blob: cd5a1bbfd7258dc68e4ae69fa0d1a5e7d538be22 [file] [log] [blame]
Steve Blocka7e24c12009-10-30 11:49:00 +00001// Copyright (c) 1994-2006 Sun Microsystems Inc.
2// All Rights Reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions
6// are met:
7//
8// - Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10//
11// - Redistribution in binary form must reproduce the above copyright
12// notice, this list of conditions and the following disclaimer in the
13// documentation and/or other materials provided with the
14// distribution.
15//
16// - Neither the name of Sun Microsystems or the names of contributors may
17// be used to endorse or promote products derived from this software without
18// specific prior written permission.
19//
20// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31// OF THE POSSIBILITY OF SUCH DAMAGE.
32
33// The original source code covered by the above license above has been modified
34// significantly by Google Inc.
35// Copyright 2006-2008 the V8 project authors. All rights reserved.
36
37#ifndef V8_ARM_ASSEMBLER_ARM_INL_H_
38#define V8_ARM_ASSEMBLER_ARM_INL_H_
39
40#include "arm/assembler-arm.h"
41#include "cpu.h"
42
43
44namespace v8 {
45namespace internal {
46
47Condition NegateCondition(Condition cc) {
48 ASSERT(cc != al);
49 return static_cast<Condition>(cc ^ ne);
50}
51
52
53void RelocInfo::apply(intptr_t delta) {
54 if (RelocInfo::IsInternalReference(rmode_)) {
55 // absolute code pointer inside code object moves with the code object.
56 int32_t* p = reinterpret_cast<int32_t*>(pc_);
57 *p += delta; // relocate entry
58 }
59 // We do not use pc relative addressing on ARM, so there is
60 // nothing else to do.
61}
62
63
64Address RelocInfo::target_address() {
65 ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
66 return Assembler::target_address_at(pc_);
67}
68
69
70Address RelocInfo::target_address_address() {
71 ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
72 return reinterpret_cast<Address>(Assembler::target_address_address_at(pc_));
73}
74
75
76void RelocInfo::set_target_address(Address target) {
77 ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
78 Assembler::set_target_address_at(pc_, target);
79}
80
81
82Object* RelocInfo::target_object() {
83 ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
84 return reinterpret_cast<Object*>(Assembler::target_address_at(pc_));
85}
86
87
88Object** RelocInfo::target_object_address() {
89 ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
90 return reinterpret_cast<Object**>(Assembler::target_address_address_at(pc_));
91}
92
93
94void RelocInfo::set_target_object(Object* target) {
95 ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
96 Assembler::set_target_address_at(pc_, reinterpret_cast<Address>(target));
97}
98
99
100Address* RelocInfo::target_reference_address() {
101 ASSERT(rmode_ == EXTERNAL_REFERENCE);
102 return reinterpret_cast<Address*>(Assembler::target_address_address_at(pc_));
103}
104
105
106Address RelocInfo::call_address() {
107 ASSERT(IsCallInstruction());
108 // The 2 instructions offset assumes patched return sequence.
109 ASSERT(IsJSReturn(rmode()));
110 return Memory::Address_at(pc_ + 2 * Assembler::kInstrSize);
111}
112
113
114void RelocInfo::set_call_address(Address target) {
115 ASSERT(IsCallInstruction());
116 // The 2 instructions offset assumes patched return sequence.
117 ASSERT(IsJSReturn(rmode()));
118 Memory::Address_at(pc_ + 2 * Assembler::kInstrSize) = target;
119}
120
121
122Object* RelocInfo::call_object() {
123 return *call_object_address();
124}
125
126
127Object** RelocInfo::call_object_address() {
128 ASSERT(IsCallInstruction());
129 // The 2 instructions offset assumes patched return sequence.
130 ASSERT(IsJSReturn(rmode()));
131 return reinterpret_cast<Object**>(pc_ + 2 * Assembler::kInstrSize);
132}
133
134
135void RelocInfo::set_call_object(Object* target) {
136 *call_object_address() = target;
137}
138
139
140bool RelocInfo::IsCallInstruction() {
141 // On ARM a "call instruction" is actually two instructions.
142 // mov lr, pc
143 // ldr pc, [pc, #XXX]
144 return (Assembler::instr_at(pc_) == kMovLrPc)
145 && ((Assembler::instr_at(pc_ + Assembler::kInstrSize) & kLdrPCPattern)
146 == kLdrPCPattern);
147}
148
149
150Operand::Operand(int32_t immediate, RelocInfo::Mode rmode) {
151 rm_ = no_reg;
152 imm32_ = immediate;
153 rmode_ = rmode;
154}
155
156
157Operand::Operand(const char* s) {
158 rm_ = no_reg;
159 imm32_ = reinterpret_cast<int32_t>(s);
160 rmode_ = RelocInfo::EMBEDDED_STRING;
161}
162
163
164Operand::Operand(const ExternalReference& f) {
165 rm_ = no_reg;
166 imm32_ = reinterpret_cast<int32_t>(f.address());
167 rmode_ = RelocInfo::EXTERNAL_REFERENCE;
168}
169
170
171Operand::Operand(Object** opp) {
172 rm_ = no_reg;
173 imm32_ = reinterpret_cast<int32_t>(opp);
174 rmode_ = RelocInfo::NONE;
175}
176
177
178Operand::Operand(Context** cpp) {
179 rm_ = no_reg;
180 imm32_ = reinterpret_cast<int32_t>(cpp);
181 rmode_ = RelocInfo::NONE;
182}
183
184
185Operand::Operand(Smi* value) {
186 rm_ = no_reg;
187 imm32_ = reinterpret_cast<intptr_t>(value);
188 rmode_ = RelocInfo::NONE;
189}
190
191
192Operand::Operand(Register rm) {
193 rm_ = rm;
194 rs_ = no_reg;
195 shift_op_ = LSL;
196 shift_imm_ = 0;
197}
198
199
200bool Operand::is_reg() const {
201 return rm_.is_valid() &&
202 rs_.is(no_reg) &&
203 shift_op_ == LSL &&
204 shift_imm_ == 0;
205}
206
207
208void Assembler::CheckBuffer() {
209 if (buffer_space() <= kGap) {
210 GrowBuffer();
211 }
212 if (pc_offset() >= next_buffer_check_) {
213 CheckConstPool(false, true);
214 }
215}
216
217
218void Assembler::emit(Instr x) {
219 CheckBuffer();
220 *reinterpret_cast<Instr*>(pc_) = x;
221 pc_ += kInstrSize;
222}
223
224
225Address Assembler::target_address_address_at(Address pc) {
226 Instr instr = Memory::int32_at(pc);
227 // Verify that the instruction at pc is a ldr<cond> <Rd>, [pc +/- offset_12].
228 ASSERT((instr & 0x0f7f0000) == 0x051f0000);
229 int offset = instr & 0xfff; // offset_12 is unsigned
230 if ((instr & (1 << 23)) == 0) offset = -offset; // U bit defines offset sign
231 // Verify that the constant pool comes after the instruction referencing it.
232 ASSERT(offset >= -4);
233 return pc + offset + 8;
234}
235
236
237Address Assembler::target_address_at(Address pc) {
238 return Memory::Address_at(target_address_address_at(pc));
239}
240
241
242void Assembler::set_target_address_at(Address pc, Address target) {
243 Memory::Address_at(target_address_address_at(pc)) = target;
244 // Intuitively, we would think it is necessary to flush the instruction cache
245 // after patching a target address in the code as follows:
246 // CPU::FlushICache(pc, sizeof(target));
247 // However, on ARM, no instruction was actually patched by the assignment
248 // above; the target address is not part of an instruction, it is patched in
249 // the constant pool and is read via a data access; the instruction accessing
250 // this address in the constant pool remains unchanged.
251}
252
253} } // namespace v8::internal
254
255#endif // V8_ARM_ASSEMBLER_ARM_INL_H_