blob: 35ba4315db78e0494578904f86b7093a8e4f64af [file] [log] [blame]
Ben Murdochda12d292016-06-02 14:46:10 +01001// Copyright (c) 1994-2006 Sun Microsystems Inc.
2// All Rights Reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions
6// are met:
7//
8// - Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10//
11// - Redistribution in binary form must reproduce the above copyright
12// notice, this list of conditions and the following disclaimer in the
13// documentation and/or other materials provided with the
14// distribution.
15//
16// - Neither the name of Sun Microsystems or the names of contributors may
17// be used to endorse or promote products derived from this software without
18// specific prior written permission.
19//
20// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31// OF THE POSSIBILITY OF SUCH DAMAGE.
32
33// The original source code covered by the above license above has been
34// modified significantly by Google Inc.
35// Copyright 2014 the V8 project authors. All rights reserved.
36
37#include "src/s390/assembler-s390.h"
38
39#if V8_TARGET_ARCH_S390
40
41#if V8_HOST_ARCH_S390
42#include <elf.h> // Required for auxv checks for STFLE support
43#endif
44
45#include "src/base/bits.h"
46#include "src/base/cpu.h"
47#include "src/s390/assembler-s390-inl.h"
48
49#include "src/macro-assembler.h"
50
51namespace v8 {
52namespace internal {
53
54// Get the CPU features enabled by the build.
55static unsigned CpuFeaturesImpliedByCompiler() {
56 unsigned answer = 0;
57 return answer;
58}
59
60// Check whether Store Facility STFLE instruction is available on the platform.
61// Instruction returns a bit vector of the enabled hardware facilities.
62static bool supportsSTFLE() {
63#if V8_HOST_ARCH_S390
64 static bool read_tried = false;
65 static uint32_t auxv_hwcap = 0;
66
67 if (!read_tried) {
68 // Open the AUXV (auxilliary vector) psuedo-file
69 int fd = open("/proc/self/auxv", O_RDONLY);
70
71 read_tried = true;
72 if (fd != -1) {
73#if V8_TARGET_ARCH_S390X
74 static Elf64_auxv_t buffer[16];
75 Elf64_auxv_t* auxv_element;
76#else
77 static Elf32_auxv_t buffer[16];
78 Elf32_auxv_t* auxv_element;
79#endif
80 int bytes_read = 0;
81 while (bytes_read >= 0) {
82 // Read a chunk of the AUXV
83 bytes_read = read(fd, buffer, sizeof(buffer));
84 // Locate and read the platform field of AUXV if it is in the chunk
85 for (auxv_element = buffer;
86 auxv_element + sizeof(auxv_element) <= buffer + bytes_read &&
87 auxv_element->a_type != AT_NULL;
88 auxv_element++) {
89 // We are looking for HWCAP entry in AUXV to search for STFLE support
90 if (auxv_element->a_type == AT_HWCAP) {
91 /* Note: Both auxv_hwcap and buffer are static */
92 auxv_hwcap = auxv_element->a_un.a_val;
93 goto done_reading;
94 }
95 }
96 }
97 done_reading:
98 close(fd);
99 }
100 }
101
102 // Did not find result
103 if (0 == auxv_hwcap) {
104 return false;
105 }
106
107 // HWCAP_S390_STFLE is defined to be 4 in include/asm/elf.h. Currently
108 // hardcoded in case that include file does not exist.
109 const uint32_t HWCAP_S390_STFLE = 4;
110 return (auxv_hwcap & HWCAP_S390_STFLE);
111#else
112 // STFLE is not available on non-s390 hosts
113 return false;
114#endif
115}
116
117void CpuFeatures::ProbeImpl(bool cross_compile) {
118 supported_ |= CpuFeaturesImpliedByCompiler();
119 icache_line_size_ = 256;
120
121 // Only use statically determined features for cross compile (snapshot).
122 if (cross_compile) return;
123
124#ifdef DEBUG
125 initialized_ = true;
126#endif
127
128 static bool performSTFLE = supportsSTFLE();
129
130// Need to define host, as we are generating inlined S390 assembly to test
131// for facilities.
132#if V8_HOST_ARCH_S390
133 if (performSTFLE) {
134 // STFLE D(B) requires:
135 // GPR0 to specify # of double words to update minus 1.
136 // i.e. GPR0 = 0 for 1 doubleword
137 // D(B) to specify to memory location to store the facilities bits
138 // The facilities we are checking for are:
139 // Bit 45 - Distinct Operands for instructions like ARK, SRK, etc.
140 // As such, we require only 1 double word
141 int64_t facilities[1];
142 facilities[0] = 0;
143 // LHI sets up GPR0
144 // STFLE is specified as .insn, as opcode is not recognized.
145 // We register the instructions kill r0 (LHI) and the CC (STFLE).
146 asm volatile(
147 "lhi 0,0\n"
148 ".insn s,0xb2b00000,%0\n"
149 : "=Q"(facilities)
150 :
151 : "cc", "r0");
152
153 // Test for Distinct Operands Facility - Bit 45
154 if (facilities[0] & (1lu << (63 - 45))) {
155 supported_ |= (1u << DISTINCT_OPS);
156 }
157 // Test for General Instruction Extension Facility - Bit 34
158 if (facilities[0] & (1lu << (63 - 34))) {
159 supported_ |= (1u << GENERAL_INSTR_EXT);
160 }
161 // Test for Floating Point Extension Facility - Bit 37
162 if (facilities[0] & (1lu << (63 - 37))) {
163 supported_ |= (1u << FLOATING_POINT_EXT);
164 }
165 }
166#else
167 // All distinct ops instructions can be simulated
168 supported_ |= (1u << DISTINCT_OPS);
169 // RISBG can be simulated
170 supported_ |= (1u << GENERAL_INSTR_EXT);
171
172 supported_ |= (1u << FLOATING_POINT_EXT);
173 USE(performSTFLE); // To avoid assert
174#endif
175 supported_ |= (1u << FPU);
176}
177
178void CpuFeatures::PrintTarget() {
179 const char* s390_arch = NULL;
180
181#if V8_TARGET_ARCH_S390X
182 s390_arch = "s390x";
183#else
184 s390_arch = "s390";
185#endif
186
187 printf("target %s\n", s390_arch);
188}
189
190void CpuFeatures::PrintFeatures() {
191 printf("FPU=%d\n", CpuFeatures::IsSupported(FPU));
192 printf("FPU_EXT=%d\n", CpuFeatures::IsSupported(FLOATING_POINT_EXT));
193 printf("GENERAL_INSTR=%d\n", CpuFeatures::IsSupported(GENERAL_INSTR_EXT));
194 printf("DISTINCT_OPS=%d\n", CpuFeatures::IsSupported(DISTINCT_OPS));
195}
196
197Register ToRegister(int num) {
198 DCHECK(num >= 0 && num < kNumRegisters);
199 const Register kRegisters[] = {r0, r1, r2, r3, r4, r5, r6, r7,
200 r8, r9, r10, fp, ip, r13, r14, sp};
201 return kRegisters[num];
202}
203
204// -----------------------------------------------------------------------------
205// Implementation of RelocInfo
206
207const int RelocInfo::kApplyMask =
208 RelocInfo::kCodeTargetMask | 1 << RelocInfo::INTERNAL_REFERENCE;
209
210bool RelocInfo::IsCodedSpecially() {
211 // The deserializer needs to know whether a pointer is specially
212 // coded. Being specially coded on S390 means that it is an iihf/iilf
213 // instruction sequence, and that is always the case inside code
214 // objects.
215 return true;
216}
217
218bool RelocInfo::IsInConstantPool() { return false; }
219
220// -----------------------------------------------------------------------------
221// Implementation of Operand and MemOperand
222// See assembler-s390-inl.h for inlined constructors
223
224Operand::Operand(Handle<Object> handle) {
225 AllowDeferredHandleDereference using_raw_address;
226 rm_ = no_reg;
227 // Verify all Objects referred by code are NOT in new space.
228 Object* obj = *handle;
229 if (obj->IsHeapObject()) {
230 DCHECK(!HeapObject::cast(obj)->GetHeap()->InNewSpace(obj));
231 imm_ = reinterpret_cast<intptr_t>(handle.location());
232 rmode_ = RelocInfo::EMBEDDED_OBJECT;
233 } else {
234 // no relocation needed
235 imm_ = reinterpret_cast<intptr_t>(obj);
236 rmode_ = kRelocInfo_NONEPTR;
237 }
238}
239
240MemOperand::MemOperand(Register rn, int32_t offset) {
241 baseRegister = rn;
242 indexRegister = r0;
243 offset_ = offset;
244}
245
246MemOperand::MemOperand(Register rx, Register rb, int32_t offset) {
247 baseRegister = rb;
248 indexRegister = rx;
249 offset_ = offset;
250}
251
252// -----------------------------------------------------------------------------
253// Specific instructions, constants, and masks.
254
255Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
256 : AssemblerBase(isolate, buffer, buffer_size),
257 recorded_ast_id_(TypeFeedbackId::None()),
258 code_targets_(100),
259 positions_recorder_(this) {
260 reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_);
261
262 last_bound_pos_ = 0;
263 ClearRecordedAstId();
264 relocations_.reserve(128);
265}
266
267void Assembler::GetCode(CodeDesc* desc) {
268 EmitRelocations();
269
270 // Set up code descriptor.
271 desc->buffer = buffer_;
272 desc->buffer_size = buffer_size_;
273 desc->instr_size = pc_offset();
274 desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
275 desc->origin = this;
276}
277
278void Assembler::Align(int m) {
279 DCHECK(m >= 4 && base::bits::IsPowerOfTwo32(m));
280 while ((pc_offset() & (m - 1)) != 0) {
281 nop(0);
282 }
283}
284
285void Assembler::CodeTargetAlign() { Align(8); }
286
287Condition Assembler::GetCondition(Instr instr) {
288 switch (instr & kCondMask) {
289 case BT:
290 return eq;
291 case BF:
292 return ne;
293 default:
294 UNIMPLEMENTED();
295 }
296 return al;
297}
298
299#if V8_TARGET_ARCH_S390X
300// This code assumes a FIXED_SEQUENCE for 64bit loads (iihf/iilf)
301bool Assembler::Is64BitLoadIntoIP(SixByteInstr instr1, SixByteInstr instr2) {
302 // Check the instructions are the iihf/iilf load into ip
303 return (((instr1 >> 32) == 0xC0C8) && ((instr2 >> 32) == 0xC0C9));
304}
305#else
306// This code assumes a FIXED_SEQUENCE for 32bit loads (iilf)
307bool Assembler::Is32BitLoadIntoIP(SixByteInstr instr) {
308 // Check the instruction is an iilf load into ip/r12.
309 return ((instr >> 32) == 0xC0C9);
310}
311#endif
312
313// Labels refer to positions in the (to be) generated code.
314// There are bound, linked, and unused labels.
315//
316// Bound labels refer to known positions in the already
317// generated code. pos() is the position the label refers to.
318//
319// Linked labels refer to unknown positions in the code
320// to be generated; pos() is the position of the last
321// instruction using the label.
322
323// The link chain is terminated by a negative code position (must be aligned)
324const int kEndOfChain = -4;
325
326// Returns the target address of the relative instructions, typically
327// of the form: pos + imm (where immediate is in # of halfwords for
328// BR* and LARL).
329int Assembler::target_at(int pos) {
330 SixByteInstr instr = instr_at(pos);
331 // check which type of branch this is 16 or 26 bit offset
332 Opcode opcode = Instruction::S390OpcodeValue(buffer_ + pos);
333
334 if (BRC == opcode || BRCT == opcode || BRCTG == opcode) {
335 int16_t imm16 = SIGN_EXT_IMM16((instr & kImm16Mask));
336 imm16 <<= 1; // BRC immediate is in # of halfwords
337 if (imm16 == 0) return kEndOfChain;
338 return pos + imm16;
339 } else if (LLILF == opcode || BRCL == opcode || LARL == opcode ||
340 BRASL == opcode) {
341 int32_t imm32 =
342 static_cast<int32_t>(instr & (static_cast<uint64_t>(0xffffffff)));
343 if (LLILF != opcode)
344 imm32 <<= 1; // BR* + LARL treat immediate in # of halfwords
345 if (imm32 == 0) return kEndOfChain;
346 return pos + imm32;
347 }
348
349 // Unknown condition
350 DCHECK(false);
351 return -1;
352}
353
354// Update the target address of the current relative instruction.
355void Assembler::target_at_put(int pos, int target_pos, bool* is_branch) {
356 SixByteInstr instr = instr_at(pos);
357 Opcode opcode = Instruction::S390OpcodeValue(buffer_ + pos);
358
359 if (is_branch != nullptr) {
360 *is_branch = (opcode == BRC || opcode == BRCT || opcode == BRCTG ||
361 opcode == BRCL || opcode == BRASL);
362 }
363
364 if (BRC == opcode || BRCT == opcode || BRCTG == opcode) {
365 int16_t imm16 = target_pos - pos;
366 instr &= (~0xffff);
367 DCHECK(is_int16(imm16));
368 instr_at_put<FourByteInstr>(pos, instr | (imm16 >> 1));
369 return;
370 } else if (BRCL == opcode || LARL == opcode || BRASL == opcode) {
371 // Immediate is in # of halfwords
372 int32_t imm32 = target_pos - pos;
373 instr &= (~static_cast<uint64_t>(0xffffffff));
374 instr_at_put<SixByteInstr>(pos, instr | (imm32 >> 1));
375 return;
376 } else if (LLILF == opcode) {
377 DCHECK(target_pos == kEndOfChain || target_pos >= 0);
378 // Emitted label constant, not part of a branch.
379 // Make label relative to Code* of generated Code object.
380 int32_t imm32 = target_pos + (Code::kHeaderSize - kHeapObjectTag);
381 instr &= (~static_cast<uint64_t>(0xffffffff));
382 instr_at_put<SixByteInstr>(pos, instr | imm32);
383 return;
384 }
385 DCHECK(false);
386}
387
388// Returns the maximum number of bits given instruction can address.
389int Assembler::max_reach_from(int pos) {
390 Opcode opcode = Instruction::S390OpcodeValue(buffer_ + pos);
391
392 // Check which type of instr. In theory, we can return
393 // the values below + 1, given offset is # of halfwords
394 if (BRC == opcode || BRCT == opcode || BRCTG == opcode) {
395 return 16;
396 } else if (LLILF == opcode || BRCL == opcode || LARL == opcode ||
397 BRASL == opcode) {
398 return 31; // Using 31 as workaround instead of 32 as
399 // is_intn(x,32) doesn't work on 32-bit platforms.
400 // llilf: Emitted label constant, not part of
401 // a branch (regexp PushBacktrack).
402 }
403 DCHECK(false);
404 return 16;
405}
406
407void Assembler::bind_to(Label* L, int pos) {
408 DCHECK(0 <= pos && pos <= pc_offset()); // must have a valid binding position
409 bool is_branch = false;
410 while (L->is_linked()) {
411 int fixup_pos = L->pos();
412#ifdef DEBUG
413 int32_t offset = pos - fixup_pos;
414 int maxReach = max_reach_from(fixup_pos);
415#endif
416 next(L); // call next before overwriting link with target at fixup_pos
417 DCHECK(is_intn(offset, maxReach));
418 target_at_put(fixup_pos, pos, &is_branch);
419 }
420 L->bind_to(pos);
421
422 // Keep track of the last bound label so we don't eliminate any instructions
423 // before a bound label.
424 if (pos > last_bound_pos_) last_bound_pos_ = pos;
425}
426
427void Assembler::bind(Label* L) {
428 DCHECK(!L->is_bound()); // label can only be bound once
429 bind_to(L, pc_offset());
430}
431
432void Assembler::next(Label* L) {
433 DCHECK(L->is_linked());
434 int link = target_at(L->pos());
435 if (link == kEndOfChain) {
436 L->Unuse();
437 } else {
438 DCHECK(link >= 0);
439 L->link_to(link);
440 }
441}
442
443bool Assembler::is_near(Label* L, Condition cond) {
444 DCHECK(L->is_bound());
445 if (L->is_bound() == false) return false;
446
447 int maxReach = ((cond == al) ? 26 : 16);
448 int offset = L->pos() - pc_offset();
449
450 return is_intn(offset, maxReach);
451}
452
453int Assembler::link(Label* L) {
454 int position;
455 if (L->is_bound()) {
456 position = L->pos();
457 } else {
458 if (L->is_linked()) {
459 position = L->pos(); // L's link
460 } else {
461 // was: target_pos = kEndOfChain;
462 // However, using self to mark the first reference
463 // should avoid most instances of branch offset overflow. See
464 // target_at() for where this is converted back to kEndOfChain.
465 position = pc_offset();
466 }
467 L->link_to(pc_offset());
468 }
469
470 return position;
471}
472
473void Assembler::load_label_offset(Register r1, Label* L) {
474 int target_pos;
475 int constant;
476 if (L->is_bound()) {
477 target_pos = L->pos();
478 constant = target_pos + (Code::kHeaderSize - kHeapObjectTag);
479 } else {
480 if (L->is_linked()) {
481 target_pos = L->pos(); // L's link
482 } else {
483 // was: target_pos = kEndOfChain;
484 // However, using branch to self to mark the first reference
485 // should avoid most instances of branch offset overflow. See
486 // target_at() for where this is converted back to kEndOfChain.
487 target_pos = pc_offset();
488 }
489 L->link_to(pc_offset());
490
491 constant = target_pos - pc_offset();
492 }
493 llilf(r1, Operand(constant));
494}
495
496// Pseudo op - branch on condition
497void Assembler::branchOnCond(Condition c, int branch_offset, bool is_bound) {
498 int offset = branch_offset;
499 if (is_bound && is_int16(offset)) {
500 brc(c, Operand(offset & 0xFFFF)); // short jump
501 } else {
502 brcl(c, Operand(offset)); // long jump
503 }
504}
505
506// 32-bit Store Multiple - short displacement (12-bits unsigned)
507void Assembler::stm(Register r1, Register r2, const MemOperand& src) {
508 rs_form(STM, r1, r2, src.rb(), src.offset());
509}
510
511// 32-bit Store Multiple - long displacement (20-bits signed)
512void Assembler::stmy(Register r1, Register r2, const MemOperand& src) {
513 rsy_form(STMY, r1, r2, src.rb(), src.offset());
514}
515
516// 64-bit Store Multiple - long displacement (20-bits signed)
517void Assembler::stmg(Register r1, Register r2, const MemOperand& src) {
518 rsy_form(STMG, r1, r2, src.rb(), src.offset());
519}
520
521// Exception-generating instructions and debugging support.
522// Stops with a non-negative code less than kNumOfWatchedStops support
523// enabling/disabling and a counter feature. See simulator-s390.h .
524void Assembler::stop(const char* msg, Condition cond, int32_t code,
525 CRegister cr) {
526 if (cond != al) {
527 Label skip;
528 b(NegateCondition(cond), &skip, Label::kNear);
529 bkpt(0);
530 bind(&skip);
531 } else {
532 bkpt(0);
533 }
534}
535
536void Assembler::bkpt(uint32_t imm16) {
537 // GDB software breakpoint instruction
538 emit2bytes(0x0001);
539}
540
541// Pseudo instructions.
542void Assembler::nop(int type) {
543 switch (type) {
544 case 0:
545 lr(r0, r0);
546 break;
547 case DEBUG_BREAK_NOP:
548 // TODO(john.yan): Use a better NOP break
549 oill(r3, Operand::Zero());
550 break;
551 default:
552 UNIMPLEMENTED();
553 }
554}
555
556// RR format: <insn> R1,R2
557// +--------+----+----+
558// | OpCode | R1 | R2 |
559// +--------+----+----+
560// 0 8 12 15
561#define RR_FORM_EMIT(name, op) \
562 void Assembler::name(Register r1, Register r2) { rr_form(op, r1, r2); }
563
564void Assembler::rr_form(Opcode op, Register r1, Register r2) {
565 DCHECK(is_uint8(op));
566 emit2bytes(op * B8 | r1.code() * B4 | r2.code());
567}
568
569void Assembler::rr_form(Opcode op, DoubleRegister r1, DoubleRegister r2) {
570 DCHECK(is_uint8(op));
571 emit2bytes(op * B8 | r1.code() * B4 | r2.code());
572}
573
574// RR2 format: <insn> M1,R2
575// +--------+----+----+
576// | OpCode | M1 | R2 |
577// +--------+----+----+
578// 0 8 12 15
579#define RR2_FORM_EMIT(name, op) \
580 void Assembler::name(Condition m1, Register r2) { rr_form(op, m1, r2); }
581
582void Assembler::rr_form(Opcode op, Condition m1, Register r2) {
583 DCHECK(is_uint8(op));
584 DCHECK(is_uint4(m1));
585 emit2bytes(op * B8 | m1 * B4 | r2.code());
586}
587
588// RX format: <insn> R1,D2(X2,B2)
589// +--------+----+----+----+-------------+
590// | OpCode | R1 | X2 | B2 | D2 |
591// +--------+----+----+----+-------------+
592// 0 8 12 16 20 31
593#define RX_FORM_EMIT(name, op) \
594 void Assembler::name(Register r, const MemOperand& opnd) { \
595 name(r, opnd.getIndexRegister(), opnd.getBaseRegister(), \
596 opnd.getDisplacement()); \
597 } \
598 void Assembler::name(Register r1, Register x2, Register b2, Disp d2) { \
599 rx_form(op, r1, x2, b2, d2); \
600 }
601void Assembler::rx_form(Opcode op, Register r1, Register x2, Register b2,
602 Disp d2) {
603 DCHECK(is_uint8(op));
604 DCHECK(is_uint12(d2));
605 emit4bytes(op * B24 | r1.code() * B20 | x2.code() * B16 | b2.code() * B12 |
606 d2);
607}
608
609void Assembler::rx_form(Opcode op, DoubleRegister r1, Register x2, Register b2,
610 Disp d2) {
611 DCHECK(is_uint8(op));
612 DCHECK(is_uint12(d2));
613 emit4bytes(op * B24 | r1.code() * B20 | x2.code() * B16 | b2.code() * B12 |
614 d2);
615}
616
617// RI1 format: <insn> R1,I2
618// +--------+----+----+------------------+
619// | OpCode | R1 |OpCd| I2 |
620// +--------+----+----+------------------+
621// 0 8 12 16 31
622#define RI1_FORM_EMIT(name, op) \
623 void Assembler::name(Register r, const Operand& i2) { ri_form(op, r, i2); }
624
625void Assembler::ri_form(Opcode op, Register r1, const Operand& i2) {
626 DCHECK(is_uint12(op));
627 DCHECK(is_uint16(i2.imm_) || is_int16(i2.imm_));
628 emit4bytes((op & 0xFF0) * B20 | r1.code() * B20 | (op & 0xF) * B16 |
629 (i2.imm_ & 0xFFFF));
630}
631
632// RI2 format: <insn> M1,I2
633// +--------+----+----+------------------+
634// | OpCode | M1 |OpCd| I2 |
635// +--------+----+----+------------------+
636// 0 8 12 16 31
637#define RI2_FORM_EMIT(name, op) \
638 void Assembler::name(Condition m, const Operand& i2) { ri_form(op, m, i2); }
639
640void Assembler::ri_form(Opcode op, Condition m1, const Operand& i2) {
641 DCHECK(is_uint12(op));
642 DCHECK(is_uint4(m1));
643 DCHECK(is_uint16(i2.imm_));
644 emit4bytes((op & 0xFF0) * B20 | m1 * B20 | (op & 0xF) * B16 |
645 (i2.imm_ & 0xFFFF));
646}
647
648// RIE-f format: <insn> R1,R2,I3,I4,I5
649// +--------+----+----+------------------+--------+--------+
650// | OpCode | R1 | R2 | I3 | I4 | I5 | OpCode |
651// +--------+----+----+------------------+--------+--------+
652// 0 8 12 16 24 32 40 47
653void Assembler::rie_f_form(Opcode op, Register r1, Register r2,
654 const Operand& i3, const Operand& i4,
655 const Operand& i5) {
656 DCHECK(is_uint16(op));
657 DCHECK(is_uint8(i3.imm_));
658 DCHECK(is_uint8(i4.imm_));
659 DCHECK(is_uint8(i5.imm_));
660 uint64_t code = (static_cast<uint64_t>(op & 0xFF00)) * B32 |
661 (static_cast<uint64_t>(r1.code())) * B36 |
662 (static_cast<uint64_t>(r2.code())) * B32 |
663 (static_cast<uint64_t>(i3.imm_)) * B24 |
664 (static_cast<uint64_t>(i4.imm_)) * B16 |
665 (static_cast<uint64_t>(i5.imm_)) * B8 |
666 (static_cast<uint64_t>(op & 0x00FF));
667 emit6bytes(code);
668}
669
670// RIE format: <insn> R1,R3,I2
671// +--------+----+----+------------------+--------+--------+
672// | OpCode | R1 | R3 | I2 |////////| OpCode |
673// +--------+----+----+------------------+--------+--------+
674// 0 8 12 16 32 40 47
675#define RIE_FORM_EMIT(name, op) \
676 void Assembler::name(Register r1, Register r3, const Operand& i2) { \
677 rie_form(op, r1, r3, i2); \
678 }
679
680void Assembler::rie_form(Opcode op, Register r1, Register r3,
681 const Operand& i2) {
682 DCHECK(is_uint16(op));
683 DCHECK(is_int16(i2.imm_));
684 uint64_t code = (static_cast<uint64_t>(op & 0xFF00)) * B32 |
685 (static_cast<uint64_t>(r1.code())) * B36 |
686 (static_cast<uint64_t>(r3.code())) * B32 |
687 (static_cast<uint64_t>(i2.imm_ & 0xFFFF)) * B16 |
688 (static_cast<uint64_t>(op & 0x00FF));
689 emit6bytes(code);
690}
691
692// RIL1 format: <insn> R1,I2
693// +--------+----+----+------------------------------------+
694// | OpCode | R1 |OpCd| I2 |
695// +--------+----+----+------------------------------------+
696// 0 8 12 16 47
697#define RIL1_FORM_EMIT(name, op) \
698 void Assembler::name(Register r, const Operand& i2) { ril_form(op, r, i2); }
699
700void Assembler::ril_form(Opcode op, Register r1, const Operand& i2) {
701 DCHECK(is_uint12(op));
702 uint64_t code = (static_cast<uint64_t>(op & 0xFF0)) * B36 |
703 (static_cast<uint64_t>(r1.code())) * B36 |
704 (static_cast<uint64_t>(op & 0x00F)) * B32 |
705 (static_cast<uint64_t>(i2.imm_) & 0xFFFFFFFF);
706 emit6bytes(code);
707}
708
709// RIL2 format: <insn> M1,I2
710// +--------+----+----+------------------------------------+
711// | OpCode | M1 |OpCd| I2 |
712// +--------+----+----+------------------------------------+
713// 0 8 12 16 47
714#define RIL2_FORM_EMIT(name, op) \
715 void Assembler::name(Condition m1, const Operand& i2) { \
716 ril_form(op, m1, i2); \
717 }
718
719void Assembler::ril_form(Opcode op, Condition m1, const Operand& i2) {
720 DCHECK(is_uint12(op));
721 DCHECK(is_uint4(m1));
722 uint64_t code = (static_cast<uint64_t>(op & 0xFF0)) * B36 |
723 (static_cast<uint64_t>(m1)) * B36 |
724 (static_cast<uint64_t>(op & 0x00F)) * B32 |
725 (static_cast<uint64_t>(i2.imm_ & 0xFFFFFFFF));
726 emit6bytes(code);
727}
728
729// RRE format: <insn> R1,R2
730// +------------------+--------+----+----+
731// | OpCode |////////| R1 | R2 |
732// +------------------+--------+----+----+
733// 0 16 24 28 31
734#define RRE_FORM_EMIT(name, op) \
735 void Assembler::name(Register r1, Register r2) { rre_form(op, r1, r2); }
736
737void Assembler::rre_form(Opcode op, Register r1, Register r2) {
738 DCHECK(is_uint16(op));
739 emit4bytes(op << 16 | r1.code() * B4 | r2.code());
740}
741
742void Assembler::rre_form(Opcode op, DoubleRegister r1, DoubleRegister r2) {
743 DCHECK(is_uint16(op));
744 emit4bytes(op << 16 | r1.code() * B4 | r2.code());
745}
746
747// RRD format: <insn> R1,R3, R2
748// +------------------+----+----+----+----+
749// | OpCode | R1 |////| R3 | R2 |
750// +------------------+----+----+----+----+
751// 0 16 20 24 28 31
752#define RRD_FORM_EMIT(name, op) \
753 void Assembler::name(Register r1, Register r3, Register r2) { \
754 rrd_form(op, r1, r3, r2); \
755 }
756
757void Assembler::rrd_form(Opcode op, Register r1, Register r3, Register r2) {
758 emit4bytes(op << 16 | r1.code() * B12 | r3.code() * B4 | r2.code());
759}
760
761// RS1 format: <insn> R1,R3,D2(B2)
762// +--------+----+----+----+-------------+
763// | OpCode | R1 | R3 | B2 | D2 |
764// +--------+----+----+----+-------------+
765// 0 8 12 16 20 31
766#define RS1_FORM_EMIT(name, op) \
767 void Assembler::name(Register r1, Register r3, Register b2, Disp d2) { \
768 rs_form(op, r1, r3, b2, d2); \
769 } \
770 void Assembler::name(Register r1, Register r3, const MemOperand& opnd) { \
771 name(r1, r3, opnd.getBaseRegister(), opnd.getDisplacement()); \
772 }
773
774void Assembler::rs_form(Opcode op, Register r1, Register r3, Register b2,
775 const Disp d2) {
776 DCHECK(is_uint12(d2));
777 emit4bytes(op * B24 | r1.code() * B20 | r3.code() * B16 | b2.code() * B12 |
778 d2);
779}
780
781// RS2 format: <insn> R1,M3,D2(B2)
782// +--------+----+----+----+-------------+
783// | OpCode | R1 | M3 | B2 | D2 |
784// +--------+----+----+----+-------------+
785// 0 8 12 16 20 31
786#define RS2_FORM_EMIT(name, op) \
787 void Assembler::name(Register r1, Condition m3, Register b2, Disp d2) { \
788 rs_form(op, r1, m3, b2, d2); \
789 } \
790 void Assembler::name(Register r1, Condition m3, const MemOperand& opnd) { \
791 name(r1, m3, opnd.getBaseRegister(), opnd.getDisplacement()); \
792 }
793
794void Assembler::rs_form(Opcode op, Register r1, Condition m3, Register b2,
795 const Disp d2) {
796 DCHECK(is_uint12(d2));
797 emit4bytes(op * B24 | r1.code() * B20 | m3 * B16 | b2.code() * B12 | d2);
798}
799
800// RSI format: <insn> R1,R3,I2
801// +--------+----+----+------------------+
802// | OpCode | R1 | R3 | RI2 |
803// +--------+----+----+------------------+
804// 0 8 12 16 31
805#define RSI_FORM_EMIT(name, op) \
806 void Assembler::name(Register r1, Register r3, const Operand& i2) { \
807 rsi_form(op, r1, r3, i2); \
808 }
809
810void Assembler::rsi_form(Opcode op, Register r1, Register r3,
811 const Operand& i2) {
812 DCHECK(is_uint8(op));
813 DCHECK(is_uint16(i2.imm_));
814 emit4bytes(op * B24 | r1.code() * B20 | r3.code() * B16 | (i2.imm_ & 0xFFFF));
815}
816
817// RSL format: <insn> R1,R3,D2(B2)
818// +--------+----+----+----+-------------+--------+--------+
819// | OpCode | L1 | | B2 | D2 | | OpCode |
820// +--------+----+----+----+-------------+--------+--------+
821// 0 8 12 16 20 32 40 47
822#define RSL_FORM_EMIT(name, op) \
823 void Assembler::name(Length l1, Register b2, Disp d2) { \
824 rsl_form(op, l1, b2, d2); \
825 }
826
827void Assembler::rsl_form(Opcode op, Length l1, Register b2, Disp d2) {
828 DCHECK(is_uint16(op));
829 uint64_t code = (static_cast<uint64_t>(op & 0xFF00)) * B32 |
830 (static_cast<uint64_t>(l1)) * B36 |
831 (static_cast<uint64_t>(b2.code())) * B28 |
832 (static_cast<uint64_t>(d2)) * B16 |
833 (static_cast<uint64_t>(op & 0x00FF));
834 emit6bytes(code);
835}
836
837// RSY1 format: <insn> R1,R3,D2(B2)
838// +--------+----+----+----+-------------+--------+--------+
839// | OpCode | R1 | R3 | B2 | DL2 | DH2 | OpCode |
840// +--------+----+----+----+-------------+--------+--------+
841// 0 8 12 16 20 32 40 47
842#define RSY1_FORM_EMIT(name, op) \
843 void Assembler::name(Register r1, Register r3, Register b2, Disp d2) { \
844 rsy_form(op, r1, r3, b2, d2); \
845 } \
846 void Assembler::name(Register r1, Register r3, const MemOperand& opnd) { \
847 name(r1, r3, opnd.getBaseRegister(), opnd.getDisplacement()); \
848 }
849
850void Assembler::rsy_form(Opcode op, Register r1, Register r3, Register b2,
851 const Disp d2) {
852 DCHECK(is_int20(d2));
853 DCHECK(is_uint16(op));
854 uint64_t code = (static_cast<uint64_t>(op & 0xFF00)) * B32 |
855 (static_cast<uint64_t>(r1.code())) * B36 |
856 (static_cast<uint64_t>(r3.code())) * B32 |
857 (static_cast<uint64_t>(b2.code())) * B28 |
858 (static_cast<uint64_t>(d2 & 0x0FFF)) * B16 |
859 (static_cast<uint64_t>(d2 & 0x0FF000)) >> 4 |
860 (static_cast<uint64_t>(op & 0x00FF));
861 emit6bytes(code);
862}
863
864// RSY2 format: <insn> R1,M3,D2(B2)
865// +--------+----+----+----+-------------+--------+--------+
866// | OpCode | R1 | M3 | B2 | DL2 | DH2 | OpCode |
867// +--------+----+----+----+-------------+--------+--------+
868// 0 8 12 16 20 32 40 47
869#define RSY2_FORM_EMIT(name, op) \
870 void Assembler::name(Register r1, Condition m3, Register b2, Disp d2) { \
871 rsy_form(op, r1, m3, b2, d2); \
872 } \
873 void Assembler::name(Register r1, Condition m3, const MemOperand& opnd) { \
874 name(r1, m3, opnd.getBaseRegister(), opnd.getDisplacement()); \
875 }
876
877void Assembler::rsy_form(Opcode op, Register r1, Condition m3, Register b2,
878 const Disp d2) {
879 DCHECK(is_int20(d2));
880 DCHECK(is_uint16(op));
881 uint64_t code = (static_cast<uint64_t>(op & 0xFF00)) * B32 |
882 (static_cast<uint64_t>(r1.code())) * B36 |
883 (static_cast<uint64_t>(m3)) * B32 |
884 (static_cast<uint64_t>(b2.code())) * B28 |
885 (static_cast<uint64_t>(d2 & 0x0FFF)) * B16 |
886 (static_cast<uint64_t>(d2 & 0x0FF000)) >> 4 |
887 (static_cast<uint64_t>(op & 0x00FF));
888 emit6bytes(code);
889}
890
891// RXE format: <insn> R1,D2(X2,B2)
892// +--------+----+----+----+-------------+--------+--------+
893// | OpCode | R1 | X2 | B2 | D2 |////////| OpCode |
894// +--------+----+----+----+-------------+--------+--------+
895// 0 8 12 16 20 32 40 47
896#define RXE_FORM_EMIT(name, op) \
897 void Assembler::name(Register r1, Register x2, Register b2, Disp d2) { \
898 rxe_form(op, r1, x2, b2, d2); \
899 } \
900 void Assembler::name(Register r1, const MemOperand& opnd) { \
901 name(r1, opnd.getIndexRegister(), opnd.getBaseRegister(), \
902 opnd.getDisplacement()); \
903 }
904
905void Assembler::rxe_form(Opcode op, Register r1, Register x2, Register b2,
906 Disp d2) {
907 DCHECK(is_uint12(d2));
908 DCHECK(is_uint16(op));
909 uint64_t code = (static_cast<uint64_t>(op & 0xFF00)) * B32 |
910 (static_cast<uint64_t>(r1.code())) * B36 |
911 (static_cast<uint64_t>(x2.code())) * B32 |
912 (static_cast<uint64_t>(b2.code())) * B28 |
913 (static_cast<uint64_t>(d2 & 0x0FFF)) * B16 |
914 (static_cast<uint64_t>(op & 0x00FF));
915 emit6bytes(code);
916}
917
918// RXY format: <insn> R1,D2(X2,B2)
919// +--------+----+----+----+-------------+--------+--------+
920// | OpCode | R1 | X2 | B2 | DL2 | DH2 | OpCode |
921// +--------+----+----+----+-------------+--------+--------+
922// 0 8 12 16 20 32 36 40 47
923#define RXY_FORM_EMIT(name, op) \
924 void Assembler::name(Register r1, Register x2, Register b2, Disp d2) { \
925 rxy_form(op, r1, x2, b2, d2); \
926 } \
927 void Assembler::name(Register r1, const MemOperand& opnd) { \
928 name(r1, opnd.getIndexRegister(), opnd.getBaseRegister(), \
929 opnd.getDisplacement()); \
930 }
931
932void Assembler::rxy_form(Opcode op, Register r1, Register x2, Register b2,
933 Disp d2) {
934 DCHECK(is_int20(d2));
935 DCHECK(is_uint16(op));
936 uint64_t code = (static_cast<uint64_t>(op & 0xFF00)) * B32 |
937 (static_cast<uint64_t>(r1.code())) * B36 |
938 (static_cast<uint64_t>(x2.code())) * B32 |
939 (static_cast<uint64_t>(b2.code())) * B28 |
940 (static_cast<uint64_t>(d2 & 0x0FFF)) * B16 |
941 (static_cast<uint64_t>(d2 & 0x0FF000)) >> 4 |
942 (static_cast<uint64_t>(op & 0x00FF));
943 emit6bytes(code);
944}
945
946void Assembler::rxy_form(Opcode op, DoubleRegister r1, Register x2, Register b2,
947 Disp d2) {
948 DCHECK(is_int20(d2));
949 DCHECK(is_uint16(op));
950 uint64_t code = (static_cast<uint64_t>(op & 0xFF00)) * B32 |
951 (static_cast<uint64_t>(r1.code())) * B36 |
952 (static_cast<uint64_t>(x2.code())) * B32 |
953 (static_cast<uint64_t>(b2.code())) * B28 |
954 (static_cast<uint64_t>(d2 & 0x0FFF)) * B16 |
955 (static_cast<uint64_t>(d2 & 0x0FF000)) >> 4 |
956 (static_cast<uint64_t>(op & 0x00FF));
957 emit6bytes(code);
958}
959
960// RRS format: <insn> R1,R2,M3,D4(B4)
961// +--------+----+----+----+-------------+----+---+--------+
962// | OpCode | R1 | R2 | B4 | D4 | M3 |///| OpCode |
963// +--------+----+----+----+-------------+----+---+--------+
964// 0 8 12 16 20 32 36 40 47
965#define RRS_FORM_EMIT(name, op) \
966 void Assembler::name(Register r1, Register r2, Register b4, Disp d4, \
967 Condition m3) { \
968 rrs_form(op, r1, r2, b4, d4, m3); \
969 } \
970 void Assembler::name(Register r1, Register r2, Condition m3, \
971 const MemOperand& opnd) { \
972 name(r1, r2, opnd.getBaseRegister(), opnd.getDisplacement(), m3); \
973 }
974
975void Assembler::rrs_form(Opcode op, Register r1, Register r2, Register b4,
976 Disp d4, Condition m3) {
977 DCHECK(is_uint12(d4));
978 DCHECK(is_uint16(op));
979 uint64_t code = (static_cast<uint64_t>(op & 0xFF00)) * B32 |
980 (static_cast<uint64_t>(r1.code())) * B36 |
981 (static_cast<uint64_t>(r2.code())) * B32 |
982 (static_cast<uint64_t>(b4.code())) * B28 |
983 (static_cast<uint64_t>(d4)) * B16 |
984 (static_cast<uint64_t>(m3)) << 12 |
985 (static_cast<uint64_t>(op & 0x00FF));
986 emit6bytes(code);
987}
988
989// RIS format: <insn> R1,I2,M3,D4(B4)
990// +--------+----+----+----+-------------+--------+--------+
991// | OpCode | R1 | M3 | B4 | D4 | I2 | OpCode |
992// +--------+----+----+----+-------------+--------+--------+
993// 0 8 12 16 20 32 40 47
994#define RIS_FORM_EMIT(name, op) \
995 void Assembler::name(Register r1, Condition m3, Register b4, Disp d4, \
996 const Operand& i2) { \
997 ris_form(op, r1, m3, b4, d4, i2); \
998 } \
999 void Assembler::name(Register r1, const Operand& i2, Condition m3, \
1000 const MemOperand& opnd) { \
1001 name(r1, m3, opnd.getBaseRegister(), opnd.getDisplacement(), i2); \
1002 }
1003
1004void Assembler::ris_form(Opcode op, Register r1, Condition m3, Register b4,
1005 Disp d4, const Operand& i2) {
1006 DCHECK(is_uint12(d4));
1007 DCHECK(is_uint16(op));
1008 DCHECK(is_uint8(i2.imm_));
1009 uint64_t code = (static_cast<uint64_t>(op & 0xFF00)) * B32 |
1010 (static_cast<uint64_t>(r1.code())) * B36 |
1011 (static_cast<uint64_t>(m3)) * B32 |
1012 (static_cast<uint64_t>(b4.code())) * B28 |
1013 (static_cast<uint64_t>(d4)) * B16 |
1014 (static_cast<uint64_t>(i2.imm_)) << 8 |
1015 (static_cast<uint64_t>(op & 0x00FF));
1016 emit6bytes(code);
1017}
1018
1019// S format: <insn> D2(B2)
1020// +------------------+----+-------------+
1021// | OpCode | B2 | D2 |
1022// +------------------+----+-------------+
1023// 0 16 20 31
1024#define S_FORM_EMIT(name, op) \
1025 void Assembler::name(Register b1, Disp d2) { s_form(op, b1, d2); } \
1026 void Assembler::name(const MemOperand& opnd) { \
1027 name(opnd.getBaseRegister(), opnd.getDisplacement()); \
1028 }
1029
1030void Assembler::s_form(Opcode op, Register b1, Disp d2) {
1031 DCHECK(is_uint12(d2));
1032 emit4bytes(op << 16 | b1.code() * B12 | d2);
1033}
1034
1035// SI format: <insn> D1(B1),I2
1036// +--------+---------+----+-------------+
1037// | OpCode | I2 | B1 | D1 |
1038// +--------+---------+----+-------------+
1039// 0 8 16 20 31
1040#define SI_FORM_EMIT(name, op) \
1041 void Assembler::name(const Operand& i2, Register b1, Disp d1) { \
1042 si_form(op, i2, b1, d1); \
1043 } \
1044 void Assembler::name(const MemOperand& opnd, const Operand& i2) { \
1045 name(i2, opnd.getBaseRegister(), opnd.getDisplacement()); \
1046 }
1047
1048void Assembler::si_form(Opcode op, const Operand& i2, Register b1, Disp d1) {
1049 emit4bytes((op & 0x00FF) << 24 | i2.imm_ * B16 | b1.code() * B12 | d1);
1050}
1051
1052// SIY format: <insn> D1(B1),I2
1053// +--------+---------+----+-------------+--------+--------+
1054// | OpCode | I2 | B1 | DL1 | DH1 | OpCode |
1055// +--------+---------+----+-------------+--------+--------+
1056// 0 8 16 20 32 36 40 47
1057#define SIY_FORM_EMIT(name, op) \
1058 void Assembler::name(const Operand& i2, Register b1, Disp d1) { \
1059 siy_form(op, i2, b1, d1); \
1060 } \
1061 void Assembler::name(const MemOperand& opnd, const Operand& i2) { \
1062 name(i2, opnd.getBaseRegister(), opnd.getDisplacement()); \
1063 }
1064
1065void Assembler::siy_form(Opcode op, const Operand& i2, Register b1, Disp d1) {
1066 DCHECK(is_uint20(d1));
1067 DCHECK(is_uint16(op));
1068 DCHECK(is_uint8(i2.imm_));
1069 uint64_t code = (static_cast<uint64_t>(op & 0xFF00)) * B32 |
1070 (static_cast<uint64_t>(i2.imm_)) * B32 |
1071 (static_cast<uint64_t>(b1.code())) * B28 |
1072 (static_cast<uint64_t>(d1 & 0x0FFF)) * B16 |
1073 (static_cast<uint64_t>(d1 & 0x0FF000)) >> 4 |
1074 (static_cast<uint64_t>(op & 0x00FF));
1075 emit6bytes(code);
1076}
1077
1078// SIL format: <insn> D1(B1),I2
1079// +------------------+----+-------------+-----------------+
1080// | OpCode | B1 | D1 | I2 |
1081// +------------------+----+-------------+-----------------+
1082// 0 16 20 32 47
1083#define SIL_FORM_EMIT(name, op) \
1084 void Assembler::name(Register b1, Disp d1, const Operand& i2) { \
1085 sil_form(op, b1, d1, i2); \
1086 } \
1087 void Assembler::name(const MemOperand& opnd, const Operand& i2) { \
1088 name(opnd.getBaseRegister(), opnd.getDisplacement(), i2); \
1089 }
1090
1091void Assembler::sil_form(Opcode op, Register b1, Disp d1, const Operand& i2) {
1092 DCHECK(is_uint12(d1));
1093 DCHECK(is_uint16(op));
1094 DCHECK(is_uint16(i2.imm_));
1095 uint64_t code = (static_cast<uint64_t>(op)) * B32 |
1096 (static_cast<uint64_t>(b1.code())) * B28 |
1097 (static_cast<uint64_t>(d1)) * B16 |
1098 (static_cast<uint64_t>(i2.imm_));
1099 emit6bytes(code);
1100}
1101
1102// RXF format: <insn> R1,R3,D2(X2,B2)
1103// +--------+----+----+----+-------------+----+---+--------+
1104// | OpCode | R3 | X2 | B2 | D2 | R1 |///| OpCode |
1105// +--------+----+----+----+-------------+----+---+--------+
1106// 0 8 12 16 20 32 36 40 47
1107#define RXF_FORM_EMIT(name, op) \
1108 void Assembler::name(Register r1, Register r3, Register b2, Register x2, \
1109 Disp d2) { \
1110 rxf_form(op, r1, r3, b2, x2, d2); \
1111 } \
1112 void Assembler::name(Register r1, Register r3, const MemOperand& opnd) { \
1113 name(r1, r3, opnd.getBaseRegister(), opnd.getIndexRegister(), \
1114 opnd.getDisplacement()); \
1115 }
1116
1117void Assembler::rxf_form(Opcode op, Register r1, Register r3, Register b2,
1118 Register x2, Disp d2) {
1119 DCHECK(is_uint12(d2));
1120 DCHECK(is_uint16(op));
1121 uint64_t code = (static_cast<uint64_t>(op & 0xFF00)) * B32 |
1122 (static_cast<uint64_t>(r3.code())) * B36 |
1123 (static_cast<uint64_t>(x2.code())) * B32 |
1124 (static_cast<uint64_t>(b2.code())) * B28 |
1125 (static_cast<uint64_t>(d2)) * B16 |
1126 (static_cast<uint64_t>(r1.code())) * B12 |
1127 (static_cast<uint64_t>(op & 0x00FF));
1128 emit6bytes(code);
1129}
1130
1131// SS1 format: <insn> D1(L,B1),D2(B3)
1132// +--------+----+----+----+-------------+----+------------+
1133// | OpCode | L | B1 | D1 | B2 | D2 |
1134// +--------+----+----+----+-------------+----+------------+
1135// 0 8 12 16 20 32 36 47
1136#define SS1_FORM_EMIT(name, op) \
1137 void Assembler::name(Register b1, Disp d1, Register b2, Disp d2, Length l) { \
1138 ss_form(op, l, b1, d1, b2, d2); \
1139 } \
1140 void Assembler::name(const MemOperand& opnd1, const MemOperand& opnd2, \
1141 Length length) { \
1142 name(opnd1.getBaseRegister(), opnd1.getDisplacement(), \
1143 opnd2.getBaseRegister(), opnd2.getDisplacement(), length); \
1144 }
1145
1146void Assembler::ss_form(Opcode op, Length l, Register b1, Disp d1, Register b2,
1147 Disp d2) {
1148 DCHECK(is_uint12(d2));
1149 DCHECK(is_uint12(d1));
1150 DCHECK(is_uint8(op));
1151 DCHECK(is_uint8(l));
1152 uint64_t code =
1153 (static_cast<uint64_t>(op)) * B40 | (static_cast<uint64_t>(l)) * B32 |
1154 (static_cast<uint64_t>(b1.code())) * B28 |
1155 (static_cast<uint64_t>(d1)) * B16 |
1156 (static_cast<uint64_t>(b2.code())) * B12 | (static_cast<uint64_t>(d2));
1157 emit6bytes(code);
1158}
1159
1160// SS2 format: <insn> D1(L1,B1), D2(L3,B3)
1161// +--------+----+----+----+-------------+----+------------+
1162// | OpCode | L1 | L2 | B1 | D1 | B2 | D2 |
1163// +--------+----+----+----+-------------+----+------------+
1164// 0 8 12 16 20 32 36 47
1165#define SS2_FORM_EMIT(name, op) \
1166 void Assembler::name(Register b1, Disp d1, Register b2, Disp d2, Length l1, \
1167 Length l2) { \
1168 ss_form(op, l1, l2, b1, d1, b2, d2); \
1169 } \
1170 void Assembler::name(const MemOperand& opnd1, const MemOperand& opnd2, \
1171 Length length1, Length length2) { \
1172 name(opnd1.getBaseRegister(), opnd1.getDisplacement(), \
1173 opnd2.getBaseRegister(), opnd2.getDisplacement(), length1, length2); \
1174 }
1175
1176void Assembler::ss_form(Opcode op, Length l1, Length l2, Register b1, Disp d1,
1177 Register b2, Disp d2) {
1178 DCHECK(is_uint12(d2));
1179 DCHECK(is_uint12(d1));
1180 DCHECK(is_uint8(op));
1181 DCHECK(is_uint4(l2));
1182 DCHECK(is_uint4(l1));
1183 uint64_t code =
1184 (static_cast<uint64_t>(op)) * B40 | (static_cast<uint64_t>(l1)) * B36 |
1185 (static_cast<uint64_t>(l2)) * B32 |
1186 (static_cast<uint64_t>(b1.code())) * B28 |
1187 (static_cast<uint64_t>(d1)) * B16 |
1188 (static_cast<uint64_t>(b2.code())) * B12 | (static_cast<uint64_t>(d2));
1189 emit6bytes(code);
1190}
1191
1192// SS3 format: <insn> D1(L1,B1), D2(I3,B2)
1193// +--------+----+----+----+-------------+----+------------+
1194// | OpCode | L1 | I3 | B1 | D1 | B2 | D2 |
1195// +--------+----+----+----+-------------+----+------------+
1196// 0 8 12 16 20 32 36 47
1197#define SS3_FORM_EMIT(name, op) \
1198 void Assembler::name(const Operand& i3, Register b1, Disp d1, Register b2, \
1199 Disp d2, Length l1) { \
1200 ss_form(op, l1, i3, b1, d1, b2, d2); \
1201 } \
1202 void Assembler::name(const MemOperand& opnd1, const MemOperand& opnd2, \
1203 Length length) { \
1204 DCHECK(false); \
1205 }
1206void Assembler::ss_form(Opcode op, Length l1, const Operand& i3, Register b1,
1207 Disp d1, Register b2, Disp d2) {
1208 DCHECK(is_uint12(d2));
1209 DCHECK(is_uint12(d1));
1210 DCHECK(is_uint8(op));
1211 DCHECK(is_uint4(l1));
1212 DCHECK(is_uint4(i3.imm_));
1213 uint64_t code =
1214 (static_cast<uint64_t>(op)) * B40 | (static_cast<uint64_t>(l1)) * B36 |
1215 (static_cast<uint64_t>(i3.imm_)) * B32 |
1216 (static_cast<uint64_t>(b1.code())) * B28 |
1217 (static_cast<uint64_t>(d1)) * B16 |
1218 (static_cast<uint64_t>(b2.code())) * B12 | (static_cast<uint64_t>(d2));
1219 emit6bytes(code);
1220}
1221
1222// SS4 format: <insn> D1(R1,B1), D2(R3,B2)
1223// +--------+----+----+----+-------------+----+------------+
1224// | OpCode | R1 | R3 | B1 | D1 | B2 | D2 |
1225// +--------+----+----+----+-------------+----+------------+
1226// 0 8 12 16 20 32 36 47
1227#define SS4_FORM_EMIT(name, op) \
1228 void Assembler::name(Register r1, Register r3, Register b1, Disp d1, \
1229 Register b2, Disp d2) { \
1230 ss_form(op, r1, r3, b1, d1, b2, d2); \
1231 } \
1232 void Assembler::name(const MemOperand& opnd1, const MemOperand& opnd2) { \
1233 DCHECK(false); \
1234 }
1235void Assembler::ss_form(Opcode op, Register r1, Register r3, Register b1,
1236 Disp d1, Register b2, Disp d2) {
1237 DCHECK(is_uint12(d2));
1238 DCHECK(is_uint12(d1));
1239 DCHECK(is_uint8(op));
1240 uint64_t code = (static_cast<uint64_t>(op)) * B40 |
1241 (static_cast<uint64_t>(r1.code())) * B36 |
1242 (static_cast<uint64_t>(r3.code())) * B32 |
1243 (static_cast<uint64_t>(b1.code())) * B28 |
1244 (static_cast<uint64_t>(d1)) * B16 |
1245 (static_cast<uint64_t>(b2.code())) * B12 |
1246 (static_cast<uint64_t>(d2));
1247 emit6bytes(code);
1248}
1249
1250// SS5 format: <insn> D1(R1,B1), D2(R3,B2)
1251// +--------+----+----+----+-------------+----+------------+
1252// | OpCode | R1 | R3 | B2 | D2 | B4 | D4 |
1253// +--------+----+----+----+-------------+----+------------+
1254// 0 8 12 16 20 32 36 47
1255#define SS5_FORM_EMIT(name, op) \
1256 void Assembler::name(Register r1, Register r3, Register b2, Disp d2, \
1257 Register b4, Disp d4) { \
1258 ss_form(op, r1, r3, b2, d2, b4, d4); /*SS5 use the same form as SS4*/ \
1259 } \
1260 void Assembler::name(const MemOperand& opnd1, const MemOperand& opnd2) { \
1261 DCHECK(false); \
1262 }
1263
1264#define SS6_FORM_EMIT(name, op) SS1_FORM_EMIT(name, op)
1265
1266// SSE format: <insn> D1(B1),D2(B2)
1267// +------------------+----+-------------+----+------------+
1268// | OpCode | B1 | D1 | B2 | D2 |
1269// +------------------+----+-------------+----+------------+
1270// 0 8 12 16 20 32 36 47
1271#define SSE_FORM_EMIT(name, op) \
1272 void Assembler::name(Register b1, Disp d1, Register b2, Disp d2) { \
1273 sse_form(op, b1, d1, b2, d2); \
1274 } \
1275 void Assembler::name(const MemOperand& opnd1, const MemOperand& opnd2) { \
1276 name(opnd1.getBaseRegister(), opnd1.getDisplacement(), \
1277 opnd2.getBaseRegister(), opnd2.getDisplacement()); \
1278 }
1279void Assembler::sse_form(Opcode op, Register b1, Disp d1, Register b2,
1280 Disp d2) {
1281 DCHECK(is_uint12(d2));
1282 DCHECK(is_uint12(d1));
1283 DCHECK(is_uint16(op));
1284 uint64_t code = (static_cast<uint64_t>(op)) * B32 |
1285 (static_cast<uint64_t>(b1.code())) * B28 |
1286 (static_cast<uint64_t>(d1)) * B16 |
1287 (static_cast<uint64_t>(b2.code())) * B12 |
1288 (static_cast<uint64_t>(d2));
1289 emit6bytes(code);
1290}
1291
1292// SSF format: <insn> R3, D1(B1),D2(B2),R3
1293// +--------+----+----+----+-------------+----+------------+
1294// | OpCode | R3 |OpCd| B1 | D1 | B2 | D2 |
1295// +--------+----+----+----+-------------+----+------------+
1296// 0 8 12 16 20 32 36 47
1297#define SSF_FORM_EMIT(name, op) \
1298 void Assembler::name(Register r3, Register b1, Disp d1, Register b2, \
1299 Disp d2) { \
1300 ssf_form(op, r3, b1, d1, b2, d2); \
1301 } \
1302 void Assembler::name(Register r3, const MemOperand& opnd1, \
1303 const MemOperand& opnd2) { \
1304 name(r3, opnd1.getBaseRegister(), opnd1.getDisplacement(), \
1305 opnd2.getBaseRegister(), opnd2.getDisplacement()); \
1306 }
1307
1308void Assembler::ssf_form(Opcode op, Register r3, Register b1, Disp d1,
1309 Register b2, Disp d2) {
1310 DCHECK(is_uint12(d2));
1311 DCHECK(is_uint12(d1));
1312 DCHECK(is_uint12(op));
1313 uint64_t code = (static_cast<uint64_t>(op & 0xFF0)) * B36 |
1314 (static_cast<uint64_t>(r3.code())) * B36 |
1315 (static_cast<uint64_t>(op & 0x00F)) * B32 |
1316 (static_cast<uint64_t>(b1.code())) * B28 |
1317 (static_cast<uint64_t>(d1)) * B16 |
1318 (static_cast<uint64_t>(b2.code())) * B12 |
1319 (static_cast<uint64_t>(d2));
1320 emit6bytes(code);
1321}
1322
1323// RRF1 format: <insn> R1,R2,R3
1324// +------------------+----+----+----+----+
1325// | OpCode | R3 | | R1 | R2 |
1326// +------------------+----+----+----+----+
1327// 0 16 20 24 28 31
1328#define RRF1_FORM_EMIT(name, op) \
1329 void Assembler::name(Register r1, Register r2, Register r3) { \
1330 rrf1_form(op << 16 | r3.code() * B12 | r1.code() * B4 | r2.code()); \
1331 }
1332
1333void Assembler::rrf1_form(Opcode op, Register r1, Register r2, Register r3) {
1334 uint32_t code = op << 16 | r3.code() * B12 | r1.code() * B4 | r2.code();
1335 emit4bytes(code);
1336}
1337
1338void Assembler::rrf1_form(uint32_t code) { emit4bytes(code); }
1339
1340// RRF2 format: <insn> R1,R2,M3
1341// +------------------+----+----+----+----+
1342// | OpCode | M3 | | R1 | R2 |
1343// +------------------+----+----+----+----+
1344// 0 16 20 24 28 31
1345#define RRF2_FORM_EMIT(name, op) \
1346 void Assembler::name(Condition m3, Register r1, Register r2) { \
1347 rrf2_form(op << 16 | m3 * B12 | r1.code() * B4 | r2.code()); \
1348 }
1349
1350void Assembler::rrf2_form(uint32_t code) { emit4bytes(code); }
1351
1352// RRF3 format: <insn> R1,R2,R3,M4
1353// +------------------+----+----+----+----+
1354// | OpCode | R3 | M4 | R1 | R2 |
1355// +------------------+----+----+----+----+
1356// 0 16 20 24 28 31
1357#define RRF3_FORM_EMIT(name, op) \
1358 void Assembler::name(Register r3, Conition m4, Register r1, Register r2) { \
1359 rrf3_form(op << 16 | r3.code() * B12 | m4 * B8 | r1.code() * B4 | \
1360 r2.code()); \
1361 }
1362
1363void Assembler::rrf3_form(uint32_t code) { emit4bytes(code); }
1364
1365// RRF-e format: <insn> R1,M3,R2,M4
1366// +------------------+----+----+----+----+
1367// | OpCode | M3 | M4 | R1 | R2 |
1368// +------------------+----+----+----+----+
1369// 0 16 20 24 28 31
1370void Assembler::rrfe_form(Opcode op, Condition m3, Condition m4, Register r1,
1371 Register r2) {
1372 uint32_t code = op << 16 | m3 * B12 | m4 * B8 | r1.code() * B4 | r2.code();
1373 emit4bytes(code);
1374}
1375
1376// end of S390 Instruction generation
1377
1378// start of S390 instruction
1379RX_FORM_EMIT(bc, BC)
1380RR_FORM_EMIT(bctr, BCTR)
1381RXE_FORM_EMIT(ceb, CEB)
1382RRE_FORM_EMIT(cefbr, CEFBR)
1383SS1_FORM_EMIT(ed, ED)
1384RX_FORM_EMIT(ex, EX)
1385RRE_FORM_EMIT(flogr, FLOGR)
1386RRE_FORM_EMIT(lcgr, LCGR)
1387RR_FORM_EMIT(lcr, LCR)
1388RX_FORM_EMIT(le_z, LE)
1389RXY_FORM_EMIT(ley, LEY)
1390RIL1_FORM_EMIT(llihf, LLIHF)
1391RIL1_FORM_EMIT(llilf, LLILF)
1392RRE_FORM_EMIT(lngr, LNGR)
1393RR_FORM_EMIT(lnr, LNR)
1394RSY1_FORM_EMIT(loc, LOC)
1395RXY_FORM_EMIT(lrv, LRV)
1396RXY_FORM_EMIT(lrvh, LRVH)
1397SS1_FORM_EMIT(mvn, MVN)
1398SS1_FORM_EMIT(nc, NC)
1399SI_FORM_EMIT(ni, NI)
1400RIL1_FORM_EMIT(nihf, NIHF)
1401RIL1_FORM_EMIT(nilf, NILF)
1402RI1_FORM_EMIT(nilh, NILH)
1403RI1_FORM_EMIT(nill, NILL)
1404RIL1_FORM_EMIT(oihf, OIHF)
1405RIL1_FORM_EMIT(oilf, OILF)
1406RI1_FORM_EMIT(oill, OILL)
1407RRE_FORM_EMIT(popcnt, POPCNT_Z)
1408RIL1_FORM_EMIT(slfi, SLFI)
1409RXY_FORM_EMIT(slgf, SLGF)
1410RIL1_FORM_EMIT(slgfi, SLGFI)
1411RXY_FORM_EMIT(strv, STRV)
1412RI1_FORM_EMIT(tmll, TMLL)
1413SS1_FORM_EMIT(tr, TR)
1414S_FORM_EMIT(ts, TS)
1415RIL1_FORM_EMIT(xihf, XIHF)
1416RIL1_FORM_EMIT(xilf, XILF)
1417
1418// -------------------------
1419// Load Address Instructions
1420// -------------------------
1421// Load Address Register-Storage
1422void Assembler::la(Register r1, const MemOperand& opnd) {
1423 rx_form(LA, r1, opnd.rx(), opnd.rb(), opnd.offset());
1424}
1425
1426// Load Address Register-Storage
1427void Assembler::lay(Register r1, const MemOperand& opnd) {
1428 rxy_form(LAY, r1, opnd.rx(), opnd.rb(), opnd.offset());
1429}
1430
1431// Load Address Relative Long
1432void Assembler::larl(Register r1, const Operand& opnd) {
1433 ril_form(LARL, r1, opnd);
1434}
1435
1436// Load Address Relative Long
1437void Assembler::larl(Register r1, Label* l) {
1438 larl(r1, Operand(branch_offset(l)));
1439}
1440
1441// -----------------
1442// Load Instructions
1443// -----------------
1444// Load Byte Register-Storage (32<-8)
1445void Assembler::lb(Register r, const MemOperand& src) {
1446 rxy_form(LB, r, src.rx(), src.rb(), src.offset());
1447}
1448
1449// Load Byte Register-Register (32<-8)
1450void Assembler::lbr(Register r1, Register r2) { rre_form(LBR, r1, r2); }
1451
1452// Load Byte Register-Storage (64<-8)
1453void Assembler::lgb(Register r, const MemOperand& src) {
1454 rxy_form(LGB, r, src.rx(), src.rb(), src.offset());
1455}
1456
1457// Load Byte Register-Register (64<-8)
1458void Assembler::lgbr(Register r1, Register r2) { rre_form(LGBR, r1, r2); }
1459
1460// Load Halfword Register-Storage (32<-16)
1461void Assembler::lh(Register r, const MemOperand& src) {
1462 rx_form(LH, r, src.rx(), src.rb(), src.offset());
1463}
1464
1465// Load Halfword Register-Storage (32<-16)
1466void Assembler::lhy(Register r, const MemOperand& src) {
1467 rxy_form(LHY, r, src.rx(), src.rb(), src.offset());
1468}
1469
1470// Load Halfword Register-Register (32<-16)
1471void Assembler::lhr(Register r1, Register r2) { rre_form(LHR, r1, r2); }
1472
1473// Load Halfword Register-Storage (64<-16)
1474void Assembler::lgh(Register r, const MemOperand& src) {
1475 rxy_form(LGH, r, src.rx(), src.rb(), src.offset());
1476}
1477
1478// Load Halfword Register-Register (64<-16)
1479void Assembler::lghr(Register r1, Register r2) { rre_form(LGHR, r1, r2); }
1480
1481// Load Register-Storage (32)
1482void Assembler::l(Register r, const MemOperand& src) {
1483 rx_form(L, r, src.rx(), src.rb(), src.offset());
1484}
1485
1486// Load Register-Storage (32)
1487void Assembler::ly(Register r, const MemOperand& src) {
1488 rxy_form(LY, r, src.rx(), src.rb(), src.offset());
1489}
1490
1491// Load Register-Register (32)
1492void Assembler::lr(Register r1, Register r2) { rr_form(LR, r1, r2); }
1493
1494// Load Register-Storage (64)
1495void Assembler::lg(Register r, const MemOperand& src) {
1496 rxy_form(LG, r, src.rx(), src.rb(), src.offset());
1497}
1498
1499// Load Register-Register (64)
1500void Assembler::lgr(Register r1, Register r2) { rre_form(LGR, r1, r2); }
1501
1502// Load Register-Storage (64<-32)
1503void Assembler::lgf(Register r, const MemOperand& src) {
1504 rxy_form(LGF, r, src.rx(), src.rb(), src.offset());
1505}
1506
1507// Load Sign Extended Register-Register (64<-32)
1508void Assembler::lgfr(Register r1, Register r2) { rre_form(LGFR, r1, r2); }
1509
1510// Load Halfword Immediate (32)
1511void Assembler::lhi(Register r, const Operand& imm) { ri_form(LHI, r, imm); }
1512
1513// Load Halfword Immediate (64)
1514void Assembler::lghi(Register r, const Operand& imm) { ri_form(LGHI, r, imm); }
1515
1516// --------------------------
1517// Load And Test Instructions
1518// --------------------------
1519// Load and Test Register-Storage (32)
1520void Assembler::lt_z(Register r1, const MemOperand& opnd) {
1521 rxy_form(LT, r1, opnd.rx(), opnd.rb(), opnd.offset());
1522}
1523
1524// Load and Test Register-Storage (64)
1525void Assembler::ltg(Register r1, const MemOperand& opnd) {
1526 rxy_form(LTG, r1, opnd.rx(), opnd.rb(), opnd.offset());
1527}
1528
1529// Load and Test Register-Register (32)
1530void Assembler::ltr(Register r1, Register r2) { rr_form(LTR, r1, r2); }
1531
1532// Load and Test Register-Register (64)
1533void Assembler::ltgr(Register r1, Register r2) { rre_form(LTGR, r1, r2); }
1534
1535// Load and Test Register-Register (64<-32)
1536void Assembler::ltgfr(Register r1, Register r2) { rre_form(LTGFR, r1, r2); }
1537
1538// -------------------------
1539// Load Logical Instructions
1540// -------------------------
1541// Load Logical Character (32) - loads a byte and zero ext.
1542void Assembler::llc(Register r1, const MemOperand& opnd) {
1543 rxy_form(LLC, r1, opnd.rx(), opnd.rb(), opnd.offset());
1544}
1545
1546// Load Logical Character (64) - loads a byte and zero ext.
1547void Assembler::llgc(Register r1, const MemOperand& opnd) {
1548 rxy_form(LLGC, r1, opnd.rx(), opnd.rb(), opnd.offset());
1549}
1550
1551// Load Logical halfword Register-Storage (64<-32)
1552void Assembler::llgf(Register r1, const MemOperand& opnd) {
1553 rxy_form(LLGF, r1, opnd.rx(), opnd.rb(), opnd.offset());
1554}
1555
1556// Load Logical Register-Register (64<-32)
1557void Assembler::llgfr(Register r1, Register r2) { rre_form(LLGFR, r1, r2); }
1558
1559// Load Logical halfword Register-Storage (32)
1560void Assembler::llh(Register r1, const MemOperand& opnd) {
1561 rxy_form(LLH, r1, opnd.rx(), opnd.rb(), opnd.offset());
1562}
1563
1564// Load Logical halfword Register-Storage (64)
1565void Assembler::llgh(Register r1, const MemOperand& opnd) {
1566 rxy_form(LLGH, r1, opnd.rx(), opnd.rb(), opnd.offset());
1567}
1568
1569// Load Logical halfword Register-Register (32)
1570void Assembler::llhr(Register r1, Register r2) { rre_form(LLHR, r1, r2); }
1571
1572// Load Logical halfword Register-Register (64)
1573void Assembler::llghr(Register r1, Register r2) { rre_form(LLGHR, r1, r2); }
1574
1575// -------------------
1576// Branch Instructions
1577// -------------------
1578// Branch and Save
1579void Assembler::basr(Register r1, Register r2) { rr_form(BASR, r1, r2); }
1580
1581// Indirect Conditional Branch via register
1582void Assembler::bcr(Condition m, Register target) { rr_form(BCR, m, target); }
1583
1584// Branch on Count (32)
1585void Assembler::bct(Register r, const MemOperand& opnd) {
1586 rx_form(BCT, r, opnd.rx(), opnd.rb(), opnd.offset());
1587}
1588
1589// Branch on Count (64)
1590void Assembler::bctg(Register r, const MemOperand& opnd) {
1591 rxy_form(BCTG, r, opnd.rx(), opnd.rb(), opnd.offset());
1592}
1593
1594// Branch Relative and Save (32)
1595void Assembler::bras(Register r, const Operand& opnd) {
1596 ri_form(BRAS, r, opnd);
1597}
1598
1599// Branch Relative and Save (64)
1600void Assembler::brasl(Register r, const Operand& opnd) {
1601 ril_form(BRASL, r, opnd);
1602}
1603
1604// Branch relative on Condition (32)
1605void Assembler::brc(Condition c, const Operand& opnd) {
1606 // BRC actually encodes # of halfwords, so divide by 2.
1607 int16_t numHalfwords = static_cast<int16_t>(opnd.immediate()) / 2;
1608 Operand halfwordOp = Operand(numHalfwords);
1609 halfwordOp.setBits(16);
1610 ri_form(BRC, c, halfwordOp);
1611}
1612
1613// Branch Relative on Condition (64)
1614void Assembler::brcl(Condition c, const Operand& opnd, bool isCodeTarget) {
1615 Operand halfwordOp = opnd;
1616 // Operand for code targets will be index to code_targets_
1617 if (!isCodeTarget) {
1618 // BRCL actually encodes # of halfwords, so divide by 2.
1619 int32_t numHalfwords = static_cast<int32_t>(opnd.immediate()) / 2;
1620 halfwordOp = Operand(numHalfwords);
1621 }
1622 ril_form(BRCL, c, halfwordOp);
1623}
1624
1625// Branch On Count (32)
1626void Assembler::brct(Register r1, const Operand& imm) {
1627 // BRCT encodes # of halfwords, so divide by 2.
1628 int16_t numHalfwords = static_cast<int16_t>(imm.immediate()) / 2;
1629 Operand halfwordOp = Operand(numHalfwords);
1630 halfwordOp.setBits(16);
1631 ri_form(BRCT, r1, halfwordOp);
1632}
1633
1634// Branch On Count (32)
1635void Assembler::brctg(Register r1, const Operand& imm) {
1636 // BRCTG encodes # of halfwords, so divide by 2.
1637 int16_t numHalfwords = static_cast<int16_t>(imm.immediate()) / 2;
1638 Operand halfwordOp = Operand(numHalfwords);
1639 halfwordOp.setBits(16);
1640 ri_form(BRCTG, r1, halfwordOp);
1641}
1642
1643// --------------------
1644// Compare Instructions
1645// --------------------
1646// Compare Register-Storage (32)
1647void Assembler::c(Register r, const MemOperand& opnd) {
1648 rx_form(C, r, opnd.rx(), opnd.rb(), opnd.offset());
1649}
1650
1651// Compare Register-Storage (32)
1652void Assembler::cy(Register r, const MemOperand& opnd) {
1653 rxy_form(CY, r, opnd.rx(), opnd.rb(), opnd.offset());
1654}
1655
1656// Compare Register-Register (32)
1657void Assembler::cr_z(Register r1, Register r2) { rr_form(CR, r1, r2); }
1658
1659// Compare Register-Storage (64)
1660void Assembler::cg(Register r, const MemOperand& opnd) {
1661 rxy_form(CG, r, opnd.rx(), opnd.rb(), opnd.offset());
1662}
1663
1664// Compare Register-Register (64)
1665void Assembler::cgr(Register r1, Register r2) { rre_form(CGR, r1, r2); }
1666
1667// Compare Halfword Register-Storage (32)
1668void Assembler::ch(Register r, const MemOperand& opnd) {
1669 rx_form(CH, r, opnd.rx(), opnd.rb(), opnd.offset());
1670}
1671
1672// Compare Halfword Register-Storage (32)
1673void Assembler::chy(Register r, const MemOperand& opnd) {
1674 rxy_form(CHY, r, opnd.rx(), opnd.rb(), opnd.offset());
1675}
1676
1677// Compare Halfword Immediate (32)
1678void Assembler::chi(Register r, const Operand& opnd) { ri_form(CHI, r, opnd); }
1679
1680// Compare Halfword Immediate (64)
1681void Assembler::cghi(Register r, const Operand& opnd) {
1682 ri_form(CGHI, r, opnd);
1683}
1684
1685// Compare Immediate (32)
1686void Assembler::cfi(Register r, const Operand& opnd) { ril_form(CFI, r, opnd); }
1687
1688// Compare Immediate (64)
1689void Assembler::cgfi(Register r, const Operand& opnd) {
1690 ril_form(CGFI, r, opnd);
1691}
1692
1693// ----------------------------
1694// Compare Logical Instructions
1695// ----------------------------
1696// Compare Logical Register-Storage (32)
1697void Assembler::cl(Register r, const MemOperand& opnd) {
1698 rx_form(CL, r, opnd.rx(), opnd.rb(), opnd.offset());
1699}
1700
1701// Compare Logical Register-Storage (32)
1702void Assembler::cly(Register r, const MemOperand& opnd) {
1703 rxy_form(CLY, r, opnd.rx(), opnd.rb(), opnd.offset());
1704}
1705
1706// Compare Logical Register-Register (32)
1707void Assembler::clr(Register r1, Register r2) { rr_form(CLR, r1, r2); }
1708
1709// Compare Logical Register-Storage (64)
1710void Assembler::clg(Register r, const MemOperand& opnd) {
1711 rxy_form(CLG, r, opnd.rx(), opnd.rb(), opnd.offset());
1712}
1713
1714// Compare Logical Register-Register (64)
1715void Assembler::clgr(Register r1, Register r2) { rre_form(CLGR, r1, r2); }
1716
1717// Compare Logical Immediate (32)
1718void Assembler::clfi(Register r1, const Operand& i2) { ril_form(CLFI, r1, i2); }
1719
1720// Compare Logical Immediate (64<32)
1721void Assembler::clgfi(Register r1, const Operand& i2) {
1722 ril_form(CLGFI, r1, i2);
1723}
1724
1725// Compare Immediate (Mem - Imm) (8)
1726void Assembler::cli(const MemOperand& opnd, const Operand& imm) {
1727 si_form(CLI, imm, opnd.rb(), opnd.offset());
1728}
1729
1730// Compare Immediate (Mem - Imm) (8)
1731void Assembler::cliy(const MemOperand& opnd, const Operand& imm) {
1732 siy_form(CLIY, imm, opnd.rb(), opnd.offset());
1733}
1734
1735// Compare logical - mem to mem operation
1736void Assembler::clc(const MemOperand& opnd1, const MemOperand& opnd2,
1737 Length length) {
1738 ss_form(CLC, length - 1, opnd1.getBaseRegister(), opnd1.getDisplacement(),
1739 opnd2.getBaseRegister(), opnd2.getDisplacement());
1740}
1741
1742// ----------------------------
1743// Test Under Mask Instructions
1744// ----------------------------
1745// Test Under Mask (Mem - Imm) (8)
1746void Assembler::tm(const MemOperand& opnd, const Operand& imm) {
1747 si_form(TM, imm, opnd.rb(), opnd.offset());
1748}
1749
1750// Test Under Mask (Mem - Imm) (8)
1751void Assembler::tmy(const MemOperand& opnd, const Operand& imm) {
1752 siy_form(TMY, imm, opnd.rb(), opnd.offset());
1753}
1754
1755// -------------------------------
1756// Rotate and Insert Selected Bits
1757// -------------------------------
1758// Rotate-And-Insert-Selected-Bits
1759void Assembler::risbg(Register dst, Register src, const Operand& startBit,
1760 const Operand& endBit, const Operand& shiftAmt,
1761 bool zeroBits) {
1762 // High tag the top bit of I4/EndBit to zero out any unselected bits
1763 if (zeroBits)
1764 rie_f_form(RISBG, dst, src, startBit, Operand(endBit.imm_ | 0x80),
1765 shiftAmt);
1766 else
1767 rie_f_form(RISBG, dst, src, startBit, endBit, shiftAmt);
1768}
1769
1770// Rotate-And-Insert-Selected-Bits
1771void Assembler::risbgn(Register dst, Register src, const Operand& startBit,
1772 const Operand& endBit, const Operand& shiftAmt,
1773 bool zeroBits) {
1774 // High tag the top bit of I4/EndBit to zero out any unselected bits
1775 if (zeroBits)
1776 rie_f_form(RISBGN, dst, src, startBit, Operand(endBit.imm_ | 0x80),
1777 shiftAmt);
1778 else
1779 rie_f_form(RISBGN, dst, src, startBit, endBit, shiftAmt);
1780}
1781
1782// ---------------------------
1783// Move Character Instructions
1784// ---------------------------
1785// Move charactor - mem to mem operation
1786void Assembler::mvc(const MemOperand& opnd1, const MemOperand& opnd2,
1787 uint32_t length) {
1788 ss_form(MVC, length - 1, opnd1.getBaseRegister(), opnd1.getDisplacement(),
1789 opnd2.getBaseRegister(), opnd2.getDisplacement());
1790}
1791
1792// -----------------------
1793// 32-bit Add Instructions
1794// -----------------------
1795// Add Register-Storage (32)
1796void Assembler::a(Register r1, const MemOperand& opnd) {
1797 rx_form(A, r1, opnd.rx(), opnd.rb(), opnd.offset());
1798}
1799
1800// Add Register-Storage (32)
1801void Assembler::ay(Register r1, const MemOperand& opnd) {
1802 rxy_form(AY, r1, opnd.rx(), opnd.rb(), opnd.offset());
1803}
1804
1805// Add Immediate (32)
1806void Assembler::afi(Register r1, const Operand& opnd) {
1807 ril_form(AFI, r1, opnd);
1808}
1809
1810// Add Halfword Register-Storage (32)
1811void Assembler::ah(Register r1, const MemOperand& opnd) {
1812 rx_form(AH, r1, opnd.rx(), opnd.rb(), opnd.offset());
1813}
1814
1815// Add Halfword Register-Storage (32)
1816void Assembler::ahy(Register r1, const MemOperand& opnd) {
1817 rxy_form(AHY, r1, opnd.rx(), opnd.rb(), opnd.offset());
1818}
1819
1820// Add Halfword Immediate (32)
1821void Assembler::ahi(Register r1, const Operand& i2) { ri_form(AHI, r1, i2); }
1822
1823// Add Halfword Immediate (32)
1824void Assembler::ahik(Register r1, Register r3, const Operand& i2) {
1825 rie_form(AHIK, r1, r3, i2);
1826}
1827
1828// Add Register (32)
1829void Assembler::ar(Register r1, Register r2) { rr_form(AR, r1, r2); }
1830
1831// Add Register-Register-Register (32)
1832void Assembler::ark(Register r1, Register r2, Register r3) {
1833 rrf1_form(ARK, r1, r2, r3);
1834}
1835
1836// Add Storage-Imm (32)
1837void Assembler::asi(const MemOperand& opnd, const Operand& imm) {
1838 DCHECK(is_int8(imm.imm_));
1839 DCHECK(is_int20(opnd.offset()));
1840 siy_form(ASI, Operand(0xff & imm.imm_), opnd.rb(), 0xfffff & opnd.offset());
1841}
1842
1843// -----------------------
1844// 64-bit Add Instructions
1845// -----------------------
1846// Add Register-Storage (64)
1847void Assembler::ag(Register r1, const MemOperand& opnd) {
1848 rxy_form(AG, r1, opnd.rx(), opnd.rb(), opnd.offset());
1849}
1850
1851// Add Register-Storage (64<-32)
1852void Assembler::agf(Register r1, const MemOperand& opnd) {
1853 rxy_form(AGF, r1, opnd.rx(), opnd.rb(), opnd.offset());
1854}
1855
1856// Add Immediate (64)
1857void Assembler::agfi(Register r1, const Operand& opnd) {
1858 ril_form(ALFI, r1, opnd);
1859}
1860
1861// Add Register-Register (64<-32)
1862void Assembler::agfr(Register r1, Register r2) { rre_form(AGFR, r1, r2); }
1863
1864// Add Halfword Immediate (64)
1865void Assembler::aghi(Register r1, const Operand& i2) { ri_form(AGHI, r1, i2); }
1866
1867// Add Halfword Immediate (64)
1868void Assembler::aghik(Register r1, Register r3, const Operand& i2) {
1869 rie_form(AGHIK, r1, r3, i2);
1870}
1871
1872// Add Register (64)
1873void Assembler::agr(Register r1, Register r2) { rre_form(AGR, r1, r2); }
1874
1875// Add Register-Register-Register (64)
1876void Assembler::agrk(Register r1, Register r2, Register r3) {
1877 rrf1_form(AGRK, r1, r2, r3);
1878}
1879
1880// Add Storage-Imm (64)
1881void Assembler::agsi(const MemOperand& opnd, const Operand& imm) {
1882 DCHECK(is_int8(imm.imm_));
1883 DCHECK(is_int20(opnd.offset()));
1884 siy_form(AGSI, Operand(0xff & imm.imm_), opnd.rb(), 0xfffff & opnd.offset());
1885}
1886
1887// -------------------------------
1888// 32-bit Add Logical Instructions
1889// -------------------------------
1890// Add Logical Register-Storage (32)
1891void Assembler::al_z(Register r1, const MemOperand& opnd) {
1892 rx_form(AL, r1, opnd.rx(), opnd.rb(), opnd.offset());
1893}
1894
1895// Add Logical Register-Storage (32)
1896void Assembler::aly(Register r1, const MemOperand& opnd) {
1897 rxy_form(ALY, r1, opnd.rx(), opnd.rb(), opnd.offset());
1898}
1899
1900// Add Logical Immediate (32)
1901void Assembler::alfi(Register r1, const Operand& opnd) {
1902 ril_form(ALFI, r1, opnd);
1903}
1904
1905// Add Logical Register-Register (32)
1906void Assembler::alr(Register r1, Register r2) { rr_form(ALR, r1, r2); }
1907
1908// Add Logical With Carry Register-Register (32)
1909void Assembler::alcr(Register r1, Register r2) { rre_form(ALCR, r1, r2); }
1910
1911// Add Logical Register-Register-Register (32)
1912void Assembler::alrk(Register r1, Register r2, Register r3) {
1913 rrf1_form(ALRK, r1, r2, r3);
1914}
1915
1916// -------------------------------
1917// 64-bit Add Logical Instructions
1918// -------------------------------
1919// Add Logical Register-Storage (64)
1920void Assembler::alg(Register r1, const MemOperand& opnd) {
1921 rxy_form(ALG, r1, opnd.rx(), opnd.rb(), opnd.offset());
1922}
1923
1924// Add Logical Immediate (64)
1925void Assembler::algfi(Register r1, const Operand& opnd) {
1926 ril_form(ALGFI, r1, opnd);
1927}
1928
1929// Add Logical Register-Register (64)
1930void Assembler::algr(Register r1, Register r2) { rre_form(ALGR, r1, r2); }
1931
1932// Add Logical Register-Register-Register (64)
1933void Assembler::algrk(Register r1, Register r2, Register r3) {
1934 rrf1_form(ALGRK, r1, r2, r3);
1935}
1936
1937// ----------------------------
1938// 32-bit Subtract Instructions
1939// ----------------------------
1940// Subtract Register-Storage (32)
1941void Assembler::s(Register r1, const MemOperand& opnd) {
1942 rx_form(S, r1, opnd.rx(), opnd.rb(), opnd.offset());
1943}
1944
1945// Subtract Register-Storage (32)
1946void Assembler::sy(Register r1, const MemOperand& opnd) {
1947 rxy_form(SY, r1, opnd.rx(), opnd.rb(), opnd.offset());
1948}
1949
1950// Subtract Halfword Register-Storage (32)
1951void Assembler::sh(Register r1, const MemOperand& opnd) {
1952 rx_form(SH, r1, opnd.rx(), opnd.rb(), opnd.offset());
1953}
1954
1955// Subtract Halfword Register-Storage (32)
1956void Assembler::shy(Register r1, const MemOperand& opnd) {
1957 rxy_form(SHY, r1, opnd.rx(), opnd.rb(), opnd.offset());
1958}
1959
1960// Subtract Register (32)
1961void Assembler::sr(Register r1, Register r2) { rr_form(SR, r1, r2); }
1962
1963// Subtract Register-Register-Register (32)
1964void Assembler::srk(Register r1, Register r2, Register r3) {
1965 rrf1_form(SRK, r1, r2, r3);
1966}
1967
1968// ----------------------------
1969// 64-bit Subtract Instructions
1970// ----------------------------
1971// Subtract Register-Storage (64)
1972void Assembler::sg(Register r1, const MemOperand& opnd) {
1973 rxy_form(SG, r1, opnd.rx(), opnd.rb(), opnd.offset());
1974}
1975
1976// Subtract Register-Storage (64<-32)
1977void Assembler::sgf(Register r1, const MemOperand& opnd) {
1978 rxy_form(SGF, r1, opnd.rx(), opnd.rb(), opnd.offset());
1979}
1980
1981// Subtract Register (64)
1982void Assembler::sgr(Register r1, Register r2) { rre_form(SGR, r1, r2); }
1983
1984// Subtract Register (64<-32)
1985void Assembler::sgfr(Register r1, Register r2) { rre_form(SGFR, r1, r2); }
1986
1987// Subtract Register-Register-Register (64)
1988void Assembler::sgrk(Register r1, Register r2, Register r3) {
1989 rrf1_form(SGRK, r1, r2, r3);
1990}
1991
1992// ------------------------------------
1993// 32-bit Subtract Logical Instructions
1994// ------------------------------------
1995// Subtract Logical Register-Storage (32)
1996void Assembler::sl(Register r1, const MemOperand& opnd) {
1997 rx_form(SL, r1, opnd.rx(), opnd.rb(), opnd.offset());
1998}
1999
2000// Subtract Logical Register-Storage (32)
2001void Assembler::sly(Register r1, const MemOperand& opnd) {
2002 rxy_form(SLY, r1, opnd.rx(), opnd.rb(), opnd.offset());
2003}
2004
2005// Subtract Logical Register-Register (32)
2006void Assembler::slr(Register r1, Register r2) { rr_form(SLR, r1, r2); }
2007
2008// Subtract Logical With Borrow Register-Register (32)
2009void Assembler::slbr(Register r1, Register r2) { rre_form(SLBR, r1, r2); }
2010
2011// Subtract Logical Register-Register-Register (32)
2012void Assembler::slrk(Register r1, Register r2, Register r3) {
2013 rrf1_form(SLRK, r1, r2, r3);
2014}
2015
2016// ------------------------------------
2017// 64-bit Subtract Logical Instructions
2018// ------------------------------------
2019// Subtract Logical Register-Storage (64)
2020void Assembler::slg(Register r1, const MemOperand& opnd) {
2021 rxy_form(SLG, r1, opnd.rx(), opnd.rb(), opnd.offset());
2022}
2023
2024// Subtract Logical Register-Register (64)
2025void Assembler::slgr(Register r1, Register r2) { rre_form(SLGR, r1, r2); }
2026
2027// Subtract Logical Register-Register-Register (64)
2028void Assembler::slgrk(Register r1, Register r2, Register r3) {
2029 rrf1_form(SLGRK, r1, r2, r3);
2030}
2031
2032// ----------------------------
2033// 32-bit Multiply Instructions
2034// ----------------------------
2035// Multiply Register-Storage (64<32)
2036void Assembler::m(Register r1, const MemOperand& opnd) {
2037 rx_form(M, r1, opnd.rx(), opnd.rb(), opnd.offset());
2038}
2039
2040// Multiply Register (64<32)
2041void Assembler::mr_z(Register r1, Register r2) {
2042 DCHECK(r1.code() % 2 == 0);
2043 rr_form(MR, r1, r2);
2044}
2045
2046// Multiply Logical Register-Storage (64<32)
2047void Assembler::ml(Register r1, const MemOperand& opnd) {
2048 rxy_form(ML, r1, opnd.rx(), opnd.rb(), opnd.offset());
2049}
2050
2051// Multiply Logical Register (64<32)
2052void Assembler::mlr(Register r1, Register r2) {
2053 DCHECK(r1.code() % 2 == 0);
2054 rre_form(MLR, r1, r2);
2055}
2056
2057// Multiply Single Register-Storage (32)
2058void Assembler::ms(Register r1, const MemOperand& opnd) {
2059 rx_form(MS, r1, opnd.rx(), opnd.rb(), opnd.offset());
2060}
2061
2062// Multiply Single Register-Storage (32)
2063void Assembler::msy(Register r1, const MemOperand& opnd) {
2064 rxy_form(MSY, r1, opnd.rx(), opnd.rb(), opnd.offset());
2065}
2066
2067// Multiply Single Immediate (32)
2068void Assembler::msfi(Register r1, const Operand& opnd) {
2069 ril_form(MSFI, r1, opnd);
2070}
2071
2072// Multiply Single Register (64<32)
2073void Assembler::msr(Register r1, Register r2) { rre_form(MSR, r1, r2); }
2074
2075// Multiply Halfword Register-Storage (32)
2076void Assembler::mh(Register r1, const MemOperand& opnd) {
2077 rx_form(MH, r1, opnd.rx(), opnd.rb(), opnd.offset());
2078}
2079
2080// Multiply Halfword Register-Storage (32)
2081void Assembler::mhy(Register r1, const MemOperand& opnd) {
2082 rxy_form(MHY, r1, opnd.rx(), opnd.rb(), opnd.offset());
2083}
2084
2085// Multiply Halfword Immediate (32)
2086void Assembler::mhi(Register r1, const Operand& opnd) {
2087 ri_form(MHI, r1, opnd);
2088}
2089
2090// ----------------------------
2091// 64-bit Multiply Instructions
2092// ----------------------------
2093// Multiply Logical Register-Storage (128<64)
2094void Assembler::mlg(Register r1, const MemOperand& opnd) {
2095 rxy_form(MLG, r1, opnd.rx(), opnd.rb(), opnd.offset());
2096}
2097
2098// Multiply Register (128<64)
2099void Assembler::mlgr(Register r1, Register r2) { rre_form(MLGR, r1, r2); }
2100
2101// Multiply Halfword Immediate (64)
2102void Assembler::mghi(Register r1, const Operand& opnd) {
2103 ri_form(MGHI, r1, opnd);
2104}
2105
2106// Multiply Single Immediate (64)
2107void Assembler::msgfi(Register r1, const Operand& opnd) {
2108 ril_form(MSGFI, r1, opnd);
2109}
2110
2111// Multiply Single Register-Storage (64)
2112void Assembler::msg(Register r1, const MemOperand& opnd) {
2113 rxy_form(MSG, r1, opnd.rx(), opnd.rb(), opnd.offset());
2114}
2115
2116// Multiply Single Register-Register (64)
2117void Assembler::msgr(Register r1, Register r2) { rre_form(MSGR, r1, r2); }
2118
2119// --------------------------
2120// 32-bit Divide Instructions
2121// --------------------------
2122// Divide Register-Storage (32<-64)
2123void Assembler::d(Register r1, const MemOperand& opnd) {
2124 rx_form(D, r1, opnd.rx(), opnd.rb(), opnd.offset());
2125}
2126
2127// Divide Register (32<-64)
2128void Assembler::dr(Register r1, Register r2) {
2129 DCHECK(r1.code() % 2 == 0);
2130 rr_form(DR, r1, r2);
2131}
2132
2133// Divide Logical Register-Storage (32<-64)
2134void Assembler::dl(Register r1, const MemOperand& opnd) {
2135 rx_form(DL, r1, opnd.rx(), opnd.rb(), opnd.offset());
2136}
2137
2138// Divide Logical Register (32<-64)
2139void Assembler::dlr(Register r1, Register r2) { rre_form(DLR, r1, r2); }
2140
2141// --------------------------
2142// 64-bit Divide Instructions
2143// --------------------------
2144// Divide Logical Register (64<-128)
2145void Assembler::dlgr(Register r1, Register r2) { rre_form(DLGR, r1, r2); }
2146
2147// Divide Single Register (64<-32)
2148void Assembler::dsgr(Register r1, Register r2) { rre_form(DSGR, r1, r2); }
2149
2150// --------------------
2151// Bitwise Instructions
2152// --------------------
2153// AND Register-Storage (32)
2154void Assembler::n(Register r1, const MemOperand& opnd) {
2155 rx_form(N, r1, opnd.rx(), opnd.rb(), opnd.offset());
2156}
2157
2158// AND Register-Storage (32)
2159void Assembler::ny(Register r1, const MemOperand& opnd) {
2160 rxy_form(NY, r1, opnd.rx(), opnd.rb(), opnd.offset());
2161}
2162
2163// AND Register (32)
2164void Assembler::nr(Register r1, Register r2) { rr_form(NR, r1, r2); }
2165
2166// AND Register-Register-Register (32)
2167void Assembler::nrk(Register r1, Register r2, Register r3) {
2168 rrf1_form(NRK, r1, r2, r3);
2169}
2170
2171// AND Register-Storage (64)
2172void Assembler::ng(Register r1, const MemOperand& opnd) {
2173 rxy_form(NG, r1, opnd.rx(), opnd.rb(), opnd.offset());
2174}
2175
2176// AND Register (64)
2177void Assembler::ngr(Register r1, Register r2) { rre_form(NGR, r1, r2); }
2178
2179// AND Register-Register-Register (64)
2180void Assembler::ngrk(Register r1, Register r2, Register r3) {
2181 rrf1_form(NGRK, r1, r2, r3);
2182}
2183
2184// OR Register-Storage (32)
2185void Assembler::o(Register r1, const MemOperand& opnd) {
2186 rx_form(O, r1, opnd.rx(), opnd.rb(), opnd.offset());
2187}
2188
2189// OR Register-Storage (32)
2190void Assembler::oy(Register r1, const MemOperand& opnd) {
2191 rxy_form(OY, r1, opnd.rx(), opnd.rb(), opnd.offset());
2192}
2193
2194// OR Register (32)
2195void Assembler::or_z(Register r1, Register r2) { rr_form(OR, r1, r2); }
2196
2197// OR Register-Register-Register (32)
2198void Assembler::ork(Register r1, Register r2, Register r3) {
2199 rrf1_form(ORK, r1, r2, r3);
2200}
2201
2202// OR Register-Storage (64)
2203void Assembler::og(Register r1, const MemOperand& opnd) {
2204 rxy_form(OG, r1, opnd.rx(), opnd.rb(), opnd.offset());
2205}
2206
2207// OR Register (64)
2208void Assembler::ogr(Register r1, Register r2) { rre_form(OGR, r1, r2); }
2209
2210// OR Register-Register-Register (64)
2211void Assembler::ogrk(Register r1, Register r2, Register r3) {
2212 rrf1_form(OGRK, r1, r2, r3);
2213}
2214
2215// XOR Register-Storage (32)
2216void Assembler::x(Register r1, const MemOperand& opnd) {
2217 rx_form(X, r1, opnd.rx(), opnd.rb(), opnd.offset());
2218}
2219
2220// XOR Register-Storage (32)
2221void Assembler::xy(Register r1, const MemOperand& opnd) {
2222 rxy_form(XY, r1, opnd.rx(), opnd.rb(), opnd.offset());
2223}
2224
2225// XOR Register (32)
2226void Assembler::xr(Register r1, Register r2) { rr_form(XR, r1, r2); }
2227
2228// XOR Register-Register-Register (32)
2229void Assembler::xrk(Register r1, Register r2, Register r3) {
2230 rrf1_form(XRK, r1, r2, r3);
2231}
2232
2233// XOR Register-Storage (64)
2234void Assembler::xg(Register r1, const MemOperand& opnd) {
2235 rxy_form(XG, r1, opnd.rx(), opnd.rb(), opnd.offset());
2236}
2237
2238// XOR Register (64)
2239void Assembler::xgr(Register r1, Register r2) { rre_form(XGR, r1, r2); }
2240
2241// XOR Register-Register-Register (64)
2242void Assembler::xgrk(Register r1, Register r2, Register r3) {
2243 rrf1_form(XGRK, r1, r2, r3);
2244}
2245
2246// XOR Storage-Storage
2247void Assembler::xc(const MemOperand& opnd1, const MemOperand& opnd2,
2248 Length length) {
2249 ss_form(XC, length - 1, opnd1.getBaseRegister(), opnd1.getDisplacement(),
2250 opnd2.getBaseRegister(), opnd2.getDisplacement());
2251}
2252
2253// -------------------------------------------
2254// Bitwise GPR <-> FPR Conversion Instructions
2255// -------------------------------------------
2256// Load GR from FPR (64 <- L)
2257void Assembler::lgdr(Register r1, DoubleRegister f2) {
2258 rre_form(LGDR, r1, Register::from_code(f2.code()));
2259}
2260
2261// Load FPR from FR (L <- 64)
2262void Assembler::ldgr(DoubleRegister f1, Register r2) {
2263 rre_form(LDGR, Register::from_code(f1.code()), r2);
2264}
2265
2266void Assembler::EnsureSpaceFor(int space_needed) {
2267 if (buffer_space() <= (kGap + space_needed)) {
2268 GrowBuffer(space_needed);
2269 }
2270}
2271
2272// Rotate Left Single Logical (32)
2273void Assembler::rll(Register r1, Register r3, Register opnd) {
2274 DCHECK(!opnd.is(r0));
2275 rsy_form(RLL, r1, r3, opnd, 0);
2276}
2277
2278// Rotate Left Single Logical (32)
2279void Assembler::rll(Register r1, Register r3, const Operand& opnd) {
2280 rsy_form(RLL, r1, r3, r0, opnd.immediate());
2281}
2282
2283// Rotate Left Single Logical (32)
2284void Assembler::rll(Register r1, Register r3, Register r2,
2285 const Operand& opnd) {
2286 rsy_form(RLL, r1, r3, r2, opnd.immediate());
2287}
2288
2289// Rotate Left Single Logical (64)
2290void Assembler::rllg(Register r1, Register r3, Register opnd) {
2291 DCHECK(!opnd.is(r0));
2292 rsy_form(RLLG, r1, r3, opnd, 0);
2293}
2294
2295// Rotate Left Single Logical (64)
2296void Assembler::rllg(Register r1, Register r3, const Operand& opnd) {
2297 rsy_form(RLLG, r1, r3, r0, opnd.immediate());
2298}
2299
2300// Rotate Left Single Logical (64)
2301void Assembler::rllg(Register r1, Register r3, Register r2,
2302 const Operand& opnd) {
2303 rsy_form(RLLG, r1, r3, r2, opnd.immediate());
2304}
2305
2306// Shift Left Single Logical (32)
2307void Assembler::sll(Register r1, Register opnd) {
2308 DCHECK(!opnd.is(r0));
2309 rs_form(SLL, r1, r0, opnd, 0);
2310}
2311
2312// Shift Left Single Logical (32)
2313void Assembler::sll(Register r1, const Operand& opnd) {
2314 rs_form(SLL, r1, r0, r0, opnd.immediate());
2315}
2316
2317// Shift Left Single Logical (32)
2318void Assembler::sllk(Register r1, Register r3, Register opnd) {
2319 DCHECK(!opnd.is(r0));
2320 rsy_form(SLLK, r1, r3, opnd, 0);
2321}
2322
2323// Shift Left Single Logical (32)
2324void Assembler::sllk(Register r1, Register r3, const Operand& opnd) {
2325 rsy_form(SLLK, r1, r3, r0, opnd.immediate());
2326}
2327
2328// Shift Left Single Logical (64)
2329void Assembler::sllg(Register r1, Register r3, Register opnd) {
2330 DCHECK(!opnd.is(r0));
2331 rsy_form(SLLG, r1, r3, opnd, 0);
2332}
2333
2334// Shift Left Single Logical (64)
2335void Assembler::sllg(Register r1, Register r3, const Operand& opnd) {
2336 rsy_form(SLLG, r1, r3, r0, opnd.immediate());
2337}
2338
2339// Shift Left Double Logical (64)
2340void Assembler::sldl(Register r1, Register b2, const Operand& opnd) {
2341 DCHECK(r1.code() % 2 == 0);
2342 rs_form(SLDL, r1, r0, b2, opnd.immediate());
2343}
2344
2345// Shift Right Single Logical (32)
2346void Assembler::srl(Register r1, Register opnd) {
2347 DCHECK(!opnd.is(r0));
2348 rs_form(SRL, r1, r0, opnd, 0);
2349}
2350
2351// Shift Right Double Arith (64)
2352void Assembler::srda(Register r1, Register b2, const Operand& opnd) {
2353 DCHECK(r1.code() % 2 == 0);
2354 rs_form(SRDA, r1, r0, b2, opnd.immediate());
2355}
2356
2357// Shift Right Double Logical (64)
2358void Assembler::srdl(Register r1, Register b2, const Operand& opnd) {
2359 DCHECK(r1.code() % 2 == 0);
2360 rs_form(SRDL, r1, r0, b2, opnd.immediate());
2361}
2362
2363// Shift Right Single Logical (32)
2364void Assembler::srl(Register r1, const Operand& opnd) {
2365 rs_form(SRL, r1, r0, r0, opnd.immediate());
2366}
2367
2368// Shift Right Single Logical (32)
2369void Assembler::srlk(Register r1, Register r3, Register opnd) {
2370 DCHECK(!opnd.is(r0));
2371 rsy_form(SRLK, r1, r3, opnd, 0);
2372}
2373
2374// Shift Right Single Logical (32)
2375void Assembler::srlk(Register r1, Register r3, const Operand& opnd) {
2376 rsy_form(SRLK, r1, r3, r0, opnd.immediate());
2377}
2378
2379// Shift Right Single Logical (64)
2380void Assembler::srlg(Register r1, Register r3, Register opnd) {
2381 DCHECK(!opnd.is(r0));
2382 rsy_form(SRLG, r1, r3, opnd, 0);
2383}
2384
2385// Shift Right Single Logical (64)
2386void Assembler::srlg(Register r1, Register r3, const Operand& opnd) {
2387 rsy_form(SRLG, r1, r3, r0, opnd.immediate());
2388}
2389
2390// Shift Left Single (32)
2391void Assembler::sla(Register r1, Register opnd) {
2392 DCHECK(!opnd.is(r0));
2393 rs_form(SLA, r1, r0, opnd, 0);
2394}
2395
2396// Shift Left Single (32)
2397void Assembler::sla(Register r1, const Operand& opnd) {
2398 rs_form(SLA, r1, r0, r0, opnd.immediate());
2399}
2400
2401// Shift Left Single (32)
2402void Assembler::slak(Register r1, Register r3, Register opnd) {
2403 DCHECK(!opnd.is(r0));
2404 rsy_form(SLAK, r1, r3, opnd, 0);
2405}
2406
2407// Shift Left Single (32)
2408void Assembler::slak(Register r1, Register r3, const Operand& opnd) {
2409 rsy_form(SLAK, r1, r3, r0, opnd.immediate());
2410}
2411
2412// Shift Left Single (64)
2413void Assembler::slag(Register r1, Register r3, Register opnd) {
2414 DCHECK(!opnd.is(r0));
2415 rsy_form(SLAG, r1, r3, opnd, 0);
2416}
2417
2418// Shift Left Single (64)
2419void Assembler::slag(Register r1, Register r3, const Operand& opnd) {
2420 rsy_form(SLAG, r1, r3, r0, opnd.immediate());
2421}
2422
2423// Shift Right Single (32)
2424void Assembler::sra(Register r1, Register opnd) {
2425 DCHECK(!opnd.is(r0));
2426 rs_form(SRA, r1, r0, opnd, 0);
2427}
2428
2429// Shift Right Single (32)
2430void Assembler::sra(Register r1, const Operand& opnd) {
2431 rs_form(SRA, r1, r0, r0, opnd.immediate());
2432}
2433
2434// Shift Right Single (32)
2435void Assembler::srak(Register r1, Register r3, Register opnd) {
2436 DCHECK(!opnd.is(r0));
2437 rsy_form(SRAK, r1, r3, opnd, 0);
2438}
2439
2440// Shift Right Single (32)
2441void Assembler::srak(Register r1, Register r3, const Operand& opnd) {
2442 rsy_form(SRAK, r1, r3, r0, opnd.immediate());
2443}
2444
2445// Shift Right Single (64)
2446void Assembler::srag(Register r1, Register r3, Register opnd) {
2447 DCHECK(!opnd.is(r0));
2448 rsy_form(SRAG, r1, r3, opnd, 0);
2449}
2450
2451void Assembler::srag(Register r1, Register r3, const Operand& opnd) {
2452 rsy_form(SRAG, r1, r3, r0, opnd.immediate());
2453}
2454
2455// Shift Right Double
2456void Assembler::srda(Register r1, const Operand& opnd) {
2457 DCHECK(r1.code() % 2 == 0);
2458 rs_form(SRDA, r1, r0, r0, opnd.immediate());
2459}
2460
2461// Shift Right Double Logical
2462void Assembler::srdl(Register r1, const Operand& opnd) {
2463 DCHECK(r1.code() % 2 == 0);
2464 rs_form(SRDL, r1, r0, r0, opnd.immediate());
2465}
2466
2467void Assembler::call(Handle<Code> target, RelocInfo::Mode rmode,
2468 TypeFeedbackId ast_id) {
2469 positions_recorder()->WriteRecordedPositions();
2470 EnsureSpace ensure_space(this);
2471
2472 int32_t target_index = emit_code_target(target, rmode, ast_id);
2473 brasl(r14, Operand(target_index));
2474}
2475
2476void Assembler::jump(Handle<Code> target, RelocInfo::Mode rmode,
2477 Condition cond) {
2478 EnsureSpace ensure_space(this);
2479
2480 int32_t target_index = emit_code_target(target, rmode);
2481 brcl(cond, Operand(target_index), true);
2482}
2483
2484// Store (32)
2485void Assembler::st(Register src, const MemOperand& dst) {
2486 rx_form(ST, src, dst.rx(), dst.rb(), dst.offset());
2487}
2488
2489// Store (32)
2490void Assembler::sty(Register src, const MemOperand& dst) {
2491 rxy_form(STY, src, dst.rx(), dst.rb(), dst.offset());
2492}
2493
2494// Store Halfword
2495void Assembler::sth(Register src, const MemOperand& dst) {
2496 rx_form(STH, src, dst.rx(), dst.rb(), dst.offset());
2497}
2498
2499// Store Halfword
2500void Assembler::sthy(Register src, const MemOperand& dst) {
2501 rxy_form(STHY, src, dst.rx(), dst.rb(), dst.offset());
2502}
2503
2504// Store Character
2505void Assembler::stc(Register src, const MemOperand& dst) {
2506 rx_form(STC, src, dst.rx(), dst.rb(), dst.offset());
2507}
2508
2509// Store Character
2510void Assembler::stcy(Register src, const MemOperand& dst) {
2511 rxy_form(STCY, src, dst.rx(), dst.rb(), dst.offset());
2512}
2513
2514// 32-bit Load Multiple - short displacement (12-bits unsigned)
2515void Assembler::lm(Register r1, Register r2, const MemOperand& src) {
2516 rs_form(LM, r1, r2, src.rb(), src.offset());
2517}
2518
2519// 32-bit Load Multiple - long displacement (20-bits signed)
2520void Assembler::lmy(Register r1, Register r2, const MemOperand& src) {
2521 rsy_form(LMY, r1, r2, src.rb(), src.offset());
2522}
2523
2524// 64-bit Load Multiple - long displacement (20-bits signed)
2525void Assembler::lmg(Register r1, Register r2, const MemOperand& src) {
2526 rsy_form(LMG, r1, r2, src.rb(), src.offset());
2527}
2528
2529// Move integer (32)
2530void Assembler::mvhi(const MemOperand& opnd1, const Operand& i2) {
2531 sil_form(MVHI, opnd1.getBaseRegister(), opnd1.getDisplacement(), i2);
2532}
2533
2534// Move integer (64)
2535void Assembler::mvghi(const MemOperand& opnd1, const Operand& i2) {
2536 sil_form(MVGHI, opnd1.getBaseRegister(), opnd1.getDisplacement(), i2);
2537}
2538
2539// Store Register (64)
2540void Assembler::stg(Register src, const MemOperand& dst) {
2541 DCHECK(!(dst.rb().code() == 15 && dst.offset() < 0));
2542 rxy_form(STG, src, dst.rx(), dst.rb(), dst.offset());
2543}
2544
2545// Insert Character
2546void Assembler::ic_z(Register r1, const MemOperand& opnd) {
2547 rx_form(IC_z, r1, opnd.rx(), opnd.rb(), opnd.offset());
2548}
2549
2550// Insert Character
2551void Assembler::icy(Register r1, const MemOperand& opnd) {
2552 rxy_form(ICY, r1, opnd.rx(), opnd.rb(), opnd.offset());
2553}
2554
2555// Insert Immediate (High)
2556void Assembler::iihf(Register r1, const Operand& opnd) {
2557 ril_form(IIHF, r1, opnd);
2558}
2559
2560// Insert Immediate (low)
2561void Assembler::iilf(Register r1, const Operand& opnd) {
2562 ril_form(IILF, r1, opnd);
2563}
2564
2565// Insert Immediate (high high)
2566void Assembler::iihh(Register r1, const Operand& opnd) {
2567 ri_form(IIHH, r1, opnd);
2568}
2569
2570// Insert Immediate (high low)
2571void Assembler::iihl(Register r1, const Operand& opnd) {
2572 ri_form(IIHL, r1, opnd);
2573}
2574
2575// Insert Immediate (low high)
2576void Assembler::iilh(Register r1, const Operand& opnd) {
2577 ri_form(IILH, r1, opnd);
2578}
2579
2580// Insert Immediate (low low)
2581void Assembler::iill(Register r1, const Operand& opnd) {
2582 ri_form(IILL, r1, opnd);
2583}
2584
2585// GPR <-> FPR Instructions
2586
2587// Floating point instructions
2588//
2589// Load zero Register (64)
2590void Assembler::lzdr(DoubleRegister r1) {
2591 rre_form(LZDR, Register::from_code(r1.code()), Register::from_code(0));
2592}
2593
2594// Add Register-Register (LB)
2595void Assembler::aebr(DoubleRegister r1, DoubleRegister r2) {
2596 rre_form(AEBR, Register::from_code(r1.code()),
2597 Register::from_code(r2.code()));
2598}
2599
2600// Add Register-Storage (LB)
2601void Assembler::adb(DoubleRegister r1, const MemOperand& opnd) {
2602 rxe_form(ADB, Register::from_code(r1.code()), opnd.rx(), opnd.rb(),
2603 opnd.offset());
2604}
2605
2606// Add Register-Register (LB)
2607void Assembler::adbr(DoubleRegister r1, DoubleRegister r2) {
2608 rre_form(ADBR, Register::from_code(r1.code()),
2609 Register::from_code(r2.code()));
2610}
2611
2612// Compare Register-Register (LB)
2613void Assembler::cebr(DoubleRegister r1, DoubleRegister r2) {
2614 rre_form(CEBR, Register::from_code(r1.code()),
2615 Register::from_code(r2.code()));
2616}
2617
2618// Compare Register-Storage (LB)
2619void Assembler::cdb(DoubleRegister r1, const MemOperand& opnd) {
2620 rx_form(CD, Register::from_code(r1.code()), opnd.rx(), opnd.rb(),
2621 opnd.offset());
2622}
2623
2624// Compare Register-Register (LB)
2625void Assembler::cdbr(DoubleRegister r1, DoubleRegister r2) {
2626 rre_form(CDBR, Register::from_code(r1.code()),
2627 Register::from_code(r2.code()));
2628}
2629
2630// Divide Register-Register (LB)
2631void Assembler::debr(DoubleRegister r1, DoubleRegister r2) {
2632 rre_form(DEBR, Register::from_code(r1.code()),
2633 Register::from_code(r2.code()));
2634}
2635
2636// Divide Register-Storage (LB)
2637void Assembler::ddb(DoubleRegister r1, const MemOperand& opnd) {
2638 rxe_form(DDB, Register::from_code(r1.code()), opnd.rx(), opnd.rb(),
2639 opnd.offset());
2640}
2641
2642// Divide Register-Register (LB)
2643void Assembler::ddbr(DoubleRegister r1, DoubleRegister r2) {
2644 rre_form(DDBR, Register::from_code(r1.code()),
2645 Register::from_code(r2.code()));
2646}
2647
2648// Multiply Register-Register (LB)
2649void Assembler::meebr(DoubleRegister r1, DoubleRegister r2) {
2650 rre_form(MEEBR, Register::from_code(r1.code()),
2651 Register::from_code(r2.code()));
2652}
2653
2654// Multiply Register-Storage (LB)
2655void Assembler::mdb(DoubleRegister r1, const MemOperand& opnd) {
2656 rxe_form(MDB, Register::from_code(r1.code()), opnd.rb(), opnd.rx(),
2657 opnd.offset());
2658}
2659
2660// Multiply Register-Register (LB)
2661void Assembler::mdbr(DoubleRegister r1, DoubleRegister r2) {
2662 rre_form(MDBR, Register::from_code(r1.code()),
2663 Register::from_code(r2.code()));
2664}
2665
2666// Subtract Register-Register (LB)
2667void Assembler::sebr(DoubleRegister r1, DoubleRegister r2) {
2668 rre_form(SEBR, Register::from_code(r1.code()),
2669 Register::from_code(r2.code()));
2670}
2671
2672// Subtract Register-Storage (LB)
2673void Assembler::sdb(DoubleRegister r1, const MemOperand& opnd) {
2674 rxe_form(SDB, Register::from_code(r1.code()), opnd.rx(), opnd.rb(),
2675 opnd.offset());
2676}
2677
2678// Subtract Register-Register (LB)
2679void Assembler::sdbr(DoubleRegister r1, DoubleRegister r2) {
2680 rre_form(SDBR, Register::from_code(r1.code()),
2681 Register::from_code(r2.code()));
2682}
2683
2684// Square Root (LB)
2685void Assembler::sqdb(DoubleRegister r1, const MemOperand& opnd) {
2686 rxe_form(SQDB, Register::from_code(r1.code()), opnd.rx(), opnd.rb(),
2687 opnd.offset());
2688}
2689
2690// Square Root Register-Register (LB)
2691void Assembler::sqebr(DoubleRegister r1, DoubleRegister r2) {
2692 rre_form(SQEBR, Register::from_code(r1.code()),
2693 Register::from_code(r2.code()));
2694}
2695
2696// Square Root Register-Register (LB)
2697void Assembler::sqdbr(DoubleRegister r1, DoubleRegister r2) {
2698 rre_form(SQDBR, Register::from_code(r1.code()),
2699 Register::from_code(r2.code()));
2700}
2701
2702// Load Rounded (double -> float)
2703void Assembler::ledbr(DoubleRegister r1, DoubleRegister r2) {
2704 rre_form(LEDBR, Register::from_code(r1.code()),
2705 Register::from_code(r2.code()));
2706}
2707
2708// Load Lengthen (float -> double)
2709void Assembler::ldebr(DoubleRegister r1, DoubleRegister r2) {
2710 rre_form(LDEBR, Register::from_code(r1.code()),
2711 Register::from_code(r2.code()));
2712}
2713
2714// Load Complement Register-Register (LB)
2715void Assembler::lcdbr(DoubleRegister r1, DoubleRegister r2) {
2716 rre_form(LCDBR, Register::from_code(r1.code()),
2717 Register::from_code(r2.code()));
2718}
2719
2720// Load Positive Register-Register (LB)
2721void Assembler::lpebr(DoubleRegister r1, DoubleRegister r2) {
2722 rre_form(LPEBR, Register::from_code(r1.code()),
2723 Register::from_code(r2.code()));
2724}
2725
2726// Load Positive Register-Register (LB)
2727void Assembler::lpdbr(DoubleRegister r1, DoubleRegister r2) {
2728 rre_form(LPDBR, Register::from_code(r1.code()),
2729 Register::from_code(r2.code()));
2730}
2731
2732// Store Double (64)
2733void Assembler::std(DoubleRegister r1, const MemOperand& opnd) {
2734 rx_form(STD, r1, opnd.rx(), opnd.rb(), opnd.offset());
2735}
2736
2737// Store Double (64)
2738void Assembler::stdy(DoubleRegister r1, const MemOperand& opnd) {
2739 DCHECK(!(opnd.rb().code() == 15 && opnd.offset() < 0));
2740 rxy_form(STDY, r1, opnd.rx(), opnd.rb(), opnd.offset());
2741}
2742
2743// Store Float (32)
2744void Assembler::ste(DoubleRegister r1, const MemOperand& opnd) {
2745 rx_form(STE, r1, opnd.rx(), opnd.rb(), opnd.offset());
2746}
2747
2748// Store Float (32)
2749void Assembler::stey(DoubleRegister r1, const MemOperand& opnd) {
2750 DCHECK(!(opnd.rb().code() == 15 && opnd.offset() < 0));
2751 rxy_form(STEY, r1, opnd.rx(), opnd.rb(), opnd.offset());
2752}
2753
2754// Load Double (64)
2755void Assembler::ld(DoubleRegister r1, const MemOperand& opnd) {
2756 DCHECK(is_uint12(opnd.offset()));
2757 rx_form(LD, r1, opnd.rx(), opnd.rb(), opnd.offset() & 0xfff);
2758}
2759
2760// Load Double (64)
2761void Assembler::ldy(DoubleRegister r1, const MemOperand& opnd) {
2762 DCHECK(is_int20(opnd.offset()));
2763 rxy_form(LDY, r1, opnd.rx(), opnd.rb(), opnd.offset());
2764}
2765
2766// Load Float (32)
2767void Assembler::le_z(DoubleRegister r1, const MemOperand& opnd) {
2768 DCHECK(is_uint12(opnd.offset()));
2769 rx_form(LE, r1, opnd.rx(), opnd.rb(), opnd.offset() & 0xfff);
2770}
2771
2772// Load Float (32)
2773void Assembler::ley(DoubleRegister r1, const MemOperand& opnd) {
2774 DCHECK(is_int20(opnd.offset()));
2775 rxy_form(LEY, r1, opnd.rx(), opnd.rb(), opnd.offset());
2776}
2777
2778// Load Double Register-Register (64)
2779void Assembler::ldr(DoubleRegister r1, DoubleRegister r2) {
2780 rr_form(LDR, r1, r2);
2781}
2782
2783// Load And Test Register-Register (L)
2784void Assembler::ltebr(DoubleRegister r1, DoubleRegister r2) {
2785 rre_form(LTEBR, r1, r2);
2786}
2787
2788// Load And Test Register-Register (L)
2789void Assembler::ltdbr(DoubleRegister r1, DoubleRegister r2) {
2790 rre_form(LTDBR, r1, r2);
2791}
2792
2793// Convert to Fixed point (64<-S)
2794void Assembler::cgebr(Condition m, Register r1, DoubleRegister r2) {
2795 rrfe_form(CGEBR, m, Condition(0), r1, Register::from_code(r2.code()));
2796}
2797
2798// Convert to Fixed point (64<-L)
2799void Assembler::cgdbr(Condition m, Register r1, DoubleRegister r2) {
2800 rrfe_form(CGDBR, m, Condition(0), r1, Register::from_code(r2.code()));
2801}
2802
2803// Convert to Fixed point (32<-L)
2804void Assembler::cfdbr(Condition m, Register r1, DoubleRegister r2) {
2805 rrfe_form(CFDBR, m, Condition(0), r1, Register::from_code(r2.code()));
2806}
2807
2808// Convert from Fixed point (L<-64)
2809void Assembler::cegbr(DoubleRegister r1, Register r2) {
2810 rre_form(CEGBR, Register::from_code(r1.code()), r2);
2811}
2812
2813// Convert from Fixed point (L<-64)
2814void Assembler::cdgbr(DoubleRegister r1, Register r2) {
2815 rre_form(CDGBR, Register::from_code(r1.code()), r2);
2816}
2817
2818// Convert from Fixed point (L<-32)
2819void Assembler::cdfbr(DoubleRegister r1, Register r2) {
2820 rre_form(CDFBR, Register::from_code(r1.code()), r2);
2821}
2822
2823// Convert to Fixed Logical (64<-L)
2824void Assembler::clgdbr(Condition m3, Condition m4, Register r1,
2825 DoubleRegister r2) {
2826 DCHECK_EQ(m4, Condition(0));
2827 rrfe_form(CLGDBR, m3, m4, r1, Register::from_code(r2.code()));
2828}
2829
2830// Convert to Fixed Logical (64<-F32)
2831void Assembler::clgebr(Condition m3, Condition m4, Register r1,
2832 DoubleRegister r2) {
2833 DCHECK_EQ(m4, Condition(0));
2834 rrfe_form(CLGEBR, m3, m4, r1, Register::from_code(r2.code()));
2835}
2836
2837// Convert to Fixed Logical (32<-F64)
2838void Assembler::clfdbr(Condition m3, Condition m4, Register r1,
2839 DoubleRegister r2) {
2840 DCHECK_EQ(m3, Condition(0));
2841 DCHECK_EQ(m4, Condition(0));
2842 rrfe_form(CLFDBR, Condition(0), Condition(0), r1,
2843 Register::from_code(r2.code()));
2844}
2845
2846// Convert to Fixed Logical (32<-F32)
2847void Assembler::clfebr(Condition m3, Condition m4, Register r1,
2848 DoubleRegister r2) {
2849 DCHECK_EQ(m4, Condition(0));
2850 rrfe_form(CLFEBR, m3, Condition(0), r1, Register::from_code(r2.code()));
2851}
2852
2853// Convert from Fixed Logical (L<-64)
2854void Assembler::celgbr(Condition m3, Condition m4, DoubleRegister r1,
2855 Register r2) {
2856 DCHECK_EQ(m3, Condition(0));
2857 DCHECK_EQ(m4, Condition(0));
2858 rrfe_form(CELGBR, Condition(0), Condition(0), Register::from_code(r1.code()),
2859 r2);
2860}
2861
2862// Convert from Fixed Logical (F32<-32)
2863void Assembler::celfbr(Condition m3, Condition m4, DoubleRegister r1,
2864 Register r2) {
2865 DCHECK_EQ(m3, Condition(0));
2866 DCHECK_EQ(m4, Condition(0));
2867 rrfe_form(CELFBR, Condition(0), Condition(0), Register::from_code(r1.code()),
2868 r2);
2869}
2870
2871// Convert from Fixed Logical (L<-64)
2872void Assembler::cdlgbr(Condition m3, Condition m4, DoubleRegister r1,
2873 Register r2) {
2874 DCHECK_EQ(m3, Condition(0));
2875 DCHECK_EQ(m4, Condition(0));
2876 rrfe_form(CDLGBR, Condition(0), Condition(0), Register::from_code(r1.code()),
2877 r2);
2878}
2879
2880// Convert from Fixed Logical (L<-32)
2881void Assembler::cdlfbr(Condition m3, Condition m4, DoubleRegister r1,
2882 Register r2) {
2883 DCHECK_EQ(m4, Condition(0));
2884 rrfe_form(CDLFBR, m3, Condition(0), Register::from_code(r1.code()), r2);
2885}
2886
2887// Convert from Fixed point (S<-32)
2888void Assembler::cefbr(DoubleRegister r1, Register r2) {
2889 rre_form(CEFBR, Register::from_code(r1.code()), r2);
2890}
2891
2892// Convert to Fixed point (32<-S)
2893void Assembler::cfebr(Condition m3, Register r1, DoubleRegister r2) {
2894 rrfe_form(CFEBR, m3, Condition(0), r1, Register::from_code(r2.code()));
2895}
2896
2897// Load (L <- S)
2898void Assembler::ldeb(DoubleRegister d1, const MemOperand& opnd) {
2899 rxe_form(LDEB, Register::from_code(d1.code()), opnd.rx(), opnd.rb(),
2900 opnd.offset());
2901}
2902
2903// Load FP Integer
2904void Assembler::fiebra(DoubleRegister d1, DoubleRegister d2, FIDBRA_MASK3 m3) {
2905 rrf2_form(FIEBRA << 16 | m3 * B12 | d1.code() * B4 | d2.code());
2906}
2907
2908// Load FP Integer
2909void Assembler::fidbra(DoubleRegister d1, DoubleRegister d2, FIDBRA_MASK3 m3) {
2910 rrf2_form(FIDBRA << 16 | m3 * B12 | d1.code() * B4 | d2.code());
2911}
2912
2913// Multiply and Add - MADBR R1, R3, R2
2914// R1 = R3 * R2 + R1
2915void Assembler::madbr(DoubleRegister d1, DoubleRegister d3, DoubleRegister d2) {
2916 rrd_form(MADBR, Register::from_code(d1.code()),
2917 Register::from_code(d3.code()), Register::from_code(d2.code()));
2918}
2919
2920// Multiply and Subtract - MSDBR R1, R3, R2
2921// R1 = R3 * R2 - R1
2922void Assembler::msdbr(DoubleRegister d1, DoubleRegister d3, DoubleRegister d2) {
2923 rrd_form(MSDBR, Register::from_code(d1.code()),
2924 Register::from_code(d3.code()), Register::from_code(d2.code()));
2925}
2926
2927// end of S390instructions
2928
2929bool Assembler::IsNop(SixByteInstr instr, int type) {
2930 DCHECK((0 == type) || (DEBUG_BREAK_NOP == type));
2931 if (DEBUG_BREAK_NOP == type) {
2932 return ((instr & 0xffffffff) == 0xa53b0000); // oill r3, 0
2933 }
2934 return ((instr & 0xffff) == 0x1800); // lr r0,r0
2935}
2936
2937void Assembler::GrowBuffer(int needed) {
2938 if (!own_buffer_) FATAL("external code buffer is too small");
2939
2940 // Compute new buffer size.
2941 CodeDesc desc; // the new buffer
2942 if (buffer_size_ < 4 * KB) {
2943 desc.buffer_size = 4 * KB;
2944 } else if (buffer_size_ < 1 * MB) {
2945 desc.buffer_size = 2 * buffer_size_;
2946 } else {
2947 desc.buffer_size = buffer_size_ + 1 * MB;
2948 }
2949 int space = buffer_space() + (desc.buffer_size - buffer_size_);
2950 if (space < needed) {
2951 desc.buffer_size += needed - space;
2952 }
2953 CHECK_GT(desc.buffer_size, 0); // no overflow
2954
2955 // Set up new buffer.
2956 desc.buffer = NewArray<byte>(desc.buffer_size);
2957 desc.origin = this;
2958
2959 desc.instr_size = pc_offset();
2960 desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
2961
2962 // Copy the data.
2963 intptr_t pc_delta = desc.buffer - buffer_;
2964 intptr_t rc_delta =
2965 (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
2966 memmove(desc.buffer, buffer_, desc.instr_size);
2967 memmove(reloc_info_writer.pos() + rc_delta, reloc_info_writer.pos(),
2968 desc.reloc_size);
2969
2970 // Switch buffers.
2971 DeleteArray(buffer_);
2972 buffer_ = desc.buffer;
2973 buffer_size_ = desc.buffer_size;
2974 pc_ += pc_delta;
2975 reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
2976 reloc_info_writer.last_pc() + pc_delta);
2977
2978 // None of our relocation types are pc relative pointing outside the code
2979 // buffer nor pc absolute pointing inside the code buffer, so there is no need
2980 // to relocate any emitted relocation entries.
2981}
2982
2983void Assembler::db(uint8_t data) {
2984 CheckBuffer();
2985 *reinterpret_cast<uint8_t*>(pc_) = data;
2986 pc_ += sizeof(uint8_t);
2987}
2988
2989void Assembler::dd(uint32_t data) {
2990 CheckBuffer();
2991 *reinterpret_cast<uint32_t*>(pc_) = data;
2992 pc_ += sizeof(uint32_t);
2993}
2994
2995void Assembler::dq(uint64_t value) {
2996 CheckBuffer();
2997 *reinterpret_cast<uint64_t*>(pc_) = value;
2998 pc_ += sizeof(uint64_t);
2999}
3000
3001void Assembler::dp(uintptr_t data) {
3002 CheckBuffer();
3003 *reinterpret_cast<uintptr_t*>(pc_) = data;
3004 pc_ += sizeof(uintptr_t);
3005}
3006
3007void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
3008 if (RelocInfo::IsNone(rmode) ||
3009 // Don't record external references unless the heap will be serialized.
3010 (rmode == RelocInfo::EXTERNAL_REFERENCE && !serializer_enabled() &&
3011 !emit_debug_code())) {
3012 return;
3013 }
3014 if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
3015 data = RecordedAstId().ToInt();
3016 ClearRecordedAstId();
3017 }
3018 DeferredRelocInfo rinfo(pc_offset(), rmode, data);
3019 relocations_.push_back(rinfo);
3020}
3021
3022void Assembler::emit_label_addr(Label* label) {
3023 CheckBuffer();
3024 RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
3025 int position = link(label);
3026 DCHECK(label->is_bound());
3027 // Keep internal references relative until EmitRelocations.
3028 dp(position);
3029}
3030
3031void Assembler::EmitRelocations() {
3032 EnsureSpaceFor(relocations_.size() * kMaxRelocSize);
3033
3034 for (std::vector<DeferredRelocInfo>::iterator it = relocations_.begin();
3035 it != relocations_.end(); it++) {
3036 RelocInfo::Mode rmode = it->rmode();
3037 Address pc = buffer_ + it->position();
3038 Code* code = NULL;
3039 RelocInfo rinfo(isolate(), pc, rmode, it->data(), code);
3040
3041 // Fix up internal references now that they are guaranteed to be bound.
3042 if (RelocInfo::IsInternalReference(rmode)) {
3043 // Jump table entry
3044 intptr_t pos = reinterpret_cast<intptr_t>(Memory::Address_at(pc));
3045 Memory::Address_at(pc) = buffer_ + pos;
3046 } else if (RelocInfo::IsInternalReferenceEncoded(rmode)) {
3047 // mov sequence
3048 intptr_t pos = reinterpret_cast<intptr_t>(target_address_at(pc, code));
3049 set_target_address_at(isolate(), pc, code, buffer_ + pos,
3050 SKIP_ICACHE_FLUSH);
3051 }
3052
3053 reloc_info_writer.Write(&rinfo);
3054 }
3055
3056 reloc_info_writer.Finish();
3057}
3058
3059} // namespace internal
3060} // namespace v8
3061#endif // V8_TARGET_ARCH_S390