blob: 508405838106242cdbe8e1e3dd3b94b7ec117f39 [file] [log] [blame]
Steve Blocka7e24c12009-10-30 11:49:00 +00001// Copyright 2009 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#include "accessors.h"
31#include "api.h"
32#include "bootstrapper.h"
33#include "codegen-inl.h"
34#include "compilation-cache.h"
35#include "debug.h"
36#include "heap-profiler.h"
37#include "global-handles.h"
38#include "mark-compact.h"
39#include "natives.h"
40#include "scanner.h"
41#include "scopeinfo.h"
Steve Block3ce2e202009-11-05 08:53:23 +000042#include "snapshot.h"
Steve Blocka7e24c12009-10-30 11:49:00 +000043#include "v8threads.h"
44#if V8_TARGET_ARCH_ARM && V8_NATIVE_REGEXP
45#include "regexp-macro-assembler.h"
46#endif
47
48namespace v8 {
49namespace internal {
50
51
52String* Heap::hidden_symbol_;
53Object* Heap::roots_[Heap::kRootListLength];
54
55
56NewSpace Heap::new_space_;
57OldSpace* Heap::old_pointer_space_ = NULL;
58OldSpace* Heap::old_data_space_ = NULL;
59OldSpace* Heap::code_space_ = NULL;
60MapSpace* Heap::map_space_ = NULL;
61CellSpace* Heap::cell_space_ = NULL;
62LargeObjectSpace* Heap::lo_space_ = NULL;
63
64static const int kMinimumPromotionLimit = 2*MB;
65static const int kMinimumAllocationLimit = 8*MB;
66
67int Heap::old_gen_promotion_limit_ = kMinimumPromotionLimit;
68int Heap::old_gen_allocation_limit_ = kMinimumAllocationLimit;
69
70int Heap::old_gen_exhausted_ = false;
71
72int Heap::amount_of_external_allocated_memory_ = 0;
73int Heap::amount_of_external_allocated_memory_at_last_global_gc_ = 0;
74
75// semispace_size_ should be a power of 2 and old_generation_size_ should be
76// a multiple of Page::kPageSize.
77#if defined(ANDROID)
Steve Block3ce2e202009-11-05 08:53:23 +000078int Heap::max_semispace_size_ = 512*KB;
79int Heap::max_old_generation_size_ = 128*MB;
Steve Blocka7e24c12009-10-30 11:49:00 +000080int Heap::initial_semispace_size_ = 128*KB;
81size_t Heap::code_range_size_ = 0;
82#elif defined(V8_TARGET_ARCH_X64)
Steve Block3ce2e202009-11-05 08:53:23 +000083int Heap::max_semispace_size_ = 16*MB;
84int Heap::max_old_generation_size_ = 1*GB;
Steve Blocka7e24c12009-10-30 11:49:00 +000085int Heap::initial_semispace_size_ = 1*MB;
Steve Block3ce2e202009-11-05 08:53:23 +000086size_t Heap::code_range_size_ = 512*MB;
Steve Blocka7e24c12009-10-30 11:49:00 +000087#else
Steve Block3ce2e202009-11-05 08:53:23 +000088int Heap::max_semispace_size_ = 8*MB;
89int Heap::max_old_generation_size_ = 512*MB;
Steve Blocka7e24c12009-10-30 11:49:00 +000090int Heap::initial_semispace_size_ = 512*KB;
91size_t Heap::code_range_size_ = 0;
92#endif
93
Steve Block3ce2e202009-11-05 08:53:23 +000094// The snapshot semispace size will be the default semispace size if
95// snapshotting is used and will be the requested semispace size as
96// set up by ConfigureHeap otherwise.
97int Heap::reserved_semispace_size_ = Heap::max_semispace_size_;
98
Steve Blocka7e24c12009-10-30 11:49:00 +000099GCCallback Heap::global_gc_prologue_callback_ = NULL;
100GCCallback Heap::global_gc_epilogue_callback_ = NULL;
101
102// Variables set based on semispace_size_ and old_generation_size_ in
103// ConfigureHeap.
Steve Block3ce2e202009-11-05 08:53:23 +0000104
105// Will be 4 * reserved_semispace_size_ to ensure that young
106// generation can be aligned to its size.
Steve Blocka7e24c12009-10-30 11:49:00 +0000107int Heap::survived_since_last_expansion_ = 0;
108int Heap::external_allocation_limit_ = 0;
109
110Heap::HeapState Heap::gc_state_ = NOT_IN_GC;
111
112int Heap::mc_count_ = 0;
113int Heap::gc_count_ = 0;
114
115int Heap::always_allocate_scope_depth_ = 0;
116bool Heap::context_disposed_pending_ = false;
117
118#ifdef DEBUG
119bool Heap::allocation_allowed_ = true;
120
121int Heap::allocation_timeout_ = 0;
122bool Heap::disallow_allocation_failure_ = false;
123#endif // DEBUG
124
125
126int Heap::Capacity() {
127 if (!HasBeenSetup()) return 0;
128
129 return new_space_.Capacity() +
130 old_pointer_space_->Capacity() +
131 old_data_space_->Capacity() +
132 code_space_->Capacity() +
133 map_space_->Capacity() +
134 cell_space_->Capacity();
135}
136
137
Steve Block3ce2e202009-11-05 08:53:23 +0000138int Heap::CommittedMemory() {
139 if (!HasBeenSetup()) return 0;
140
141 return new_space_.CommittedMemory() +
142 old_pointer_space_->CommittedMemory() +
143 old_data_space_->CommittedMemory() +
144 code_space_->CommittedMemory() +
145 map_space_->CommittedMemory() +
146 cell_space_->CommittedMemory() +
147 lo_space_->Size();
148}
149
150
Steve Blocka7e24c12009-10-30 11:49:00 +0000151int Heap::Available() {
152 if (!HasBeenSetup()) return 0;
153
154 return new_space_.Available() +
155 old_pointer_space_->Available() +
156 old_data_space_->Available() +
157 code_space_->Available() +
158 map_space_->Available() +
159 cell_space_->Available();
160}
161
162
163bool Heap::HasBeenSetup() {
164 return old_pointer_space_ != NULL &&
165 old_data_space_ != NULL &&
166 code_space_ != NULL &&
167 map_space_ != NULL &&
168 cell_space_ != NULL &&
169 lo_space_ != NULL;
170}
171
172
173GarbageCollector Heap::SelectGarbageCollector(AllocationSpace space) {
174 // Is global GC requested?
175 if (space != NEW_SPACE || FLAG_gc_global) {
176 Counters::gc_compactor_caused_by_request.Increment();
177 return MARK_COMPACTOR;
178 }
179
180 // Is enough data promoted to justify a global GC?
181 if (OldGenerationPromotionLimitReached()) {
182 Counters::gc_compactor_caused_by_promoted_data.Increment();
183 return MARK_COMPACTOR;
184 }
185
186 // Have allocation in OLD and LO failed?
187 if (old_gen_exhausted_) {
188 Counters::gc_compactor_caused_by_oldspace_exhaustion.Increment();
189 return MARK_COMPACTOR;
190 }
191
192 // Is there enough space left in OLD to guarantee that a scavenge can
193 // succeed?
194 //
195 // Note that MemoryAllocator->MaxAvailable() undercounts the memory available
196 // for object promotion. It counts only the bytes that the memory
197 // allocator has not yet allocated from the OS and assigned to any space,
198 // and does not count available bytes already in the old space or code
199 // space. Undercounting is safe---we may get an unrequested full GC when
200 // a scavenge would have succeeded.
201 if (MemoryAllocator::MaxAvailable() <= new_space_.Size()) {
202 Counters::gc_compactor_caused_by_oldspace_exhaustion.Increment();
203 return MARK_COMPACTOR;
204 }
205
206 // Default
207 return SCAVENGER;
208}
209
210
211// TODO(1238405): Combine the infrastructure for --heap-stats and
212// --log-gc to avoid the complicated preprocessor and flag testing.
213#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
214void Heap::ReportStatisticsBeforeGC() {
215 // Heap::ReportHeapStatistics will also log NewSpace statistics when
216 // compiled with ENABLE_LOGGING_AND_PROFILING and --log-gc is set. The
217 // following logic is used to avoid double logging.
218#if defined(DEBUG) && defined(ENABLE_LOGGING_AND_PROFILING)
219 if (FLAG_heap_stats || FLAG_log_gc) new_space_.CollectStatistics();
220 if (FLAG_heap_stats) {
221 ReportHeapStatistics("Before GC");
222 } else if (FLAG_log_gc) {
223 new_space_.ReportStatistics();
224 }
225 if (FLAG_heap_stats || FLAG_log_gc) new_space_.ClearHistograms();
226#elif defined(DEBUG)
227 if (FLAG_heap_stats) {
228 new_space_.CollectStatistics();
229 ReportHeapStatistics("Before GC");
230 new_space_.ClearHistograms();
231 }
232#elif defined(ENABLE_LOGGING_AND_PROFILING)
233 if (FLAG_log_gc) {
234 new_space_.CollectStatistics();
235 new_space_.ReportStatistics();
236 new_space_.ClearHistograms();
237 }
238#endif
239}
240
241
242#if defined(ENABLE_LOGGING_AND_PROFILING)
243void Heap::PrintShortHeapStatistics() {
244 if (!FLAG_trace_gc_verbose) return;
245 PrintF("Memory allocator, used: %8d, available: %8d\n",
Steve Block3ce2e202009-11-05 08:53:23 +0000246 MemoryAllocator::Size(),
247 MemoryAllocator::Available());
Steve Blocka7e24c12009-10-30 11:49:00 +0000248 PrintF("New space, used: %8d, available: %8d\n",
Steve Block3ce2e202009-11-05 08:53:23 +0000249 Heap::new_space_.Size(),
250 new_space_.Available());
251 PrintF("Old pointers, used: %8d, available: %8d, waste: %8d\n",
252 old_pointer_space_->Size(),
253 old_pointer_space_->Available(),
254 old_pointer_space_->Waste());
255 PrintF("Old data space, used: %8d, available: %8d, waste: %8d\n",
256 old_data_space_->Size(),
257 old_data_space_->Available(),
258 old_data_space_->Waste());
259 PrintF("Code space, used: %8d, available: %8d, waste: %8d\n",
260 code_space_->Size(),
261 code_space_->Available(),
262 code_space_->Waste());
263 PrintF("Map space, used: %8d, available: %8d, waste: %8d\n",
264 map_space_->Size(),
265 map_space_->Available(),
266 map_space_->Waste());
267 PrintF("Cell space, used: %8d, available: %8d, waste: %8d\n",
268 cell_space_->Size(),
269 cell_space_->Available(),
270 cell_space_->Waste());
Steve Blocka7e24c12009-10-30 11:49:00 +0000271 PrintF("Large object space, used: %8d, avaialble: %8d\n",
Steve Block3ce2e202009-11-05 08:53:23 +0000272 lo_space_->Size(),
273 lo_space_->Available());
Steve Blocka7e24c12009-10-30 11:49:00 +0000274}
275#endif
276
277
278// TODO(1238405): Combine the infrastructure for --heap-stats and
279// --log-gc to avoid the complicated preprocessor and flag testing.
280void Heap::ReportStatisticsAfterGC() {
281 // Similar to the before GC, we use some complicated logic to ensure that
282 // NewSpace statistics are logged exactly once when --log-gc is turned on.
283#if defined(DEBUG) && defined(ENABLE_LOGGING_AND_PROFILING)
284 if (FLAG_heap_stats) {
285 new_space_.CollectStatistics();
286 ReportHeapStatistics("After GC");
287 } else if (FLAG_log_gc) {
288 new_space_.ReportStatistics();
289 }
290#elif defined(DEBUG)
291 if (FLAG_heap_stats) ReportHeapStatistics("After GC");
292#elif defined(ENABLE_LOGGING_AND_PROFILING)
293 if (FLAG_log_gc) new_space_.ReportStatistics();
294#endif
295}
296#endif // defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
297
298
299void Heap::GarbageCollectionPrologue() {
300 TranscendentalCache::Clear();
301 gc_count_++;
302#ifdef DEBUG
303 ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC);
304 allow_allocation(false);
305
306 if (FLAG_verify_heap) {
307 Verify();
308 }
309
310 if (FLAG_gc_verbose) Print();
311
312 if (FLAG_print_rset) {
313 // Not all spaces have remembered set bits that we care about.
314 old_pointer_space_->PrintRSet();
315 map_space_->PrintRSet();
316 lo_space_->PrintRSet();
317 }
318#endif
319
320#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
321 ReportStatisticsBeforeGC();
322#endif
323}
324
325int Heap::SizeOfObjects() {
326 int total = 0;
327 AllSpaces spaces;
328 while (Space* space = spaces.next()) {
329 total += space->Size();
330 }
331 return total;
332}
333
334void Heap::GarbageCollectionEpilogue() {
335#ifdef DEBUG
336 allow_allocation(true);
337 ZapFromSpace();
338
339 if (FLAG_verify_heap) {
340 Verify();
341 }
342
343 if (FLAG_print_global_handles) GlobalHandles::Print();
344 if (FLAG_print_handles) PrintHandles();
345 if (FLAG_gc_verbose) Print();
346 if (FLAG_code_stats) ReportCodeStatistics("After GC");
347#endif
348
349 Counters::alive_after_last_gc.Set(SizeOfObjects());
350
351 Counters::symbol_table_capacity.Set(symbol_table()->Capacity());
352 Counters::number_of_symbols.Set(symbol_table()->NumberOfElements());
353#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
354 ReportStatisticsAfterGC();
355#endif
356#ifdef ENABLE_DEBUGGER_SUPPORT
357 Debug::AfterGarbageCollection();
358#endif
359}
360
361
362void Heap::CollectAllGarbage(bool force_compaction) {
363 // Since we are ignoring the return value, the exact choice of space does
364 // not matter, so long as we do not specify NEW_SPACE, which would not
365 // cause a full GC.
366 MarkCompactCollector::SetForceCompaction(force_compaction);
367 CollectGarbage(0, OLD_POINTER_SPACE);
368 MarkCompactCollector::SetForceCompaction(false);
369}
370
371
372void Heap::CollectAllGarbageIfContextDisposed() {
373 // If the garbage collector interface is exposed through the global
374 // gc() function, we avoid being clever about forcing GCs when
375 // contexts are disposed and leave it to the embedder to make
376 // informed decisions about when to force a collection.
377 if (!FLAG_expose_gc && context_disposed_pending_) {
378 HistogramTimerScope scope(&Counters::gc_context);
379 CollectAllGarbage(false);
380 }
381 context_disposed_pending_ = false;
382}
383
384
385void Heap::NotifyContextDisposed() {
386 context_disposed_pending_ = true;
387}
388
389
390bool Heap::CollectGarbage(int requested_size, AllocationSpace space) {
391 // The VM is in the GC state until exiting this function.
392 VMState state(GC);
393
394#ifdef DEBUG
395 // Reset the allocation timeout to the GC interval, but make sure to
396 // allow at least a few allocations after a collection. The reason
397 // for this is that we have a lot of allocation sequences and we
398 // assume that a garbage collection will allow the subsequent
399 // allocation attempts to go through.
400 allocation_timeout_ = Max(6, FLAG_gc_interval);
401#endif
402
403 { GCTracer tracer;
404 GarbageCollectionPrologue();
405 // The GC count was incremented in the prologue. Tell the tracer about
406 // it.
407 tracer.set_gc_count(gc_count_);
408
409 GarbageCollector collector = SelectGarbageCollector(space);
410 // Tell the tracer which collector we've selected.
411 tracer.set_collector(collector);
412
413 HistogramTimer* rate = (collector == SCAVENGER)
414 ? &Counters::gc_scavenger
415 : &Counters::gc_compactor;
416 rate->Start();
417 PerformGarbageCollection(space, collector, &tracer);
418 rate->Stop();
419
420 GarbageCollectionEpilogue();
421 }
422
423
424#ifdef ENABLE_LOGGING_AND_PROFILING
425 if (FLAG_log_gc) HeapProfiler::WriteSample();
426#endif
427
428 switch (space) {
429 case NEW_SPACE:
430 return new_space_.Available() >= requested_size;
431 case OLD_POINTER_SPACE:
432 return old_pointer_space_->Available() >= requested_size;
433 case OLD_DATA_SPACE:
434 return old_data_space_->Available() >= requested_size;
435 case CODE_SPACE:
436 return code_space_->Available() >= requested_size;
437 case MAP_SPACE:
438 return map_space_->Available() >= requested_size;
439 case CELL_SPACE:
440 return cell_space_->Available() >= requested_size;
441 case LO_SPACE:
442 return lo_space_->Available() >= requested_size;
443 }
444 return false;
445}
446
447
448void Heap::PerformScavenge() {
449 GCTracer tracer;
450 PerformGarbageCollection(NEW_SPACE, SCAVENGER, &tracer);
451}
452
453
454#ifdef DEBUG
455// Helper class for verifying the symbol table.
456class SymbolTableVerifier : public ObjectVisitor {
457 public:
458 SymbolTableVerifier() { }
459 void VisitPointers(Object** start, Object** end) {
460 // Visit all HeapObject pointers in [start, end).
461 for (Object** p = start; p < end; p++) {
462 if ((*p)->IsHeapObject()) {
463 // Check that the symbol is actually a symbol.
464 ASSERT((*p)->IsNull() || (*p)->IsUndefined() || (*p)->IsSymbol());
465 }
466 }
467 }
468};
469#endif // DEBUG
470
471
472static void VerifySymbolTable() {
473#ifdef DEBUG
474 SymbolTableVerifier verifier;
475 Heap::symbol_table()->IterateElements(&verifier);
476#endif // DEBUG
477}
478
479
480void Heap::EnsureFromSpaceIsCommitted() {
481 if (new_space_.CommitFromSpaceIfNeeded()) return;
482
483 // Committing memory to from space failed.
484 // Try shrinking and try again.
485 Shrink();
486 if (new_space_.CommitFromSpaceIfNeeded()) return;
487
488 // Committing memory to from space failed again.
489 // Memory is exhausted and we will die.
490 V8::FatalProcessOutOfMemory("Committing semi space failed.");
491}
492
493
494void Heap::PerformGarbageCollection(AllocationSpace space,
495 GarbageCollector collector,
496 GCTracer* tracer) {
497 VerifySymbolTable();
498 if (collector == MARK_COMPACTOR && global_gc_prologue_callback_) {
499 ASSERT(!allocation_allowed_);
500 global_gc_prologue_callback_();
501 }
502 EnsureFromSpaceIsCommitted();
503 if (collector == MARK_COMPACTOR) {
504 MarkCompact(tracer);
505
506 int old_gen_size = PromotedSpaceSize();
507 old_gen_promotion_limit_ =
508 old_gen_size + Max(kMinimumPromotionLimit, old_gen_size / 3);
509 old_gen_allocation_limit_ =
510 old_gen_size + Max(kMinimumAllocationLimit, old_gen_size / 2);
511 old_gen_exhausted_ = false;
512 }
513 Scavenge();
514
515 Counters::objs_since_last_young.Set(0);
516
Steve Block3ce2e202009-11-05 08:53:23 +0000517 if (collector == MARK_COMPACTOR) {
518 DisableAssertNoAllocation allow_allocation;
519 GlobalHandles::PostGarbageCollectionProcessing();
520 }
521
522 // Update relocatables.
523 Relocatable::PostGarbageCollectionProcessing();
Steve Blocka7e24c12009-10-30 11:49:00 +0000524
525 if (collector == MARK_COMPACTOR) {
526 // Register the amount of external allocated memory.
527 amount_of_external_allocated_memory_at_last_global_gc_ =
528 amount_of_external_allocated_memory_;
529 }
530
531 if (collector == MARK_COMPACTOR && global_gc_epilogue_callback_) {
532 ASSERT(!allocation_allowed_);
533 global_gc_epilogue_callback_();
534 }
535 VerifySymbolTable();
536}
537
538
Steve Blocka7e24c12009-10-30 11:49:00 +0000539void Heap::MarkCompact(GCTracer* tracer) {
540 gc_state_ = MARK_COMPACT;
541 mc_count_++;
542 tracer->set_full_gc_count(mc_count_);
543 LOG(ResourceEvent("markcompact", "begin"));
544
545 MarkCompactCollector::Prepare(tracer);
546
547 bool is_compacting = MarkCompactCollector::IsCompacting();
548
549 MarkCompactPrologue(is_compacting);
550
551 MarkCompactCollector::CollectGarbage();
552
553 MarkCompactEpilogue(is_compacting);
554
555 LOG(ResourceEvent("markcompact", "end"));
556
557 gc_state_ = NOT_IN_GC;
558
559 Shrink();
560
561 Counters::objs_since_last_full.Set(0);
562 context_disposed_pending_ = false;
563}
564
565
566void Heap::MarkCompactPrologue(bool is_compacting) {
567 // At any old GC clear the keyed lookup cache to enable collection of unused
568 // maps.
569 KeyedLookupCache::Clear();
570 ContextSlotCache::Clear();
571 DescriptorLookupCache::Clear();
572
573 CompilationCache::MarkCompactPrologue();
574
575 Top::MarkCompactPrologue(is_compacting);
576 ThreadManager::MarkCompactPrologue(is_compacting);
577}
578
579
580void Heap::MarkCompactEpilogue(bool is_compacting) {
581 Top::MarkCompactEpilogue(is_compacting);
582 ThreadManager::MarkCompactEpilogue(is_compacting);
583}
584
585
586Object* Heap::FindCodeObject(Address a) {
587 Object* obj = code_space_->FindObject(a);
588 if (obj->IsFailure()) {
589 obj = lo_space_->FindObject(a);
590 }
591 ASSERT(!obj->IsFailure());
592 return obj;
593}
594
595
596// Helper class for copying HeapObjects
597class ScavengeVisitor: public ObjectVisitor {
598 public:
599
600 void VisitPointer(Object** p) { ScavengePointer(p); }
601
602 void VisitPointers(Object** start, Object** end) {
603 // Copy all HeapObject pointers in [start, end)
604 for (Object** p = start; p < end; p++) ScavengePointer(p);
605 }
606
607 private:
608 void ScavengePointer(Object** p) {
609 Object* object = *p;
610 if (!Heap::InNewSpace(object)) return;
611 Heap::ScavengeObject(reinterpret_cast<HeapObject**>(p),
612 reinterpret_cast<HeapObject*>(object));
613 }
614};
615
616
617// A queue of pointers and maps of to-be-promoted objects during a
618// scavenge collection.
619class PromotionQueue {
620 public:
621 void Initialize(Address start_address) {
622 front_ = rear_ = reinterpret_cast<HeapObject**>(start_address);
623 }
624
625 bool is_empty() { return front_ <= rear_; }
626
627 void insert(HeapObject* object, Map* map) {
628 *(--rear_) = object;
629 *(--rear_) = map;
630 // Assert no overflow into live objects.
631 ASSERT(reinterpret_cast<Address>(rear_) >= Heap::new_space()->top());
632 }
633
634 void remove(HeapObject** object, Map** map) {
635 *object = *(--front_);
636 *map = Map::cast(*(--front_));
637 // Assert no underflow.
638 ASSERT(front_ >= rear_);
639 }
640
641 private:
642 // The front of the queue is higher in memory than the rear.
643 HeapObject** front_;
644 HeapObject** rear_;
645};
646
647
648// Shared state read by the scavenge collector and set by ScavengeObject.
649static PromotionQueue promotion_queue;
650
651
652#ifdef DEBUG
653// Visitor class to verify pointers in code or data space do not point into
654// new space.
655class VerifyNonPointerSpacePointersVisitor: public ObjectVisitor {
656 public:
657 void VisitPointers(Object** start, Object**end) {
658 for (Object** current = start; current < end; current++) {
659 if ((*current)->IsHeapObject()) {
660 ASSERT(!Heap::InNewSpace(HeapObject::cast(*current)));
661 }
662 }
663 }
664};
665
666
667static void VerifyNonPointerSpacePointers() {
668 // Verify that there are no pointers to new space in spaces where we
669 // do not expect them.
670 VerifyNonPointerSpacePointersVisitor v;
671 HeapObjectIterator code_it(Heap::code_space());
672 while (code_it.has_next()) {
673 HeapObject* object = code_it.next();
674 object->Iterate(&v);
675 }
676
677 HeapObjectIterator data_it(Heap::old_data_space());
678 while (data_it.has_next()) data_it.next()->Iterate(&v);
679}
680#endif
681
682
683void Heap::Scavenge() {
684#ifdef DEBUG
685 if (FLAG_enable_slow_asserts) VerifyNonPointerSpacePointers();
686#endif
687
688 gc_state_ = SCAVENGE;
689
690 // Implements Cheney's copying algorithm
691 LOG(ResourceEvent("scavenge", "begin"));
692
693 // Clear descriptor cache.
694 DescriptorLookupCache::Clear();
695
696 // Used for updating survived_since_last_expansion_ at function end.
697 int survived_watermark = PromotedSpaceSize();
698
699 if (new_space_.Capacity() < new_space_.MaximumCapacity() &&
700 survived_since_last_expansion_ > new_space_.Capacity()) {
701 // Grow the size of new space if there is room to grow and enough
702 // data has survived scavenge since the last expansion.
703 new_space_.Grow();
704 survived_since_last_expansion_ = 0;
705 }
706
707 // Flip the semispaces. After flipping, to space is empty, from space has
708 // live objects.
709 new_space_.Flip();
710 new_space_.ResetAllocationInfo();
711
712 // We need to sweep newly copied objects which can be either in the
713 // to space or promoted to the old generation. For to-space
714 // objects, we treat the bottom of the to space as a queue. Newly
715 // copied and unswept objects lie between a 'front' mark and the
716 // allocation pointer.
717 //
718 // Promoted objects can go into various old-generation spaces, and
719 // can be allocated internally in the spaces (from the free list).
720 // We treat the top of the to space as a queue of addresses of
721 // promoted objects. The addresses of newly promoted and unswept
722 // objects lie between a 'front' mark and a 'rear' mark that is
723 // updated as a side effect of promoting an object.
724 //
725 // There is guaranteed to be enough room at the top of the to space
726 // for the addresses of promoted objects: every object promoted
727 // frees up its size in bytes from the top of the new space, and
728 // objects are at least one pointer in size.
729 Address new_space_front = new_space_.ToSpaceLow();
730 promotion_queue.Initialize(new_space_.ToSpaceHigh());
731
732 ScavengeVisitor scavenge_visitor;
733 // Copy roots.
734 IterateRoots(&scavenge_visitor);
735
736 // Copy objects reachable from weak pointers.
737 GlobalHandles::IterateWeakRoots(&scavenge_visitor);
738
739 // Copy objects reachable from the old generation. By definition,
740 // there are no intergenerational pointers in code or data spaces.
741 IterateRSet(old_pointer_space_, &ScavengePointer);
742 IterateRSet(map_space_, &ScavengePointer);
743 lo_space_->IterateRSet(&ScavengePointer);
744
745 // Copy objects reachable from cells by scavenging cell values directly.
746 HeapObjectIterator cell_iterator(cell_space_);
747 while (cell_iterator.has_next()) {
748 HeapObject* cell = cell_iterator.next();
749 if (cell->IsJSGlobalPropertyCell()) {
750 Address value_address =
751 reinterpret_cast<Address>(cell) +
752 (JSGlobalPropertyCell::kValueOffset - kHeapObjectTag);
753 scavenge_visitor.VisitPointer(reinterpret_cast<Object**>(value_address));
754 }
755 }
756
757 do {
758 ASSERT(new_space_front <= new_space_.top());
759
760 // The addresses new_space_front and new_space_.top() define a
761 // queue of unprocessed copied objects. Process them until the
762 // queue is empty.
763 while (new_space_front < new_space_.top()) {
764 HeapObject* object = HeapObject::FromAddress(new_space_front);
765 object->Iterate(&scavenge_visitor);
766 new_space_front += object->Size();
767 }
768
769 // Promote and process all the to-be-promoted objects.
770 while (!promotion_queue.is_empty()) {
771 HeapObject* source;
772 Map* map;
773 promotion_queue.remove(&source, &map);
774 // Copy the from-space object to its new location (given by the
775 // forwarding address) and fix its map.
776 HeapObject* target = source->map_word().ToForwardingAddress();
777 CopyBlock(reinterpret_cast<Object**>(target->address()),
778 reinterpret_cast<Object**>(source->address()),
779 source->SizeFromMap(map));
780 target->set_map(map);
781
782#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
783 // Update NewSpace stats if necessary.
784 RecordCopiedObject(target);
785#endif
786 // Visit the newly copied object for pointers to new space.
787 target->Iterate(&scavenge_visitor);
788 UpdateRSet(target);
789 }
790
791 // Take another spin if there are now unswept objects in new space
792 // (there are currently no more unswept promoted objects).
793 } while (new_space_front < new_space_.top());
794
795 // Set age mark.
796 new_space_.set_age_mark(new_space_.top());
797
798 // Update how much has survived scavenge.
799 survived_since_last_expansion_ +=
800 (PromotedSpaceSize() - survived_watermark) + new_space_.Size();
801
802 LOG(ResourceEvent("scavenge", "end"));
803
804 gc_state_ = NOT_IN_GC;
805}
806
807
808void Heap::ClearRSetRange(Address start, int size_in_bytes) {
809 uint32_t start_bit;
810 Address start_word_address =
811 Page::ComputeRSetBitPosition(start, 0, &start_bit);
812 uint32_t end_bit;
813 Address end_word_address =
814 Page::ComputeRSetBitPosition(start + size_in_bytes - kIntSize,
815 0,
816 &end_bit);
817
818 // We want to clear the bits in the starting word starting with the
819 // first bit, and in the ending word up to and including the last
820 // bit. Build a pair of bitmasks to do that.
821 uint32_t start_bitmask = start_bit - 1;
822 uint32_t end_bitmask = ~((end_bit << 1) - 1);
823
824 // If the start address and end address are the same, we mask that
825 // word once, otherwise mask the starting and ending word
826 // separately and all the ones in between.
827 if (start_word_address == end_word_address) {
828 Memory::uint32_at(start_word_address) &= (start_bitmask | end_bitmask);
829 } else {
830 Memory::uint32_at(start_word_address) &= start_bitmask;
831 Memory::uint32_at(end_word_address) &= end_bitmask;
832 start_word_address += kIntSize;
833 memset(start_word_address, 0, end_word_address - start_word_address);
834 }
835}
836
837
838class UpdateRSetVisitor: public ObjectVisitor {
839 public:
840
841 void VisitPointer(Object** p) {
842 UpdateRSet(p);
843 }
844
845 void VisitPointers(Object** start, Object** end) {
846 // Update a store into slots [start, end), used (a) to update remembered
847 // set when promoting a young object to old space or (b) to rebuild
848 // remembered sets after a mark-compact collection.
849 for (Object** p = start; p < end; p++) UpdateRSet(p);
850 }
851 private:
852
853 void UpdateRSet(Object** p) {
854 // The remembered set should not be set. It should be clear for objects
855 // newly copied to old space, and it is cleared before rebuilding in the
856 // mark-compact collector.
857 ASSERT(!Page::IsRSetSet(reinterpret_cast<Address>(p), 0));
858 if (Heap::InNewSpace(*p)) {
859 Page::SetRSet(reinterpret_cast<Address>(p), 0);
860 }
861 }
862};
863
864
865int Heap::UpdateRSet(HeapObject* obj) {
866 ASSERT(!InNewSpace(obj));
867 // Special handling of fixed arrays to iterate the body based on the start
868 // address and offset. Just iterating the pointers as in UpdateRSetVisitor
869 // will not work because Page::SetRSet needs to have the start of the
870 // object for large object pages.
871 if (obj->IsFixedArray()) {
872 FixedArray* array = FixedArray::cast(obj);
873 int length = array->length();
874 for (int i = 0; i < length; i++) {
875 int offset = FixedArray::kHeaderSize + i * kPointerSize;
876 ASSERT(!Page::IsRSetSet(obj->address(), offset));
877 if (Heap::InNewSpace(array->get(i))) {
878 Page::SetRSet(obj->address(), offset);
879 }
880 }
881 } else if (!obj->IsCode()) {
882 // Skip code object, we know it does not contain inter-generational
883 // pointers.
884 UpdateRSetVisitor v;
885 obj->Iterate(&v);
886 }
887 return obj->Size();
888}
889
890
891void Heap::RebuildRSets() {
892 // By definition, we do not care about remembered set bits in code,
893 // data, or cell spaces.
894 map_space_->ClearRSet();
895 RebuildRSets(map_space_);
896
897 old_pointer_space_->ClearRSet();
898 RebuildRSets(old_pointer_space_);
899
900 Heap::lo_space_->ClearRSet();
901 RebuildRSets(lo_space_);
902}
903
904
905void Heap::RebuildRSets(PagedSpace* space) {
906 HeapObjectIterator it(space);
907 while (it.has_next()) Heap::UpdateRSet(it.next());
908}
909
910
911void Heap::RebuildRSets(LargeObjectSpace* space) {
912 LargeObjectIterator it(space);
913 while (it.has_next()) Heap::UpdateRSet(it.next());
914}
915
916
917#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
918void Heap::RecordCopiedObject(HeapObject* obj) {
919 bool should_record = false;
920#ifdef DEBUG
921 should_record = FLAG_heap_stats;
922#endif
923#ifdef ENABLE_LOGGING_AND_PROFILING
924 should_record = should_record || FLAG_log_gc;
925#endif
926 if (should_record) {
927 if (new_space_.Contains(obj)) {
928 new_space_.RecordAllocation(obj);
929 } else {
930 new_space_.RecordPromotion(obj);
931 }
932 }
933}
934#endif // defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
935
936
937
938HeapObject* Heap::MigrateObject(HeapObject* source,
939 HeapObject* target,
940 int size) {
941 // Copy the content of source to target.
942 CopyBlock(reinterpret_cast<Object**>(target->address()),
943 reinterpret_cast<Object**>(source->address()),
944 size);
945
946 // Set the forwarding address.
947 source->set_map_word(MapWord::FromForwardingAddress(target));
948
949#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING)
950 // Update NewSpace stats if necessary.
951 RecordCopiedObject(target);
952#endif
953
954 return target;
955}
956
957
958static inline bool IsShortcutCandidate(HeapObject* object, Map* map) {
959 STATIC_ASSERT(kNotStringTag != 0 && kSymbolTag != 0);
960 ASSERT(object->map() == map);
961 InstanceType type = map->instance_type();
962 if ((type & kShortcutTypeMask) != kShortcutTypeTag) return false;
963 ASSERT(object->IsString() && !object->IsSymbol());
964 return ConsString::cast(object)->unchecked_second() == Heap::empty_string();
965}
966
967
968void Heap::ScavengeObjectSlow(HeapObject** p, HeapObject* object) {
969 ASSERT(InFromSpace(object));
970 MapWord first_word = object->map_word();
971 ASSERT(!first_word.IsForwardingAddress());
972
973 // Optimization: Bypass flattened ConsString objects.
974 if (IsShortcutCandidate(object, first_word.ToMap())) {
975 object = HeapObject::cast(ConsString::cast(object)->unchecked_first());
976 *p = object;
977 // After patching *p we have to repeat the checks that object is in the
978 // active semispace of the young generation and not already copied.
979 if (!InNewSpace(object)) return;
980 first_word = object->map_word();
981 if (first_word.IsForwardingAddress()) {
982 *p = first_word.ToForwardingAddress();
983 return;
984 }
985 }
986
987 int object_size = object->SizeFromMap(first_word.ToMap());
988 // We rely on live objects in new space to be at least two pointers,
989 // so we can store the from-space address and map pointer of promoted
990 // objects in the to space.
991 ASSERT(object_size >= 2 * kPointerSize);
992
993 // If the object should be promoted, we try to copy it to old space.
994 if (ShouldBePromoted(object->address(), object_size)) {
995 Object* result;
996 if (object_size > MaxObjectSizeInPagedSpace()) {
997 result = lo_space_->AllocateRawFixedArray(object_size);
998 if (!result->IsFailure()) {
999 // Save the from-space object pointer and its map pointer at the
1000 // top of the to space to be swept and copied later. Write the
1001 // forwarding address over the map word of the from-space
1002 // object.
1003 HeapObject* target = HeapObject::cast(result);
1004 promotion_queue.insert(object, first_word.ToMap());
1005 object->set_map_word(MapWord::FromForwardingAddress(target));
1006
1007 // Give the space allocated for the result a proper map by
1008 // treating it as a free list node (not linked into the free
1009 // list).
1010 FreeListNode* node = FreeListNode::FromAddress(target->address());
1011 node->set_size(object_size);
1012
1013 *p = target;
1014 return;
1015 }
1016 } else {
1017 OldSpace* target_space = Heap::TargetSpace(object);
1018 ASSERT(target_space == Heap::old_pointer_space_ ||
1019 target_space == Heap::old_data_space_);
1020 result = target_space->AllocateRaw(object_size);
1021 if (!result->IsFailure()) {
1022 HeapObject* target = HeapObject::cast(result);
1023 if (target_space == Heap::old_pointer_space_) {
1024 // Save the from-space object pointer and its map pointer at the
1025 // top of the to space to be swept and copied later. Write the
1026 // forwarding address over the map word of the from-space
1027 // object.
1028 promotion_queue.insert(object, first_word.ToMap());
1029 object->set_map_word(MapWord::FromForwardingAddress(target));
1030
1031 // Give the space allocated for the result a proper map by
1032 // treating it as a free list node (not linked into the free
1033 // list).
1034 FreeListNode* node = FreeListNode::FromAddress(target->address());
1035 node->set_size(object_size);
1036
1037 *p = target;
1038 } else {
1039 // Objects promoted to the data space can be copied immediately
1040 // and not revisited---we will never sweep that space for
1041 // pointers and the copied objects do not contain pointers to
1042 // new space objects.
1043 *p = MigrateObject(object, target, object_size);
1044#ifdef DEBUG
1045 VerifyNonPointerSpacePointersVisitor v;
1046 (*p)->Iterate(&v);
1047#endif
1048 }
1049 return;
1050 }
1051 }
1052 }
1053 // The object should remain in new space or the old space allocation failed.
1054 Object* result = new_space_.AllocateRaw(object_size);
1055 // Failed allocation at this point is utterly unexpected.
1056 ASSERT(!result->IsFailure());
1057 *p = MigrateObject(object, HeapObject::cast(result), object_size);
1058}
1059
1060
1061void Heap::ScavengePointer(HeapObject** p) {
1062 ScavengeObject(p, *p);
1063}
1064
1065
1066Object* Heap::AllocatePartialMap(InstanceType instance_type,
1067 int instance_size) {
1068 Object* result = AllocateRawMap();
1069 if (result->IsFailure()) return result;
1070
1071 // Map::cast cannot be used due to uninitialized map field.
1072 reinterpret_cast<Map*>(result)->set_map(raw_unchecked_meta_map());
1073 reinterpret_cast<Map*>(result)->set_instance_type(instance_type);
1074 reinterpret_cast<Map*>(result)->set_instance_size(instance_size);
1075 reinterpret_cast<Map*>(result)->set_inobject_properties(0);
1076 reinterpret_cast<Map*>(result)->set_unused_property_fields(0);
1077 return result;
1078}
1079
1080
1081Object* Heap::AllocateMap(InstanceType instance_type, int instance_size) {
1082 Object* result = AllocateRawMap();
1083 if (result->IsFailure()) return result;
1084
1085 Map* map = reinterpret_cast<Map*>(result);
1086 map->set_map(meta_map());
1087 map->set_instance_type(instance_type);
1088 map->set_prototype(null_value());
1089 map->set_constructor(null_value());
1090 map->set_instance_size(instance_size);
1091 map->set_inobject_properties(0);
1092 map->set_pre_allocated_property_fields(0);
1093 map->set_instance_descriptors(empty_descriptor_array());
1094 map->set_code_cache(empty_fixed_array());
1095 map->set_unused_property_fields(0);
1096 map->set_bit_field(0);
1097 map->set_bit_field2(0);
1098 return map;
1099}
1100
1101
1102const Heap::StringTypeTable Heap::string_type_table[] = {
1103#define STRING_TYPE_ELEMENT(type, size, name, camel_name) \
1104 {type, size, k##camel_name##MapRootIndex},
1105 STRING_TYPE_LIST(STRING_TYPE_ELEMENT)
1106#undef STRING_TYPE_ELEMENT
1107};
1108
1109
1110const Heap::ConstantSymbolTable Heap::constant_symbol_table[] = {
1111#define CONSTANT_SYMBOL_ELEMENT(name, contents) \
1112 {contents, k##name##RootIndex},
1113 SYMBOL_LIST(CONSTANT_SYMBOL_ELEMENT)
1114#undef CONSTANT_SYMBOL_ELEMENT
1115};
1116
1117
1118const Heap::StructTable Heap::struct_table[] = {
1119#define STRUCT_TABLE_ELEMENT(NAME, Name, name) \
1120 { NAME##_TYPE, Name::kSize, k##Name##MapRootIndex },
1121 STRUCT_LIST(STRUCT_TABLE_ELEMENT)
1122#undef STRUCT_TABLE_ELEMENT
1123};
1124
1125
1126bool Heap::CreateInitialMaps() {
1127 Object* obj = AllocatePartialMap(MAP_TYPE, Map::kSize);
1128 if (obj->IsFailure()) return false;
1129 // Map::cast cannot be used due to uninitialized map field.
1130 Map* new_meta_map = reinterpret_cast<Map*>(obj);
1131 set_meta_map(new_meta_map);
1132 new_meta_map->set_map(new_meta_map);
1133
1134 obj = AllocatePartialMap(FIXED_ARRAY_TYPE, FixedArray::kHeaderSize);
1135 if (obj->IsFailure()) return false;
1136 set_fixed_array_map(Map::cast(obj));
1137
1138 obj = AllocatePartialMap(ODDBALL_TYPE, Oddball::kSize);
1139 if (obj->IsFailure()) return false;
1140 set_oddball_map(Map::cast(obj));
1141
1142 // Allocate the empty array
1143 obj = AllocateEmptyFixedArray();
1144 if (obj->IsFailure()) return false;
1145 set_empty_fixed_array(FixedArray::cast(obj));
1146
1147 obj = Allocate(oddball_map(), OLD_DATA_SPACE);
1148 if (obj->IsFailure()) return false;
1149 set_null_value(obj);
1150
1151 // Allocate the empty descriptor array.
1152 obj = AllocateEmptyFixedArray();
1153 if (obj->IsFailure()) return false;
1154 set_empty_descriptor_array(DescriptorArray::cast(obj));
1155
1156 // Fix the instance_descriptors for the existing maps.
1157 meta_map()->set_instance_descriptors(empty_descriptor_array());
1158 meta_map()->set_code_cache(empty_fixed_array());
1159
1160 fixed_array_map()->set_instance_descriptors(empty_descriptor_array());
1161 fixed_array_map()->set_code_cache(empty_fixed_array());
1162
1163 oddball_map()->set_instance_descriptors(empty_descriptor_array());
1164 oddball_map()->set_code_cache(empty_fixed_array());
1165
1166 // Fix prototype object for existing maps.
1167 meta_map()->set_prototype(null_value());
1168 meta_map()->set_constructor(null_value());
1169
1170 fixed_array_map()->set_prototype(null_value());
1171 fixed_array_map()->set_constructor(null_value());
1172
1173 oddball_map()->set_prototype(null_value());
1174 oddball_map()->set_constructor(null_value());
1175
1176 obj = AllocateMap(HEAP_NUMBER_TYPE, HeapNumber::kSize);
1177 if (obj->IsFailure()) return false;
1178 set_heap_number_map(Map::cast(obj));
1179
1180 obj = AllocateMap(PROXY_TYPE, Proxy::kSize);
1181 if (obj->IsFailure()) return false;
1182 set_proxy_map(Map::cast(obj));
1183
1184 for (unsigned i = 0; i < ARRAY_SIZE(string_type_table); i++) {
1185 const StringTypeTable& entry = string_type_table[i];
1186 obj = AllocateMap(entry.type, entry.size);
1187 if (obj->IsFailure()) return false;
1188 roots_[entry.index] = Map::cast(obj);
1189 }
1190
1191 obj = AllocateMap(SHORT_STRING_TYPE, SeqTwoByteString::kAlignedSize);
1192 if (obj->IsFailure()) return false;
1193 set_undetectable_short_string_map(Map::cast(obj));
1194 Map::cast(obj)->set_is_undetectable();
1195
1196 obj = AllocateMap(MEDIUM_STRING_TYPE, SeqTwoByteString::kAlignedSize);
1197 if (obj->IsFailure()) return false;
1198 set_undetectable_medium_string_map(Map::cast(obj));
1199 Map::cast(obj)->set_is_undetectable();
1200
1201 obj = AllocateMap(LONG_STRING_TYPE, SeqTwoByteString::kAlignedSize);
1202 if (obj->IsFailure()) return false;
1203 set_undetectable_long_string_map(Map::cast(obj));
1204 Map::cast(obj)->set_is_undetectable();
1205
1206 obj = AllocateMap(SHORT_ASCII_STRING_TYPE, SeqAsciiString::kAlignedSize);
1207 if (obj->IsFailure()) return false;
1208 set_undetectable_short_ascii_string_map(Map::cast(obj));
1209 Map::cast(obj)->set_is_undetectable();
1210
1211 obj = AllocateMap(MEDIUM_ASCII_STRING_TYPE, SeqAsciiString::kAlignedSize);
1212 if (obj->IsFailure()) return false;
1213 set_undetectable_medium_ascii_string_map(Map::cast(obj));
1214 Map::cast(obj)->set_is_undetectable();
1215
1216 obj = AllocateMap(LONG_ASCII_STRING_TYPE, SeqAsciiString::kAlignedSize);
1217 if (obj->IsFailure()) return false;
1218 set_undetectable_long_ascii_string_map(Map::cast(obj));
1219 Map::cast(obj)->set_is_undetectable();
1220
1221 obj = AllocateMap(BYTE_ARRAY_TYPE, ByteArray::kAlignedSize);
1222 if (obj->IsFailure()) return false;
1223 set_byte_array_map(Map::cast(obj));
1224
1225 obj = AllocateMap(PIXEL_ARRAY_TYPE, PixelArray::kAlignedSize);
1226 if (obj->IsFailure()) return false;
1227 set_pixel_array_map(Map::cast(obj));
1228
Steve Block3ce2e202009-11-05 08:53:23 +00001229 obj = AllocateMap(EXTERNAL_BYTE_ARRAY_TYPE,
1230 ExternalArray::kAlignedSize);
1231 if (obj->IsFailure()) return false;
1232 set_external_byte_array_map(Map::cast(obj));
1233
1234 obj = AllocateMap(EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE,
1235 ExternalArray::kAlignedSize);
1236 if (obj->IsFailure()) return false;
1237 set_external_unsigned_byte_array_map(Map::cast(obj));
1238
1239 obj = AllocateMap(EXTERNAL_SHORT_ARRAY_TYPE,
1240 ExternalArray::kAlignedSize);
1241 if (obj->IsFailure()) return false;
1242 set_external_short_array_map(Map::cast(obj));
1243
1244 obj = AllocateMap(EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE,
1245 ExternalArray::kAlignedSize);
1246 if (obj->IsFailure()) return false;
1247 set_external_unsigned_short_array_map(Map::cast(obj));
1248
1249 obj = AllocateMap(EXTERNAL_INT_ARRAY_TYPE,
1250 ExternalArray::kAlignedSize);
1251 if (obj->IsFailure()) return false;
1252 set_external_int_array_map(Map::cast(obj));
1253
1254 obj = AllocateMap(EXTERNAL_UNSIGNED_INT_ARRAY_TYPE,
1255 ExternalArray::kAlignedSize);
1256 if (obj->IsFailure()) return false;
1257 set_external_unsigned_int_array_map(Map::cast(obj));
1258
1259 obj = AllocateMap(EXTERNAL_FLOAT_ARRAY_TYPE,
1260 ExternalArray::kAlignedSize);
1261 if (obj->IsFailure()) return false;
1262 set_external_float_array_map(Map::cast(obj));
1263
Steve Blocka7e24c12009-10-30 11:49:00 +00001264 obj = AllocateMap(CODE_TYPE, Code::kHeaderSize);
1265 if (obj->IsFailure()) return false;
1266 set_code_map(Map::cast(obj));
1267
1268 obj = AllocateMap(JS_GLOBAL_PROPERTY_CELL_TYPE,
1269 JSGlobalPropertyCell::kSize);
1270 if (obj->IsFailure()) return false;
1271 set_global_property_cell_map(Map::cast(obj));
1272
1273 obj = AllocateMap(FILLER_TYPE, kPointerSize);
1274 if (obj->IsFailure()) return false;
1275 set_one_pointer_filler_map(Map::cast(obj));
1276
1277 obj = AllocateMap(FILLER_TYPE, 2 * kPointerSize);
1278 if (obj->IsFailure()) return false;
1279 set_two_pointer_filler_map(Map::cast(obj));
1280
1281 for (unsigned i = 0; i < ARRAY_SIZE(struct_table); i++) {
1282 const StructTable& entry = struct_table[i];
1283 obj = AllocateMap(entry.type, entry.size);
1284 if (obj->IsFailure()) return false;
1285 roots_[entry.index] = Map::cast(obj);
1286 }
1287
1288 obj = AllocateMap(FIXED_ARRAY_TYPE, HeapObject::kHeaderSize);
1289 if (obj->IsFailure()) return false;
1290 set_hash_table_map(Map::cast(obj));
1291
1292 obj = AllocateMap(FIXED_ARRAY_TYPE, HeapObject::kHeaderSize);
1293 if (obj->IsFailure()) return false;
1294 set_context_map(Map::cast(obj));
1295
1296 obj = AllocateMap(FIXED_ARRAY_TYPE, HeapObject::kHeaderSize);
1297 if (obj->IsFailure()) return false;
1298 set_catch_context_map(Map::cast(obj));
1299
1300 obj = AllocateMap(FIXED_ARRAY_TYPE, HeapObject::kHeaderSize);
1301 if (obj->IsFailure()) return false;
1302 set_global_context_map(Map::cast(obj));
1303
1304 obj = AllocateMap(JS_FUNCTION_TYPE, JSFunction::kSize);
1305 if (obj->IsFailure()) return false;
1306 set_boilerplate_function_map(Map::cast(obj));
1307
1308 obj = AllocateMap(SHARED_FUNCTION_INFO_TYPE, SharedFunctionInfo::kSize);
1309 if (obj->IsFailure()) return false;
1310 set_shared_function_info_map(Map::cast(obj));
1311
1312 ASSERT(!Heap::InNewSpace(Heap::empty_fixed_array()));
1313 return true;
1314}
1315
1316
1317Object* Heap::AllocateHeapNumber(double value, PretenureFlag pretenure) {
1318 // Statically ensure that it is safe to allocate heap numbers in paged
1319 // spaces.
1320 STATIC_ASSERT(HeapNumber::kSize <= Page::kMaxHeapObjectSize);
1321 AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
1322
1323 // New space can't cope with forced allocation.
1324 if (always_allocate()) space = OLD_DATA_SPACE;
1325
1326 Object* result = AllocateRaw(HeapNumber::kSize, space, OLD_DATA_SPACE);
1327 if (result->IsFailure()) return result;
1328
1329 HeapObject::cast(result)->set_map(heap_number_map());
1330 HeapNumber::cast(result)->set_value(value);
1331 return result;
1332}
1333
1334
1335Object* Heap::AllocateHeapNumber(double value) {
1336 // Use general version, if we're forced to always allocate.
1337 if (always_allocate()) return AllocateHeapNumber(value, TENURED);
1338
1339 // This version of AllocateHeapNumber is optimized for
1340 // allocation in new space.
1341 STATIC_ASSERT(HeapNumber::kSize <= Page::kMaxHeapObjectSize);
1342 ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC);
1343 Object* result = new_space_.AllocateRaw(HeapNumber::kSize);
1344 if (result->IsFailure()) return result;
1345 HeapObject::cast(result)->set_map(heap_number_map());
1346 HeapNumber::cast(result)->set_value(value);
1347 return result;
1348}
1349
1350
1351Object* Heap::AllocateJSGlobalPropertyCell(Object* value) {
1352 Object* result = AllocateRawCell();
1353 if (result->IsFailure()) return result;
1354 HeapObject::cast(result)->set_map(global_property_cell_map());
1355 JSGlobalPropertyCell::cast(result)->set_value(value);
1356 return result;
1357}
1358
1359
1360Object* Heap::CreateOddball(Map* map,
1361 const char* to_string,
1362 Object* to_number) {
1363 Object* result = Allocate(map, OLD_DATA_SPACE);
1364 if (result->IsFailure()) return result;
1365 return Oddball::cast(result)->Initialize(to_string, to_number);
1366}
1367
1368
1369bool Heap::CreateApiObjects() {
1370 Object* obj;
1371
1372 obj = AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
1373 if (obj->IsFailure()) return false;
1374 set_neander_map(Map::cast(obj));
1375
1376 obj = Heap::AllocateJSObjectFromMap(neander_map());
1377 if (obj->IsFailure()) return false;
1378 Object* elements = AllocateFixedArray(2);
1379 if (elements->IsFailure()) return false;
1380 FixedArray::cast(elements)->set(0, Smi::FromInt(0));
1381 JSObject::cast(obj)->set_elements(FixedArray::cast(elements));
1382 set_message_listeners(JSObject::cast(obj));
1383
1384 return true;
1385}
1386
1387
1388void Heap::CreateCEntryStub() {
1389 CEntryStub stub(1);
1390 set_c_entry_code(*stub.GetCode());
1391}
1392
1393
1394#if V8_TARGET_ARCH_ARM && V8_NATIVE_REGEXP
1395void Heap::CreateRegExpCEntryStub() {
1396 RegExpCEntryStub stub;
1397 set_re_c_entry_code(*stub.GetCode());
1398}
1399#endif
1400
1401
1402void Heap::CreateCEntryDebugBreakStub() {
1403 CEntryDebugBreakStub stub;
1404 set_c_entry_debug_break_code(*stub.GetCode());
1405}
1406
1407
1408void Heap::CreateJSEntryStub() {
1409 JSEntryStub stub;
1410 set_js_entry_code(*stub.GetCode());
1411}
1412
1413
1414void Heap::CreateJSConstructEntryStub() {
1415 JSConstructEntryStub stub;
1416 set_js_construct_entry_code(*stub.GetCode());
1417}
1418
1419
1420void Heap::CreateFixedStubs() {
1421 // Here we create roots for fixed stubs. They are needed at GC
1422 // for cooking and uncooking (check out frames.cc).
1423 // The eliminates the need for doing dictionary lookup in the
1424 // stub cache for these stubs.
1425 HandleScope scope;
1426 // gcc-4.4 has problem generating correct code of following snippet:
1427 // { CEntryStub stub;
1428 // c_entry_code_ = *stub.GetCode();
1429 // }
1430 // { CEntryDebugBreakStub stub;
1431 // c_entry_debug_break_code_ = *stub.GetCode();
1432 // }
1433 // To workaround the problem, make separate functions without inlining.
1434 Heap::CreateCEntryStub();
1435 Heap::CreateCEntryDebugBreakStub();
1436 Heap::CreateJSEntryStub();
1437 Heap::CreateJSConstructEntryStub();
1438#if V8_TARGET_ARCH_ARM && V8_NATIVE_REGEXP
1439 Heap::CreateRegExpCEntryStub();
1440#endif
1441}
1442
1443
1444bool Heap::CreateInitialObjects() {
1445 Object* obj;
1446
1447 // The -0 value must be set before NumberFromDouble works.
1448 obj = AllocateHeapNumber(-0.0, TENURED);
1449 if (obj->IsFailure()) return false;
1450 set_minus_zero_value(obj);
1451 ASSERT(signbit(minus_zero_value()->Number()) != 0);
1452
1453 obj = AllocateHeapNumber(OS::nan_value(), TENURED);
1454 if (obj->IsFailure()) return false;
1455 set_nan_value(obj);
1456
1457 obj = Allocate(oddball_map(), OLD_DATA_SPACE);
1458 if (obj->IsFailure()) return false;
1459 set_undefined_value(obj);
1460 ASSERT(!InNewSpace(undefined_value()));
1461
1462 // Allocate initial symbol table.
1463 obj = SymbolTable::Allocate(kInitialSymbolTableSize);
1464 if (obj->IsFailure()) return false;
1465 // Don't use set_symbol_table() due to asserts.
1466 roots_[kSymbolTableRootIndex] = obj;
1467
1468 // Assign the print strings for oddballs after creating symboltable.
1469 Object* symbol = LookupAsciiSymbol("undefined");
1470 if (symbol->IsFailure()) return false;
1471 Oddball::cast(undefined_value())->set_to_string(String::cast(symbol));
1472 Oddball::cast(undefined_value())->set_to_number(nan_value());
1473
1474 // Assign the print strings for oddballs after creating symboltable.
1475 symbol = LookupAsciiSymbol("null");
1476 if (symbol->IsFailure()) return false;
1477 Oddball::cast(null_value())->set_to_string(String::cast(symbol));
1478 Oddball::cast(null_value())->set_to_number(Smi::FromInt(0));
1479
1480 // Allocate the null_value
1481 obj = Oddball::cast(null_value())->Initialize("null", Smi::FromInt(0));
1482 if (obj->IsFailure()) return false;
1483
1484 obj = CreateOddball(oddball_map(), "true", Smi::FromInt(1));
1485 if (obj->IsFailure()) return false;
1486 set_true_value(obj);
1487
1488 obj = CreateOddball(oddball_map(), "false", Smi::FromInt(0));
1489 if (obj->IsFailure()) return false;
1490 set_false_value(obj);
1491
1492 obj = CreateOddball(oddball_map(), "hole", Smi::FromInt(-1));
1493 if (obj->IsFailure()) return false;
1494 set_the_hole_value(obj);
1495
1496 obj = CreateOddball(
1497 oddball_map(), "no_interceptor_result_sentinel", Smi::FromInt(-2));
1498 if (obj->IsFailure()) return false;
1499 set_no_interceptor_result_sentinel(obj);
1500
1501 obj = CreateOddball(oddball_map(), "termination_exception", Smi::FromInt(-3));
1502 if (obj->IsFailure()) return false;
1503 set_termination_exception(obj);
1504
1505 // Allocate the empty string.
1506 obj = AllocateRawAsciiString(0, TENURED);
1507 if (obj->IsFailure()) return false;
1508 set_empty_string(String::cast(obj));
1509
1510 for (unsigned i = 0; i < ARRAY_SIZE(constant_symbol_table); i++) {
1511 obj = LookupAsciiSymbol(constant_symbol_table[i].contents);
1512 if (obj->IsFailure()) return false;
1513 roots_[constant_symbol_table[i].index] = String::cast(obj);
1514 }
1515
1516 // Allocate the hidden symbol which is used to identify the hidden properties
1517 // in JSObjects. The hash code has a special value so that it will not match
1518 // the empty string when searching for the property. It cannot be part of the
1519 // loop above because it needs to be allocated manually with the special
1520 // hash code in place. The hash code for the hidden_symbol is zero to ensure
1521 // that it will always be at the first entry in property descriptors.
1522 obj = AllocateSymbol(CStrVector(""), 0, String::kHashComputedMask);
1523 if (obj->IsFailure()) return false;
1524 hidden_symbol_ = String::cast(obj);
1525
1526 // Allocate the proxy for __proto__.
1527 obj = AllocateProxy((Address) &Accessors::ObjectPrototype);
1528 if (obj->IsFailure()) return false;
1529 set_prototype_accessors(Proxy::cast(obj));
1530
1531 // Allocate the code_stubs dictionary. The initial size is set to avoid
1532 // expanding the dictionary during bootstrapping.
1533 obj = NumberDictionary::Allocate(128);
1534 if (obj->IsFailure()) return false;
1535 set_code_stubs(NumberDictionary::cast(obj));
1536
1537 // Allocate the non_monomorphic_cache used in stub-cache.cc. The initial size
1538 // is set to avoid expanding the dictionary during bootstrapping.
1539 obj = NumberDictionary::Allocate(64);
1540 if (obj->IsFailure()) return false;
1541 set_non_monomorphic_cache(NumberDictionary::cast(obj));
1542
1543 CreateFixedStubs();
1544
1545 // Allocate the number->string conversion cache
1546 obj = AllocateFixedArray(kNumberStringCacheSize * 2);
1547 if (obj->IsFailure()) return false;
1548 set_number_string_cache(FixedArray::cast(obj));
1549
1550 // Allocate cache for single character strings.
1551 obj = AllocateFixedArray(String::kMaxAsciiCharCode+1);
1552 if (obj->IsFailure()) return false;
1553 set_single_character_string_cache(FixedArray::cast(obj));
1554
1555 // Allocate cache for external strings pointing to native source code.
1556 obj = AllocateFixedArray(Natives::GetBuiltinsCount());
1557 if (obj->IsFailure()) return false;
1558 set_natives_source_cache(FixedArray::cast(obj));
1559
1560 // Handling of script id generation is in Factory::NewScript.
1561 set_last_script_id(undefined_value());
1562
1563 // Initialize keyed lookup cache.
1564 KeyedLookupCache::Clear();
1565
1566 // Initialize context slot cache.
1567 ContextSlotCache::Clear();
1568
1569 // Initialize descriptor cache.
1570 DescriptorLookupCache::Clear();
1571
1572 // Initialize compilation cache.
1573 CompilationCache::Clear();
1574
1575 return true;
1576}
1577
1578
1579static inline int double_get_hash(double d) {
1580 DoubleRepresentation rep(d);
1581 return ((static_cast<int>(rep.bits) ^ static_cast<int>(rep.bits >> 32)) &
1582 (Heap::kNumberStringCacheSize - 1));
1583}
1584
1585
1586static inline int smi_get_hash(Smi* smi) {
1587 return (smi->value() & (Heap::kNumberStringCacheSize - 1));
1588}
1589
1590
1591
1592Object* Heap::GetNumberStringCache(Object* number) {
1593 int hash;
1594 if (number->IsSmi()) {
1595 hash = smi_get_hash(Smi::cast(number));
1596 } else {
1597 hash = double_get_hash(number->Number());
1598 }
1599 Object* key = number_string_cache()->get(hash * 2);
1600 if (key == number) {
1601 return String::cast(number_string_cache()->get(hash * 2 + 1));
1602 } else if (key->IsHeapNumber() &&
1603 number->IsHeapNumber() &&
1604 key->Number() == number->Number()) {
1605 return String::cast(number_string_cache()->get(hash * 2 + 1));
1606 }
1607 return undefined_value();
1608}
1609
1610
1611void Heap::SetNumberStringCache(Object* number, String* string) {
1612 int hash;
1613 if (number->IsSmi()) {
1614 hash = smi_get_hash(Smi::cast(number));
1615 number_string_cache()->set(hash * 2, number, SKIP_WRITE_BARRIER);
1616 } else {
1617 hash = double_get_hash(number->Number());
1618 number_string_cache()->set(hash * 2, number);
1619 }
1620 number_string_cache()->set(hash * 2 + 1, string);
1621}
1622
1623
1624Object* Heap::SmiOrNumberFromDouble(double value,
1625 bool new_object,
1626 PretenureFlag pretenure) {
1627 // We need to distinguish the minus zero value and this cannot be
1628 // done after conversion to int. Doing this by comparing bit
1629 // patterns is faster than using fpclassify() et al.
1630 static const DoubleRepresentation plus_zero(0.0);
1631 static const DoubleRepresentation minus_zero(-0.0);
1632 static const DoubleRepresentation nan(OS::nan_value());
1633 ASSERT(minus_zero_value() != NULL);
1634 ASSERT(sizeof(plus_zero.value) == sizeof(plus_zero.bits));
1635
1636 DoubleRepresentation rep(value);
1637 if (rep.bits == plus_zero.bits) return Smi::FromInt(0); // not uncommon
1638 if (rep.bits == minus_zero.bits) {
1639 return new_object ? AllocateHeapNumber(-0.0, pretenure)
1640 : minus_zero_value();
1641 }
1642 if (rep.bits == nan.bits) {
1643 return new_object
1644 ? AllocateHeapNumber(OS::nan_value(), pretenure)
1645 : nan_value();
1646 }
1647
1648 // Try to represent the value as a tagged small integer.
1649 int int_value = FastD2I(value);
1650 if (value == FastI2D(int_value) && Smi::IsValid(int_value)) {
1651 return Smi::FromInt(int_value);
1652 }
1653
1654 // Materialize the value in the heap.
1655 return AllocateHeapNumber(value, pretenure);
1656}
1657
1658
1659Object* Heap::NumberToString(Object* number) {
1660 Object* cached = GetNumberStringCache(number);
1661 if (cached != undefined_value()) {
1662 return cached;
1663 }
1664
1665 char arr[100];
1666 Vector<char> buffer(arr, ARRAY_SIZE(arr));
1667 const char* str;
1668 if (number->IsSmi()) {
1669 int num = Smi::cast(number)->value();
1670 str = IntToCString(num, buffer);
1671 } else {
1672 double num = HeapNumber::cast(number)->value();
1673 str = DoubleToCString(num, buffer);
1674 }
1675 Object* result = AllocateStringFromAscii(CStrVector(str));
1676
1677 if (!result->IsFailure()) {
1678 SetNumberStringCache(number, String::cast(result));
1679 }
1680 return result;
1681}
1682
1683
Steve Block3ce2e202009-11-05 08:53:23 +00001684Map* Heap::MapForExternalArrayType(ExternalArrayType array_type) {
1685 return Map::cast(roots_[RootIndexForExternalArrayType(array_type)]);
1686}
1687
1688
1689Heap::RootListIndex Heap::RootIndexForExternalArrayType(
1690 ExternalArrayType array_type) {
1691 switch (array_type) {
1692 case kExternalByteArray:
1693 return kExternalByteArrayMapRootIndex;
1694 case kExternalUnsignedByteArray:
1695 return kExternalUnsignedByteArrayMapRootIndex;
1696 case kExternalShortArray:
1697 return kExternalShortArrayMapRootIndex;
1698 case kExternalUnsignedShortArray:
1699 return kExternalUnsignedShortArrayMapRootIndex;
1700 case kExternalIntArray:
1701 return kExternalIntArrayMapRootIndex;
1702 case kExternalUnsignedIntArray:
1703 return kExternalUnsignedIntArrayMapRootIndex;
1704 case kExternalFloatArray:
1705 return kExternalFloatArrayMapRootIndex;
1706 default:
1707 UNREACHABLE();
1708 return kUndefinedValueRootIndex;
1709 }
1710}
1711
1712
Steve Blocka7e24c12009-10-30 11:49:00 +00001713Object* Heap::NewNumberFromDouble(double value, PretenureFlag pretenure) {
1714 return SmiOrNumberFromDouble(value,
1715 true /* number object must be new */,
1716 pretenure);
1717}
1718
1719
1720Object* Heap::NumberFromDouble(double value, PretenureFlag pretenure) {
1721 return SmiOrNumberFromDouble(value,
1722 false /* use preallocated NaN, -0.0 */,
1723 pretenure);
1724}
1725
1726
1727Object* Heap::AllocateProxy(Address proxy, PretenureFlag pretenure) {
1728 // Statically ensure that it is safe to allocate proxies in paged spaces.
1729 STATIC_ASSERT(Proxy::kSize <= Page::kMaxHeapObjectSize);
1730 AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
1731 Object* result = Allocate(proxy_map(), space);
1732 if (result->IsFailure()) return result;
1733
1734 Proxy::cast(result)->set_proxy(proxy);
1735 return result;
1736}
1737
1738
1739Object* Heap::AllocateSharedFunctionInfo(Object* name) {
1740 Object* result = Allocate(shared_function_info_map(), OLD_POINTER_SPACE);
1741 if (result->IsFailure()) return result;
1742
1743 SharedFunctionInfo* share = SharedFunctionInfo::cast(result);
1744 share->set_name(name);
1745 Code* illegal = Builtins::builtin(Builtins::Illegal);
1746 share->set_code(illegal);
1747 Code* construct_stub = Builtins::builtin(Builtins::JSConstructStubGeneric);
1748 share->set_construct_stub(construct_stub);
1749 share->set_expected_nof_properties(0);
1750 share->set_length(0);
1751 share->set_formal_parameter_count(0);
1752 share->set_instance_class_name(Object_symbol());
1753 share->set_function_data(undefined_value());
1754 share->set_script(undefined_value());
1755 share->set_start_position_and_type(0);
1756 share->set_debug_info(undefined_value());
1757 share->set_inferred_name(empty_string());
1758 share->set_compiler_hints(0);
1759 share->set_this_property_assignments_count(0);
1760 share->set_this_property_assignments(undefined_value());
1761 return result;
1762}
1763
1764
1765Object* Heap::AllocateConsString(String* first, String* second) {
1766 int first_length = first->length();
1767 if (first_length == 0) return second;
1768
1769 int second_length = second->length();
1770 if (second_length == 0) return first;
1771
1772 int length = first_length + second_length;
1773 bool is_ascii = first->IsAsciiRepresentation()
1774 && second->IsAsciiRepresentation();
1775
1776 // Make sure that an out of memory exception is thrown if the length
Steve Block3ce2e202009-11-05 08:53:23 +00001777 // of the new cons string is too large.
1778 if (length > String::kMaxLength || length < 0) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001779 Top::context()->mark_out_of_memory();
1780 return Failure::OutOfMemoryException();
1781 }
1782
1783 // If the resulting string is small make a flat string.
1784 if (length < String::kMinNonFlatLength) {
1785 ASSERT(first->IsFlat());
1786 ASSERT(second->IsFlat());
1787 if (is_ascii) {
1788 Object* result = AllocateRawAsciiString(length);
1789 if (result->IsFailure()) return result;
1790 // Copy the characters into the new object.
1791 char* dest = SeqAsciiString::cast(result)->GetChars();
1792 // Copy first part.
1793 char* src = SeqAsciiString::cast(first)->GetChars();
1794 for (int i = 0; i < first_length; i++) *dest++ = src[i];
1795 // Copy second part.
1796 src = SeqAsciiString::cast(second)->GetChars();
1797 for (int i = 0; i < second_length; i++) *dest++ = src[i];
1798 return result;
1799 } else {
1800 Object* result = AllocateRawTwoByteString(length);
1801 if (result->IsFailure()) return result;
1802 // Copy the characters into the new object.
1803 uc16* dest = SeqTwoByteString::cast(result)->GetChars();
1804 String::WriteToFlat(first, dest, 0, first_length);
1805 String::WriteToFlat(second, dest + first_length, 0, second_length);
1806 return result;
1807 }
1808 }
1809
1810 Map* map;
1811 if (length <= String::kMaxShortStringSize) {
1812 map = is_ascii ? short_cons_ascii_string_map()
1813 : short_cons_string_map();
1814 } else if (length <= String::kMaxMediumStringSize) {
1815 map = is_ascii ? medium_cons_ascii_string_map()
1816 : medium_cons_string_map();
1817 } else {
1818 map = is_ascii ? long_cons_ascii_string_map()
1819 : long_cons_string_map();
1820 }
1821
1822 Object* result = Allocate(map, NEW_SPACE);
1823 if (result->IsFailure()) return result;
1824 ASSERT(InNewSpace(result));
1825 ConsString* cons_string = ConsString::cast(result);
1826 cons_string->set_first(first, SKIP_WRITE_BARRIER);
1827 cons_string->set_second(second, SKIP_WRITE_BARRIER);
1828 cons_string->set_length(length);
1829 return result;
1830}
1831
1832
1833Object* Heap::AllocateSlicedString(String* buffer,
1834 int start,
1835 int end) {
1836 int length = end - start;
1837
1838 // If the resulting string is small make a sub string.
1839 if (length <= String::kMinNonFlatLength) {
1840 return Heap::AllocateSubString(buffer, start, end);
1841 }
1842
1843 Map* map;
1844 if (length <= String::kMaxShortStringSize) {
1845 map = buffer->IsAsciiRepresentation() ?
1846 short_sliced_ascii_string_map() :
1847 short_sliced_string_map();
1848 } else if (length <= String::kMaxMediumStringSize) {
1849 map = buffer->IsAsciiRepresentation() ?
1850 medium_sliced_ascii_string_map() :
1851 medium_sliced_string_map();
1852 } else {
1853 map = buffer->IsAsciiRepresentation() ?
1854 long_sliced_ascii_string_map() :
1855 long_sliced_string_map();
1856 }
1857
1858 Object* result = Allocate(map, NEW_SPACE);
1859 if (result->IsFailure()) return result;
1860
1861 SlicedString* sliced_string = SlicedString::cast(result);
1862 sliced_string->set_buffer(buffer);
1863 sliced_string->set_start(start);
1864 sliced_string->set_length(length);
1865
1866 return result;
1867}
1868
1869
1870Object* Heap::AllocateSubString(String* buffer,
1871 int start,
1872 int end) {
1873 int length = end - start;
1874
1875 if (length == 1) {
1876 return Heap::LookupSingleCharacterStringFromCode(
1877 buffer->Get(start));
1878 }
1879
1880 // Make an attempt to flatten the buffer to reduce access time.
1881 if (!buffer->IsFlat()) {
1882 buffer->TryFlatten();
1883 }
1884
1885 Object* result = buffer->IsAsciiRepresentation()
1886 ? AllocateRawAsciiString(length)
1887 : AllocateRawTwoByteString(length);
1888 if (result->IsFailure()) return result;
1889
1890 // Copy the characters into the new object.
1891 String* string_result = String::cast(result);
1892 StringHasher hasher(length);
1893 int i = 0;
1894 for (; i < length && hasher.is_array_index(); i++) {
1895 uc32 c = buffer->Get(start + i);
1896 hasher.AddCharacter(c);
1897 string_result->Set(i, c);
1898 }
1899 for (; i < length; i++) {
1900 uc32 c = buffer->Get(start + i);
1901 hasher.AddCharacterNoIndex(c);
1902 string_result->Set(i, c);
1903 }
1904 string_result->set_length_field(hasher.GetHashField());
1905 return result;
1906}
1907
1908
1909Object* Heap::AllocateExternalStringFromAscii(
1910 ExternalAsciiString::Resource* resource) {
1911 Map* map;
1912 int length = resource->length();
1913 if (length <= String::kMaxShortStringSize) {
1914 map = short_external_ascii_string_map();
1915 } else if (length <= String::kMaxMediumStringSize) {
1916 map = medium_external_ascii_string_map();
1917 } else {
1918 map = long_external_ascii_string_map();
1919 }
1920
1921 Object* result = Allocate(map, NEW_SPACE);
1922 if (result->IsFailure()) return result;
1923
1924 ExternalAsciiString* external_string = ExternalAsciiString::cast(result);
1925 external_string->set_length(length);
1926 external_string->set_resource(resource);
1927
1928 return result;
1929}
1930
1931
1932Object* Heap::AllocateExternalStringFromTwoByte(
1933 ExternalTwoByteString::Resource* resource) {
1934 int length = resource->length();
1935
1936 Map* map = ExternalTwoByteString::StringMap(length);
1937 Object* result = Allocate(map, NEW_SPACE);
1938 if (result->IsFailure()) return result;
1939
1940 ExternalTwoByteString* external_string = ExternalTwoByteString::cast(result);
1941 external_string->set_length(length);
1942 external_string->set_resource(resource);
1943
1944 return result;
1945}
1946
1947
1948Object* Heap::LookupSingleCharacterStringFromCode(uint16_t code) {
1949 if (code <= String::kMaxAsciiCharCode) {
1950 Object* value = Heap::single_character_string_cache()->get(code);
1951 if (value != Heap::undefined_value()) return value;
1952
1953 char buffer[1];
1954 buffer[0] = static_cast<char>(code);
1955 Object* result = LookupSymbol(Vector<const char>(buffer, 1));
1956
1957 if (result->IsFailure()) return result;
1958 Heap::single_character_string_cache()->set(code, result);
1959 return result;
1960 }
1961
1962 Object* result = Heap::AllocateRawTwoByteString(1);
1963 if (result->IsFailure()) return result;
1964 String* answer = String::cast(result);
1965 answer->Set(0, code);
1966 return answer;
1967}
1968
1969
1970Object* Heap::AllocateByteArray(int length, PretenureFlag pretenure) {
1971 if (pretenure == NOT_TENURED) {
1972 return AllocateByteArray(length);
1973 }
1974 int size = ByteArray::SizeFor(length);
1975 AllocationSpace space =
1976 size > MaxObjectSizeInPagedSpace() ? LO_SPACE : OLD_DATA_SPACE;
1977
1978 Object* result = AllocateRaw(size, space, OLD_DATA_SPACE);
1979
1980 if (result->IsFailure()) return result;
1981
1982 reinterpret_cast<Array*>(result)->set_map(byte_array_map());
1983 reinterpret_cast<Array*>(result)->set_length(length);
1984 return result;
1985}
1986
1987
1988Object* Heap::AllocateByteArray(int length) {
1989 int size = ByteArray::SizeFor(length);
1990 AllocationSpace space =
1991 size > MaxObjectSizeInPagedSpace() ? LO_SPACE : NEW_SPACE;
1992
1993 // New space can't cope with forced allocation.
1994 if (always_allocate()) space = LO_SPACE;
1995
1996 Object* result = AllocateRaw(size, space, OLD_DATA_SPACE);
1997
1998 if (result->IsFailure()) return result;
1999
2000 reinterpret_cast<Array*>(result)->set_map(byte_array_map());
2001 reinterpret_cast<Array*>(result)->set_length(length);
2002 return result;
2003}
2004
2005
2006void Heap::CreateFillerObjectAt(Address addr, int size) {
2007 if (size == 0) return;
2008 HeapObject* filler = HeapObject::FromAddress(addr);
2009 if (size == kPointerSize) {
2010 filler->set_map(Heap::one_pointer_filler_map());
2011 } else {
2012 filler->set_map(Heap::byte_array_map());
2013 ByteArray::cast(filler)->set_length(ByteArray::LengthFor(size));
2014 }
2015}
2016
2017
2018Object* Heap::AllocatePixelArray(int length,
2019 uint8_t* external_pointer,
2020 PretenureFlag pretenure) {
2021 AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
2022
2023 // New space can't cope with forced allocation.
2024 if (always_allocate()) space = OLD_DATA_SPACE;
2025
2026 Object* result = AllocateRaw(PixelArray::kAlignedSize, space, OLD_DATA_SPACE);
2027
2028 if (result->IsFailure()) return result;
2029
2030 reinterpret_cast<PixelArray*>(result)->set_map(pixel_array_map());
2031 reinterpret_cast<PixelArray*>(result)->set_length(length);
2032 reinterpret_cast<PixelArray*>(result)->set_external_pointer(external_pointer);
2033
2034 return result;
2035}
2036
2037
Steve Block3ce2e202009-11-05 08:53:23 +00002038Object* Heap::AllocateExternalArray(int length,
2039 ExternalArrayType array_type,
2040 void* external_pointer,
2041 PretenureFlag pretenure) {
2042 AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
2043
2044 // New space can't cope with forced allocation.
2045 if (always_allocate()) space = OLD_DATA_SPACE;
2046
2047 Object* result = AllocateRaw(ExternalArray::kAlignedSize,
2048 space,
2049 OLD_DATA_SPACE);
2050
2051 if (result->IsFailure()) return result;
2052
2053 reinterpret_cast<ExternalArray*>(result)->set_map(
2054 MapForExternalArrayType(array_type));
2055 reinterpret_cast<ExternalArray*>(result)->set_length(length);
2056 reinterpret_cast<ExternalArray*>(result)->set_external_pointer(
2057 external_pointer);
2058
2059 return result;
2060}
2061
2062
Steve Blocka7e24c12009-10-30 11:49:00 +00002063Object* Heap::CreateCode(const CodeDesc& desc,
2064 ZoneScopeInfo* sinfo,
2065 Code::Flags flags,
2066 Handle<Object> self_reference) {
2067 // Compute size
2068 int body_size = RoundUp(desc.instr_size + desc.reloc_size, kObjectAlignment);
2069 int sinfo_size = 0;
2070 if (sinfo != NULL) sinfo_size = sinfo->Serialize(NULL);
2071 int obj_size = Code::SizeFor(body_size, sinfo_size);
2072 ASSERT(IsAligned(obj_size, Code::kCodeAlignment));
2073 Object* result;
2074 if (obj_size > MaxObjectSizeInPagedSpace()) {
2075 result = lo_space_->AllocateRawCode(obj_size);
2076 } else {
2077 result = code_space_->AllocateRaw(obj_size);
2078 }
2079
2080 if (result->IsFailure()) return result;
2081
2082 // Initialize the object
2083 HeapObject::cast(result)->set_map(code_map());
2084 Code* code = Code::cast(result);
2085 ASSERT(!CodeRange::exists() || CodeRange::contains(code->address()));
2086 code->set_instruction_size(desc.instr_size);
2087 code->set_relocation_size(desc.reloc_size);
2088 code->set_sinfo_size(sinfo_size);
2089 code->set_flags(flags);
2090 // Allow self references to created code object by patching the handle to
2091 // point to the newly allocated Code object.
2092 if (!self_reference.is_null()) {
2093 *(self_reference.location()) = code;
2094 }
2095 // Migrate generated code.
2096 // The generated code can contain Object** values (typically from handles)
2097 // that are dereferenced during the copy to point directly to the actual heap
2098 // objects. These pointers can include references to the code object itself,
2099 // through the self_reference parameter.
2100 code->CopyFrom(desc);
2101 if (sinfo != NULL) sinfo->Serialize(code); // write scope info
2102
2103#ifdef DEBUG
2104 code->Verify();
2105#endif
2106 return code;
2107}
2108
2109
2110Object* Heap::CopyCode(Code* code) {
2111 // Allocate an object the same size as the code object.
2112 int obj_size = code->Size();
2113 Object* result;
2114 if (obj_size > MaxObjectSizeInPagedSpace()) {
2115 result = lo_space_->AllocateRawCode(obj_size);
2116 } else {
2117 result = code_space_->AllocateRaw(obj_size);
2118 }
2119
2120 if (result->IsFailure()) return result;
2121
2122 // Copy code object.
2123 Address old_addr = code->address();
2124 Address new_addr = reinterpret_cast<HeapObject*>(result)->address();
2125 CopyBlock(reinterpret_cast<Object**>(new_addr),
2126 reinterpret_cast<Object**>(old_addr),
2127 obj_size);
2128 // Relocate the copy.
2129 Code* new_code = Code::cast(result);
2130 ASSERT(!CodeRange::exists() || CodeRange::contains(code->address()));
2131 new_code->Relocate(new_addr - old_addr);
2132 return new_code;
2133}
2134
2135
2136Object* Heap::Allocate(Map* map, AllocationSpace space) {
2137 ASSERT(gc_state_ == NOT_IN_GC);
2138 ASSERT(map->instance_type() != MAP_TYPE);
2139 Object* result = AllocateRaw(map->instance_size(),
2140 space,
2141 TargetSpaceId(map->instance_type()));
2142 if (result->IsFailure()) return result;
2143 HeapObject::cast(result)->set_map(map);
Steve Block3ce2e202009-11-05 08:53:23 +00002144#ifdef ENABLE_LOGGING_AND_PROFILING
2145 ProducerHeapProfile::RecordJSObjectAllocation(result);
2146#endif
Steve Blocka7e24c12009-10-30 11:49:00 +00002147 return result;
2148}
2149
2150
2151Object* Heap::InitializeFunction(JSFunction* function,
2152 SharedFunctionInfo* shared,
2153 Object* prototype) {
2154 ASSERT(!prototype->IsMap());
2155 function->initialize_properties();
2156 function->initialize_elements();
2157 function->set_shared(shared);
2158 function->set_prototype_or_initial_map(prototype);
2159 function->set_context(undefined_value());
2160 function->set_literals(empty_fixed_array(), SKIP_WRITE_BARRIER);
2161 return function;
2162}
2163
2164
2165Object* Heap::AllocateFunctionPrototype(JSFunction* function) {
2166 // Allocate the prototype. Make sure to use the object function
2167 // from the function's context, since the function can be from a
2168 // different context.
2169 JSFunction* object_function =
2170 function->context()->global_context()->object_function();
2171 Object* prototype = AllocateJSObject(object_function);
2172 if (prototype->IsFailure()) return prototype;
2173 // When creating the prototype for the function we must set its
2174 // constructor to the function.
2175 Object* result =
2176 JSObject::cast(prototype)->SetProperty(constructor_symbol(),
2177 function,
2178 DONT_ENUM);
2179 if (result->IsFailure()) return result;
2180 return prototype;
2181}
2182
2183
2184Object* Heap::AllocateFunction(Map* function_map,
2185 SharedFunctionInfo* shared,
2186 Object* prototype) {
2187 Object* result = Allocate(function_map, OLD_POINTER_SPACE);
2188 if (result->IsFailure()) return result;
2189 return InitializeFunction(JSFunction::cast(result), shared, prototype);
2190}
2191
2192
2193Object* Heap::AllocateArgumentsObject(Object* callee, int length) {
2194 // To get fast allocation and map sharing for arguments objects we
2195 // allocate them based on an arguments boilerplate.
2196
2197 // This calls Copy directly rather than using Heap::AllocateRaw so we
2198 // duplicate the check here.
2199 ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC);
2200
2201 JSObject* boilerplate =
2202 Top::context()->global_context()->arguments_boilerplate();
2203
2204 // Make the clone.
2205 Map* map = boilerplate->map();
2206 int object_size = map->instance_size();
2207 Object* result = AllocateRaw(object_size, NEW_SPACE, OLD_POINTER_SPACE);
2208 if (result->IsFailure()) return result;
2209
2210 // Copy the content. The arguments boilerplate doesn't have any
2211 // fields that point to new space so it's safe to skip the write
2212 // barrier here.
2213 CopyBlock(reinterpret_cast<Object**>(HeapObject::cast(result)->address()),
2214 reinterpret_cast<Object**>(boilerplate->address()),
2215 object_size);
2216
2217 // Set the two properties.
2218 JSObject::cast(result)->InObjectPropertyAtPut(arguments_callee_index,
2219 callee);
2220 JSObject::cast(result)->InObjectPropertyAtPut(arguments_length_index,
2221 Smi::FromInt(length),
2222 SKIP_WRITE_BARRIER);
2223
2224 // Check the state of the object
2225 ASSERT(JSObject::cast(result)->HasFastProperties());
2226 ASSERT(JSObject::cast(result)->HasFastElements());
2227
2228 return result;
2229}
2230
2231
2232Object* Heap::AllocateInitialMap(JSFunction* fun) {
2233 ASSERT(!fun->has_initial_map());
2234
2235 // First create a new map with the size and number of in-object properties
2236 // suggested by the function.
2237 int instance_size = fun->shared()->CalculateInstanceSize();
2238 int in_object_properties = fun->shared()->CalculateInObjectProperties();
2239 Object* map_obj = Heap::AllocateMap(JS_OBJECT_TYPE, instance_size);
2240 if (map_obj->IsFailure()) return map_obj;
2241
2242 // Fetch or allocate prototype.
2243 Object* prototype;
2244 if (fun->has_instance_prototype()) {
2245 prototype = fun->instance_prototype();
2246 } else {
2247 prototype = AllocateFunctionPrototype(fun);
2248 if (prototype->IsFailure()) return prototype;
2249 }
2250 Map* map = Map::cast(map_obj);
2251 map->set_inobject_properties(in_object_properties);
2252 map->set_unused_property_fields(in_object_properties);
2253 map->set_prototype(prototype);
2254
2255 // If the function has only simple this property assignments add field
2256 // descriptors for these to the initial map as the object cannot be
2257 // constructed without having these properties.
2258 ASSERT(in_object_properties <= Map::kMaxPreAllocatedPropertyFields);
2259 if (fun->shared()->has_only_this_property_assignments() &&
Steve Block3ce2e202009-11-05 08:53:23 +00002260 fun->shared()->this_property_assignments_count() > 0 &&
2261 fun->shared()->has_only_simple_this_property_assignments()) {
Steve Blocka7e24c12009-10-30 11:49:00 +00002262 int count = fun->shared()->this_property_assignments_count();
2263 if (count > in_object_properties) {
2264 count = in_object_properties;
2265 }
2266 Object* descriptors_obj = DescriptorArray::Allocate(count);
2267 if (descriptors_obj->IsFailure()) return descriptors_obj;
2268 DescriptorArray* descriptors = DescriptorArray::cast(descriptors_obj);
2269 for (int i = 0; i < count; i++) {
2270 String* name = fun->shared()->GetThisPropertyAssignmentName(i);
2271 ASSERT(name->IsSymbol());
2272 FieldDescriptor field(name, i, NONE);
2273 descriptors->Set(i, &field);
2274 }
2275 descriptors->Sort();
2276 map->set_instance_descriptors(descriptors);
2277 map->set_pre_allocated_property_fields(count);
2278 map->set_unused_property_fields(in_object_properties - count);
2279 }
2280 return map;
2281}
2282
2283
2284void Heap::InitializeJSObjectFromMap(JSObject* obj,
2285 FixedArray* properties,
2286 Map* map) {
2287 obj->set_properties(properties);
2288 obj->initialize_elements();
2289 // TODO(1240798): Initialize the object's body using valid initial values
2290 // according to the object's initial map. For example, if the map's
2291 // instance type is JS_ARRAY_TYPE, the length field should be initialized
2292 // to a number (eg, Smi::FromInt(0)) and the elements initialized to a
2293 // fixed array (eg, Heap::empty_fixed_array()). Currently, the object
2294 // verification code has to cope with (temporarily) invalid objects. See
2295 // for example, JSArray::JSArrayVerify).
2296 obj->InitializeBody(map->instance_size());
2297}
2298
2299
2300Object* Heap::AllocateJSObjectFromMap(Map* map, PretenureFlag pretenure) {
2301 // JSFunctions should be allocated using AllocateFunction to be
2302 // properly initialized.
2303 ASSERT(map->instance_type() != JS_FUNCTION_TYPE);
2304
2305 // Both types of globla objects should be allocated using
2306 // AllocateGloblaObject to be properly initialized.
2307 ASSERT(map->instance_type() != JS_GLOBAL_OBJECT_TYPE);
2308 ASSERT(map->instance_type() != JS_BUILTINS_OBJECT_TYPE);
2309
2310 // Allocate the backing storage for the properties.
2311 int prop_size =
2312 map->pre_allocated_property_fields() +
2313 map->unused_property_fields() -
2314 map->inobject_properties();
2315 ASSERT(prop_size >= 0);
2316 Object* properties = AllocateFixedArray(prop_size, pretenure);
2317 if (properties->IsFailure()) return properties;
2318
2319 // Allocate the JSObject.
2320 AllocationSpace space =
2321 (pretenure == TENURED) ? OLD_POINTER_SPACE : NEW_SPACE;
2322 if (map->instance_size() > MaxObjectSizeInPagedSpace()) space = LO_SPACE;
2323 Object* obj = Allocate(map, space);
2324 if (obj->IsFailure()) return obj;
2325
2326 // Initialize the JSObject.
2327 InitializeJSObjectFromMap(JSObject::cast(obj),
2328 FixedArray::cast(properties),
2329 map);
2330 return obj;
2331}
2332
2333
2334Object* Heap::AllocateJSObject(JSFunction* constructor,
2335 PretenureFlag pretenure) {
2336 // Allocate the initial map if absent.
2337 if (!constructor->has_initial_map()) {
2338 Object* initial_map = AllocateInitialMap(constructor);
2339 if (initial_map->IsFailure()) return initial_map;
2340 constructor->set_initial_map(Map::cast(initial_map));
2341 Map::cast(initial_map)->set_constructor(constructor);
2342 }
2343 // Allocate the object based on the constructors initial map.
2344 Object* result =
2345 AllocateJSObjectFromMap(constructor->initial_map(), pretenure);
2346 // Make sure result is NOT a global object if valid.
2347 ASSERT(result->IsFailure() || !result->IsGlobalObject());
2348 return result;
2349}
2350
2351
2352Object* Heap::AllocateGlobalObject(JSFunction* constructor) {
2353 ASSERT(constructor->has_initial_map());
2354 Map* map = constructor->initial_map();
2355
2356 // Make sure no field properties are described in the initial map.
2357 // This guarantees us that normalizing the properties does not
2358 // require us to change property values to JSGlobalPropertyCells.
2359 ASSERT(map->NextFreePropertyIndex() == 0);
2360
2361 // Make sure we don't have a ton of pre-allocated slots in the
2362 // global objects. They will be unused once we normalize the object.
2363 ASSERT(map->unused_property_fields() == 0);
2364 ASSERT(map->inobject_properties() == 0);
2365
2366 // Initial size of the backing store to avoid resize of the storage during
2367 // bootstrapping. The size differs between the JS global object ad the
2368 // builtins object.
2369 int initial_size = map->instance_type() == JS_GLOBAL_OBJECT_TYPE ? 64 : 512;
2370
2371 // Allocate a dictionary object for backing storage.
2372 Object* obj =
2373 StringDictionary::Allocate(
2374 map->NumberOfDescribedProperties() * 2 + initial_size);
2375 if (obj->IsFailure()) return obj;
2376 StringDictionary* dictionary = StringDictionary::cast(obj);
2377
2378 // The global object might be created from an object template with accessors.
2379 // Fill these accessors into the dictionary.
2380 DescriptorArray* descs = map->instance_descriptors();
2381 for (int i = 0; i < descs->number_of_descriptors(); i++) {
2382 PropertyDetails details = descs->GetDetails(i);
2383 ASSERT(details.type() == CALLBACKS); // Only accessors are expected.
2384 PropertyDetails d =
2385 PropertyDetails(details.attributes(), CALLBACKS, details.index());
2386 Object* value = descs->GetCallbacksObject(i);
2387 value = Heap::AllocateJSGlobalPropertyCell(value);
2388 if (value->IsFailure()) return value;
2389
2390 Object* result = dictionary->Add(descs->GetKey(i), value, d);
2391 if (result->IsFailure()) return result;
2392 dictionary = StringDictionary::cast(result);
2393 }
2394
2395 // Allocate the global object and initialize it with the backing store.
2396 obj = Allocate(map, OLD_POINTER_SPACE);
2397 if (obj->IsFailure()) return obj;
2398 JSObject* global = JSObject::cast(obj);
2399 InitializeJSObjectFromMap(global, dictionary, map);
2400
2401 // Create a new map for the global object.
2402 obj = map->CopyDropDescriptors();
2403 if (obj->IsFailure()) return obj;
2404 Map* new_map = Map::cast(obj);
2405
2406 // Setup the global object as a normalized object.
2407 global->set_map(new_map);
2408 global->map()->set_instance_descriptors(Heap::empty_descriptor_array());
2409 global->set_properties(dictionary);
2410
2411 // Make sure result is a global object with properties in dictionary.
2412 ASSERT(global->IsGlobalObject());
2413 ASSERT(!global->HasFastProperties());
2414 return global;
2415}
2416
2417
2418Object* Heap::CopyJSObject(JSObject* source) {
2419 // Never used to copy functions. If functions need to be copied we
2420 // have to be careful to clear the literals array.
2421 ASSERT(!source->IsJSFunction());
2422
2423 // Make the clone.
2424 Map* map = source->map();
2425 int object_size = map->instance_size();
2426 Object* clone;
2427
2428 // If we're forced to always allocate, we use the general allocation
2429 // functions which may leave us with an object in old space.
2430 if (always_allocate()) {
2431 clone = AllocateRaw(object_size, NEW_SPACE, OLD_POINTER_SPACE);
2432 if (clone->IsFailure()) return clone;
2433 Address clone_address = HeapObject::cast(clone)->address();
2434 CopyBlock(reinterpret_cast<Object**>(clone_address),
2435 reinterpret_cast<Object**>(source->address()),
2436 object_size);
2437 // Update write barrier for all fields that lie beyond the header.
2438 for (int offset = JSObject::kHeaderSize;
2439 offset < object_size;
2440 offset += kPointerSize) {
2441 RecordWrite(clone_address, offset);
2442 }
2443 } else {
2444 clone = new_space_.AllocateRaw(object_size);
2445 if (clone->IsFailure()) return clone;
2446 ASSERT(Heap::InNewSpace(clone));
2447 // Since we know the clone is allocated in new space, we can copy
2448 // the contents without worrying about updating the write barrier.
2449 CopyBlock(reinterpret_cast<Object**>(HeapObject::cast(clone)->address()),
2450 reinterpret_cast<Object**>(source->address()),
2451 object_size);
2452 }
2453
2454 FixedArray* elements = FixedArray::cast(source->elements());
2455 FixedArray* properties = FixedArray::cast(source->properties());
2456 // Update elements if necessary.
2457 if (elements->length()> 0) {
2458 Object* elem = CopyFixedArray(elements);
2459 if (elem->IsFailure()) return elem;
2460 JSObject::cast(clone)->set_elements(FixedArray::cast(elem));
2461 }
2462 // Update properties if necessary.
2463 if (properties->length() > 0) {
2464 Object* prop = CopyFixedArray(properties);
2465 if (prop->IsFailure()) return prop;
2466 JSObject::cast(clone)->set_properties(FixedArray::cast(prop));
2467 }
2468 // Return the new clone.
Steve Block3ce2e202009-11-05 08:53:23 +00002469#ifdef ENABLE_LOGGING_AND_PROFILING
2470 ProducerHeapProfile::RecordJSObjectAllocation(clone);
2471#endif
Steve Blocka7e24c12009-10-30 11:49:00 +00002472 return clone;
2473}
2474
2475
2476Object* Heap::ReinitializeJSGlobalProxy(JSFunction* constructor,
2477 JSGlobalProxy* object) {
2478 // Allocate initial map if absent.
2479 if (!constructor->has_initial_map()) {
2480 Object* initial_map = AllocateInitialMap(constructor);
2481 if (initial_map->IsFailure()) return initial_map;
2482 constructor->set_initial_map(Map::cast(initial_map));
2483 Map::cast(initial_map)->set_constructor(constructor);
2484 }
2485
2486 Map* map = constructor->initial_map();
2487
2488 // Check that the already allocated object has the same size as
2489 // objects allocated using the constructor.
2490 ASSERT(map->instance_size() == object->map()->instance_size());
2491
2492 // Allocate the backing storage for the properties.
2493 int prop_size = map->unused_property_fields() - map->inobject_properties();
2494 Object* properties = AllocateFixedArray(prop_size, TENURED);
2495 if (properties->IsFailure()) return properties;
2496
2497 // Reset the map for the object.
2498 object->set_map(constructor->initial_map());
2499
2500 // Reinitialize the object from the constructor map.
2501 InitializeJSObjectFromMap(object, FixedArray::cast(properties), map);
2502 return object;
2503}
2504
2505
2506Object* Heap::AllocateStringFromAscii(Vector<const char> string,
2507 PretenureFlag pretenure) {
2508 Object* result = AllocateRawAsciiString(string.length(), pretenure);
2509 if (result->IsFailure()) return result;
2510
2511 // Copy the characters into the new object.
2512 SeqAsciiString* string_result = SeqAsciiString::cast(result);
2513 for (int i = 0; i < string.length(); i++) {
2514 string_result->SeqAsciiStringSet(i, string[i]);
2515 }
2516 return result;
2517}
2518
2519
2520Object* Heap::AllocateStringFromUtf8(Vector<const char> string,
2521 PretenureFlag pretenure) {
2522 // Count the number of characters in the UTF-8 string and check if
2523 // it is an ASCII string.
2524 Access<Scanner::Utf8Decoder> decoder(Scanner::utf8_decoder());
2525 decoder->Reset(string.start(), string.length());
2526 int chars = 0;
2527 bool is_ascii = true;
2528 while (decoder->has_more()) {
2529 uc32 r = decoder->GetNext();
2530 if (r > String::kMaxAsciiCharCode) is_ascii = false;
2531 chars++;
2532 }
2533
2534 // If the string is ascii, we do not need to convert the characters
2535 // since UTF8 is backwards compatible with ascii.
2536 if (is_ascii) return AllocateStringFromAscii(string, pretenure);
2537
2538 Object* result = AllocateRawTwoByteString(chars, pretenure);
2539 if (result->IsFailure()) return result;
2540
2541 // Convert and copy the characters into the new object.
2542 String* string_result = String::cast(result);
2543 decoder->Reset(string.start(), string.length());
2544 for (int i = 0; i < chars; i++) {
2545 uc32 r = decoder->GetNext();
2546 string_result->Set(i, r);
2547 }
2548 return result;
2549}
2550
2551
2552Object* Heap::AllocateStringFromTwoByte(Vector<const uc16> string,
2553 PretenureFlag pretenure) {
2554 // Check if the string is an ASCII string.
2555 int i = 0;
2556 while (i < string.length() && string[i] <= String::kMaxAsciiCharCode) i++;
2557
2558 Object* result;
2559 if (i == string.length()) { // It's an ASCII string.
2560 result = AllocateRawAsciiString(string.length(), pretenure);
2561 } else { // It's not an ASCII string.
2562 result = AllocateRawTwoByteString(string.length(), pretenure);
2563 }
2564 if (result->IsFailure()) return result;
2565
2566 // Copy the characters into the new object, which may be either ASCII or
2567 // UTF-16.
2568 String* string_result = String::cast(result);
2569 for (int i = 0; i < string.length(); i++) {
2570 string_result->Set(i, string[i]);
2571 }
2572 return result;
2573}
2574
2575
2576Map* Heap::SymbolMapForString(String* string) {
2577 // If the string is in new space it cannot be used as a symbol.
2578 if (InNewSpace(string)) return NULL;
2579
2580 // Find the corresponding symbol map for strings.
2581 Map* map = string->map();
2582
2583 if (map == short_ascii_string_map()) return short_ascii_symbol_map();
2584 if (map == medium_ascii_string_map()) return medium_ascii_symbol_map();
2585 if (map == long_ascii_string_map()) return long_ascii_symbol_map();
2586
2587 if (map == short_string_map()) return short_symbol_map();
2588 if (map == medium_string_map()) return medium_symbol_map();
2589 if (map == long_string_map()) return long_symbol_map();
2590
2591 if (map == short_cons_string_map()) return short_cons_symbol_map();
2592 if (map == medium_cons_string_map()) return medium_cons_symbol_map();
2593 if (map == long_cons_string_map()) return long_cons_symbol_map();
2594
2595 if (map == short_cons_ascii_string_map()) {
2596 return short_cons_ascii_symbol_map();
2597 }
2598 if (map == medium_cons_ascii_string_map()) {
2599 return medium_cons_ascii_symbol_map();
2600 }
2601 if (map == long_cons_ascii_string_map()) {
2602 return long_cons_ascii_symbol_map();
2603 }
2604
2605 if (map == short_sliced_string_map()) return short_sliced_symbol_map();
2606 if (map == medium_sliced_string_map()) return medium_sliced_symbol_map();
2607 if (map == long_sliced_string_map()) return long_sliced_symbol_map();
2608
2609 if (map == short_sliced_ascii_string_map()) {
2610 return short_sliced_ascii_symbol_map();
2611 }
2612 if (map == medium_sliced_ascii_string_map()) {
2613 return medium_sliced_ascii_symbol_map();
2614 }
2615 if (map == long_sliced_ascii_string_map()) {
2616 return long_sliced_ascii_symbol_map();
2617 }
2618
2619 if (map == short_external_string_map()) {
2620 return short_external_symbol_map();
2621 }
2622 if (map == medium_external_string_map()) {
2623 return medium_external_symbol_map();
2624 }
2625 if (map == long_external_string_map()) {
2626 return long_external_symbol_map();
2627 }
2628
2629 if (map == short_external_ascii_string_map()) {
2630 return short_external_ascii_symbol_map();
2631 }
2632 if (map == medium_external_ascii_string_map()) {
2633 return medium_external_ascii_symbol_map();
2634 }
2635 if (map == long_external_ascii_string_map()) {
2636 return long_external_ascii_symbol_map();
2637 }
2638
2639 // No match found.
2640 return NULL;
2641}
2642
2643
2644Object* Heap::AllocateInternalSymbol(unibrow::CharacterStream* buffer,
2645 int chars,
2646 uint32_t length_field) {
2647 // Ensure the chars matches the number of characters in the buffer.
2648 ASSERT(static_cast<unsigned>(chars) == buffer->Length());
2649 // Determine whether the string is ascii.
2650 bool is_ascii = true;
2651 while (buffer->has_more() && is_ascii) {
2652 if (buffer->GetNext() > unibrow::Utf8::kMaxOneByteChar) is_ascii = false;
2653 }
2654 buffer->Rewind();
2655
2656 // Compute map and object size.
2657 int size;
2658 Map* map;
2659
2660 if (is_ascii) {
2661 if (chars <= String::kMaxShortStringSize) {
2662 map = short_ascii_symbol_map();
2663 } else if (chars <= String::kMaxMediumStringSize) {
2664 map = medium_ascii_symbol_map();
2665 } else {
2666 map = long_ascii_symbol_map();
2667 }
2668 size = SeqAsciiString::SizeFor(chars);
2669 } else {
2670 if (chars <= String::kMaxShortStringSize) {
2671 map = short_symbol_map();
2672 } else if (chars <= String::kMaxMediumStringSize) {
2673 map = medium_symbol_map();
2674 } else {
2675 map = long_symbol_map();
2676 }
2677 size = SeqTwoByteString::SizeFor(chars);
2678 }
2679
2680 // Allocate string.
2681 AllocationSpace space =
2682 (size > MaxObjectSizeInPagedSpace()) ? LO_SPACE : OLD_DATA_SPACE;
2683 Object* result = AllocateRaw(size, space, OLD_DATA_SPACE);
2684 if (result->IsFailure()) return result;
2685
2686 reinterpret_cast<HeapObject*>(result)->set_map(map);
2687 // The hash value contains the length of the string.
2688 String* answer = String::cast(result);
2689 answer->set_length_field(length_field);
2690
2691 ASSERT_EQ(size, answer->Size());
2692
2693 // Fill in the characters.
2694 for (int i = 0; i < chars; i++) {
2695 answer->Set(i, buffer->GetNext());
2696 }
2697 return answer;
2698}
2699
2700
2701Object* Heap::AllocateRawAsciiString(int length, PretenureFlag pretenure) {
2702 AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
2703
2704 // New space can't cope with forced allocation.
2705 if (always_allocate()) space = OLD_DATA_SPACE;
2706
2707 int size = SeqAsciiString::SizeFor(length);
2708
2709 Object* result = Failure::OutOfMemoryException();
2710 if (space == NEW_SPACE) {
2711 result = size <= kMaxObjectSizeInNewSpace
2712 ? new_space_.AllocateRaw(size)
2713 : lo_space_->AllocateRaw(size);
2714 } else {
2715 if (size > MaxObjectSizeInPagedSpace()) space = LO_SPACE;
2716 result = AllocateRaw(size, space, OLD_DATA_SPACE);
2717 }
2718 if (result->IsFailure()) return result;
2719
2720 // Determine the map based on the string's length.
2721 Map* map;
2722 if (length <= String::kMaxShortStringSize) {
2723 map = short_ascii_string_map();
2724 } else if (length <= String::kMaxMediumStringSize) {
2725 map = medium_ascii_string_map();
2726 } else {
2727 map = long_ascii_string_map();
2728 }
2729
2730 // Partially initialize the object.
2731 HeapObject::cast(result)->set_map(map);
2732 String::cast(result)->set_length(length);
2733 ASSERT_EQ(size, HeapObject::cast(result)->Size());
2734 return result;
2735}
2736
2737
2738Object* Heap::AllocateRawTwoByteString(int length, PretenureFlag pretenure) {
2739 AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
2740
2741 // New space can't cope with forced allocation.
2742 if (always_allocate()) space = OLD_DATA_SPACE;
2743
2744 int size = SeqTwoByteString::SizeFor(length);
2745
2746 Object* result = Failure::OutOfMemoryException();
2747 if (space == NEW_SPACE) {
2748 result = size <= kMaxObjectSizeInNewSpace
2749 ? new_space_.AllocateRaw(size)
2750 : lo_space_->AllocateRaw(size);
2751 } else {
2752 if (size > MaxObjectSizeInPagedSpace()) space = LO_SPACE;
2753 result = AllocateRaw(size, space, OLD_DATA_SPACE);
2754 }
2755 if (result->IsFailure()) return result;
2756
2757 // Determine the map based on the string's length.
2758 Map* map;
2759 if (length <= String::kMaxShortStringSize) {
2760 map = short_string_map();
2761 } else if (length <= String::kMaxMediumStringSize) {
2762 map = medium_string_map();
2763 } else {
2764 map = long_string_map();
2765 }
2766
2767 // Partially initialize the object.
2768 HeapObject::cast(result)->set_map(map);
2769 String::cast(result)->set_length(length);
2770 ASSERT_EQ(size, HeapObject::cast(result)->Size());
2771 return result;
2772}
2773
2774
2775Object* Heap::AllocateEmptyFixedArray() {
2776 int size = FixedArray::SizeFor(0);
2777 Object* result = AllocateRaw(size, OLD_DATA_SPACE, OLD_DATA_SPACE);
2778 if (result->IsFailure()) return result;
2779 // Initialize the object.
2780 reinterpret_cast<Array*>(result)->set_map(fixed_array_map());
2781 reinterpret_cast<Array*>(result)->set_length(0);
2782 return result;
2783}
2784
2785
2786Object* Heap::AllocateRawFixedArray(int length) {
2787 // Use the general function if we're forced to always allocate.
2788 if (always_allocate()) return AllocateFixedArray(length, TENURED);
2789 // Allocate the raw data for a fixed array.
2790 int size = FixedArray::SizeFor(length);
2791 return size <= kMaxObjectSizeInNewSpace
2792 ? new_space_.AllocateRaw(size)
2793 : lo_space_->AllocateRawFixedArray(size);
2794}
2795
2796
2797Object* Heap::CopyFixedArray(FixedArray* src) {
2798 int len = src->length();
2799 Object* obj = AllocateRawFixedArray(len);
2800 if (obj->IsFailure()) return obj;
2801 if (Heap::InNewSpace(obj)) {
2802 HeapObject* dst = HeapObject::cast(obj);
2803 CopyBlock(reinterpret_cast<Object**>(dst->address()),
2804 reinterpret_cast<Object**>(src->address()),
2805 FixedArray::SizeFor(len));
2806 return obj;
2807 }
2808 HeapObject::cast(obj)->set_map(src->map());
2809 FixedArray* result = FixedArray::cast(obj);
2810 result->set_length(len);
2811 // Copy the content
2812 WriteBarrierMode mode = result->GetWriteBarrierMode();
2813 for (int i = 0; i < len; i++) result->set(i, src->get(i), mode);
2814 return result;
2815}
2816
2817
2818Object* Heap::AllocateFixedArray(int length) {
2819 ASSERT(length >= 0);
2820 if (length == 0) return empty_fixed_array();
2821 Object* result = AllocateRawFixedArray(length);
2822 if (!result->IsFailure()) {
2823 // Initialize header.
2824 reinterpret_cast<Array*>(result)->set_map(fixed_array_map());
2825 FixedArray* array = FixedArray::cast(result);
2826 array->set_length(length);
2827 Object* value = undefined_value();
2828 // Initialize body.
2829 for (int index = 0; index < length; index++) {
2830 array->set(index, value, SKIP_WRITE_BARRIER);
2831 }
2832 }
2833 return result;
2834}
2835
2836
2837Object* Heap::AllocateFixedArray(int length, PretenureFlag pretenure) {
2838 ASSERT(empty_fixed_array()->IsFixedArray());
2839 if (length == 0) return empty_fixed_array();
2840
2841 // New space can't cope with forced allocation.
2842 if (always_allocate()) pretenure = TENURED;
2843
2844 int size = FixedArray::SizeFor(length);
2845 Object* result = Failure::OutOfMemoryException();
2846 if (pretenure != TENURED) {
2847 result = size <= kMaxObjectSizeInNewSpace
2848 ? new_space_.AllocateRaw(size)
2849 : lo_space_->AllocateRawFixedArray(size);
2850 }
2851 if (result->IsFailure()) {
2852 if (size > MaxObjectSizeInPagedSpace()) {
2853 result = lo_space_->AllocateRawFixedArray(size);
2854 } else {
2855 AllocationSpace space =
2856 (pretenure == TENURED) ? OLD_POINTER_SPACE : NEW_SPACE;
2857 result = AllocateRaw(size, space, OLD_POINTER_SPACE);
2858 }
2859 if (result->IsFailure()) return result;
2860 }
2861 // Initialize the object.
2862 reinterpret_cast<Array*>(result)->set_map(fixed_array_map());
2863 FixedArray* array = FixedArray::cast(result);
2864 array->set_length(length);
2865 Object* value = undefined_value();
2866 for (int index = 0; index < length; index++) {
2867 array->set(index, value, SKIP_WRITE_BARRIER);
2868 }
2869 return array;
2870}
2871
2872
2873Object* Heap::AllocateFixedArrayWithHoles(int length) {
2874 if (length == 0) return empty_fixed_array();
2875 Object* result = AllocateRawFixedArray(length);
2876 if (!result->IsFailure()) {
2877 // Initialize header.
2878 reinterpret_cast<Array*>(result)->set_map(fixed_array_map());
2879 FixedArray* array = FixedArray::cast(result);
2880 array->set_length(length);
2881 // Initialize body.
2882 Object* value = the_hole_value();
2883 for (int index = 0; index < length; index++) {
2884 array->set(index, value, SKIP_WRITE_BARRIER);
2885 }
2886 }
2887 return result;
2888}
2889
2890
2891Object* Heap::AllocateHashTable(int length) {
2892 Object* result = Heap::AllocateFixedArray(length);
2893 if (result->IsFailure()) return result;
2894 reinterpret_cast<Array*>(result)->set_map(hash_table_map());
2895 ASSERT(result->IsHashTable());
2896 return result;
2897}
2898
2899
2900Object* Heap::AllocateGlobalContext() {
2901 Object* result = Heap::AllocateFixedArray(Context::GLOBAL_CONTEXT_SLOTS);
2902 if (result->IsFailure()) return result;
2903 Context* context = reinterpret_cast<Context*>(result);
2904 context->set_map(global_context_map());
2905 ASSERT(context->IsGlobalContext());
2906 ASSERT(result->IsContext());
2907 return result;
2908}
2909
2910
2911Object* Heap::AllocateFunctionContext(int length, JSFunction* function) {
2912 ASSERT(length >= Context::MIN_CONTEXT_SLOTS);
2913 Object* result = Heap::AllocateFixedArray(length);
2914 if (result->IsFailure()) return result;
2915 Context* context = reinterpret_cast<Context*>(result);
2916 context->set_map(context_map());
2917 context->set_closure(function);
2918 context->set_fcontext(context);
2919 context->set_previous(NULL);
2920 context->set_extension(NULL);
2921 context->set_global(function->context()->global());
2922 ASSERT(!context->IsGlobalContext());
2923 ASSERT(context->is_function_context());
2924 ASSERT(result->IsContext());
2925 return result;
2926}
2927
2928
2929Object* Heap::AllocateWithContext(Context* previous,
2930 JSObject* extension,
2931 bool is_catch_context) {
2932 Object* result = Heap::AllocateFixedArray(Context::MIN_CONTEXT_SLOTS);
2933 if (result->IsFailure()) return result;
2934 Context* context = reinterpret_cast<Context*>(result);
2935 context->set_map(is_catch_context ? catch_context_map() : context_map());
2936 context->set_closure(previous->closure());
2937 context->set_fcontext(previous->fcontext());
2938 context->set_previous(previous);
2939 context->set_extension(extension);
2940 context->set_global(previous->global());
2941 ASSERT(!context->IsGlobalContext());
2942 ASSERT(!context->is_function_context());
2943 ASSERT(result->IsContext());
2944 return result;
2945}
2946
2947
2948Object* Heap::AllocateStruct(InstanceType type) {
2949 Map* map;
2950 switch (type) {
2951#define MAKE_CASE(NAME, Name, name) case NAME##_TYPE: map = name##_map(); break;
2952STRUCT_LIST(MAKE_CASE)
2953#undef MAKE_CASE
2954 default:
2955 UNREACHABLE();
2956 return Failure::InternalError();
2957 }
2958 int size = map->instance_size();
2959 AllocationSpace space =
2960 (size > MaxObjectSizeInPagedSpace()) ? LO_SPACE : OLD_POINTER_SPACE;
2961 Object* result = Heap::Allocate(map, space);
2962 if (result->IsFailure()) return result;
2963 Struct::cast(result)->InitializeBody(size);
2964 return result;
2965}
2966
2967
2968bool Heap::IdleNotification() {
2969 static const int kIdlesBeforeScavenge = 4;
2970 static const int kIdlesBeforeMarkSweep = 7;
2971 static const int kIdlesBeforeMarkCompact = 8;
2972 static int number_idle_notifications = 0;
2973 static int last_gc_count = gc_count_;
2974
2975 bool finished = false;
2976
2977 if (last_gc_count == gc_count_) {
2978 number_idle_notifications++;
2979 } else {
2980 number_idle_notifications = 0;
2981 last_gc_count = gc_count_;
2982 }
2983
2984 if (number_idle_notifications == kIdlesBeforeScavenge) {
2985 CollectGarbage(0, NEW_SPACE);
2986 new_space_.Shrink();
2987 last_gc_count = gc_count_;
2988
2989 } else if (number_idle_notifications == kIdlesBeforeMarkSweep) {
2990 CollectAllGarbage(false);
2991 new_space_.Shrink();
2992 last_gc_count = gc_count_;
2993
2994 } else if (number_idle_notifications == kIdlesBeforeMarkCompact) {
2995 CollectAllGarbage(true);
2996 new_space_.Shrink();
2997 last_gc_count = gc_count_;
2998 number_idle_notifications = 0;
2999 finished = true;
3000 }
3001
3002 // Uncommit unused memory in new space.
3003 Heap::UncommitFromSpace();
3004 return finished;
3005}
3006
3007
3008#ifdef DEBUG
3009
3010void Heap::Print() {
3011 if (!HasBeenSetup()) return;
3012 Top::PrintStack();
3013 AllSpaces spaces;
3014 while (Space* space = spaces.next()) space->Print();
3015}
3016
3017
3018void Heap::ReportCodeStatistics(const char* title) {
3019 PrintF(">>>>>> Code Stats (%s) >>>>>>\n", title);
3020 PagedSpace::ResetCodeStatistics();
3021 // We do not look for code in new space, map space, or old space. If code
3022 // somehow ends up in those spaces, we would miss it here.
3023 code_space_->CollectCodeStatistics();
3024 lo_space_->CollectCodeStatistics();
3025 PagedSpace::ReportCodeStatistics();
3026}
3027
3028
3029// This function expects that NewSpace's allocated objects histogram is
3030// populated (via a call to CollectStatistics or else as a side effect of a
3031// just-completed scavenge collection).
3032void Heap::ReportHeapStatistics(const char* title) {
3033 USE(title);
3034 PrintF(">>>>>> =============== %s (%d) =============== >>>>>>\n",
3035 title, gc_count_);
3036 PrintF("mark-compact GC : %d\n", mc_count_);
3037 PrintF("old_gen_promotion_limit_ %d\n", old_gen_promotion_limit_);
3038 PrintF("old_gen_allocation_limit_ %d\n", old_gen_allocation_limit_);
3039
3040 PrintF("\n");
3041 PrintF("Number of handles : %d\n", HandleScope::NumberOfHandles());
3042 GlobalHandles::PrintStats();
3043 PrintF("\n");
3044
3045 PrintF("Heap statistics : ");
3046 MemoryAllocator::ReportStatistics();
3047 PrintF("To space : ");
3048 new_space_.ReportStatistics();
3049 PrintF("Old pointer space : ");
3050 old_pointer_space_->ReportStatistics();
3051 PrintF("Old data space : ");
3052 old_data_space_->ReportStatistics();
3053 PrintF("Code space : ");
3054 code_space_->ReportStatistics();
3055 PrintF("Map space : ");
3056 map_space_->ReportStatistics();
3057 PrintF("Cell space : ");
3058 cell_space_->ReportStatistics();
3059 PrintF("Large object space : ");
3060 lo_space_->ReportStatistics();
3061 PrintF(">>>>>> ========================================= >>>>>>\n");
3062}
3063
3064#endif // DEBUG
3065
3066bool Heap::Contains(HeapObject* value) {
3067 return Contains(value->address());
3068}
3069
3070
3071bool Heap::Contains(Address addr) {
3072 if (OS::IsOutsideAllocatedSpace(addr)) return false;
3073 return HasBeenSetup() &&
3074 (new_space_.ToSpaceContains(addr) ||
3075 old_pointer_space_->Contains(addr) ||
3076 old_data_space_->Contains(addr) ||
3077 code_space_->Contains(addr) ||
3078 map_space_->Contains(addr) ||
3079 cell_space_->Contains(addr) ||
3080 lo_space_->SlowContains(addr));
3081}
3082
3083
3084bool Heap::InSpace(HeapObject* value, AllocationSpace space) {
3085 return InSpace(value->address(), space);
3086}
3087
3088
3089bool Heap::InSpace(Address addr, AllocationSpace space) {
3090 if (OS::IsOutsideAllocatedSpace(addr)) return false;
3091 if (!HasBeenSetup()) return false;
3092
3093 switch (space) {
3094 case NEW_SPACE:
3095 return new_space_.ToSpaceContains(addr);
3096 case OLD_POINTER_SPACE:
3097 return old_pointer_space_->Contains(addr);
3098 case OLD_DATA_SPACE:
3099 return old_data_space_->Contains(addr);
3100 case CODE_SPACE:
3101 return code_space_->Contains(addr);
3102 case MAP_SPACE:
3103 return map_space_->Contains(addr);
3104 case CELL_SPACE:
3105 return cell_space_->Contains(addr);
3106 case LO_SPACE:
3107 return lo_space_->SlowContains(addr);
3108 }
3109
3110 return false;
3111}
3112
3113
3114#ifdef DEBUG
3115void Heap::Verify() {
3116 ASSERT(HasBeenSetup());
3117
3118 VerifyPointersVisitor visitor;
3119 IterateRoots(&visitor);
3120
3121 new_space_.Verify();
3122
3123 VerifyPointersAndRSetVisitor rset_visitor;
3124 old_pointer_space_->Verify(&rset_visitor);
3125 map_space_->Verify(&rset_visitor);
3126
3127 VerifyPointersVisitor no_rset_visitor;
3128 old_data_space_->Verify(&no_rset_visitor);
3129 code_space_->Verify(&no_rset_visitor);
3130 cell_space_->Verify(&no_rset_visitor);
3131
3132 lo_space_->Verify();
3133}
3134#endif // DEBUG
3135
3136
3137Object* Heap::LookupSymbol(Vector<const char> string) {
3138 Object* symbol = NULL;
3139 Object* new_table = symbol_table()->LookupSymbol(string, &symbol);
3140 if (new_table->IsFailure()) return new_table;
3141 // Can't use set_symbol_table because SymbolTable::cast knows that
3142 // SymbolTable is a singleton and checks for identity.
3143 roots_[kSymbolTableRootIndex] = new_table;
3144 ASSERT(symbol != NULL);
3145 return symbol;
3146}
3147
3148
3149Object* Heap::LookupSymbol(String* string) {
3150 if (string->IsSymbol()) return string;
3151 Object* symbol = NULL;
3152 Object* new_table = symbol_table()->LookupString(string, &symbol);
3153 if (new_table->IsFailure()) return new_table;
3154 // Can't use set_symbol_table because SymbolTable::cast knows that
3155 // SymbolTable is a singleton and checks for identity.
3156 roots_[kSymbolTableRootIndex] = new_table;
3157 ASSERT(symbol != NULL);
3158 return symbol;
3159}
3160
3161
3162bool Heap::LookupSymbolIfExists(String* string, String** symbol) {
3163 if (string->IsSymbol()) {
3164 *symbol = string;
3165 return true;
3166 }
3167 return symbol_table()->LookupSymbolIfExists(string, symbol);
3168}
3169
3170
3171#ifdef DEBUG
3172void Heap::ZapFromSpace() {
3173 ASSERT(reinterpret_cast<Object*>(kFromSpaceZapValue)->IsHeapObject());
3174 for (Address a = new_space_.FromSpaceLow();
3175 a < new_space_.FromSpaceHigh();
3176 a += kPointerSize) {
3177 Memory::Address_at(a) = kFromSpaceZapValue;
3178 }
3179}
3180#endif // DEBUG
3181
3182
3183int Heap::IterateRSetRange(Address object_start,
3184 Address object_end,
3185 Address rset_start,
3186 ObjectSlotCallback copy_object_func) {
3187 Address object_address = object_start;
3188 Address rset_address = rset_start;
3189 int set_bits_count = 0;
3190
3191 // Loop over all the pointers in [object_start, object_end).
3192 while (object_address < object_end) {
3193 uint32_t rset_word = Memory::uint32_at(rset_address);
3194 if (rset_word != 0) {
3195 uint32_t result_rset = rset_word;
3196 for (uint32_t bitmask = 1; bitmask != 0; bitmask = bitmask << 1) {
3197 // Do not dereference pointers at or past object_end.
3198 if ((rset_word & bitmask) != 0 && object_address < object_end) {
3199 Object** object_p = reinterpret_cast<Object**>(object_address);
3200 if (Heap::InNewSpace(*object_p)) {
3201 copy_object_func(reinterpret_cast<HeapObject**>(object_p));
3202 }
3203 // If this pointer does not need to be remembered anymore, clear
3204 // the remembered set bit.
3205 if (!Heap::InNewSpace(*object_p)) result_rset &= ~bitmask;
3206 set_bits_count++;
3207 }
3208 object_address += kPointerSize;
3209 }
3210 // Update the remembered set if it has changed.
3211 if (result_rset != rset_word) {
3212 Memory::uint32_at(rset_address) = result_rset;
3213 }
3214 } else {
3215 // No bits in the word were set. This is the common case.
3216 object_address += kPointerSize * kBitsPerInt;
3217 }
3218 rset_address += kIntSize;
3219 }
3220 return set_bits_count;
3221}
3222
3223
3224void Heap::IterateRSet(PagedSpace* space, ObjectSlotCallback copy_object_func) {
3225 ASSERT(Page::is_rset_in_use());
3226 ASSERT(space == old_pointer_space_ || space == map_space_);
3227
3228 static void* paged_rset_histogram = StatsTable::CreateHistogram(
3229 "V8.RSetPaged",
3230 0,
3231 Page::kObjectAreaSize / kPointerSize,
3232 30);
3233
3234 PageIterator it(space, PageIterator::PAGES_IN_USE);
3235 while (it.has_next()) {
3236 Page* page = it.next();
3237 int count = IterateRSetRange(page->ObjectAreaStart(), page->AllocationTop(),
3238 page->RSetStart(), copy_object_func);
3239 if (paged_rset_histogram != NULL) {
3240 StatsTable::AddHistogramSample(paged_rset_histogram, count);
3241 }
3242 }
3243}
3244
3245
3246#ifdef DEBUG
3247#define SYNCHRONIZE_TAG(tag) v->Synchronize(tag)
3248#else
3249#define SYNCHRONIZE_TAG(tag)
3250#endif
3251
3252void Heap::IterateRoots(ObjectVisitor* v) {
3253 IterateStrongRoots(v);
3254 v->VisitPointer(reinterpret_cast<Object**>(&roots_[kSymbolTableRootIndex]));
3255 SYNCHRONIZE_TAG("symbol_table");
3256}
3257
3258
3259void Heap::IterateStrongRoots(ObjectVisitor* v) {
3260 v->VisitPointers(&roots_[0], &roots_[kStrongRootListLength]);
3261 SYNCHRONIZE_TAG("strong_root_list");
3262
3263 v->VisitPointer(bit_cast<Object**, String**>(&hidden_symbol_));
3264 SYNCHRONIZE_TAG("symbol");
3265
3266 Bootstrapper::Iterate(v);
3267 SYNCHRONIZE_TAG("bootstrapper");
3268 Top::Iterate(v);
3269 SYNCHRONIZE_TAG("top");
3270 Relocatable::Iterate(v);
3271 SYNCHRONIZE_TAG("relocatable");
3272
3273#ifdef ENABLE_DEBUGGER_SUPPORT
3274 Debug::Iterate(v);
3275#endif
3276 SYNCHRONIZE_TAG("debug");
3277 CompilationCache::Iterate(v);
3278 SYNCHRONIZE_TAG("compilationcache");
3279
3280 // Iterate over local handles in handle scopes.
3281 HandleScopeImplementer::Iterate(v);
3282 SYNCHRONIZE_TAG("handlescope");
3283
3284 // Iterate over the builtin code objects and code stubs in the heap. Note
3285 // that it is not strictly necessary to iterate over code objects on
3286 // scavenge collections. We still do it here because this same function
3287 // is used by the mark-sweep collector and the deserializer.
3288 Builtins::IterateBuiltins(v);
3289 SYNCHRONIZE_TAG("builtins");
3290
3291 // Iterate over global handles.
3292 GlobalHandles::IterateRoots(v);
3293 SYNCHRONIZE_TAG("globalhandles");
3294
3295 // Iterate over pointers being held by inactive threads.
3296 ThreadManager::Iterate(v);
3297 SYNCHRONIZE_TAG("threadmanager");
3298}
3299#undef SYNCHRONIZE_TAG
3300
3301
3302// Flag is set when the heap has been configured. The heap can be repeatedly
3303// configured through the API until it is setup.
3304static bool heap_configured = false;
3305
3306// TODO(1236194): Since the heap size is configurable on the command line
3307// and through the API, we should gracefully handle the case that the heap
3308// size is not big enough to fit all the initial objects.
Steve Block3ce2e202009-11-05 08:53:23 +00003309bool Heap::ConfigureHeap(int max_semispace_size, int max_old_gen_size) {
Steve Blocka7e24c12009-10-30 11:49:00 +00003310 if (HasBeenSetup()) return false;
3311
Steve Block3ce2e202009-11-05 08:53:23 +00003312 if (max_semispace_size > 0) max_semispace_size_ = max_semispace_size;
3313
3314 if (Snapshot::IsEnabled()) {
3315 // If we are using a snapshot we always reserve the default amount
3316 // of memory for each semispace because code in the snapshot has
3317 // write-barrier code that relies on the size and alignment of new
3318 // space. We therefore cannot use a larger max semispace size
3319 // than the default reserved semispace size.
3320 if (max_semispace_size_ > reserved_semispace_size_) {
3321 max_semispace_size_ = reserved_semispace_size_;
3322 }
3323 } else {
3324 // If we are not using snapshots we reserve space for the actual
3325 // max semispace size.
3326 reserved_semispace_size_ = max_semispace_size_;
3327 }
3328
3329 if (max_old_gen_size > 0) max_old_generation_size_ = max_old_gen_size;
Steve Blocka7e24c12009-10-30 11:49:00 +00003330
3331 // The new space size must be a power of two to support single-bit testing
3332 // for containment.
Steve Block3ce2e202009-11-05 08:53:23 +00003333 max_semispace_size_ = RoundUpToPowerOf2(max_semispace_size_);
3334 reserved_semispace_size_ = RoundUpToPowerOf2(reserved_semispace_size_);
3335 initial_semispace_size_ = Min(initial_semispace_size_, max_semispace_size_);
3336 external_allocation_limit_ = 10 * max_semispace_size_;
Steve Blocka7e24c12009-10-30 11:49:00 +00003337
3338 // The old generation is paged.
Steve Block3ce2e202009-11-05 08:53:23 +00003339 max_old_generation_size_ = RoundUp(max_old_generation_size_, Page::kPageSize);
Steve Blocka7e24c12009-10-30 11:49:00 +00003340
3341 heap_configured = true;
3342 return true;
3343}
3344
3345
3346bool Heap::ConfigureHeapDefault() {
Steve Block3ce2e202009-11-05 08:53:23 +00003347 return ConfigureHeap(FLAG_max_new_space_size / 2, FLAG_max_old_space_size);
Steve Blocka7e24c12009-10-30 11:49:00 +00003348}
3349
3350
3351int Heap::PromotedSpaceSize() {
3352 return old_pointer_space_->Size()
3353 + old_data_space_->Size()
3354 + code_space_->Size()
3355 + map_space_->Size()
3356 + cell_space_->Size()
3357 + lo_space_->Size();
3358}
3359
3360
3361int Heap::PromotedExternalMemorySize() {
3362 if (amount_of_external_allocated_memory_
3363 <= amount_of_external_allocated_memory_at_last_global_gc_) return 0;
3364 return amount_of_external_allocated_memory_
3365 - amount_of_external_allocated_memory_at_last_global_gc_;
3366}
3367
3368
3369bool Heap::Setup(bool create_heap_objects) {
3370 // Initialize heap spaces and initial maps and objects. Whenever something
3371 // goes wrong, just return false. The caller should check the results and
3372 // call Heap::TearDown() to release allocated memory.
3373 //
3374 // If the heap is not yet configured (eg, through the API), configure it.
3375 // Configuration is based on the flags new-space-size (really the semispace
3376 // size) and old-space-size if set or the initial values of semispace_size_
3377 // and old_generation_size_ otherwise.
3378 if (!heap_configured) {
3379 if (!ConfigureHeapDefault()) return false;
3380 }
3381
3382 // Setup memory allocator and reserve a chunk of memory for new
Steve Block3ce2e202009-11-05 08:53:23 +00003383 // space. The chunk is double the size of the requested reserved
3384 // new space size to ensure that we can find a pair of semispaces that
3385 // are contiguous and aligned to their size.
3386 if (!MemoryAllocator::Setup(MaxReserved())) return false;
Steve Blocka7e24c12009-10-30 11:49:00 +00003387 void* chunk =
Steve Block3ce2e202009-11-05 08:53:23 +00003388 MemoryAllocator::ReserveInitialChunk(4 * reserved_semispace_size_);
Steve Blocka7e24c12009-10-30 11:49:00 +00003389 if (chunk == NULL) return false;
3390
3391 // Align the pair of semispaces to their size, which must be a power
3392 // of 2.
Steve Blocka7e24c12009-10-30 11:49:00 +00003393 Address new_space_start =
Steve Block3ce2e202009-11-05 08:53:23 +00003394 RoundUp(reinterpret_cast<byte*>(chunk), 2 * reserved_semispace_size_);
3395 if (!new_space_.Setup(new_space_start, 2 * reserved_semispace_size_)) {
3396 return false;
3397 }
Steve Blocka7e24c12009-10-30 11:49:00 +00003398
3399 // Initialize old pointer space.
3400 old_pointer_space_ =
Steve Block3ce2e202009-11-05 08:53:23 +00003401 new OldSpace(max_old_generation_size_, OLD_POINTER_SPACE, NOT_EXECUTABLE);
Steve Blocka7e24c12009-10-30 11:49:00 +00003402 if (old_pointer_space_ == NULL) return false;
3403 if (!old_pointer_space_->Setup(NULL, 0)) return false;
3404
3405 // Initialize old data space.
3406 old_data_space_ =
Steve Block3ce2e202009-11-05 08:53:23 +00003407 new OldSpace(max_old_generation_size_, OLD_DATA_SPACE, NOT_EXECUTABLE);
Steve Blocka7e24c12009-10-30 11:49:00 +00003408 if (old_data_space_ == NULL) return false;
3409 if (!old_data_space_->Setup(NULL, 0)) return false;
3410
3411 // Initialize the code space, set its maximum capacity to the old
3412 // generation size. It needs executable memory.
3413 // On 64-bit platform(s), we put all code objects in a 2 GB range of
3414 // virtual address space, so that they can call each other with near calls.
3415 if (code_range_size_ > 0) {
3416 if (!CodeRange::Setup(code_range_size_)) {
3417 return false;
3418 }
3419 }
3420
3421 code_space_ =
Steve Block3ce2e202009-11-05 08:53:23 +00003422 new OldSpace(max_old_generation_size_, CODE_SPACE, EXECUTABLE);
Steve Blocka7e24c12009-10-30 11:49:00 +00003423 if (code_space_ == NULL) return false;
3424 if (!code_space_->Setup(NULL, 0)) return false;
3425
3426 // Initialize map space.
3427 map_space_ = new MapSpace(kMaxMapSpaceSize, MAP_SPACE);
3428 if (map_space_ == NULL) return false;
3429 if (!map_space_->Setup(NULL, 0)) return false;
3430
3431 // Initialize global property cell space.
Steve Block3ce2e202009-11-05 08:53:23 +00003432 cell_space_ = new CellSpace(max_old_generation_size_, CELL_SPACE);
Steve Blocka7e24c12009-10-30 11:49:00 +00003433 if (cell_space_ == NULL) return false;
3434 if (!cell_space_->Setup(NULL, 0)) return false;
3435
3436 // The large object code space may contain code or data. We set the memory
3437 // to be non-executable here for safety, but this means we need to enable it
3438 // explicitly when allocating large code objects.
3439 lo_space_ = new LargeObjectSpace(LO_SPACE);
3440 if (lo_space_ == NULL) return false;
3441 if (!lo_space_->Setup()) return false;
3442
3443 if (create_heap_objects) {
3444 // Create initial maps.
3445 if (!CreateInitialMaps()) return false;
3446 if (!CreateApiObjects()) return false;
3447
3448 // Create initial objects
3449 if (!CreateInitialObjects()) return false;
3450 }
3451
3452 LOG(IntEvent("heap-capacity", Capacity()));
3453 LOG(IntEvent("heap-available", Available()));
3454
Steve Block3ce2e202009-11-05 08:53:23 +00003455#ifdef ENABLE_LOGGING_AND_PROFILING
3456 // This should be called only after initial objects have been created.
3457 ProducerHeapProfile::Setup();
3458#endif
3459
Steve Blocka7e24c12009-10-30 11:49:00 +00003460 return true;
3461}
3462
3463
3464void Heap::SetStackLimit(intptr_t limit) {
3465 // On 64 bit machines, pointers are generally out of range of Smis. We write
3466 // something that looks like an out of range Smi to the GC.
3467
3468 // Set up the special root array entry containing the stack guard.
3469 // This is actually an address, but the tag makes the GC ignore it.
3470 roots_[kStackLimitRootIndex] =
3471 reinterpret_cast<Object*>((limit & ~kSmiTagMask) | kSmiTag);
3472}
3473
3474
3475void Heap::TearDown() {
3476 GlobalHandles::TearDown();
3477
3478 new_space_.TearDown();
3479
3480 if (old_pointer_space_ != NULL) {
3481 old_pointer_space_->TearDown();
3482 delete old_pointer_space_;
3483 old_pointer_space_ = NULL;
3484 }
3485
3486 if (old_data_space_ != NULL) {
3487 old_data_space_->TearDown();
3488 delete old_data_space_;
3489 old_data_space_ = NULL;
3490 }
3491
3492 if (code_space_ != NULL) {
3493 code_space_->TearDown();
3494 delete code_space_;
3495 code_space_ = NULL;
3496 }
3497
3498 if (map_space_ != NULL) {
3499 map_space_->TearDown();
3500 delete map_space_;
3501 map_space_ = NULL;
3502 }
3503
3504 if (cell_space_ != NULL) {
3505 cell_space_->TearDown();
3506 delete cell_space_;
3507 cell_space_ = NULL;
3508 }
3509
3510 if (lo_space_ != NULL) {
3511 lo_space_->TearDown();
3512 delete lo_space_;
3513 lo_space_ = NULL;
3514 }
3515
3516 MemoryAllocator::TearDown();
3517}
3518
3519
3520void Heap::Shrink() {
3521 // Try to shrink all paged spaces.
3522 PagedSpaces spaces;
3523 while (PagedSpace* space = spaces.next()) space->Shrink();
3524}
3525
3526
3527#ifdef ENABLE_HEAP_PROTECTION
3528
3529void Heap::Protect() {
3530 if (HasBeenSetup()) {
3531 AllSpaces spaces;
3532 while (Space* space = spaces.next()) space->Protect();
3533 }
3534}
3535
3536
3537void Heap::Unprotect() {
3538 if (HasBeenSetup()) {
3539 AllSpaces spaces;
3540 while (Space* space = spaces.next()) space->Unprotect();
3541 }
3542}
3543
3544#endif
3545
3546
3547#ifdef DEBUG
3548
3549class PrintHandleVisitor: public ObjectVisitor {
3550 public:
3551 void VisitPointers(Object** start, Object** end) {
3552 for (Object** p = start; p < end; p++)
3553 PrintF(" handle %p to %p\n", p, *p);
3554 }
3555};
3556
3557void Heap::PrintHandles() {
3558 PrintF("Handles:\n");
3559 PrintHandleVisitor v;
3560 HandleScopeImplementer::Iterate(&v);
3561}
3562
3563#endif
3564
3565
3566Space* AllSpaces::next() {
3567 switch (counter_++) {
3568 case NEW_SPACE:
3569 return Heap::new_space();
3570 case OLD_POINTER_SPACE:
3571 return Heap::old_pointer_space();
3572 case OLD_DATA_SPACE:
3573 return Heap::old_data_space();
3574 case CODE_SPACE:
3575 return Heap::code_space();
3576 case MAP_SPACE:
3577 return Heap::map_space();
3578 case CELL_SPACE:
3579 return Heap::cell_space();
3580 case LO_SPACE:
3581 return Heap::lo_space();
3582 default:
3583 return NULL;
3584 }
3585}
3586
3587
3588PagedSpace* PagedSpaces::next() {
3589 switch (counter_++) {
3590 case OLD_POINTER_SPACE:
3591 return Heap::old_pointer_space();
3592 case OLD_DATA_SPACE:
3593 return Heap::old_data_space();
3594 case CODE_SPACE:
3595 return Heap::code_space();
3596 case MAP_SPACE:
3597 return Heap::map_space();
3598 case CELL_SPACE:
3599 return Heap::cell_space();
3600 default:
3601 return NULL;
3602 }
3603}
3604
3605
3606
3607OldSpace* OldSpaces::next() {
3608 switch (counter_++) {
3609 case OLD_POINTER_SPACE:
3610 return Heap::old_pointer_space();
3611 case OLD_DATA_SPACE:
3612 return Heap::old_data_space();
3613 case CODE_SPACE:
3614 return Heap::code_space();
3615 default:
3616 return NULL;
3617 }
3618}
3619
3620
3621SpaceIterator::SpaceIterator() : current_space_(FIRST_SPACE), iterator_(NULL) {
3622}
3623
3624
3625SpaceIterator::~SpaceIterator() {
3626 // Delete active iterator if any.
3627 delete iterator_;
3628}
3629
3630
3631bool SpaceIterator::has_next() {
3632 // Iterate until no more spaces.
3633 return current_space_ != LAST_SPACE;
3634}
3635
3636
3637ObjectIterator* SpaceIterator::next() {
3638 if (iterator_ != NULL) {
3639 delete iterator_;
3640 iterator_ = NULL;
3641 // Move to the next space
3642 current_space_++;
3643 if (current_space_ > LAST_SPACE) {
3644 return NULL;
3645 }
3646 }
3647
3648 // Return iterator for the new current space.
3649 return CreateIterator();
3650}
3651
3652
3653// Create an iterator for the space to iterate.
3654ObjectIterator* SpaceIterator::CreateIterator() {
3655 ASSERT(iterator_ == NULL);
3656
3657 switch (current_space_) {
3658 case NEW_SPACE:
3659 iterator_ = new SemiSpaceIterator(Heap::new_space());
3660 break;
3661 case OLD_POINTER_SPACE:
3662 iterator_ = new HeapObjectIterator(Heap::old_pointer_space());
3663 break;
3664 case OLD_DATA_SPACE:
3665 iterator_ = new HeapObjectIterator(Heap::old_data_space());
3666 break;
3667 case CODE_SPACE:
3668 iterator_ = new HeapObjectIterator(Heap::code_space());
3669 break;
3670 case MAP_SPACE:
3671 iterator_ = new HeapObjectIterator(Heap::map_space());
3672 break;
3673 case CELL_SPACE:
3674 iterator_ = new HeapObjectIterator(Heap::cell_space());
3675 break;
3676 case LO_SPACE:
3677 iterator_ = new LargeObjectIterator(Heap::lo_space());
3678 break;
3679 }
3680
3681 // Return the newly allocated iterator;
3682 ASSERT(iterator_ != NULL);
3683 return iterator_;
3684}
3685
3686
3687HeapIterator::HeapIterator() {
3688 Init();
3689}
3690
3691
3692HeapIterator::~HeapIterator() {
3693 Shutdown();
3694}
3695
3696
3697void HeapIterator::Init() {
3698 // Start the iteration.
3699 space_iterator_ = new SpaceIterator();
3700 object_iterator_ = space_iterator_->next();
3701}
3702
3703
3704void HeapIterator::Shutdown() {
3705 // Make sure the last iterator is deallocated.
3706 delete space_iterator_;
3707 space_iterator_ = NULL;
3708 object_iterator_ = NULL;
3709}
3710
3711
3712bool HeapIterator::has_next() {
3713 // No iterator means we are done.
3714 if (object_iterator_ == NULL) return false;
3715
3716 if (object_iterator_->has_next_object()) {
3717 // If the current iterator has more objects we are fine.
3718 return true;
3719 } else {
3720 // Go though the spaces looking for one that has objects.
3721 while (space_iterator_->has_next()) {
3722 object_iterator_ = space_iterator_->next();
3723 if (object_iterator_->has_next_object()) {
3724 return true;
3725 }
3726 }
3727 }
3728 // Done with the last space.
3729 object_iterator_ = NULL;
3730 return false;
3731}
3732
3733
3734HeapObject* HeapIterator::next() {
3735 if (has_next()) {
3736 return object_iterator_->next_object();
3737 } else {
3738 return NULL;
3739 }
3740}
3741
3742
3743void HeapIterator::reset() {
3744 // Restart the iterator.
3745 Shutdown();
3746 Init();
3747}
3748
3749
3750#ifdef DEBUG
3751
3752static bool search_for_any_global;
3753static Object* search_target;
3754static bool found_target;
3755static List<Object*> object_stack(20);
3756
3757
3758// Tags 0, 1, and 3 are used. Use 2 for marking visited HeapObject.
3759static const int kMarkTag = 2;
3760
3761static void MarkObjectRecursively(Object** p);
3762class MarkObjectVisitor : public ObjectVisitor {
3763 public:
3764 void VisitPointers(Object** start, Object** end) {
3765 // Copy all HeapObject pointers in [start, end)
3766 for (Object** p = start; p < end; p++) {
3767 if ((*p)->IsHeapObject())
3768 MarkObjectRecursively(p);
3769 }
3770 }
3771};
3772
3773static MarkObjectVisitor mark_visitor;
3774
3775static void MarkObjectRecursively(Object** p) {
3776 if (!(*p)->IsHeapObject()) return;
3777
3778 HeapObject* obj = HeapObject::cast(*p);
3779
3780 Object* map = obj->map();
3781
3782 if (!map->IsHeapObject()) return; // visited before
3783
3784 if (found_target) return; // stop if target found
3785 object_stack.Add(obj);
3786 if ((search_for_any_global && obj->IsJSGlobalObject()) ||
3787 (!search_for_any_global && (obj == search_target))) {
3788 found_target = true;
3789 return;
3790 }
3791
3792 // not visited yet
3793 Map* map_p = reinterpret_cast<Map*>(HeapObject::cast(map));
3794
3795 Address map_addr = map_p->address();
3796
3797 obj->set_map(reinterpret_cast<Map*>(map_addr + kMarkTag));
3798
3799 MarkObjectRecursively(&map);
3800
3801 obj->IterateBody(map_p->instance_type(), obj->SizeFromMap(map_p),
3802 &mark_visitor);
3803
3804 if (!found_target) // don't pop if found the target
3805 object_stack.RemoveLast();
3806}
3807
3808
3809static void UnmarkObjectRecursively(Object** p);
3810class UnmarkObjectVisitor : public ObjectVisitor {
3811 public:
3812 void VisitPointers(Object** start, Object** end) {
3813 // Copy all HeapObject pointers in [start, end)
3814 for (Object** p = start; p < end; p++) {
3815 if ((*p)->IsHeapObject())
3816 UnmarkObjectRecursively(p);
3817 }
3818 }
3819};
3820
3821static UnmarkObjectVisitor unmark_visitor;
3822
3823static void UnmarkObjectRecursively(Object** p) {
3824 if (!(*p)->IsHeapObject()) return;
3825
3826 HeapObject* obj = HeapObject::cast(*p);
3827
3828 Object* map = obj->map();
3829
3830 if (map->IsHeapObject()) return; // unmarked already
3831
3832 Address map_addr = reinterpret_cast<Address>(map);
3833
3834 map_addr -= kMarkTag;
3835
3836 ASSERT_TAG_ALIGNED(map_addr);
3837
3838 HeapObject* map_p = HeapObject::FromAddress(map_addr);
3839
3840 obj->set_map(reinterpret_cast<Map*>(map_p));
3841
3842 UnmarkObjectRecursively(reinterpret_cast<Object**>(&map_p));
3843
3844 obj->IterateBody(Map::cast(map_p)->instance_type(),
3845 obj->SizeFromMap(Map::cast(map_p)),
3846 &unmark_visitor);
3847}
3848
3849
3850static void MarkRootObjectRecursively(Object** root) {
3851 if (search_for_any_global) {
3852 ASSERT(search_target == NULL);
3853 } else {
3854 ASSERT(search_target->IsHeapObject());
3855 }
3856 found_target = false;
3857 object_stack.Clear();
3858
3859 MarkObjectRecursively(root);
3860 UnmarkObjectRecursively(root);
3861
3862 if (found_target) {
3863 PrintF("=====================================\n");
3864 PrintF("==== Path to object ====\n");
3865 PrintF("=====================================\n\n");
3866
3867 ASSERT(!object_stack.is_empty());
3868 for (int i = 0; i < object_stack.length(); i++) {
3869 if (i > 0) PrintF("\n |\n |\n V\n\n");
3870 Object* obj = object_stack[i];
3871 obj->Print();
3872 }
3873 PrintF("=====================================\n");
3874 }
3875}
3876
3877
3878// Helper class for visiting HeapObjects recursively.
3879class MarkRootVisitor: public ObjectVisitor {
3880 public:
3881 void VisitPointers(Object** start, Object** end) {
3882 // Visit all HeapObject pointers in [start, end)
3883 for (Object** p = start; p < end; p++) {
3884 if ((*p)->IsHeapObject())
3885 MarkRootObjectRecursively(p);
3886 }
3887 }
3888};
3889
3890
3891// Triggers a depth-first traversal of reachable objects from roots
3892// and finds a path to a specific heap object and prints it.
3893void Heap::TracePathToObject() {
3894 search_target = NULL;
3895 search_for_any_global = false;
3896
3897 MarkRootVisitor root_visitor;
3898 IterateRoots(&root_visitor);
3899}
3900
3901
3902// Triggers a depth-first traversal of reachable objects from roots
3903// and finds a path to any global object and prints it. Useful for
3904// determining the source for leaks of global objects.
3905void Heap::TracePathToGlobal() {
3906 search_target = NULL;
3907 search_for_any_global = true;
3908
3909 MarkRootVisitor root_visitor;
3910 IterateRoots(&root_visitor);
3911}
3912#endif
3913
3914
3915GCTracer::GCTracer()
3916 : start_time_(0.0),
3917 start_size_(0.0),
3918 gc_count_(0),
3919 full_gc_count_(0),
3920 is_compacting_(false),
3921 marked_count_(0) {
3922 // These two fields reflect the state of the previous full collection.
3923 // Set them before they are changed by the collector.
3924 previous_has_compacted_ = MarkCompactCollector::HasCompacted();
3925 previous_marked_count_ = MarkCompactCollector::previous_marked_count();
3926 if (!FLAG_trace_gc) return;
3927 start_time_ = OS::TimeCurrentMillis();
3928 start_size_ = SizeOfHeapObjects();
3929}
3930
3931
3932GCTracer::~GCTracer() {
3933 if (!FLAG_trace_gc) return;
3934 // Printf ONE line iff flag is set.
3935 PrintF("%s %.1f -> %.1f MB, %d ms.\n",
3936 CollectorString(),
3937 start_size_, SizeOfHeapObjects(),
3938 static_cast<int>(OS::TimeCurrentMillis() - start_time_));
3939
3940#if defined(ENABLE_LOGGING_AND_PROFILING)
3941 Heap::PrintShortHeapStatistics();
3942#endif
3943}
3944
3945
3946const char* GCTracer::CollectorString() {
3947 switch (collector_) {
3948 case SCAVENGER:
3949 return "Scavenge";
3950 case MARK_COMPACTOR:
3951 return MarkCompactCollector::HasCompacted() ? "Mark-compact"
3952 : "Mark-sweep";
3953 }
3954 return "Unknown GC";
3955}
3956
3957
3958int KeyedLookupCache::Hash(Map* map, String* name) {
3959 // Uses only lower 32 bits if pointers are larger.
3960 uintptr_t addr_hash =
3961 static_cast<uint32_t>(reinterpret_cast<uintptr_t>(map)) >> 2;
3962 return (addr_hash ^ name->Hash()) % kLength;
3963}
3964
3965
3966int KeyedLookupCache::Lookup(Map* map, String* name) {
3967 int index = Hash(map, name);
3968 Key& key = keys_[index];
3969 if ((key.map == map) && key.name->Equals(name)) {
3970 return field_offsets_[index];
3971 }
3972 return -1;
3973}
3974
3975
3976void KeyedLookupCache::Update(Map* map, String* name, int field_offset) {
3977 String* symbol;
3978 if (Heap::LookupSymbolIfExists(name, &symbol)) {
3979 int index = Hash(map, symbol);
3980 Key& key = keys_[index];
3981 key.map = map;
3982 key.name = symbol;
3983 field_offsets_[index] = field_offset;
3984 }
3985}
3986
3987
3988void KeyedLookupCache::Clear() {
3989 for (int index = 0; index < kLength; index++) keys_[index].map = NULL;
3990}
3991
3992
3993KeyedLookupCache::Key KeyedLookupCache::keys_[KeyedLookupCache::kLength];
3994
3995
3996int KeyedLookupCache::field_offsets_[KeyedLookupCache::kLength];
3997
3998
3999void DescriptorLookupCache::Clear() {
4000 for (int index = 0; index < kLength; index++) keys_[index].array = NULL;
4001}
4002
4003
4004DescriptorLookupCache::Key
4005DescriptorLookupCache::keys_[DescriptorLookupCache::kLength];
4006
4007int DescriptorLookupCache::results_[DescriptorLookupCache::kLength];
4008
4009
4010#ifdef DEBUG
4011bool Heap::GarbageCollectionGreedyCheck() {
4012 ASSERT(FLAG_gc_greedy);
4013 if (Bootstrapper::IsActive()) return true;
4014 if (disallow_allocation_failure()) return true;
4015 return CollectGarbage(0, NEW_SPACE);
4016}
4017#endif
4018
4019
4020TranscendentalCache::TranscendentalCache(TranscendentalCache::Type t)
4021 : type_(t) {
4022 uint32_t in0 = 0xffffffffu; // Bit-pattern for a NaN that isn't
4023 uint32_t in1 = 0xffffffffu; // generated by the FPU.
4024 for (int i = 0; i < kCacheSize; i++) {
4025 elements_[i].in[0] = in0;
4026 elements_[i].in[1] = in1;
4027 elements_[i].output = NULL;
4028 }
4029}
4030
4031
4032TranscendentalCache* TranscendentalCache::caches_[kNumberOfCaches];
4033
4034
4035void TranscendentalCache::Clear() {
4036 for (int i = 0; i < kNumberOfCaches; i++) {
4037 if (caches_[i] != NULL) {
4038 delete caches_[i];
4039 caches_[i] = NULL;
4040 }
4041 }
4042}
4043
4044
4045} } // namespace v8::internal