blob: 7fd9adf36159e0dcdfd06b1fe5ac3bab45667b99 [file] [log] [blame]
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001// The following is adapted from fdlibm (http://www.netlib.org/fdlibm),
2//
3// ====================================================
4// Copyright (C) 1993-2004 by Sun Microsystems, Inc. All rights reserved.
5//
6// Developed at SunSoft, a Sun Microsystems, Inc. business.
7// Permission to use, copy, modify, and distribute this
8// software is freely granted, provided that this notice
9// is preserved.
10// ====================================================
11//
12// The original source code covered by the above license above has been
13// modified significantly by Google Inc.
14// Copyright 2014 the V8 project authors. All rights reserved.
15//
16// The following is a straightforward translation of fdlibm routines
17// by Raymond Toy (rtoy@google.com).
18
19// Double constants that do not have empty lower 32 bits are found in fdlibm.cc
20// and exposed through kMath as typed array. We assume the compiler to convert
21// from decimal to binary accurately enough to produce the intended values.
22// kMath is initialized to a Float64Array during genesis and not writable.
23var kMath;
24
25const INVPIO2 = kMath[0];
26const PIO2_1 = kMath[1];
27const PIO2_1T = kMath[2];
28const PIO2_2 = kMath[3];
29const PIO2_2T = kMath[4];
30const PIO2_3 = kMath[5];
31const PIO2_3T = kMath[6];
32const PIO4 = kMath[32];
33const PIO4LO = kMath[33];
34
35// Compute k and r such that x - k*pi/2 = r where |r| < pi/4. For
36// precision, r is returned as two values y0 and y1 such that r = y0 + y1
37// to more than double precision.
38macro REMPIO2(X)
39 var n, y0, y1;
40 var hx = %_DoubleHi(X);
41 var ix = hx & 0x7fffffff;
42
43 if (ix < 0x4002d97c) {
44 // |X| ~< 3*pi/4, special case with n = +/- 1
45 if (hx > 0) {
46 var z = X - PIO2_1;
47 if (ix != 0x3ff921fb) {
48 // 33+53 bit pi is good enough
49 y0 = z - PIO2_1T;
50 y1 = (z - y0) - PIO2_1T;
51 } else {
52 // near pi/2, use 33+33+53 bit pi
53 z -= PIO2_2;
54 y0 = z - PIO2_2T;
55 y1 = (z - y0) - PIO2_2T;
56 }
57 n = 1;
58 } else {
59 // Negative X
60 var z = X + PIO2_1;
61 if (ix != 0x3ff921fb) {
62 // 33+53 bit pi is good enough
63 y0 = z + PIO2_1T;
64 y1 = (z - y0) + PIO2_1T;
65 } else {
66 // near pi/2, use 33+33+53 bit pi
67 z += PIO2_2;
68 y0 = z + PIO2_2T;
69 y1 = (z - y0) + PIO2_2T;
70 }
71 n = -1;
72 }
73 } else if (ix <= 0x413921fb) {
74 // |X| ~<= 2^19*(pi/2), medium size
75 var t = MathAbs(X);
76 n = (t * INVPIO2 + 0.5) | 0;
77 var r = t - n * PIO2_1;
78 var w = n * PIO2_1T;
79 // First round good to 85 bit
80 y0 = r - w;
81 if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x1000000) {
82 // 2nd iteration needed, good to 118
83 t = r;
84 w = n * PIO2_2;
85 r = t - w;
86 w = n * PIO2_2T - ((t - r) - w);
87 y0 = r - w;
88 if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x3100000) {
89 // 3rd iteration needed. 151 bits accuracy
90 t = r;
91 w = n * PIO2_3;
92 r = t - w;
93 w = n * PIO2_3T - ((t - r) - w);
94 y0 = r - w;
95 }
96 }
97 y1 = (r - y0) - w;
98 if (hx < 0) {
99 n = -n;
100 y0 = -y0;
101 y1 = -y1;
102 }
103 } else {
104 // Need to do full Payne-Hanek reduction here.
105 var r = %RemPiO2(X);
106 n = r[0];
107 y0 = r[1];
108 y1 = r[2];
109 }
110endmacro
111
112
113// __kernel_sin(X, Y, IY)
114// kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
115// Input X is assumed to be bounded by ~pi/4 in magnitude.
116// Input Y is the tail of X so that x = X + Y.
117//
118// Algorithm
119// 1. Since ieee_sin(-x) = -ieee_sin(x), we need only to consider positive x.
120// 2. ieee_sin(x) is approximated by a polynomial of degree 13 on
121// [0,pi/4]
122// 3 13
123// sin(x) ~ x + S1*x + ... + S6*x
124// where
125//
126// |ieee_sin(x) 2 4 6 8 10 12 | -58
127// |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2
128// | x |
129//
130// 3. ieee_sin(X+Y) = ieee_sin(X) + sin'(X')*Y
131// ~ ieee_sin(X) + (1-X*X/2)*Y
132// For better accuracy, let
133// 3 2 2 2 2
134// r = X *(S2+X *(S3+X *(S4+X *(S5+X *S6))))
135// then 3 2
136// sin(x) = X + (S1*X + (X *(r-Y/2)+Y))
137//
138macro KSIN(x)
139kMath[7+x]
140endmacro
141
142macro RETURN_KERNELSIN(X, Y, SIGN)
143 var z = X * X;
144 var v = z * X;
145 var r = KSIN(1) + z * (KSIN(2) + z * (KSIN(3) +
146 z * (KSIN(4) + z * KSIN(5))));
147 return (X - ((z * (0.5 * Y - v * r) - Y) - v * KSIN(0))) SIGN;
148endmacro
149
150// __kernel_cos(X, Y)
151// kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
152// Input X is assumed to be bounded by ~pi/4 in magnitude.
153// Input Y is the tail of X so that x = X + Y.
154//
155// Algorithm
156// 1. Since ieee_cos(-x) = ieee_cos(x), we need only to consider positive x.
157// 2. ieee_cos(x) is approximated by a polynomial of degree 14 on
158// [0,pi/4]
159// 4 14
160// cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
161// where the remez error is
162//
163// | 2 4 6 8 10 12 14 | -58
164// |ieee_cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
165// | |
166//
167// 4 6 8 10 12 14
168// 3. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
169// ieee_cos(x) = 1 - x*x/2 + r
170// since ieee_cos(X+Y) ~ ieee_cos(X) - ieee_sin(X)*Y
171// ~ ieee_cos(X) - X*Y,
172// a correction term is necessary in ieee_cos(x) and hence
173// cos(X+Y) = 1 - (X*X/2 - (r - X*Y))
174// For better accuracy when x > 0.3, let qx = |x|/4 with
175// the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
176// Then
177// cos(X+Y) = (1-qx) - ((X*X/2-qx) - (r-X*Y)).
178// Note that 1-qx and (X*X/2-qx) is EXACT here, and the
179// magnitude of the latter is at least a quarter of X*X/2,
180// thus, reducing the rounding error in the subtraction.
181//
182macro KCOS(x)
183kMath[13+x]
184endmacro
185
186macro RETURN_KERNELCOS(X, Y, SIGN)
187 var ix = %_DoubleHi(X) & 0x7fffffff;
188 var z = X * X;
189 var r = z * (KCOS(0) + z * (KCOS(1) + z * (KCOS(2)+
190 z * (KCOS(3) + z * (KCOS(4) + z * KCOS(5))))));
191 if (ix < 0x3fd33333) { // |x| ~< 0.3
192 return (1 - (0.5 * z - (z * r - X * Y))) SIGN;
193 } else {
194 var qx;
195 if (ix > 0x3fe90000) { // |x| > 0.78125
196 qx = 0.28125;
197 } else {
198 qx = %_ConstructDouble(%_DoubleHi(0.25 * X), 0);
199 }
200 var hz = 0.5 * z - qx;
201 return (1 - qx - (hz - (z * r - X * Y))) SIGN;
202 }
203endmacro
204
205
206// kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
207// Input x is assumed to be bounded by ~pi/4 in magnitude.
208// Input y is the tail of x.
209// Input k indicates whether ieee_tan (if k = 1) or -1/tan (if k = -1)
210// is returned.
211//
212// Algorithm
213// 1. Since ieee_tan(-x) = -ieee_tan(x), we need only to consider positive x.
214// 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
215// 3. ieee_tan(x) is approximated by a odd polynomial of degree 27 on
216// [0,0.67434]
217// 3 27
218// tan(x) ~ x + T1*x + ... + T13*x
219// where
220//
221// |ieee_tan(x) 2 4 26 | -59.2
222// |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
223// | x |
224//
225// Note: ieee_tan(x+y) = ieee_tan(x) + tan'(x)*y
226// ~ ieee_tan(x) + (1+x*x)*y
227// Therefore, for better accuracy in computing ieee_tan(x+y), let
228// 3 2 2 2 2
229// r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
230// then
231// 3 2
232// tan(x+y) = x + (T1*x + (x *(r+y)+y))
233//
234// 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
235// tan(x) = ieee_tan(pi/4-y) = (1-ieee_tan(y))/(1+ieee_tan(y))
236// = 1 - 2*(ieee_tan(y) - (ieee_tan(y)^2)/(1+ieee_tan(y)))
237//
238// Set returnTan to 1 for tan; -1 for cot. Anything else is illegal
239// and will cause incorrect results.
240//
241macro KTAN(x)
242kMath[19+x]
243endmacro
244
245function KernelTan(x, y, returnTan) {
246 var z;
247 var w;
248 var hx = %_DoubleHi(x);
249 var ix = hx & 0x7fffffff;
250
251 if (ix < 0x3e300000) { // |x| < 2^-28
252 if (((ix | %_DoubleLo(x)) | (returnTan + 1)) == 0) {
253 // x == 0 && returnTan = -1
254 return 1 / MathAbs(x);
255 } else {
256 if (returnTan == 1) {
257 return x;
258 } else {
259 // Compute -1/(x + y) carefully
260 var w = x + y;
261 var z = %_ConstructDouble(%_DoubleHi(w), 0);
262 var v = y - (z - x);
263 var a = -1 / w;
264 var t = %_ConstructDouble(%_DoubleHi(a), 0);
265 var s = 1 + t * z;
266 return t + a * (s + t * v);
267 }
268 }
269 }
270 if (ix >= 0x3fe59428) { // |x| > .6744
271 if (x < 0) {
272 x = -x;
273 y = -y;
274 }
275 z = PIO4 - x;
276 w = PIO4LO - y;
277 x = z + w;
278 y = 0;
279 }
280 z = x * x;
281 w = z * z;
282
283 // Break x^5 * (T1 + x^2*T2 + ...) into
284 // x^5 * (T1 + x^4*T3 + ... + x^20*T11) +
285 // x^5 * (x^2 * (T2 + x^4*T4 + ... + x^22*T12))
286 var r = KTAN(1) + w * (KTAN(3) + w * (KTAN(5) +
287 w * (KTAN(7) + w * (KTAN(9) + w * KTAN(11)))));
288 var v = z * (KTAN(2) + w * (KTAN(4) + w * (KTAN(6) +
289 w * (KTAN(8) + w * (KTAN(10) + w * KTAN(12))))));
290 var s = z * x;
291 r = y + z * (s * (r + v) + y);
292 r = r + KTAN(0) * s;
293 w = x + r;
294 if (ix >= 0x3fe59428) {
295 return (1 - ((hx >> 30) & 2)) *
296 (returnTan - 2.0 * (x - (w * w / (w + returnTan) - r)));
297 }
298 if (returnTan == 1) {
299 return w;
300 } else {
301 z = %_ConstructDouble(%_DoubleHi(w), 0);
302 v = r - (z - x);
303 var a = -1 / w;
304 var t = %_ConstructDouble(%_DoubleHi(a), 0);
305 s = 1 + t * z;
306 return t + a * (s + t * v);
307 }
308}
309
310function MathSinSlow(x) {
311 REMPIO2(x);
312 var sign = 1 - (n & 2);
313 if (n & 1) {
314 RETURN_KERNELCOS(y0, y1, * sign);
315 } else {
316 RETURN_KERNELSIN(y0, y1, * sign);
317 }
318}
319
320function MathCosSlow(x) {
321 REMPIO2(x);
322 if (n & 1) {
323 var sign = (n & 2) - 1;
324 RETURN_KERNELSIN(y0, y1, * sign);
325 } else {
326 var sign = 1 - (n & 2);
327 RETURN_KERNELCOS(y0, y1, * sign);
328 }
329}
330
331// ECMA 262 - 15.8.2.16
332function MathSin(x) {
333 x = x * 1; // Convert to number.
334 if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) {
335 // |x| < pi/4, approximately. No reduction needed.
336 RETURN_KERNELSIN(x, 0, /* empty */);
337 }
338 return MathSinSlow(x);
339}
340
341// ECMA 262 - 15.8.2.7
342function MathCos(x) {
343 x = x * 1; // Convert to number.
344 if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) {
345 // |x| < pi/4, approximately. No reduction needed.
346 RETURN_KERNELCOS(x, 0, /* empty */);
347 }
348 return MathCosSlow(x);
349}
350
351// ECMA 262 - 15.8.2.18
352function MathTan(x) {
353 x = x * 1; // Convert to number.
354 if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) {
355 // |x| < pi/4, approximately. No reduction needed.
356 return KernelTan(x, 0, 1);
357 }
358 REMPIO2(x);
359 return KernelTan(y0, y1, (n & 1) ? -1 : 1);
360}
361
362// ES6 draft 09-27-13, section 20.2.2.20.
363// Math.log1p
364//
365// Method :
366// 1. Argument Reduction: find k and f such that
367// 1+x = 2^k * (1+f),
368// where sqrt(2)/2 < 1+f < sqrt(2) .
369//
370// Note. If k=0, then f=x is exact. However, if k!=0, then f
371// may not be representable exactly. In that case, a correction
372// term is need. Let u=1+x rounded. Let c = (1+x)-u, then
373// log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
374// and add back the correction term c/u.
375// (Note: when x > 2**53, one can simply return log(x))
376//
377// 2. Approximation of log1p(f).
378// Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
379// = 2s + 2/3 s**3 + 2/5 s**5 + .....,
380// = 2s + s*R
381// We use a special Reme algorithm on [0,0.1716] to generate
382// a polynomial of degree 14 to approximate R The maximum error
383// of this polynomial approximation is bounded by 2**-58.45. In
384// other words,
385// 2 4 6 8 10 12 14
386// R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
387// (the values of Lp1 to Lp7 are listed in the program)
388// and
389// | 2 14 | -58.45
390// | Lp1*s +...+Lp7*s - R(z) | <= 2
391// | |
392// Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
393// In order to guarantee error in log below 1ulp, we compute log
394// by
395// log1p(f) = f - (hfsq - s*(hfsq+R)).
396//
397// 3. Finally, log1p(x) = k*ln2 + log1p(f).
398// = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
399// Here ln2 is split into two floating point number:
400// ln2_hi + ln2_lo,
401// where n*ln2_hi is always exact for |n| < 2000.
402//
403// Special cases:
404// log1p(x) is NaN with signal if x < -1 (including -INF) ;
405// log1p(+INF) is +INF; log1p(-1) is -INF with signal;
406// log1p(NaN) is that NaN with no signal.
407//
408// Accuracy:
409// according to an error analysis, the error is always less than
410// 1 ulp (unit in the last place).
411//
412// Constants:
413// Constants are found in fdlibm.cc. We assume the C++ compiler to convert
414// from decimal to binary accurately enough to produce the intended values.
415//
416// Note: Assuming log() return accurate answer, the following
417// algorithm can be used to compute log1p(x) to within a few ULP:
418//
419// u = 1+x;
420// if (u==1.0) return x ; else
421// return log(u)*(x/(u-1.0));
422//
423// See HP-15C Advanced Functions Handbook, p.193.
424//
425const LN2_HI = kMath[34];
426const LN2_LO = kMath[35];
427const TWO54 = kMath[36];
428const TWO_THIRD = kMath[37];
429macro KLOG1P(x)
430(kMath[38+x])
431endmacro
432
433function MathLog1p(x) {
434 x = x * 1; // Convert to number.
435 var hx = %_DoubleHi(x);
436 var ax = hx & 0x7fffffff;
437 var k = 1;
438 var f = x;
439 var hu = 1;
440 var c = 0;
441 var u = x;
442
443 if (hx < 0x3fda827a) {
444 // x < 0.41422
445 if (ax >= 0x3ff00000) { // |x| >= 1
446 if (x === -1) {
447 return -INFINITY; // log1p(-1) = -inf
448 } else {
449 return NAN; // log1p(x<-1) = NaN
450 }
451 } else if (ax < 0x3c900000) {
452 // For |x| < 2^-54 we can return x.
453 return x;
454 } else if (ax < 0x3e200000) {
455 // For |x| < 2^-29 we can use a simple two-term Taylor series.
456 return x - x * x * 0.5;
457 }
458
459 if ((hx > 0) || (hx <= -0x402D413D)) { // (int) 0xbfd2bec3 = -0x402d413d
460 // -.2929 < x < 0.41422
461 k = 0;
462 }
463 }
464
465 // Handle Infinity and NAN
466 if (hx >= 0x7ff00000) return x;
467
468 if (k !== 0) {
469 if (hx < 0x43400000) {
470 // x < 2^53
471 u = 1 + x;
472 hu = %_DoubleHi(u);
473 k = (hu >> 20) - 1023;
474 c = (k > 0) ? 1 - (u - x) : x - (u - 1);
475 c = c / u;
476 } else {
477 hu = %_DoubleHi(u);
478 k = (hu >> 20) - 1023;
479 }
480 hu = hu & 0xfffff;
481 if (hu < 0x6a09e) {
482 u = %_ConstructDouble(hu | 0x3ff00000, %_DoubleLo(u)); // Normalize u.
483 } else {
484 ++k;
485 u = %_ConstructDouble(hu | 0x3fe00000, %_DoubleLo(u)); // Normalize u/2.
486 hu = (0x00100000 - hu) >> 2;
487 }
488 f = u - 1;
489 }
490
491 var hfsq = 0.5 * f * f;
492 if (hu === 0) {
493 // |f| < 2^-20;
494 if (f === 0) {
495 if (k === 0) {
496 return 0.0;
497 } else {
498 return k * LN2_HI + (c + k * LN2_LO);
499 }
500 }
501 var R = hfsq * (1 - TWO_THIRD * f);
502 if (k === 0) {
503 return f - R;
504 } else {
505 return k * LN2_HI - ((R - (k * LN2_LO + c)) - f);
506 }
507 }
508
509 var s = f / (2 + f);
510 var z = s * s;
511 var R = z * (KLOG1P(0) + z * (KLOG1P(1) + z *
512 (KLOG1P(2) + z * (KLOG1P(3) + z *
513 (KLOG1P(4) + z * (KLOG1P(5) + z * KLOG1P(6)))))));
514 if (k === 0) {
515 return f - (hfsq - s * (hfsq + R));
516 } else {
517 return k * LN2_HI - ((hfsq - (s * (hfsq + R) + (k * LN2_LO + c))) - f);
518 }
519}
520
521// ES6 draft 09-27-13, section 20.2.2.14.
522// Math.expm1
523// Returns exp(x)-1, the exponential of x minus 1.
524//
525// Method
526// 1. Argument reduction:
527// Given x, find r and integer k such that
528//
529// x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
530//
531// Here a correction term c will be computed to compensate
532// the error in r when rounded to a floating-point number.
533//
534// 2. Approximating expm1(r) by a special rational function on
535// the interval [0,0.34658]:
536// Since
537// r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
538// we define R1(r*r) by
539// r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
540// That is,
541// R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
542// = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
543// = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
544// We use a special Remes algorithm on [0,0.347] to generate
545// a polynomial of degree 5 in r*r to approximate R1. The
546// maximum error of this polynomial approximation is bounded
547// by 2**-61. In other words,
548// R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
549// where Q1 = -1.6666666666666567384E-2,
550// Q2 = 3.9682539681370365873E-4,
551// Q3 = -9.9206344733435987357E-6,
552// Q4 = 2.5051361420808517002E-7,
553// Q5 = -6.2843505682382617102E-9;
554// (where z=r*r, and the values of Q1 to Q5 are listed below)
555// with error bounded by
556// | 5 | -61
557// | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
558// | |
559//
560// expm1(r) = exp(r)-1 is then computed by the following
561// specific way which minimize the accumulation rounding error:
562// 2 3
563// r r [ 3 - (R1 + R1*r/2) ]
564// expm1(r) = r + --- + --- * [--------------------]
565// 2 2 [ 6 - r*(3 - R1*r/2) ]
566//
567// To compensate the error in the argument reduction, we use
568// expm1(r+c) = expm1(r) + c + expm1(r)*c
569// ~ expm1(r) + c + r*c
570// Thus c+r*c will be added in as the correction terms for
571// expm1(r+c). Now rearrange the term to avoid optimization
572// screw up:
573// ( 2 2 )
574// ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
575// expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
576// ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
577// ( )
578//
579// = r - E
580// 3. Scale back to obtain expm1(x):
581// From step 1, we have
582// expm1(x) = either 2^k*[expm1(r)+1] - 1
583// = or 2^k*[expm1(r) + (1-2^-k)]
584// 4. Implementation notes:
585// (A). To save one multiplication, we scale the coefficient Qi
586// to Qi*2^i, and replace z by (x^2)/2.
587// (B). To achieve maximum accuracy, we compute expm1(x) by
588// (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
589// (ii) if k=0, return r-E
590// (iii) if k=-1, return 0.5*(r-E)-0.5
591// (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
592// else return 1.0+2.0*(r-E);
593// (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
594// (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
595// (vii) return 2^k(1-((E+2^-k)-r))
596//
597// Special cases:
598// expm1(INF) is INF, expm1(NaN) is NaN;
599// expm1(-INF) is -1, and
600// for finite argument, only expm1(0)=0 is exact.
601//
602// Accuracy:
603// according to an error analysis, the error is always less than
604// 1 ulp (unit in the last place).
605//
606// Misc. info.
607// For IEEE double
608// if x > 7.09782712893383973096e+02 then expm1(x) overflow
609//
610const KEXPM1_OVERFLOW = kMath[45];
611const INVLN2 = kMath[46];
612macro KEXPM1(x)
613(kMath[47+x])
614endmacro
615
616function MathExpm1(x) {
617 x = x * 1; // Convert to number.
618 var y;
619 var hi;
620 var lo;
621 var k;
622 var t;
623 var c;
624
625 var hx = %_DoubleHi(x);
626 var xsb = hx & 0x80000000; // Sign bit of x
627 var y = (xsb === 0) ? x : -x; // y = |x|
628 hx &= 0x7fffffff; // High word of |x|
629
630 // Filter out huge and non-finite argument
631 if (hx >= 0x4043687a) { // if |x| ~=> 56 * ln2
632 if (hx >= 0x40862e42) { // if |x| >= 709.78
633 if (hx >= 0x7ff00000) {
634 // expm1(inf) = inf; expm1(-inf) = -1; expm1(nan) = nan;
635 return (x === -INFINITY) ? -1 : x;
636 }
637 if (x > KEXPM1_OVERFLOW) return INFINITY; // Overflow
638 }
639 if (xsb != 0) return -1; // x < -56 * ln2, return -1.
640 }
641
642 // Argument reduction
643 if (hx > 0x3fd62e42) { // if |x| > 0.5 * ln2
644 if (hx < 0x3ff0a2b2) { // and |x| < 1.5 * ln2
645 if (xsb === 0) {
646 hi = x - LN2_HI;
647 lo = LN2_LO;
648 k = 1;
649 } else {
650 hi = x + LN2_HI;
651 lo = -LN2_LO;
652 k = -1;
653 }
654 } else {
655 k = (INVLN2 * x + ((xsb === 0) ? 0.5 : -0.5)) | 0;
656 t = k;
657 // t * ln2_hi is exact here.
658 hi = x - t * LN2_HI;
659 lo = t * LN2_LO;
660 }
661 x = hi - lo;
662 c = (hi - x) - lo;
663 } else if (hx < 0x3c900000) {
664 // When |x| < 2^-54, we can return x.
665 return x;
666 } else {
667 // Fall through.
668 k = 0;
669 }
670
671 // x is now in primary range
672 var hfx = 0.5 * x;
673 var hxs = x * hfx;
674 var r1 = 1 + hxs * (KEXPM1(0) + hxs * (KEXPM1(1) + hxs *
675 (KEXPM1(2) + hxs * (KEXPM1(3) + hxs * KEXPM1(4)))));
676 t = 3 - r1 * hfx;
677 var e = hxs * ((r1 - t) / (6 - x * t));
678 if (k === 0) { // c is 0
679 return x - (x*e - hxs);
680 } else {
681 e = (x * (e - c) - c);
682 e -= hxs;
683 if (k === -1) return 0.5 * (x - e) - 0.5;
684 if (k === 1) {
685 if (x < -0.25) return -2 * (e - (x + 0.5));
686 return 1 + 2 * (x - e);
687 }
688
689 if (k <= -2 || k > 56) {
690 // suffice to return exp(x) + 1
691 y = 1 - (e - x);
692 // Add k to y's exponent
693 y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y));
694 return y - 1;
695 }
696 if (k < 20) {
697 // t = 1 - 2^k
698 t = %_ConstructDouble(0x3ff00000 - (0x200000 >> k), 0);
699 y = t - (e - x);
700 // Add k to y's exponent
701 y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y));
702 } else {
703 // t = 2^-k
704 t = %_ConstructDouble((0x3ff - k) << 20, 0);
705 y = x - (e + t);
706 y += 1;
707 // Add k to y's exponent
708 y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y));
709 }
710 }
711 return y;
712}
713
714
715// ES6 draft 09-27-13, section 20.2.2.30.
716// Math.sinh
717// Method :
718// mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2
719// 1. Replace x by |x| (sinh(-x) = -sinh(x)).
720// 2.
721// E + E/(E+1)
722// 0 <= x <= 22 : sinh(x) := --------------, E=expm1(x)
723// 2
724//
725// 22 <= x <= lnovft : sinh(x) := exp(x)/2
726// lnovft <= x <= ln2ovft: sinh(x) := exp(x/2)/2 * exp(x/2)
727// ln2ovft < x : sinh(x) := x*shuge (overflow)
728//
729// Special cases:
730// sinh(x) is |x| if x is +Infinity, -Infinity, or NaN.
731// only sinh(0)=0 is exact for finite x.
732//
733const KSINH_OVERFLOW = kMath[52];
734const TWO_M28 = 3.725290298461914e-9; // 2^-28, empty lower half
735const LOG_MAXD = 709.7822265625; // 0x40862e42 00000000, empty lower half
736
737function MathSinh(x) {
738 x = x * 1; // Convert to number.
739 var h = (x < 0) ? -0.5 : 0.5;
740 // |x| in [0, 22]. return sign(x)*0.5*(E+E/(E+1))
741 var ax = MathAbs(x);
742 if (ax < 22) {
743 // For |x| < 2^-28, sinh(x) = x
744 if (ax < TWO_M28) return x;
745 var t = MathExpm1(ax);
746 if (ax < 1) return h * (2 * t - t * t / (t + 1));
747 return h * (t + t / (t + 1));
748 }
749 // |x| in [22, log(maxdouble)], return 0.5 * exp(|x|)
750 if (ax < LOG_MAXD) return h * MathExp(ax);
751 // |x| in [log(maxdouble), overflowthreshold]
752 // overflowthreshold = 710.4758600739426
753 if (ax <= KSINH_OVERFLOW) {
754 var w = MathExp(0.5 * ax);
755 var t = h * w;
756 return t * w;
757 }
758 // |x| > overflowthreshold or is NaN.
759 // Return Infinity of the appropriate sign or NaN.
760 return x * INFINITY;
761}
762
763
764// ES6 draft 09-27-13, section 20.2.2.12.
765// Math.cosh
766// Method :
767// mathematically cosh(x) if defined to be (exp(x)+exp(-x))/2
768// 1. Replace x by |x| (cosh(x) = cosh(-x)).
769// 2.
770// [ exp(x) - 1 ]^2
771// 0 <= x <= ln2/2 : cosh(x) := 1 + -------------------
772// 2*exp(x)
773//
774// exp(x) + 1/exp(x)
775// ln2/2 <= x <= 22 : cosh(x) := -------------------
776// 2
777// 22 <= x <= lnovft : cosh(x) := exp(x)/2
778// lnovft <= x <= ln2ovft: cosh(x) := exp(x/2)/2 * exp(x/2)
779// ln2ovft < x : cosh(x) := huge*huge (overflow)
780//
781// Special cases:
782// cosh(x) is |x| if x is +INF, -INF, or NaN.
783// only cosh(0)=1 is exact for finite x.
784//
785const KCOSH_OVERFLOW = kMath[52];
786
787function MathCosh(x) {
788 x = x * 1; // Convert to number.
789 var ix = %_DoubleHi(x) & 0x7fffffff;
790 // |x| in [0,0.5*log2], return 1+expm1(|x|)^2/(2*exp(|x|))
791 if (ix < 0x3fd62e43) {
792 var t = MathExpm1(MathAbs(x));
793 var w = 1 + t;
794 // For |x| < 2^-55, cosh(x) = 1
795 if (ix < 0x3c800000) return w;
796 return 1 + (t * t) / (w + w);
797 }
798 // |x| in [0.5*log2, 22], return (exp(|x|)+1/exp(|x|)/2
799 if (ix < 0x40360000) {
800 var t = MathExp(MathAbs(x));
801 return 0.5 * t + 0.5 / t;
802 }
803 // |x| in [22, log(maxdouble)], return half*exp(|x|)
804 if (ix < 0x40862e42) return 0.5 * MathExp(MathAbs(x));
805 // |x| in [log(maxdouble), overflowthreshold]
806 if (MathAbs(x) <= KCOSH_OVERFLOW) {
807 var w = MathExp(0.5 * MathAbs(x));
808 var t = 0.5 * w;
809 return t * w;
810 }
811 if (NUMBER_IS_NAN(x)) return x;
812 // |x| > overflowthreshold.
813 return INFINITY;
814}