blob: 08cee8cdd143078f117e3aa5fb2b1530ec2c2e39 [file] [log] [blame]
Steve Blocka7e24c12009-10-30 11:49:00 +00001// Copyright 2009 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
Ben Murdoch3fb3ca82011-12-02 17:19:32 +000028// Flags: --allow-natives-syntax
29
Steve Blocka7e24c12009-10-30 11:49:00 +000030// Test fast div and mod.
31
32function divmod(div_func, mod_func, x, y) {
33 var div_answer = (div_func)(x);
34 assertEquals(x / y, div_answer, x + "/" + y);
35 var mod_answer = (mod_func)(x);
36 assertEquals(x % y, mod_answer, x + "%" + y);
37 var minus_div_answer = (div_func)(-x);
38 assertEquals(-x / y, minus_div_answer, "-" + x + "/" + y);
39 var minus_mod_answer = (mod_func)(-x);
40 assertEquals(-x % y, minus_mod_answer, "-" + x + "%" + y);
41}
42
43
44function run_tests_for(divisor) {
45 print("(function(left) { return left / " + divisor + "; })");
46 var div_func = this.eval("(function(left) { return left / " + divisor + "; })");
47 var mod_func = this.eval("(function(left) { return left % " + divisor + "; })");
48 var exp;
49 // Strange number test.
50 divmod(div_func, mod_func, 0, divisor);
51 divmod(div_func, mod_func, 1 / 0, divisor);
52 // Floating point number test.
53 for (exp = -1024; exp <= 1024; exp += 8) {
54 divmod(div_func, mod_func, Math.pow(2, exp), divisor);
55 divmod(div_func, mod_func, 0.9999999 * Math.pow(2, exp), divisor);
56 divmod(div_func, mod_func, 1.0000001 * Math.pow(2, exp), divisor);
57 }
58 // Integer number test.
59 for (exp = 0; exp <= 32; exp++) {
60 divmod(div_func, mod_func, 1 << exp, divisor);
61 divmod(div_func, mod_func, (1 << exp) + 1, divisor);
62 divmod(div_func, mod_func, (1 << exp) - 1, divisor);
63 }
64 divmod(div_func, mod_func, Math.floor(0x1fffffff / 3), divisor);
65 divmod(div_func, mod_func, Math.floor(-0x20000000 / 3), divisor);
66}
67
68
69var divisors = [
70 0,
71 1,
72 2,
73 3,
74 4,
75 5,
76 6,
77 7,
78 8,
79 9,
80 10,
81 0x1000000,
82 0x40000000,
83 12,
84 60,
85 100,
86 1000 * 60 * 60 * 24];
87
88for (var i = 0; i < divisors.length; i++) {
89 run_tests_for(divisors[i]);
90}
Steve Block3ce2e202009-11-05 08:53:23 +000091
92// Test extreme corner cases of modulo.
93
94// Computes the modulo by slow but lossless operations.
95function compute_mod(dividend, divisor) {
96 // Return NaN if either operand is NaN, if divisor is 0 or
97 // dividend is an infinity. Return dividend if divisor is an infinity.
98 if (isNaN(dividend) || isNaN(divisor) || divisor == 0) { return NaN; }
99 var sign = 1;
100 if (dividend < 0) { dividend = -dividend; sign = -1; }
101 if (dividend == Infinity) { return NaN; }
102 if (divisor < 0) { divisor = -divisor; }
103 if (divisor == Infinity) { return sign * dividend; }
104 function rec_mod(a, b) {
105 // Subtracts maximal possible multiplum of b from a.
106 if (a >= b) {
107 a = rec_mod(a, 2 * b);
108 if (a >= b) { a -= b; }
109 }
110 return a;
111 }
112 return sign * rec_mod(dividend, divisor);
113}
114
115(function () {
116 var large_non_smi = 1234567891234.12245;
117 var small_non_smi = 43.2367243;
118 var repeating_decimal = 0.3;
119 var finite_decimal = 0.5;
120 var smi = 43;
121 var power_of_two = 64;
122 var min_normal = Number.MIN_VALUE * Math.pow(2, 52);
123 var max_denormal = Number.MIN_VALUE * (Math.pow(2, 52) - 1);
124
125 // All combinations of NaN, Infinity, normal, denormal and zero.
126 var example_numbers = [
127 NaN,
128 0,
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000129
130 // Due to a bug in fmod(), modulos involving denormals
131 // return the wrong result for glibc <= 2.16.
132 // Details: http://sourceware.org/bugzilla/show_bug.cgi?id=14048
133
Steve Block3ce2e202009-11-05 08:53:23 +0000134 Number.MIN_VALUE,
135 3 * Number.MIN_VALUE,
136 max_denormal,
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000137
Steve Block3ce2e202009-11-05 08:53:23 +0000138 min_normal,
139 repeating_decimal,
140 finite_decimal,
141 smi,
142 power_of_two,
143 small_non_smi,
144 large_non_smi,
145 Number.MAX_VALUE,
146 Infinity
147 ];
148
149 function doTest(a, b) {
150 var exp = compute_mod(a, b);
151 var act = a % b;
152 assertEquals(exp, act, a + " % " + b);
153 }
154
155 for (var i = 0; i < example_numbers.length; i++) {
156 for (var j = 0; j < example_numbers.length; j++) {
157 var a = example_numbers[i];
158 var b = example_numbers[j];
159 doTest(a,b);
160 doTest(-a,b);
161 doTest(a,-b);
162 doTest(-a,-b);
163 }
164 }
Andrei Popescu402d9372010-02-26 13:31:12 +0000165})();
166
167
168(function () {
169 // Edge cases
170 var zero = 0;
171 var minsmi32 = -0x40000000;
172 var minsmi64 = -0x80000000;
173 var somenum = 3532;
174 assertEquals(-0, zero / -1, "0 / -1");
175 assertEquals(1, minsmi32 / -0x40000000, "minsmi/minsmi-32");
176 assertEquals(1, minsmi64 / -0x80000000, "minsmi/minsmi-64");
177 assertEquals(somenum, somenum % -0x40000000, "%minsmi-32");
178 assertEquals(somenum, somenum % -0x80000000, "%minsmi-64");
179})();
Steve Block6ded16b2010-05-10 14:33:55 +0100180
181
182// Side-effect-free expressions containing bit operations use
183// an optimized compiler with int32 values. Ensure that modulus
184// produces negative zeros correctly.
185function negative_zero_modulus_test() {
186 var x = 4;
187 var y = -4;
188 x = x + x - x;
189 y = y + y - y;
190 var z = (y | y | y | y) % x;
191 assertEquals(-1 / 0, 1 / z);
192 z = (x | x | x | x) % x;
193 assertEquals(1 / 0, 1 / z);
194 z = (y | y | y | y) % y;
195 assertEquals(-1 / 0, 1 / z);
196 z = (x | x | x | x) % y;
197 assertEquals(1 / 0, 1 / z);
198}
199
200negative_zero_modulus_test();
Ben Murdoch3fb3ca82011-12-02 17:19:32 +0000201
202
203function lithium_integer_mod() {
204 var left_operands = [
205 0,
206 305419896, // 0x12345678
207 ];
208
209 // Test the standard lithium code for modulo opeartions.
210 var mod_func;
211 for (var i = 0; i < left_operands.length; i++) {
212 for (var j = 0; j < divisors.length; j++) {
213 mod_func = this.eval("(function(left) { return left % " + divisors[j]+ "; })");
214 assertEquals((mod_func)(left_operands[i]), left_operands[i] % divisors[j]);
215 assertEquals((mod_func)(-left_operands[i]), -left_operands[i] % divisors[j]);
216 }
217 }
218
219 var results_powers_of_two = [
220 // 0
221 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
222 // 305419896 == 0x12345678
223 [0, 0, 0, 8, 24, 56, 120, 120, 120, 632, 1656, 1656, 5752, 5752, 22136, 22136, 22136, 22136, 284280, 284280, 1332856, 3430008, 3430008, 3430008, 3430008, 36984440, 36984440, 36984440, 305419896, 305419896, 305419896],
224 ];
225
226 // Test the lithium code for modulo operations with a variable power of two
227 // right hand side operand.
228 for (var i = 0; i < left_operands.length; i++) {
229 for (var j = 0; j < 31; j++) {
230 assertEquals(results_powers_of_two[i][j], left_operands[i] % (2 << j));
231 assertEquals(results_powers_of_two[i][j], left_operands[i] % -(2 << j));
232 assertEquals(-results_powers_of_two[i][j], -left_operands[i] % (2 << j));
233 assertEquals(-results_powers_of_two[i][j], -left_operands[i] % -(2 << j));
234 }
235 }
236
237 // Test the lithium code for modulo operations with a constant power of two
238 // right hand side operand.
239 for (var i = 0; i < left_operands.length; i++) {
240 // With positive left hand side operand.
241 assertEquals(results_powers_of_two[i][0], left_operands[i] % -(2 << 0));
242 assertEquals(results_powers_of_two[i][1], left_operands[i] % (2 << 1));
243 assertEquals(results_powers_of_two[i][2], left_operands[i] % -(2 << 2));
244 assertEquals(results_powers_of_two[i][3], left_operands[i] % (2 << 3));
245 assertEquals(results_powers_of_two[i][4], left_operands[i] % -(2 << 4));
246 assertEquals(results_powers_of_two[i][5], left_operands[i] % (2 << 5));
247 assertEquals(results_powers_of_two[i][6], left_operands[i] % -(2 << 6));
248 assertEquals(results_powers_of_two[i][7], left_operands[i] % (2 << 7));
249 assertEquals(results_powers_of_two[i][8], left_operands[i] % -(2 << 8));
250 assertEquals(results_powers_of_two[i][9], left_operands[i] % (2 << 9));
251 assertEquals(results_powers_of_two[i][10], left_operands[i] % -(2 << 10));
252 assertEquals(results_powers_of_two[i][11], left_operands[i] % (2 << 11));
253 assertEquals(results_powers_of_two[i][12], left_operands[i] % -(2 << 12));
254 assertEquals(results_powers_of_two[i][13], left_operands[i] % (2 << 13));
255 assertEquals(results_powers_of_two[i][14], left_operands[i] % -(2 << 14));
256 assertEquals(results_powers_of_two[i][15], left_operands[i] % (2 << 15));
257 assertEquals(results_powers_of_two[i][16], left_operands[i] % -(2 << 16));
258 assertEquals(results_powers_of_two[i][17], left_operands[i] % (2 << 17));
259 assertEquals(results_powers_of_two[i][18], left_operands[i] % -(2 << 18));
260 assertEquals(results_powers_of_two[i][19], left_operands[i] % (2 << 19));
261 assertEquals(results_powers_of_two[i][20], left_operands[i] % -(2 << 20));
262 assertEquals(results_powers_of_two[i][21], left_operands[i] % (2 << 21));
263 assertEquals(results_powers_of_two[i][22], left_operands[i] % -(2 << 22));
264 assertEquals(results_powers_of_two[i][23], left_operands[i] % (2 << 23));
265 assertEquals(results_powers_of_two[i][24], left_operands[i] % -(2 << 24));
266 assertEquals(results_powers_of_two[i][25], left_operands[i] % (2 << 25));
267 assertEquals(results_powers_of_two[i][26], left_operands[i] % -(2 << 26));
268 assertEquals(results_powers_of_two[i][27], left_operands[i] % (2 << 27));
269 assertEquals(results_powers_of_two[i][28], left_operands[i] % -(2 << 28));
270 assertEquals(results_powers_of_two[i][29], left_operands[i] % (2 << 29));
271 assertEquals(results_powers_of_two[i][30], left_operands[i] % -(2 << 30));
272 // With negative left hand side operand.
273 assertEquals(-results_powers_of_two[i][0], -left_operands[i] % -(2 << 0));
274 assertEquals(-results_powers_of_two[i][1], -left_operands[i] % (2 << 1));
275 assertEquals(-results_powers_of_two[i][2], -left_operands[i] % -(2 << 2));
276 assertEquals(-results_powers_of_two[i][3], -left_operands[i] % (2 << 3));
277 assertEquals(-results_powers_of_two[i][4], -left_operands[i] % -(2 << 4));
278 assertEquals(-results_powers_of_two[i][5], -left_operands[i] % (2 << 5));
279 assertEquals(-results_powers_of_two[i][6], -left_operands[i] % -(2 << 6));
280 assertEquals(-results_powers_of_two[i][7], -left_operands[i] % (2 << 7));
281 assertEquals(-results_powers_of_two[i][8], -left_operands[i] % -(2 << 8));
282 assertEquals(-results_powers_of_two[i][9], -left_operands[i] % (2 << 9));
283 assertEquals(-results_powers_of_two[i][10], -left_operands[i] % -(2 << 10));
284 assertEquals(-results_powers_of_two[i][11], -left_operands[i] % (2 << 11));
285 assertEquals(-results_powers_of_two[i][12], -left_operands[i] % -(2 << 12));
286 assertEquals(-results_powers_of_two[i][13], -left_operands[i] % (2 << 13));
287 assertEquals(-results_powers_of_two[i][14], -left_operands[i] % -(2 << 14));
288 assertEquals(-results_powers_of_two[i][15], -left_operands[i] % (2 << 15));
289 assertEquals(-results_powers_of_two[i][16], -left_operands[i] % -(2 << 16));
290 assertEquals(-results_powers_of_two[i][17], -left_operands[i] % (2 << 17));
291 assertEquals(-results_powers_of_two[i][18], -left_operands[i] % -(2 << 18));
292 assertEquals(-results_powers_of_two[i][19], -left_operands[i] % (2 << 19));
293 assertEquals(-results_powers_of_two[i][20], -left_operands[i] % -(2 << 20));
294 assertEquals(-results_powers_of_two[i][21], -left_operands[i] % (2 << 21));
295 assertEquals(-results_powers_of_two[i][22], -left_operands[i] % -(2 << 22));
296 assertEquals(-results_powers_of_two[i][23], -left_operands[i] % (2 << 23));
297 assertEquals(-results_powers_of_two[i][24], -left_operands[i] % -(2 << 24));
298 assertEquals(-results_powers_of_two[i][25], -left_operands[i] % (2 << 25));
299 assertEquals(-results_powers_of_two[i][26], -left_operands[i] % -(2 << 26));
300 assertEquals(-results_powers_of_two[i][27], -left_operands[i] % (2 << 27));
301 assertEquals(-results_powers_of_two[i][28], -left_operands[i] % -(2 << 28));
302 assertEquals(-results_powers_of_two[i][29], -left_operands[i] % (2 << 29));
303 assertEquals(-results_powers_of_two[i][30], -left_operands[i] % -(2 << 30));
304 }
305
306}
307
308lithium_integer_mod();
309%OptimizeFunctionOnNextCall(lithium_integer_mod)
310lithium_integer_mod();