tv, ts) do { \
518 (ts)->tv_sec = (tv)->tv_sec; \
519 (ts)->tv_nsec = (tv)->tv_usec * 1000; \
520} while (false)
521#endif
522
523
524#ifndef timeradd
525#define timeradd(a, b, result) \
526 do { \
527 (result)->tv_sec = (a)->tv_sec + (b)->tv_sec; \
528 (result)->tv_usec = (a)->tv_usec + (b)->tv_usec; \
529 if ((result)->tv_usec >= 1000000) { \
530 ++(result)->tv_sec; \
531 (result)->tv_usec -= 1000000; \
532 } \
533 } while (0)
534#endif
535
536
537bool SolarisSemaphore::Wait(int timeout) {
538 const long kOneSecondMicros = 1000000; // NOLINT
539
540 // Split timeout into second and nanosecond parts.
541 struct timeval delta;
542 delta.tv_usec = timeout % kOneSecondMicros;
543 delta.tv_sec = timeout / kOneSecondMicros;
544
545 struct timeval current_time;
546 // Get the current time.
547 if (gettimeofday(&current_time, NULL) == -1) {
548 return false;
549 }
550
551 // Calculate time for end of timeout.
552 struct timeval end_time;
553 timeradd(&current_time, &delta, &end_time);
554
555 struct timespec ts;
556 TIMEVAL_TO_TIMESPEC(&end_time, &ts);
557 // Wait for semaphore signalled or timeout.
558 while (true) {
559 int result = sem_timedwait(&sem_, &ts);
560 if (result == 0) return true; // Successfully got semaphore.
561 if (result == -1 && errno == ETIMEDOUT) return false; // Timeout.
562 CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup.
563 }
564}
565
566
567Semaphore* OS::CreateSemaphore(int count) {
568 return new SolarisSemaphore(count);
569}
570
571
572#ifdef ENABLE_LOGGING_AND_PROFILING
573
574static Sampler* active_sampler_ = NULL;
575
576static void ProfilerSignalHandler(int signal, siginfo_t* info, void* context) {
577 USE(info);
578 if (signal != SIGPROF) return;
579 if (active_sampler_ == NULL) return;
580
581 TickSample sample;
582 sample.pc = 0;
583 sample.sp = 0;
584 sample.fp = 0;
585
586 // We always sample the VM state.
Steve Block6ded16b2010-05-10 14:33:55 +0100587 sample.state = VMState::current_state();
Leon Clarked91b9f72010-01-27 17:25:45 +0000588
589 active_sampler_->Tick(&sample);
590}
591
592
593class Sampler::PlatformData : public Malloced {
594 public:
595 PlatformData() {
596 signal_handler_installed_ = false;
597 }
598
599 bool signal_handler_installed_;
600 struct sigaction old_signal_handler_;
601 struct itimerval old_timer_value_;
602};
603
604
Ben Murdochb0fe1622011-05-05 13:52:32 +0100605Sampler::Sampler(int interval)
Ben Murdochf87a2032010-10-22 12:50:53 +0100606 : interval_(interval),
Ben Murdochb0fe1622011-05-05 13:52:32 +0100607 profiling_(false),
Shimeng (Simon) Wang8a31eba2010-12-06 19:01:33 -0800608 active_(false),
609 samples_taken_(0) {
Leon Clarked91b9f72010-01-27 17:25:45 +0000610 data_ = new PlatformData();
611}
612
613
614Sampler::~Sampler() {
615 delete data_;
616}
617
618
619void Sampler::Start() {
620 // There can only be one active sampler at the time on POSIX
621 // platforms.
622 if (active_sampler_ != NULL) return;
623
624 // Request profiling signals.
625 struct sigaction sa;
626 sa.sa_sigaction = ProfilerSignalHandler;
627 sigemptyset(&sa.sa_mask);
628 sa.sa_flags = SA_SIGINFO;
629 if (sigaction(SIGPROF, &sa, &data_->old_signal_handler_) != 0) return;
630 data_->signal_handler_installed_ = true;
631
632 // Set the itimer to generate a tick for each interval.
633 itimerval itimer;
634 itimer.it_interval.tv_sec = interval_ / 1000;
635 itimer.it_interval.tv_usec = (interval_ % 1000) * 1000;
636 itimer.it_value.tv_sec = itimer.it_interval.tv_sec;
637 itimer.it_value.tv_usec = itimer.it_interval.tv_usec;
638 setitimer(ITIMER_PROF, &itimer, &data_->old_timer_value_);
639
640 // Set this sampler as the active sampler.
641 active_sampler_ = this;
642 active_ = true;
643}
644
645
646void Sampler::Stop() {
647 // Restore old signal handler
648 if (data_->signal_handler_installed_) {
649 setitimer(ITIMER_PROF, &data_->old_timer_value_, NULL);
650 sigaction(SIGPROF, &data_->old_signal_handler_, 0);
651 data_->signal_handler_installed_ = false;
652 }
653
654 // This sampler is no longer the active sampler.
655 active_sampler_ = NULL;
656 active_ = false;
657}
658
659#endif // ENABLE_LOGGING_AND_PROFILING
660
661} } // namespace v8::internal