Re-triangulate the spot shadow.

Fix the valid umbra detection.

This looks better b/c every vertex will have one ray shooting at it, such that
we don't miss the corner.

This performs better too, due to the polygon intersection is removed and less ray
intersection. 2x performance for rect and circle for spot shadow in test app.

    b/17288227
    b/15598793
    b/16712006

Change-Id: I4a5ee397b9e192e93c8e35e6260b499e3e38a6f4
diff --git a/libs/hwui/AmbientShadow.cpp b/libs/hwui/AmbientShadow.cpp
index 4873479..cb3a002 100644
--- a/libs/hwui/AmbientShadow.cpp
+++ b/libs/hwui/AmbientShadow.cpp
@@ -91,36 +91,13 @@
     return getTransformedAlphaFromAlpha(getAlphaFromFactoredZ(factoredZ));
 }
 
-inline int getExtraVertexNumber(const Vector2& vector1, const Vector2& vector2,
-        float divisor) {
-    // When there is no distance difference, there is no need for extra vertices.
-    if (vector1.lengthSquared() == 0 || vector2.lengthSquared() == 0) {
-        return 0;
-    }
-    // The formula is :
-    // extraNumber = floor(acos(dot(n1, n2)) / (M_PI / EXTRA_VERTEX_PER_PI))
-    // The value ranges for each step are:
-    // dot( ) --- [-1, 1]
-    // acos( )     --- [0, M_PI]
-    // floor(...)  --- [0, EXTRA_VERTEX_PER_PI]
-    float dotProduct = vector1.dot(vector2);
-    // TODO: Use look up table for the dotProduct to extraVerticesNumber
-    // computation, if needed.
-    float angle = acosf(dotProduct);
-    return (int) floor(angle / divisor);
-}
-
-inline void checkOverflow(int used, int total, const char* bufferName) {
-    LOG_ALWAYS_FATAL_IF(used > total, "Error: %s overflow!!! used %d, total %d",
-            bufferName, used, total);
-}
-
 inline int getEdgeExtraAndUpdateSpike(Vector2* currentSpike,
         const Vector3& secondVertex, const Vector3& centroid) {
     Vector2 secondSpike  = {secondVertex.x - centroid.x, secondVertex.y - centroid.y};
     secondSpike.normalize();
 
-    int result = getExtraVertexNumber(secondSpike, *currentSpike, EDGE_RADIANS_DIVISOR);
+    int result = ShadowTessellator::getExtraVertexNumber(secondSpike, *currentSpike,
+            EDGE_RADIANS_DIVISOR);
     *currentSpike = secondSpike;
     return result;
 }
@@ -231,8 +208,8 @@
         Vector2 currentNormal = getNormalFromVertices(casterVertices, i,
                 (i + 1) % casterVertexCount);
 
-        int extraVerticesNumber = getExtraVertexNumber(currentNormal, previousNormal,
-                CORNER_RADIANS_DIVISOR);
+        int extraVerticesNumber = ShadowTessellator::getExtraVertexNumber(currentNormal,
+                previousNormal, CORNER_RADIANS_DIVISOR);
 
         float expansionDist = innerVertex.z * heightFactor * geomFactor;
         const int cornerSlicesNumber = extraVerticesNumber + 1; // Minimal as 1.
@@ -349,9 +326,9 @@
     shadowVertexBuffer.updateVertexCount(vertexBufferIndex);
     shadowVertexBuffer.updateIndexCount(indexBufferIndex);
 
-    checkOverflow(vertexBufferIndex, totalVertexCount, "Vertex Buffer");
-    checkOverflow(indexBufferIndex, totalIndexCount, "Index Buffer");
-    checkOverflow(umbraIndex, totalUmbraCount, "Umbra Buffer");
+    ShadowTessellator::checkOverflow(vertexBufferIndex, totalVertexCount, "Vertex Buffer");
+    ShadowTessellator::checkOverflow(indexBufferIndex, totalIndexCount, "Index Buffer");
+    ShadowTessellator::checkOverflow(umbraIndex, totalUmbraCount, "Umbra Buffer");
 
 #if DEBUG_SHADOW
     for (int i = 0; i < vertexBufferIndex; i++) {
diff --git a/libs/hwui/ShadowTessellator.cpp b/libs/hwui/ShadowTessellator.cpp
index 6cff815..c1ffa0a 100644
--- a/libs/hwui/ShadowTessellator.cpp
+++ b/libs/hwui/ShadowTessellator.cpp
@@ -252,5 +252,29 @@
     }
 }
 
+int ShadowTessellator::getExtraVertexNumber(const Vector2& vector1,
+        const Vector2& vector2, float divisor) {
+    // When there is no distance difference, there is no need for extra vertices.
+    if (vector1.lengthSquared() == 0 || vector2.lengthSquared() == 0) {
+        return 0;
+    }
+    // The formula is :
+    // extraNumber = floor(acos(dot(n1, n2)) / (M_PI / EXTRA_VERTEX_PER_PI))
+    // The value ranges for each step are:
+    // dot( ) --- [-1, 1]
+    // acos( )     --- [0, M_PI]
+    // floor(...)  --- [0, EXTRA_VERTEX_PER_PI]
+    float dotProduct = vector1.dot(vector2);
+    // TODO: Use look up table for the dotProduct to extraVerticesNumber
+    // computation, if needed.
+    float angle = acosf(dotProduct);
+    return (int) floor(angle / divisor);
+}
+
+void ShadowTessellator::checkOverflow(int used, int total, const char* bufferName) {
+    LOG_ALWAYS_FATAL_IF(used > total, "Error: %s overflow!!! used %d, total %d",
+            bufferName, used, total);
+}
+
 }; // namespace uirenderer
 }; // namespace android
diff --git a/libs/hwui/ShadowTessellator.h b/libs/hwui/ShadowTessellator.h
index 141dff6..8f19b5c 100644
--- a/libs/hwui/ShadowTessellator.h
+++ b/libs/hwui/ShadowTessellator.h
@@ -101,6 +101,10 @@
      */
     static void reverseVertexArray(Vertex* polygon, int len);
 
+    static int getExtraVertexNumber(const Vector2& vector1, const Vector2& vector2,
+            float divisor);
+
+    static void checkOverflow(int used, int total, const char* bufferName);
 }; // ShadowTessellator
 
 }; // namespace uirenderer
diff --git a/libs/hwui/SpotShadow.cpp b/libs/hwui/SpotShadow.cpp
index 2178cc7..dbedf94 100644
--- a/libs/hwui/SpotShadow.cpp
+++ b/libs/hwui/SpotShadow.cpp
@@ -16,10 +16,34 @@
 
 #define LOG_TAG "OpenGLRenderer"
 
-#define SHADOW_SHRINK_SCALE 0.1f
+// The highest z value can't be higher than (CASTER_Z_CAP_RATIO * light.z)
 #define CASTER_Z_CAP_RATIO 0.95f
-#define FAKE_UMBRA_SIZE_RATIO 0.01f
-#define OCLLUDED_UMBRA_SHRINK_FACTOR 0.95f
+
+// When there is no umbra, then just fake the umbra using
+// centroid * (1 - FAKE_UMBRA_SIZE_RATIO) + outline * FAKE_UMBRA_SIZE_RATIO
+#define FAKE_UMBRA_SIZE_RATIO 0.05f
+
+// When the polygon is about 90 vertices, the penumbra + umbra can reach 270 rays.
+// That is consider pretty fine tessllated polygon so far.
+// This is just to prevent using too much some memory when edge slicing is not
+// needed any more.
+#define FINE_TESSELLATED_POLYGON_RAY_NUMBER 270
+/**
+ * Extra vertices for the corner for smoother corner.
+ * Only for outer loop.
+ * Note that we use such extra memory to avoid an extra loop.
+ */
+// For half circle, we could add EXTRA_VERTEX_PER_PI vertices.
+// Set to 1 if we don't want to have any.
+#define SPOT_EXTRA_CORNER_VERTEX_PER_PI 18
+
+// For the whole polygon, the sum of all the deltas b/t normals is 2 * M_PI,
+// therefore, the maximum number of extra vertices will be twice bigger.
+#define SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER  (2 * SPOT_EXTRA_CORNER_VERTEX_PER_PI)
+
+// For each RADIANS_DIVISOR, we would allocate one more vertex b/t the normals.
+#define SPOT_CORNER_RADIANS_DIVISOR (M_PI / SPOT_EXTRA_CORNER_VERTEX_PER_PI)
+
 
 #include <math.h>
 #include <stdlib.h>
@@ -51,6 +75,24 @@
 };
 
 /**
+ * For each vertex, we need to keep track of its angle, whether it is penumbra or
+ * umbra, and its corresponding vertex index.
+ */
+struct SpotShadow::VertexAngleData {
+    // The angle to the vertex from the centroid.
+    float mAngle;
+    // True is the vertex comes from penumbra, otherwise it comes from umbra.
+    bool mIsPenumbra;
+    // The index of the vertex described by this data.
+    int mVertexIndex;
+    void set(float angle, bool isPenumbra, int index) {
+        mAngle = angle;
+        mIsPenumbra = isPenumbra;
+        mVertexIndex = index;
+    }
+};
+
+/**
  * Calculate the angle between and x and a y coordinate.
  * The atan2 range from -PI to PI.
  */
@@ -407,8 +449,8 @@
         double endX = poly[i].x;
         double endY = poly[i].y;
 
-        if (((endY > testy) != (startY > testy)) &&
-            (testx < (startX - endX) * (testy - endY)
+        if (((endY > testy) != (startY > testy))
+            && (testx < (startX - endX) * (testy - endY)
              / (startY - endY) + endX)) {
             c = !c;
         }
@@ -508,138 +550,14 @@
 }
 
 /**
-* Generate the shadow from a spot light.
-*
-* @param poly x,y,z vertexes of a convex polygon that occludes the light source
-* @param polyLength number of vertexes of the occluding polygon
-* @param lightCenter the center of the light
-* @param lightSize the radius of the light source
-* @param lightVertexCount the vertex counter for the light polygon
-* @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
-*                            empty strip if error.
-*
-*/
-
-void SpotShadow::createSpotShadow_old(bool isCasterOpaque, const Vector3* poly,
-        int polyLength, const Vector3& lightCenter, float lightSize,
-        int lightVertexCount, VertexBuffer& retStrips) {
-    Vector3 light[lightVertexCount * 3];
-    computeLightPolygon(lightVertexCount, lightCenter, lightSize, light);
-    computeSpotShadow_old(isCasterOpaque, light, lightVertexCount, lightCenter, poly,
-            polyLength, retStrips);
-}
-
-/**
- * Generate the shadow spot light of shape lightPoly and a object poly
+ * From light center, project one vertex to the z=0 surface and get the outline.
  *
- * @param lightPoly x,y,z vertex of a convex polygon that is the light source
- * @param lightPolyLength number of vertexes of the light source polygon
- * @param poly x,y,z vertexes of a convex polygon that occludes the light source
- * @param polyLength number of vertexes of the occluding polygon
- * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
- *                            empty strip if error.
+ * @param outline The result which is the outline position.
+ * @param lightCenter The center of light.
+ * @param polyVertex The input polygon's vertex.
+ *
+ * @return float The ratio of (polygon.z / light.z - polygon.z)
  */
-void SpotShadow::computeSpotShadow_old(bool isCasterOpaque, const Vector3* lightPoly,
-        int lightPolyLength, const Vector3& lightCenter, const Vector3* poly, int polyLength,
-        VertexBuffer& shadowTriangleStrip) {
-    // Point clouds for all the shadowed vertices
-    Vector2 shadowRegion[lightPolyLength * polyLength];
-    // Shadow polygon from one point light.
-    Vector2 outline[polyLength];
-    Vector2 umbraMem[polyLength * lightPolyLength];
-    Vector2* umbra = umbraMem;
-
-    int umbraLength = 0;
-
-    // Validate input, receiver is always at z = 0 plane.
-    bool inputPolyPositionValid = true;
-    for (int i = 0; i < polyLength; i++) {
-        if (poly[i].z >= lightPoly[0].z) {
-            inputPolyPositionValid = false;
-            ALOGW("polygon above the light");
-            break;
-        }
-    }
-
-    // If the caster's position is invalid, don't draw anything.
-    if (!inputPolyPositionValid) {
-        return;
-    }
-
-    // Calculate the umbra polygon based on intersections of all outlines
-    int k = 0;
-    for (int j = 0; j < lightPolyLength; j++) {
-        int m = 0;
-        for (int i = 0; i < polyLength; i++) {
-            // After validating the input, deltaZ is guaranteed to be positive.
-            float deltaZ = lightPoly[j].z - poly[i].z;
-            float ratioZ = lightPoly[j].z / deltaZ;
-            float x = lightPoly[j].x - ratioZ * (lightPoly[j].x - poly[i].x);
-            float y = lightPoly[j].y - ratioZ * (lightPoly[j].y - poly[i].y);
-
-            Vector2 newPoint = {x, y};
-            shadowRegion[k] = newPoint;
-            outline[m] = newPoint;
-
-            k++;
-            m++;
-        }
-
-        // For the first light polygon's vertex, use the outline as the umbra.
-        // Later on, use the intersection of the outline and existing umbra.
-        if (umbraLength == 0) {
-            for (int i = 0; i < polyLength; i++) {
-                umbra[i] = outline[i];
-            }
-            umbraLength = polyLength;
-        } else {
-            int col = ((j * 255) / lightPolyLength);
-            umbraLength = intersection(outline, polyLength, umbra, umbraLength);
-            if (umbraLength == 0) {
-                break;
-            }
-        }
-    }
-
-    // Generate the penumbra area using the hull of all shadow regions.
-    int shadowRegionLength = k;
-    Vector2 penumbra[k];
-    int penumbraLength = hull(shadowRegion, shadowRegionLength, penumbra);
-
-    Vector2 fakeUmbra[polyLength];
-    if (umbraLength < 3) {
-        // If there is no real umbra, make a fake one.
-        for (int i = 0; i < polyLength; i++) {
-            float deltaZ = lightCenter.z - poly[i].z;
-            float ratioZ = lightCenter.z / deltaZ;
-            float x = lightCenter.x - ratioZ * (lightCenter.x - poly[i].x);
-            float y = lightCenter.y - ratioZ * (lightCenter.y - poly[i].y);
-
-            fakeUmbra[i].x = x;
-            fakeUmbra[i].y = y;
-        }
-
-        // Shrink the centroid's shadow by 10%.
-        // TODO: Study the magic number of 10%.
-        Vector2 shadowCentroid =
-                ShadowTessellator::centroid2d(fakeUmbra, polyLength);
-        for (int i = 0; i < polyLength; i++) {
-            fakeUmbra[i] = shadowCentroid * (1.0f - SHADOW_SHRINK_SCALE) +
-                    fakeUmbra[i] * SHADOW_SHRINK_SCALE;
-        }
-#if DEBUG_SHADOW
-        ALOGD("No real umbra make a fake one, centroid2d =  %f , %f",
-                shadowCentroid.x, shadowCentroid.y);
-#endif
-        // Set the fake umbra, whose size is the same as the original polygon.
-        umbra = fakeUmbra;
-        umbraLength = polyLength;
-    }
-
-    generateTriangleStrip(isCasterOpaque, 1.0, penumbra, penumbraLength, umbra,
-            umbraLength, poly, polyLength, shadowTriangleStrip);
-}
-
 float SpotShadow::projectCasterToOutline(Vector2& outline,
         const Vector3& lightCenter, const Vector3& polyVertex) {
     float lightToPolyZ = lightCenter.z - polyVertex.z;
@@ -673,6 +591,12 @@
         ALOGW("Relative Light Z is not positive. No spot shadow!");
         return;
     }
+    if (CC_UNLIKELY(polyLength < 3)) {
+#if DEBUG_SHADOW
+        ALOGW("Invalid polygon length. No spot shadow!");
+#endif
+        return;
+    }
     OutlineData outlineData[polyLength];
     Vector2 outlineCentroid;
     // Calculate the projected outline for each polygon's vertices from the light center.
@@ -713,16 +637,20 @@
     projectCasterToOutline(outlineCentroid, lightCenter, polyCentroid);
 
     int penumbraIndex = 0;
-    int penumbraLength = polyLength * 3;
-    Vector2 penumbra[penumbraLength];
+    // Then each polygon's vertex produce at minmal 2 penumbra vertices.
+    // Since the size can be dynamic here, we keep track of the size and update
+    // the real size at the end.
+    int allocatedPenumbraLength = 2 * polyLength + SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER;
+    Vector2 penumbra[allocatedPenumbraLength];
+    int totalExtraCornerSliceNumber = 0;
 
     Vector2 umbra[polyLength];
-    float distOutline = 0;
-    float ratioVI = 0;
 
+    // When centroid is covered by all circles from outline, then we consider
+    // the umbra is invalid, and we will tune down the shadow strength.
     bool hasValidUmbra = true;
-    // We need the maxRatioVI to decrease the spot shadow strength accordingly.
-    float maxRaitoVI = 1.0;
+    // We need the minimal of RaitoVI to decrease the spot shadow strength accordingly.
+    float minRaitoVI = FLT_MAX;
 
     for (int i = 0; i < polyLength; i++) {
         // Generate all the penumbra's vertices only using the (outline vertex + normal * radius)
@@ -748,21 +676,35 @@
         //           |                                 |
         //       (V3)-----------------------------------(V2)
         int preNormalIndex = (i + polyLength - 1) % polyLength;
-        penumbra[penumbraIndex++] = outlineData[i].position +
-            outlineData[preNormalIndex].normal * outlineData[i].radius;
 
-        int currentNormalIndex = i;
-        // (TODO) Depending on how roundness we want for each corner, we can subdivide
+        const Vector2& previousNormal = outlineData[preNormalIndex].normal;
+        const Vector2& currentNormal = outlineData[i].normal;
+
+        // Depending on how roundness we want for each corner, we can subdivide
         // further here and/or introduce some heuristic to decide how much the
         // subdivision should be.
-        Vector2 avgNormal =
-            (outlineData[preNormalIndex].normal + outlineData[currentNormalIndex].normal) / 2;
+        int currentExtraSliceNumber = ShadowTessellator::getExtraVertexNumber(
+                previousNormal, currentNormal, SPOT_CORNER_RADIANS_DIVISOR);
 
-        penumbra[penumbraIndex++] = outlineData[i].position +
-            avgNormal * outlineData[i].radius;
+        int currentCornerSliceNumber = 1 + currentExtraSliceNumber;
+        totalExtraCornerSliceNumber += currentExtraSliceNumber;
+#if DEBUG_SHADOW
+        ALOGD("currentExtraSliceNumber should be %d", currentExtraSliceNumber);
+        ALOGD("currentCornerSliceNumber should be %d", currentCornerSliceNumber);
+        ALOGD("totalCornerSliceNumber is %d", totalExtraCornerSliceNumber);
+#endif
+        if (CC_UNLIKELY(totalExtraCornerSliceNumber > SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER)) {
+            currentCornerSliceNumber = 1;
+        }
+        for (int k = 0; k <= currentCornerSliceNumber; k++) {
+            Vector2 avgNormal =
+                    (previousNormal * (currentCornerSliceNumber - k) + currentNormal * k) /
+                    currentCornerSliceNumber;
+            avgNormal.normalize();
+            penumbra[penumbraIndex++] = outlineData[i].position +
+                    avgNormal * outlineData[i].radius;
+        }
 
-        penumbra[penumbraIndex++] = outlineData[i].position +
-            outlineData[currentNormalIndex].normal * outlineData[i].radius;
 
         // Compute the umbra by the intersection from the outline's centroid!
         //
@@ -783,53 +725,70 @@
         // Now, ratioVI = VI / VC, ratioIC = IC / VC
         // Then the intersetion point can be computed as Ixy = Vxy * ratioIC + Cxy * ratioVI;
         //
-        // When one of the outline circle cover the the outline centroid, (like I is
+        // When all of the outline circles cover the the outline centroid, (like I is
         // on the other side of C), there is no real umbra any more, so we just fake
         // a small area around the centroid as the umbra, and tune down the spot
         // shadow's umbra strength to simulate the effect the whole shadow will
         // become lighter in this case.
         // The ratio can be simulated by using the inverse of maximum of ratioVI for
         // all (V).
-        distOutline = (outlineData[i].position - outlineCentroid).length();
+        float distOutline = (outlineData[i].position - outlineCentroid).length();
         if (CC_UNLIKELY(distOutline == 0)) {
             // If the outline has 0 area, then there is no spot shadow anyway.
             ALOGW("Outline has 0 area, no spot shadow!");
             return;
         }
-        ratioVI = outlineData[i].radius / distOutline;
-        if (ratioVI >= 1.0) {
-            maxRaitoVI = ratioVI;
-            hasValidUmbra = false;
+
+        float ratioVI = outlineData[i].radius / distOutline;
+        minRaitoVI = MathUtils::min(minRaitoVI, ratioVI);
+        if (ratioVI >= (1 - FAKE_UMBRA_SIZE_RATIO)) {
+            ratioVI = (1 - FAKE_UMBRA_SIZE_RATIO);
         }
         // When we know we don't have valid umbra, don't bother to compute the
         // values below. But we can't skip the loop yet since we want to know the
         // maximum ratio.
-        if (hasValidUmbra) {
-            float ratioIC = (distOutline - outlineData[i].radius) / distOutline;
-            umbra[i] = outlineData[i].position * ratioIC + outlineCentroid * ratioVI;
-        }
+        float ratioIC = 1 - ratioVI;
+        umbra[i] = outlineData[i].position * ratioIC + outlineCentroid * ratioVI;
     }
 
+    hasValidUmbra = (minRaitoVI <= 1.0);
     float shadowStrengthScale = 1.0;
     if (!hasValidUmbra) {
+#if DEBUG_SHADOW
         ALOGW("The object is too close to the light or too small, no real umbra!");
+#endif
         for (int i = 0; i < polyLength; i++) {
             umbra[i] = outlineData[i].position * FAKE_UMBRA_SIZE_RATIO +
-                outlineCentroid * (1 - FAKE_UMBRA_SIZE_RATIO);
+                    outlineCentroid * (1 - FAKE_UMBRA_SIZE_RATIO);
         }
-        shadowStrengthScale = 1.0 / maxRaitoVI;
+        shadowStrengthScale = 1.0 / minRaitoVI;
     }
 
+    int penumbraLength = penumbraIndex;
+    int umbraLength = polyLength;
+
 #if DEBUG_SHADOW
+    ALOGD("penumbraLength is %d , allocatedPenumbraLength %d", penumbraLength, allocatedPenumbraLength);
     dumpPolygon(poly, polyLength, "input poly");
-    dumpPolygon(outline, polyLength, "outline");
     dumpPolygon(penumbra, penumbraLength, "penumbra");
-    dumpPolygon(umbra, polyLength, "umbra");
+    dumpPolygon(umbra, umbraLength, "umbra");
     ALOGD("hasValidUmbra is %d and shadowStrengthScale is %f", hasValidUmbra, shadowStrengthScale);
 #endif
 
-    generateTriangleStrip(isCasterOpaque, shadowStrengthScale, penumbra,
-            penumbraLength, umbra, polyLength, poly, polyLength, shadowTriangleStrip);
+    // The penumbra and umbra needs to be in convex shape to keep consistency
+    // and quality.
+    // Since we are still shooting rays to penumbra, it needs to be convex.
+    // Umbra can be represented as a fan from the centroid, but visually umbra
+    // looks nicer when it is convex.
+    Vector2 finalUmbra[umbraLength];
+    Vector2 finalPenumbra[penumbraLength];
+    int finalUmbraLength = hull(umbra, umbraLength, finalUmbra);
+    int finalPenumbraLength = hull(penumbra, penumbraLength, finalPenumbra);
+
+    generateTriangleStrip(isCasterOpaque, shadowStrengthScale, finalPenumbra,
+            finalPenumbraLength, finalUmbra, finalUmbraLength, poly, polyLength,
+            shadowTriangleStrip, outlineCentroid);
+
 }
 
 /**
@@ -891,7 +850,7 @@
         lastVertex = &poly[polyIndex];
     }
 
-   return true;
+    return true;
 }
 
 int SpotShadow::calculateOccludedUmbra(const Vector2* umbra, int umbraLength,
@@ -910,100 +869,6 @@
 }
 
 /**
- * Generate a triangle strip given two convex polygons
- *
- * @param penumbra The outer polygon x,y vertexes
- * @param penumbraLength The number of vertexes in the outer polygon
- * @param umbra The inner outer polygon x,y vertexes
- * @param umbraLength The number of vertexes in the inner polygon
- * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
- *                            empty strip if error.
-**/
-void SpotShadow::generateTriangleStrip(bool isCasterOpaque, float shadowStrengthScale,
-        const Vector2* penumbra, int penumbraLength, const Vector2* umbra, int umbraLength,
-        const Vector3* poly, int polyLength, VertexBuffer& shadowTriangleStrip) {
-    const int rays = SHADOW_RAY_COUNT;
-    const int size = 2 * rays;
-    const float step = M_PI * 2 / rays;
-    // Centroid of the umbra.
-    Vector2 centroid = ShadowTessellator::centroid2d(umbra, umbraLength);
-#if DEBUG_SHADOW
-    ALOGD("centroid2d =  %f , %f", centroid.x, centroid.y);
-#endif
-    // Intersection to the penumbra.
-    float penumbraDistPerRay[rays];
-    // Intersection to the umbra.
-    float umbraDistPerRay[rays];
-    // Intersection to the occluded umbra area.
-    float occludedUmbraDistPerRay[rays];
-
-    // convert CW polygons to ray distance encoding, aborting on conversion failure
-    if (!convertPolyToRayDist(umbra, umbraLength, centroid, umbraDistPerRay)) return;
-    if (!convertPolyToRayDist(penumbra, penumbraLength, centroid, penumbraDistPerRay)) return;
-
-    bool hasOccludedUmbraArea = false;
-    if (isCasterOpaque) {
-        Vector2 occludedUmbra[polyLength + umbraLength];
-        int occludedUmbraLength = calculateOccludedUmbra(umbra, umbraLength, poly, polyLength,
-                occludedUmbra);
-        // Make sure the centroid is inside the umbra, otherwise, fall back to the
-        // approach as if there is no occluded umbra area.
-        if (testPointInsidePolygon(centroid, occludedUmbra, occludedUmbraLength)) {
-            hasOccludedUmbraArea = true;
-            // Shrink the occluded umbra area to avoid pixel level artifacts.
-            for (int i = 0; i < occludedUmbraLength; i ++) {
-                occludedUmbra[i] = centroid + (occludedUmbra[i] - centroid) *
-                        OCLLUDED_UMBRA_SHRINK_FACTOR;
-            }
-            if (!convertPolyToRayDist(occludedUmbra, occludedUmbraLength, centroid,
-                    occludedUmbraDistPerRay)) {
-                return;
-            }
-        }
-    }
-    AlphaVertex* shadowVertices =
-            shadowTriangleStrip.alloc<AlphaVertex>(SHADOW_VERTEX_COUNT);
-
-    // NOTE: Shadow alpha values are transformed when stored in alphavertices,
-    // so that they can be consumed directly by gFS_Main_ApplyVertexAlphaShadowInterp
-    float transformedMaxAlpha = M_PI * shadowStrengthScale;
-
-    // Calculate the vertices (x, y, alpha) in the shadow area.
-    AlphaVertex centroidXYA;
-    AlphaVertex::set(&centroidXYA, centroid.x, centroid.y, transformedMaxAlpha);
-    for (int rayIndex = 0; rayIndex < rays; rayIndex++) {
-        float dx = cosf(step * rayIndex);
-        float dy = sinf(step * rayIndex);
-
-        // penumbra ring
-        float penumbraDistance = penumbraDistPerRay[rayIndex];
-        AlphaVertex::set(&shadowVertices[rayIndex],
-                dx * penumbraDistance + centroid.x,
-                dy * penumbraDistance + centroid.y, 0.0f);
-
-        // umbra ring
-        float umbraDistance = umbraDistPerRay[rayIndex];
-        AlphaVertex::set(&shadowVertices[rays + rayIndex],
-                dx * umbraDistance + centroid.x,
-                dy * umbraDistance + centroid.y,
-                transformedMaxAlpha);
-
-        // occluded umbra ring
-        if (hasOccludedUmbraArea) {
-            float occludedUmbraDistance = occludedUmbraDistPerRay[rayIndex];
-            AlphaVertex::set(&shadowVertices[2 * rays + rayIndex],
-                    dx * occludedUmbraDistance + centroid.x,
-                    dy * occludedUmbraDistance + centroid.y, transformedMaxAlpha);
-        } else {
-            // Put all vertices of the occluded umbra ring at the centroid.
-            shadowVertices[2 * rays + rayIndex] = centroidXYA;
-        }
-    }
-    shadowTriangleStrip.setMode(VertexBuffer::kTwoPolyRingShadow);
-    shadowTriangleStrip.computeBounds<AlphaVertex>();
-}
-
-/**
  * This is only for experimental purpose.
  * After intersections are calculated, we could smooth the polygon if needed.
  * So far, we don't think it is more appealing yet.
@@ -1024,15 +889,656 @@
     }
 }
 
+/**
+ * Generate a array of the angleData for either umbra or penumbra vertices.
+ *
+ * This array will be merged and used to guide where to shoot the rays, in clockwise order.
+ *
+ * @param angleDataList The result array of angle data.
+ *
+ * @return int The maximum angle's index in the array.
+ */
+int SpotShadow::setupAngleList(VertexAngleData* angleDataList,
+        int polyLength, const Vector2* polygon, const Vector2& centroid,
+        bool isPenumbra, const char* name) {
+    float maxAngle = FLT_MIN;
+    int maxAngleIndex = 0;
+    for (int i = 0; i < polyLength; i++) {
+        float currentAngle = angle(polygon[i], centroid);
+        if (currentAngle > maxAngle) {
+            maxAngle = currentAngle;
+            maxAngleIndex = i;
+        }
+        angleDataList[i].set(currentAngle, isPenumbra, i);
+#if DEBUG_SHADOW
+        ALOGD("%s AngleList i %d %f", name, i, currentAngle);
+#endif
+    }
+    return maxAngleIndex;
+}
+
+/**
+ * Make sure the polygons are indeed in clockwise order.
+ *
+ * Possible reasons to return false: 1. The input polygon is not setup properly. 2. The hull
+ * algorithm is not able to generate it properly.
+ *
+ * Anyway, since the algorithm depends on the clockwise, when these kind of unexpected error
+ * situation is found, we need to detect it and early return without corrupting the memory.
+ *
+ * @return bool True if the angle list is actually from big to small.
+ */
+bool SpotShadow::checkClockwise(int indexOfMaxAngle, int listLength, VertexAngleData* angleList,
+        const char* name) {
+    int currentIndex = indexOfMaxAngle;
+#if DEBUG_SHADOW
+    ALOGD("max index %d", currentIndex);
+#endif
+    for (int i = 0; i < listLength - 1; i++) {
+        // TODO: Cache the last angle.
+        float currentAngle = angleList[currentIndex].mAngle;
+        float nextAngle = angleList[(currentIndex + 1) % listLength].mAngle;
+        if (currentAngle < nextAngle) {
+#if DEBUG_SHADOW
+            ALOGE("%s, is not CW, at index %d", name, currentIndex);
+#endif
+            return false;
+        }
+        currentIndex = (currentIndex + 1) % listLength;
+    }
+    return true;
+}
+
+/**
+ * Check the polygon is clockwise.
+ *
+ * @return bool True is the polygon is clockwise.
+ */
+bool SpotShadow::checkPolyClockwise(int polyAngleLength, int maxPolyAngleIndex,
+        const float* polyAngleList) {
+    bool isPolyCW = true;
+    // Starting from maxPolyAngleIndex , check around to make sure angle decrease.
+    for (int i = 0; i < polyAngleLength - 1; i++) {
+        float currentAngle = polyAngleList[(i + maxPolyAngleIndex) % polyAngleLength];
+        float nextAngle = polyAngleList[(i + maxPolyAngleIndex + 1) % polyAngleLength];
+        if (currentAngle < nextAngle) {
+            isPolyCW = false;
+        }
+    }
+    return isPolyCW;
+}
+
+/**
+ * Given the sorted array of all the vertices angle data, calculate for each
+ * vertices, the offset value to array element which represent the start edge
+ * of the polygon we need to shoot the ray at.
+ *
+ * TODO: Calculate this for umbra and penumbra in one loop using one single array.
+ *
+ * @param distances The result of the array distance counter.
+ */
+void SpotShadow::calculateDistanceCounter(bool needsOffsetToUmbra, int angleLength,
+        const VertexAngleData* allVerticesAngleData, int* distances) {
+
+    bool firstVertexIsPenumbra = allVerticesAngleData[0].mIsPenumbra;
+    // If we want distance to inner, then we just set to 0 when we see inner.
+    bool needsSearch = needsOffsetToUmbra ? firstVertexIsPenumbra : !firstVertexIsPenumbra;
+    int distanceCounter = 0;
+    if (needsSearch) {
+        int foundIndex = -1;
+        for (int i = (angleLength - 1); i >= 0; i--) {
+            bool currentIsOuter = allVerticesAngleData[i].mIsPenumbra;
+            // If we need distance to inner, then we need to find a inner vertex.
+            if (currentIsOuter != firstVertexIsPenumbra) {
+                foundIndex = i;
+                break;
+            }
+        }
+        LOG_ALWAYS_FATAL_IF(foundIndex == -1, "Wrong index found, means either"
+                " umbra or penumbra's length is 0");
+        distanceCounter = angleLength - foundIndex;
+    }
+#if DEBUG_SHADOW
+    ALOGD("distances[0] is %d", distanceCounter);
+#endif
+
+    distances[0] = distanceCounter; // means never see a target poly
+
+    for (int i = 1; i < angleLength; i++) {
+        bool firstVertexIsPenumbra = allVerticesAngleData[i].mIsPenumbra;
+        // When we needs for distance for each outer vertex to inner, then we
+        // increase the distance when seeing outer vertices. Otherwise, we clear
+        // to 0.
+        bool needsIncrement = needsOffsetToUmbra ? firstVertexIsPenumbra : !firstVertexIsPenumbra;
+        // If counter is not -1, that means we have seen an other polygon's vertex.
+        if (needsIncrement && distanceCounter != -1) {
+            distanceCounter++;
+        } else {
+            distanceCounter = 0;
+        }
+        distances[i] = distanceCounter;
+    }
+}
+
+/**
+ * Given umbra and penumbra angle data list, merge them by sorting the angle
+ * from the biggest to smallest.
+ *
+ * @param allVerticesAngleData The result array of merged angle data.
+ */
+void SpotShadow::mergeAngleList(int maxUmbraAngleIndex, int maxPenumbraAngleIndex,
+        const VertexAngleData* umbraAngleList, int umbraLength,
+        const VertexAngleData* penumbraAngleList, int penumbraLength,
+        VertexAngleData* allVerticesAngleData) {
+
+    int totalRayNumber = umbraLength + penumbraLength;
+    int umbraIndex = maxUmbraAngleIndex;
+    int penumbraIndex = maxPenumbraAngleIndex;
+
+    float currentUmbraAngle = umbraAngleList[umbraIndex].mAngle;
+    float currentPenumbraAngle = penumbraAngleList[penumbraIndex].mAngle;
+
+    // TODO: Clean this up using a while loop with 2 iterators.
+    for (int i = 0; i < totalRayNumber; i++) {
+        if (currentUmbraAngle > currentPenumbraAngle) {
+            allVerticesAngleData[i] = umbraAngleList[umbraIndex];
+            umbraIndex = (umbraIndex + 1) % umbraLength;
+
+            // If umbraIndex round back, that means we are running out of
+            // umbra vertices to merge, so just copy all the penumbra leftover.
+            // Otherwise, we update the currentUmbraAngle.
+            if (umbraIndex != maxUmbraAngleIndex) {
+                currentUmbraAngle = umbraAngleList[umbraIndex].mAngle;
+            } else {
+                for (int j = i + 1; j < totalRayNumber; j++) {
+                    allVerticesAngleData[j] = penumbraAngleList[penumbraIndex];
+                    penumbraIndex = (penumbraIndex + 1) % penumbraLength;
+                }
+                break;
+            }
+        } else {
+            allVerticesAngleData[i] = penumbraAngleList[penumbraIndex];
+            penumbraIndex = (penumbraIndex + 1) % penumbraLength;
+            // If penumbraIndex round back, that means we are running out of
+            // penumbra vertices to merge, so just copy all the umbra leftover.
+            // Otherwise, we update the currentPenumbraAngle.
+            if (penumbraIndex != maxPenumbraAngleIndex) {
+                currentPenumbraAngle = penumbraAngleList[penumbraIndex].mAngle;
+            } else {
+                for (int j = i + 1; j < totalRayNumber; j++) {
+                    allVerticesAngleData[j] = umbraAngleList[umbraIndex];
+                    umbraIndex = (umbraIndex + 1) % umbraLength;
+                }
+                break;
+            }
+        }
+    }
+}
+
+#if DEBUG_SHADOW
+/**
+ * DEBUG ONLY: Verify all the offset compuation is correctly done by examining
+ * each vertex and its neighbor.
+ */
+static void verifyDistanceCounter(const VertexAngleData* allVerticesAngleData,
+        const int* distances, int angleLength, const char* name) {
+    int currentDistance = distances[0];
+    for (int i = 1; i < angleLength; i++) {
+        if (distances[i] != INT_MIN) {
+            if (!((currentDistance + 1) == distances[i]
+                || distances[i] == 0)) {
+                ALOGE("Wrong distance found at i %d name %s", i, name);
+            }
+            currentDistance = distances[i];
+            if (currentDistance != 0) {
+                bool currentOuter = allVerticesAngleData[i].mIsPenumbra;
+                for (int j = 1; j <= (currentDistance - 1); j++) {
+                    bool neigborOuter =
+                            allVerticesAngleData[(i + angleLength - j) % angleLength].mIsPenumbra;
+                    if (neigborOuter != currentOuter) {
+                        ALOGE("Wrong distance found at i %d name %s", i, name);
+                    }
+                }
+                bool oppositeOuter =
+                    allVerticesAngleData[(i + angleLength - currentDistance) % angleLength].mIsPenumbra;
+                if (oppositeOuter == currentOuter) {
+                    ALOGE("Wrong distance found at i %d name %s", i, name);
+                }
+            }
+        }
+    }
+}
+
+/**
+ * DEBUG ONLY: Verify all the angle data compuated are  is correctly done
+ */
+static void verifyAngleData(int totalRayNumber, const VertexAngleData* allVerticesAngleData,
+        const int* distancesToInner, const int* distancesToOuter,
+        const VertexAngleData* umbraAngleList, int maxUmbraAngleIndex, int umbraLength,
+        const VertexAngleData* penumbraAngleList, int maxPenumbraAngleIndex,
+        int penumbraLength) {
+    for (int i = 0; i < totalRayNumber; i++) {
+        ALOGD("currentAngleList i %d, angle %f, isInner %d, index %d distancesToInner"
+              " %d distancesToOuter %d", i, allVerticesAngleData[i].mAngle,
+                !allVerticesAngleData[i].mIsPenumbra,
+                allVerticesAngleData[i].mVertexIndex, distancesToInner[i], distancesToOuter[i]);
+    }
+
+    verifyDistanceCounter(allVerticesAngleData, distancesToInner, totalRayNumber, "distancesToInner");
+    verifyDistanceCounter(allVerticesAngleData, distancesToOuter, totalRayNumber, "distancesToOuter");
+
+    for (int i = 0; i < totalRayNumber; i++) {
+        if ((distancesToInner[i] * distancesToOuter[i]) != 0) {
+            ALOGE("distancesToInner wrong at index %d distancesToInner[i] %d,"
+                    " distancesToOuter[i] %d", i, distancesToInner[i], distancesToOuter[i]);
+        }
+    }
+    int currentUmbraVertexIndex =
+            umbraAngleList[maxUmbraAngleIndex].mVertexIndex;
+    int currentPenumbraVertexIndex =
+            penumbraAngleList[maxPenumbraAngleIndex].mVertexIndex;
+    for (int i = 0; i < totalRayNumber; i++) {
+        if (allVerticesAngleData[i].mIsPenumbra == true) {
+            if (allVerticesAngleData[i].mVertexIndex != currentPenumbraVertexIndex) {
+                ALOGW("wrong penumbra indexing i %d allVerticesAngleData[i].mVertexIndex %d "
+                        "currentpenumbraVertexIndex %d", i,
+                        allVerticesAngleData[i].mVertexIndex, currentPenumbraVertexIndex);
+            }
+            currentPenumbraVertexIndex = (currentPenumbraVertexIndex + 1) % penumbraLength;
+        } else {
+            if (allVerticesAngleData[i].mVertexIndex != currentUmbraVertexIndex) {
+                ALOGW("wrong umbra indexing i %d allVerticesAngleData[i].mVertexIndex %d "
+                        "currentUmbraVertexIndex %d", i,
+                        allVerticesAngleData[i].mVertexIndex, currentUmbraVertexIndex);
+            }
+            currentUmbraVertexIndex = (currentUmbraVertexIndex + 1) % umbraLength;
+        }
+    }
+    for (int i = 0; i < totalRayNumber - 1; i++) {
+        float currentAngle = allVerticesAngleData[i].mAngle;
+        float nextAngle = allVerticesAngleData[(i + 1) % totalRayNumber].mAngle;
+        if (currentAngle < nextAngle) {
+            ALOGE("Unexpected angle values!, currentAngle nextAngle %f %f", currentAngle, nextAngle);
+        }
+    }
+}
+#endif
+
+/**
+ * In order to compute the occluded umbra, we need to setup the angle data list
+ * for the polygon data. Since we only store one poly vertex per polygon vertex,
+ * this array only needs to be a float array which are the angles for each vertex.
+ *
+ * @param polyAngleList The result list
+ *
+ * @return int The index for the maximum angle in this array.
+ */
+int SpotShadow::setupPolyAngleList(float* polyAngleList, int polyAngleLength,
+        const Vector2* poly2d, const Vector2& centroid) {
+    int maxPolyAngleIndex = -1;
+    float maxPolyAngle = -FLT_MAX;
+    for (int i = 0; i < polyAngleLength; i++) {
+        polyAngleList[i] = angle(poly2d[i], centroid);
+        if (polyAngleList[i] > maxPolyAngle) {
+            maxPolyAngle = polyAngleList[i];
+            maxPolyAngleIndex = i;
+        }
+    }
+    return maxPolyAngleIndex;
+}
+
+/**
+ * For umbra and penumbra, given the offset info and the current ray number,
+ * find the right edge index (the (starting vertex) for the ray to shoot at.
+ *
+ * @return int The index of the starting vertex of the edge.
+ */
+inline int SpotShadow::getEdgeStartIndex(const int* offsets, int rayIndex, int totalRayNumber,
+        const VertexAngleData* allVerticesAngleData) {
+    int tempOffset = offsets[rayIndex];
+    int targetRayIndex = (rayIndex - tempOffset + totalRayNumber) % totalRayNumber;
+    return allVerticesAngleData[targetRayIndex].mVertexIndex;
+}
+
+/**
+ * For the occluded umbra, given the array of angles, find the index of the
+ * starting vertex of the edge, for the ray to shoo at.
+ *
+ * TODO: Save the last result to shorten the search distance.
+ *
+ * @return int The index of the starting vertex of the edge.
+ */
+inline int SpotShadow::getPolyEdgeStartIndex(int maxPolyAngleIndex, int polyLength,
+        const float* polyAngleList, float rayAngle) {
+    int minPolyAngleIndex  = (maxPolyAngleIndex + polyLength - 1) % polyLength;
+    int resultIndex = -1;
+    if (rayAngle > polyAngleList[maxPolyAngleIndex]
+        || rayAngle <= polyAngleList[minPolyAngleIndex]) {
+        resultIndex = minPolyAngleIndex;
+    } else {
+        for (int i = 0; i < polyLength - 1; i++) {
+            int currentIndex = (maxPolyAngleIndex + i) % polyLength;
+            int nextIndex = (maxPolyAngleIndex + i + 1) % polyLength;
+            if (rayAngle <= polyAngleList[currentIndex]
+                && rayAngle > polyAngleList[nextIndex]) {
+                resultIndex = currentIndex;
+            }
+        }
+    }
+    if (CC_UNLIKELY(resultIndex == -1)) {
+        // TODO: Add more error handling here.
+        ALOGE("Wrong index found, means no edge can't be found for rayAngle %f", rayAngle);
+    }
+    return resultIndex;
+}
+
+/**
+ * Convert the incoming polygons into arrays of vertices, for each ray.
+ * Ray only shoots when there is one vertex either on penumbra on umbra.
+ *
+ * Finally, it will generate vertices per ray for umbra, penumbra and optionally
+ * occludedUmbra.
+ *
+ * Return true (success) when all vertices are generated
+ */
+int SpotShadow::convertPolysToVerticesPerRay(
+        bool hasOccludedUmbraArea, const Vector2* poly2d, int polyLength,
+        const Vector2* umbra, int umbraLength, const Vector2* penumbra,
+        int penumbraLength, const Vector2& centroid,
+        Vector2* umbraVerticesPerRay, Vector2* penumbraVerticesPerRay,
+        Vector2* occludedUmbraVerticesPerRay) {
+    int totalRayNumber = umbraLength + penumbraLength;
+
+    // For incoming umbra / penumbra polygons, we will build an intermediate data
+    // structure to help us sort all the vertices according to the vertices.
+    // Using this data structure, we can tell where (the angle) to shoot the ray,
+    // whether we shoot at penumbra edge or umbra edge, and which edge to shoot at.
+    //
+    // We first parse each vertices and generate a table of VertexAngleData.
+    // Based on that, we create 2 arrays telling us which edge to shoot at.
+    VertexAngleData allVerticesAngleData[totalRayNumber];
+    VertexAngleData umbraAngleList[umbraLength];
+    VertexAngleData penumbraAngleList[penumbraLength];
+
+    int polyAngleLength = hasOccludedUmbraArea ? polyLength : 0;
+    float polyAngleList[polyAngleLength];
+
+    const int maxUmbraAngleIndex =
+            setupAngleList(umbraAngleList, umbraLength, umbra, centroid, false, "umbra");
+    const int maxPenumbraAngleIndex =
+            setupAngleList(penumbraAngleList, penumbraLength, penumbra, centroid, true, "penumbra");
+    const int maxPolyAngleIndex = setupPolyAngleList(polyAngleList, polyAngleLength, poly2d, centroid);
+
+    // Check all the polygons here are CW.
+    bool isPolyCW = checkPolyClockwise(polyAngleLength, maxPolyAngleIndex, polyAngleList);
+    bool isUmbraCW = checkClockwise(maxUmbraAngleIndex, umbraLength,
+            umbraAngleList, "umbra");
+    bool isPenumbraCW = checkClockwise(maxPenumbraAngleIndex, penumbraLength,
+            penumbraAngleList, "penumbra");
+
+    if (!isUmbraCW || !isPenumbraCW || !isPolyCW) {
+#if DEBUG_SHADOW
+        ALOGE("One polygon is not CW isUmbraCW %d isPenumbraCW %d isPolyCW %d",
+                isUmbraCW, isPenumbraCW, isPolyCW);
+#endif
+        return false;
+    }
+
+    mergeAngleList(maxUmbraAngleIndex, maxPenumbraAngleIndex,
+            umbraAngleList, umbraLength, penumbraAngleList, penumbraLength,
+            allVerticesAngleData);
+
+    // Calculate the offset to the left most Inner vertex for each outerVertex.
+    // Then the offset to the left most Outer vertex for each innerVertex.
+    int offsetToInner[totalRayNumber];
+    int offsetToOuter[totalRayNumber];
+    calculateDistanceCounter(true, totalRayNumber, allVerticesAngleData, offsetToInner);
+    calculateDistanceCounter(false, totalRayNumber, allVerticesAngleData, offsetToOuter);
+
+    // Generate both umbraVerticesPerRay and penumbraVerticesPerRay
+    for (int i = 0; i < totalRayNumber; i++) {
+        float rayAngle = allVerticesAngleData[i].mAngle;
+        bool isUmbraVertex = !allVerticesAngleData[i].mIsPenumbra;
+
+        float dx = cosf(rayAngle);
+        float dy = sinf(rayAngle);
+        float distanceToIntersectUmbra = -1;
+
+        if (isUmbraVertex) {
+            // We can just copy umbra easily, and calculate the distance for the
+            // occluded umbra computation.
+            int startUmbraIndex = allVerticesAngleData[i].mVertexIndex;
+            umbraVerticesPerRay[i] = umbra[startUmbraIndex];
+            if (hasOccludedUmbraArea) {
+                distanceToIntersectUmbra = (umbraVerticesPerRay[i] - centroid).length();
+            }
+
+            //shoot ray to penumbra only
+            int startPenumbraIndex = getEdgeStartIndex(offsetToOuter, i, totalRayNumber,
+                    allVerticesAngleData);
+            float distanceToIntersectPenumbra = rayIntersectPoints(centroid, dx, dy,
+                    penumbra[startPenumbraIndex],
+                    penumbra[(startPenumbraIndex + 1) % penumbraLength]);
+            if (distanceToIntersectPenumbra < 0) {
+#if DEBUG_SHADOW
+                ALOGW("convertPolyToRayDist for penumbra failed rayAngle %f dx %f dy %f",
+                        rayAngle, dx, dy);
+#endif
+                distanceToIntersectPenumbra = 0;
+            }
+            penumbraVerticesPerRay[i].x = centroid.x + dx * distanceToIntersectPenumbra;
+            penumbraVerticesPerRay[i].y = centroid.y + dy * distanceToIntersectPenumbra;
+        } else {
+            // We can just copy the penumbra
+            int startPenumbraIndex = allVerticesAngleData[i].mVertexIndex;
+            penumbraVerticesPerRay[i] = penumbra[startPenumbraIndex];
+
+            // And shoot ray to umbra only
+            int startUmbraIndex = getEdgeStartIndex(offsetToInner, i, totalRayNumber,
+                    allVerticesAngleData);
+
+            distanceToIntersectUmbra = rayIntersectPoints(centroid, dx, dy,
+                    umbra[startUmbraIndex], umbra[(startUmbraIndex + 1) % umbraLength]);
+            if (distanceToIntersectUmbra < 0) {
+#if DEBUG_SHADOW
+                ALOGW("convertPolyToRayDist for umbra failed rayAngle %f dx %f dy %f",
+                        rayAngle, dx, dy);
+#endif
+                distanceToIntersectUmbra = 0;
+            }
+            umbraVerticesPerRay[i].x = centroid.x + dx * distanceToIntersectUmbra;
+            umbraVerticesPerRay[i].y = centroid.y + dy * distanceToIntersectUmbra;
+        }
+
+        if (hasOccludedUmbraArea) {
+            // Shoot the same ray to the poly2d, and get the distance.
+            int startPolyIndex = getPolyEdgeStartIndex(maxPolyAngleIndex, polyLength,
+                    polyAngleList, rayAngle);
+
+            float distanceToIntersectPoly = rayIntersectPoints(centroid, dx, dy,
+                    poly2d[startPolyIndex], poly2d[(startPolyIndex + 1) % polyLength]);
+            if (distanceToIntersectPoly < 0) {
+                distanceToIntersectPoly = 0;
+            }
+            distanceToIntersectPoly = MathUtils::min(distanceToIntersectUmbra, distanceToIntersectPoly);
+            occludedUmbraVerticesPerRay[i].x = centroid.x + dx * distanceToIntersectPoly;
+            occludedUmbraVerticesPerRay[i].y = centroid.y + dy * distanceToIntersectPoly;
+        }
+    }
+
+#if DEBUG_SHADOW
+    verifyAngleData(totalRayNumber, allVerticesAngleData, offsetToInner,
+            offsetToOuter,  umbraAngleList, maxUmbraAngleIndex,  umbraLength,
+            penumbraAngleList,  maxPenumbraAngleIndex, penumbraLength);
+#endif
+    return true; // success
+
+}
+
+/**
+ * Generate a triangle strip given two convex polygon
+**/
+void SpotShadow::generateTriangleStrip(bool isCasterOpaque, float shadowStrengthScale,
+        Vector2* penumbra, int penumbraLength, Vector2* umbra, int umbraLength,
+        const Vector3* poly, int polyLength, VertexBuffer& shadowTriangleStrip,
+        const Vector2& centroid) {
+
+    bool hasOccludedUmbraArea = false;
+    Vector2 poly2d[polyLength];
+
+    if (isCasterOpaque) {
+        for (int i = 0; i < polyLength; i++) {
+            poly2d[i].x = poly[i].x;
+            poly2d[i].y = poly[i].y;
+        }
+        // Make sure the centroid is inside the umbra, otherwise, fall back to the
+        // approach as if there is no occluded umbra area.
+        if (testPointInsidePolygon(centroid, poly2d, polyLength)) {
+            hasOccludedUmbraArea = true;
+        }
+    }
+
+    int totalRayNum = umbraLength + penumbraLength;
+    Vector2 umbraVertices[totalRayNum];
+    Vector2 penumbraVertices[totalRayNum];
+    Vector2 occludedUmbraVertices[totalRayNum];
+    bool convertSuccess = convertPolysToVerticesPerRay(hasOccludedUmbraArea, poly2d,
+            polyLength, umbra, umbraLength, penumbra, penumbraLength,
+            centroid, umbraVertices, penumbraVertices, occludedUmbraVertices);
+    if (!convertSuccess) {
+        return;
+    }
+
+    // Minimal value is 1, for each vertex show up once.
+    // The bigger this value is , the smoother the look is, but more memory
+    // is consumed.
+    // When the ray number is high, that means the polygon has been fine
+    // tessellated, we don't need this extra slice, just keep it as 1.
+    int sliceNumberPerEdge = (totalRayNum > FINE_TESSELLATED_POLYGON_RAY_NUMBER) ? 1 : 2;
+
+    // For each polygon, we at most add (totalRayNum * sliceNumberPerEdge) vertices.
+    int slicedVertexCountPerPolygon = totalRayNum * sliceNumberPerEdge;
+    int totalVertexCount = slicedVertexCountPerPolygon * 2 + totalRayNum;
+    int totalIndexCount = 2 * (slicedVertexCountPerPolygon * 2 + 2);
+    AlphaVertex* shadowVertices =
+            shadowTriangleStrip.alloc<AlphaVertex>(totalVertexCount);
+    uint16_t* indexBuffer =
+            shadowTriangleStrip.allocIndices<uint16_t>(totalIndexCount);
+
+    int indexBufferIndex = 0;
+    int vertexBufferIndex = 0;
+
+    uint16_t slicedUmbraVertexIndex[totalRayNum * sliceNumberPerEdge];
+    // Should be something like 0 0 0  1 1 1 2 3 3 3...
+    int rayNumberPerSlicedUmbra[totalRayNum * sliceNumberPerEdge];
+    int realUmbraVertexCount = 0;
+    for (int i = 0; i < totalRayNum; i++) {
+        Vector2 currentPenumbra = penumbraVertices[i];
+        Vector2 currentUmbra = umbraVertices[i];
+
+        Vector2 nextPenumbra = penumbraVertices[(i + 1) % totalRayNum];
+        Vector2 nextUmbra = umbraVertices[(i + 1) % totalRayNum];
+        // NextUmbra/Penumbra will be done in the next loop!!
+        for (int weight = 0; weight < sliceNumberPerEdge; weight++) {
+            const Vector2& slicedPenumbra = (currentPenumbra * (sliceNumberPerEdge - weight)
+                + nextPenumbra * weight) / sliceNumberPerEdge;
+
+            const Vector2& slicedUmbra = (currentUmbra * (sliceNumberPerEdge - weight)
+                + nextUmbra * weight) / sliceNumberPerEdge;
+
+            // In the vertex buffer, we fill the Penumbra first, then umbra.
+            indexBuffer[indexBufferIndex++] = vertexBufferIndex;
+            AlphaVertex::set(&shadowVertices[vertexBufferIndex++], slicedPenumbra.x,
+                    slicedPenumbra.y, 0.0f);
+
+            // When we add umbra vertex, we need to remember its current ray number.
+            // And its own vertexBufferIndex. This is for occluded umbra usage.
+            indexBuffer[indexBufferIndex++] = vertexBufferIndex;
+            rayNumberPerSlicedUmbra[realUmbraVertexCount] = i;
+            slicedUmbraVertexIndex[realUmbraVertexCount] = vertexBufferIndex;
+            realUmbraVertexCount++;
+            AlphaVertex::set(&shadowVertices[vertexBufferIndex++], slicedUmbra.x,
+                    slicedUmbra.y, M_PI);
+        }
+    }
+
+    indexBuffer[indexBufferIndex++] = 0;
+    //RealUmbraVertexIndex[0] must be 1, so we connect back well at the
+    //beginning of occluded area.
+    indexBuffer[indexBufferIndex++] = 1;
+
+    float occludedUmbraAlpha = M_PI;
+    if (hasOccludedUmbraArea) {
+        // Now the occludedUmbra area;
+        int currentRayNumber = -1;
+        int firstOccludedUmbraIndex = -1;
+        for (int i = 0; i < realUmbraVertexCount; i++) {
+            indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[i];
+
+            // If the occludedUmbra vertex has not been added yet, then add it.
+            // Otherwise, just use the previously added occludedUmbra vertices.
+            if (rayNumberPerSlicedUmbra[i] != currentRayNumber) {
+                currentRayNumber++;
+                indexBuffer[indexBufferIndex++] = vertexBufferIndex;
+                // We need to remember the begining of the occludedUmbra vertices
+                // to close this loop.
+                if (currentRayNumber == 0) {
+                    firstOccludedUmbraIndex = vertexBufferIndex;
+                }
+                AlphaVertex::set(&shadowVertices[vertexBufferIndex++],
+                        occludedUmbraVertices[currentRayNumber].x,
+                        occludedUmbraVertices[currentRayNumber].y,
+                        occludedUmbraAlpha);
+            } else {
+                indexBuffer[indexBufferIndex++] = (vertexBufferIndex - 1);
+            }
+        }
+        // Close the loop here!
+        indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[0];
+        indexBuffer[indexBufferIndex++] = firstOccludedUmbraIndex;
+    } else {
+        int lastCentroidIndex = vertexBufferIndex;
+        AlphaVertex::set(&shadowVertices[vertexBufferIndex++], centroid.x,
+                centroid.y, occludedUmbraAlpha);
+        for (int i = 0; i < realUmbraVertexCount; i++) {
+            indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[i];
+            indexBuffer[indexBufferIndex++] = lastCentroidIndex;
+        }
+        // Close the loop here!
+        indexBuffer[indexBufferIndex++] = slicedUmbraVertexIndex[0];
+        indexBuffer[indexBufferIndex++] = lastCentroidIndex;
+    }
+
+#if DEBUG_SHADOW
+    ALOGD("allocated IB %d allocated VB is %d", totalIndexCount, totalVertexCount);
+    ALOGD("IB index %d VB index is %d", indexBufferIndex, vertexBufferIndex);
+    for (int i = 0; i < vertexBufferIndex; i++) {
+        ALOGD("vertexBuffer i %d, (%f, %f %f)", i, shadowVertices[i].x, shadowVertices[i].y,
+                shadowVertices[i].alpha);
+    }
+    for (int i = 0; i < indexBufferIndex; i++) {
+        ALOGD("indexBuffer i %d, indexBuffer[i] %d", i, indexBuffer[i]);
+    }
+#endif
+
+    // At the end, update the real index and vertex buffer size.
+    shadowTriangleStrip.updateVertexCount(vertexBufferIndex);
+    shadowTriangleStrip.updateIndexCount(indexBufferIndex);
+    ShadowTessellator::checkOverflow(vertexBufferIndex, totalVertexCount, "Spot Vertex Buffer");
+    ShadowTessellator::checkOverflow(indexBufferIndex, totalIndexCount, "Spot Index Buffer");
+
+    shadowTriangleStrip.setMode(VertexBuffer::kIndices);
+    shadowTriangleStrip.computeBounds<AlphaVertex>();
+}
+
 #if DEBUG_SHADOW
 
 #define TEST_POINT_NUMBER 128
-
 /**
  * Calculate the bounds for generating random test points.
  */
 void SpotShadow::updateBound(const Vector2 inVector, Vector2& lowerBound,
-        Vector2& upperBound ) {
+        Vector2& upperBound) {
     if (inVector.x < lowerBound.x) {
         lowerBound.x = inVector.x;
     }
@@ -1127,14 +1633,14 @@
             if (!testPointInsidePolygon(testPoint, poly1, poly1Length)) {
                 dumpPoly = true;
                 ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
-                      " not in the poly1",
+                        " not in the poly1",
                         testPoint.x, testPoint.y);
             }
 
             if (!testPointInsidePolygon(testPoint, poly2, poly2Length)) {
                 dumpPoly = true;
                 ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
-                      " not in the poly2",
+                        " not in the poly2",
                         testPoint.x, testPoint.y);
             }
         }
diff --git a/libs/hwui/SpotShadow.h b/libs/hwui/SpotShadow.h
index 355be8d..23fdca9 100644
--- a/libs/hwui/SpotShadow.h
+++ b/libs/hwui/SpotShadow.h
@@ -26,22 +26,51 @@
 
 class SpotShadow {
 public:
-    static void createSpotShadow_old(bool isCasterOpaque, const Vector3* poly,
-            int polyLength, const Vector3& lightCenter, float lightSize,
-            int lightVertexCount, VertexBuffer& retStrips);
     static void createSpotShadow(bool isCasterOpaque, const Vector3& lightCenter,
             float lightSize, const Vector3* poly, int polyLength,
             const Vector3& polyCentroid, VertexBuffer& retstrips);
 
 private:
+    struct VertexAngleData;
+
     static float projectCasterToOutline(Vector2& outline,
             const Vector3& lightCenter, const Vector3& polyVertex);
     static int calculateOccludedUmbra(const Vector2* umbra, int umbraLength,
             const Vector3* poly, int polyLength, Vector2* occludedUmbra);
 
-    static void computeSpotShadow_old(bool isCasterOpaque, const Vector3* lightPoly,
-            int lightPolyLength, const Vector3& lightCenter, const Vector3* poly,
-            int polyLength, VertexBuffer& shadowTriangleStrip);
+    static int setupAngleList(VertexAngleData* angleDataList,
+            int polyLength, const Vector2* polygon, const Vector2& centroid,
+            bool isPenumbra, const char* name);
+
+    static int convertPolysToVerticesPerRay(
+            bool hasOccludedUmbraArea, const Vector2* poly2d, int polyLength,
+            const Vector2* umbra, int umbraLength, const Vector2* penumbra,
+            int penumbraLength, const Vector2& centroid,
+            Vector2* umbraVerticesPerRay, Vector2* penumbraVerticesPerRay,
+            Vector2* occludedUmbraVerticesPerRay);
+
+    static bool checkClockwise(int maxIndex, int listLength,
+            VertexAngleData* angleList, const char* name);
+
+    static void calculateDistanceCounter(bool needsOffsetToUmbra, int angleLength,
+            const VertexAngleData* allVerticesAngleData, int* distances);
+
+    static void mergeAngleList(int maxUmbraAngleIndex, int maxPenumbraAngleIndex,
+            const VertexAngleData* umbraAngleList, int umbraLength,
+            const VertexAngleData* penumbraAngleList, int penumbraLength,
+            VertexAngleData* allVerticesAngleData);
+
+    static int setupPolyAngleList(float* polyAngleList, int polyAngleLength,
+        const Vector2* poly2d, const Vector2& centroid);
+
+    static bool checkPolyClockwise(int polyAngleLength, int maxPolyAngleIndex,
+        const float* polyAngleList);
+
+    static int getEdgeStartIndex(const int* offsets, int rayIndex, int totalRayNumber,
+        const VertexAngleData* allVerticesAngleData);
+
+    static int getPolyEdgeStartIndex(int maxPolyAngleIndex, int polyLength,
+        const float* polyAngleList, float rayAngle);
 
     static void computeLightPolygon(int points, const Vector3& lightCenter,
             float size, Vector3* ret);
@@ -67,11 +96,10 @@
             double x3, double y3, double x4, double y4, Vector2& ret);
 
     static void generateTriangleStrip(bool isCasterOpaque, float shadowStrengthScale,
-            const Vector2* penumbra, int penumbraLength, const Vector2* umbra, int umbraLength,
-            const Vector3* poly, int polyLength, VertexBuffer& retstrips);
+            Vector2* penumbra, int penumbraLength, Vector2* umbra, int umbraLength,
+            const Vector3* poly, int polyLength, VertexBuffer& retstrips, const Vector2& centroid);
 
 #if DEBUG_SHADOW
-    // Verification utility function.
     static bool testConvex(const Vector2* polygon, int polygonLength,
             const char* name);
     static void testIntersection(const Vector2* poly1, int poly1Length,
diff --git a/libs/hwui/VertexBuffer.h b/libs/hwui/VertexBuffer.h
index 966fa4e..8c3a272 100644
--- a/libs/hwui/VertexBuffer.h
+++ b/libs/hwui/VertexBuffer.h
@@ -133,7 +133,7 @@
         mIndexCount = MathUtils::min(newCount, mAllocatedIndexCount);
     }
     void updateVertexCount(unsigned int newCount)  {
-        newCount = MathUtils::min(newCount, mAllocatedVertexCount);
+        mVertexCount = MathUtils::min(newCount, mAllocatedVertexCount);
     }
     Mode getMode() const { return mMode; }