blob: 210894951a63c5abc501509c7d023e01e20e1d3d [file] [log] [blame]
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_INCLUDE_CAMERA3_H
#define ANDROID_INCLUDE_CAMERA3_H
#include <system/camera_metadata.h>
#include "camera_common.h"
/**
* Camera device HAL 3.0 [ CAMERA_DEVICE_API_VERSION_3_0 ]
*
* EXPERIMENTAL.
*
* Supports the android.hardware.Camera API.
*
* Camera devices that support this version of the HAL must return
* CAMERA_DEVICE_API_VERSION_3_0 in camera_device_t.common.version and in
* camera_info_t.device_version (from camera_module_t.get_camera_info).
*
* Camera modules that may contain version 3.0 devices must implement at least
* version 2.0 of the camera module interface (as defined by
* camera_module_t.common.module_api_version).
*
* See camera_common.h for more versioning details.
*
* Version history:
*
* 1.0: Initial Android camera HAL (Android 4.0) [camera.h]:
*
* - Converted from C++ CameraHardwareInterface abstraction layer.
*
* - Supports android.hardware.Camera API.
*
* 2.0: Initial release of expanded-capability HAL (Android 4.2) [camera2.h]:
*
* - Sufficient for implementing existing android.hardware.Camera API.
*
* - Allows for ZSL queue in camera service layer
*
* - Not tested for any new features such manual capture control, Bayer RAW
* capture, reprocessing of RAW data.
*
* 3.0: First revision of expanded-capability HAL:
*
* - Major version change since the ABI is completely different. No change to
* the required hardware capabilities or operational model from 2.0.
*
* - Reworked input request and stream queue interfaces: Framework calls into
* HAL with next request and stream buffers already dequeued. Sync framework
* support is included, necessary for efficient implementations.
*
* - Moved triggers into requests, most notifications into results.
*
* - Consolidated all callbacks into framework into one structure, and all
* setup methods into a single initialize() call.
*
* - Made stream configuration into a single call to simplify stream
* management. Bidirectional streams replace STREAM_FROM_STREAM construct.
*
* - Limited mode semantics for older/limited hardware devices.
*/
/**
* Startup and general expected operation sequence:
*
* 1. Framework calls camera_module_t->common.open(), which returns a
* hardware_device_t structure.
*
* 2. Framework inspects the hardware_device_t->version field, and instantiates
* the appropriate handler for that version of the camera hardware device. In
* case the version is CAMERA_DEVICE_API_VERSION_3_0, the device is cast to
* a camera3_device_t.
*
* 3. Framework calls camera3_device_t->ops->initialize() with the framework
* callback function pointers. This will only be called this one time after
* open(), before any other functions in the ops structure are called.
*
* 4. The framework calls camera3_device_t->ops->configure_streams() with a list
* of input/output streams to the HAL device.
*
* 5. The framework allocates gralloc buffers and calls
* camera3_device_t->ops->register_stream_buffers() for at least one of the
* output streams listed in configure_streams. The same stream is registered
* only once.
*
* 5. The framework requests default settings for some number of use cases with
* calls to camera3_device_t->ops->construct_default_request_settings(). This
* may occur any time after step 3.
*
* 7. The framework constructs and sends the first capture request to the HAL,
* with settings based on one of the sets of default settings, and with at
* least one output stream, which has been registered earlier by the
* framework. This is sent to the HAL with
* camera3_device_t->ops->process_capture_request(). The HAL must block the
* return of this call until it is ready for the next request to be sent.
*
* 8. The framework continues to submit requests, and possibly call
* register_stream_buffers() for not-yet-registered streams, and call
* construct_default_request_settings to get default settings buffers for
* other use cases.
*
* 9. When the capture of a request begins (sensor starts exposing for the
* capture), the HAL calls camera3_callback_ops_t->notify() with the SHUTTER
* event, including the frame number and the timestamp for start of exposure.
*
* 10. After some pipeline delay, the HAL begins to return completed captures to
* the framework with camera3_callback_ops_t->process_capture_result(). These
* are returned in the same order as the requests were submitted. Multiple
* requests can be in flight at once, depending on the pipeline depth of the
* camera HAL device.
*
* 11. After some time, the framework may stop submitting new requests, wait for
* the existing captures to complete (all buffers filled, all results
* returned), and then call configure_streams() again. This resets the camera
* hardware and pipeline for a new set of input/output streams. Some streams
* may be reused from the previous configuration; if these streams' buffers
* had already been registered with the HAL, they will not be registered
* again. The framework then continues from step 7, if at least one
* registered output stream remains (otherwise, step 5 is required first).
*
* 12. Alternatively, the framework may call camera3_device_t->common->close()
* to end the camera session. This may be called at any time, although the
* call may block until all in-flight captures have completed (all results
* returned, all buffers filled). After the close call returns, no more calls
* to the camera3_callback_ops_t functions are allowed from the HAL. The
* framework may not call any methods on the HAL device interface again after
* close() returns.
*
* 13. In case of an error or other asynchronous event, the HAL must call
* camera3_callback_ops_t->notify() with the appropriate error/event
* message. After returning from a fatal device-wide error notification, the
* HAL should act as if close() had been called on it. However, the HAL must
* either cancel or complete all outstanding captures before calling
* notify(), so that once notify() is called with a fatal error, the
* framework will not receive further callbacks from the device. Methods
* besides close() should return -ENODEV or NULL after the notify() method
* returns from a fatal error message.
*/
/**
* Operational modes:
*
* The camera 3 HAL device can implement one of two possible operational modes;
* limited and full. Full support is expected from new higher-end
* devices. Limited mode has hardware requirements roughly in line with those
* for a camera HAL device v1 implementation, and is expected from older or
* inexpensive devices. Full is a strict superset of limited, and they share the
* same essential operational flow, as documented above.
*
* The HAL must indicate its level of support with the
* android.info.supportedHardwareLevel static metadata entry, with 0 indicating
* limited mode, and 1 indicating full mode support.
*
* Roughly speaking, limited-mode devices do not allow for application control
* of capture settings (3A control only), high-rate capture of high-resolution
* images, raw sensor readout, and support for YUV output streams maximum
* recording resolution (JPEG only for large images).
*
* ** Details of limited mode behavior:
*
* - Limited-mode devices do not need to implement accurate synchronization
* between capture request settings and the actual image data
* captured. Instead, changes to settings may take effect some time in the
* future, and possibly not for the same output frame for each settings
* entry. Rapid changes in settings may result in some settings never being
* used for a capture. However, captures that include high-resolution output
* buffers ( > 1080p ) have to use the settings as specified (but see below
* for processing rate).
*
* - Limited-mode devices do not need to support most of the
* settings/result/static info metadata. Full-mode devices must support all
* metadata fields listed in TODO. Specifically, only the following settings
* are expected to be consumed or produced by a limited-mode HAL device:
*
* android.control.aeAntibandingMode (controls)
* android.control.aeExposureCompensation (controls)
* android.control.aeLock (controls)
* android.control.aeMode (controls)
* [OFF means ON_FLASH_TORCH - TODO]
* android.control.aeRegions (controls)
* android.control.aeTargetFpsRange (controls)
* android.control.afMode (controls)
* [OFF means infinity focus]
* android.control.afRegions (controls)
* android.control.awbLock (controls)
* android.control.awbMode (controls)
* [OFF not supported]
* android.control.awbRegions (controls)
* android.control.captureIntent (controls)
* android.control.effectMode (controls)
* android.control.mode (controls)
* [OFF not supported]
* android.control.sceneMode (controls)
* android.control.videoStabilizationMode (controls)
* android.control.aeAvailableAntibandingModes (static)
* android.control.aeAvailableModes (static)
* android.control.aeAvailableTargetFpsRanges (static)
* android.control.aeCompensationRange (static)
* android.control.aeCompensationStep (static)
* android.control.afAvailableModes (static)
* android.control.availableEffects (static)
* android.control.availableSceneModes (static)
* android.control.availableVideoStabilizationModes (static)
* android.control.awbAvailableModes (static)
* android.control.maxRegions (static)
* android.control.sceneModeOverrides (static)
* android.control.aeRegions (dynamic)
* android.control.aeState (dynamic)
* android.control.afMode (dynamic)
* android.control.afRegions (dynamic)
* android.control.afState (dynamic)
* android.control.awbMode (dynamic)
* android.control.awbRegions (dynamic)
* android.control.awbState (dynamic)
* android.control.mode (dynamic)
*
* android.flash.info.available (static)
*
* android.info.supportedHardwareLevel (static)
*
* android.jpeg.gpsCoordinates (controls)
* android.jpeg.gpsProcessingMethod (controls)
* android.jpeg.gpsTimestamp (controls)
* android.jpeg.orientation (controls)
* android.jpeg.quality (controls)
* android.jpeg.thumbnailQuality (controls)
* android.jpeg.thumbnailSize (controls)
* android.jpeg.availableThumbnailSizes (static)
* android.jpeg.maxSize (static)
* android.jpeg.gpsCoordinates (dynamic)
* android.jpeg.gpsProcessingMethod (dynamic)
* android.jpeg.gpsTimestamp (dynamic)
* android.jpeg.orientation (dynamic)
* android.jpeg.quality (dynamic)
* android.jpeg.size (dynamic)
* android.jpeg.thumbnailQuality (dynamic)
* android.jpeg.thumbnailSize (dynamic)
*
* android.lens.info.minimumFocusDistance (static)
*
* android.request.id (controls)
* android.request.id (dynamic)
*
* android.scaler.cropRegion (controls)
* [ignores (x,y), assumes center-zoom]
* android.scaler.availableFormats (static)
* [RAW not supported]
* android.scaler.availableJpegMinDurations (static)
* android.scaler.availableJpegSizes (static)
* android.scaler.availableMaxDigitalZoom (static)
* android.scaler.availableProcessedMinDurations (static)
* android.scaler.availableProcessedSizes (static)
* [full resolution not supported]
* android.scaler.maxDigitalZoom (static)
* android.scaler.cropRegion (dynamic)
*
* android.sensor.orientation (static)
* android.sensor.timestamp (dynamic)
*
* android.statistics.faceDetectMode (controls)
* android.statistics.info.availableFaceDetectModes (static)
* android.statistics.faceDetectMode (dynamic)
* android.statistics.faceIds (dynamic)
* android.statistics.faceLandmarks (dynamic)
* android.statistics.faceRectangles (dynamic)
* android.statistics.faceScores (dynamic)
*
* - Captures in limited mode that include high-resolution (> 1080p) output
* buffers may block in process_capture_request() until all the output buffers
* have been filled. A full-mode HAL device must process sequences of
* high-resolution requests at the rate indicated in the static metadata for
* that pixel format. The HAL must still call process_capture_result() to
* provide the output; the framework must simply be prepared for
* process_capture_request() to block until after process_capture_result() for
* that request completes for high-resolution captures for limited-mode
* devices.
*
*/
/**
* Error management:
*
* Camera HAL device ops functions that have a return value will all return
* -ENODEV / NULL in case of a serious error. This means the device cannot
* continue operation, and must be closed by the framework. Once this error is
* returned by some method, or if notify() is called with ERROR_DEVICE or
* ERROR_HARDWARE, only the close() method can be called successfully. All other
* methods will return -ENODEV / NULL.
*
* Transient errors in image capture must be reported through notify() as follows:
*
* - The failure of an entire capture to occur must be reported by the HAL by
* calling notify() with ERROR_REQUEST. Individual errors for the result
* metadata or the output buffers must not be reported in this case.
*
* - If the metadata for a capture cannot be produced, but some image buffers
* were filled, the HAL must call notify() with ERROR_RESULT.
*
* - If an output image buffer could not be filled, but either the metadata was
* produced or some other buffers were filled, the HAL must call notify() with
* ERROR_BUFFER for each failed buffer.
*
* In each of these transient failure cases, the HAL must still call
* process_capture_result, with valid output buffer_handle_t. If the result
* metadata could not be produced, it should be NULL. If some buffers could not
* be filled, their sync fences must be set to the error state.
*
* Invalid input aguments result in -EINVAL from the appropriate methods. In
* that case, the framework should act as if that call had never been made.
*
*/
__BEGIN_DECLS
struct camera3_device;
/**********************************************************************
*
* Camera3 stream and stream buffer definitions.
*
* These structs and enums define the handles and contents of the input and
* output streams connecting the HAL to various framework and application buffer
* consumers. Each stream is backed by a gralloc buffer queue.
*
*/
/**
* camera3_stream_type_t:
*
* The type of the camera stream, which defines whether the camera HAL device is
* the producer or the consumer for that stream, and how the buffers of the
* stream relate to the other streams.
*/
typedef enum camera3_stream_type {
/**
* This stream is an output stream; the camera HAL device will be
* responsible for filling buffers from this stream with newly captured or
* reprocessed image data.
*/
CAMERA3_STREAM_OUTPUT = 0,
/**
* This stream is an input stream; the camera HAL device will be responsible
* for reading buffers from this stream and sending them through the camera
* processing pipeline, as if the buffer was a newly captured image from the
* imager.
*/
CAMERA3_STREAM_INPUT = 1,
/**
* This stream can be used for input and output. Typically, the stream is
* used as an output stream, but occasionally one already-filled buffer may
* be sent back to the HAL device for reprocessing.
*
* This kind of stream is meant generally for zero-shutter-lag features,
* where copying the captured image from the output buffer to the
* reprocessing input buffer would be expensive. The stream will be used by
* the framework as follows:
*
* 1. The framework includes a buffer from this stream as output buffer in a
* request as normal.
*
* 2. Once the HAL device returns a filled output buffer to the framework,
* the framework may do one of two things with the filled buffer:
*
* 2. a. The framework uses the filled data, and returns the now-used buffer
* to the stream queue for reuse. This behavior exactly matches the
* OUTPUT type of stream.
*
* 2. b. The framework wants to reprocess the filled data, and uses the
* buffer as an input buffer for a request. Once the HAL device has
* used the reprocessing buffer, it then returns it to the
* framework. The framework then returns the now-used buffer to the
* stream queue for reuse.
*
* 3. The HAL device will be given the buffer again as an output buffer for
* a request at some future point.
*
* Note that the HAL will always be reprocessing data it produced.
*
*/
CAMERA3_STREAM_BIDIRECTIONAL = 2,
/**
* Total number of framework-defined stream types
*/
CAMERA3_NUM_STREAM_TYPES
} camera3_stream_type_t;
/**
* camera3_stream_t:
*
* A handle to a single camera input or output stream. A stream is defined by
* the framework by its buffer resolution and format, and additionally by the
* HAL with the gralloc usage flags and the maximum in-flight buffer count.
*
* The stream structures are owned by the framework, but pointers to a
* camera3_stream passed into the HAL by configure_streams() are valid until the
* end of the first subsequent configure_streams() call that _does not_ include
* that camera3_stream as an argument, or until the end of the close() call.
*
* All camera3_stream framework-controlled members are immutable once the
* camera3_stream is passed into configure_streams(). The HAL may only change
* the HAL-controlled parameters during a configure_streams() call, except for
* the contents of the private pointer.
*
* If a configure_streams() call returns a non-fatal error, all active streams
* remain valid as if configure_streams() had not been called.
*
* The endpoint of the stream is not visible to the camera HAL device.
*/
typedef struct camera3_stream {
/*****
* Set by framework before configure_streams()
*/
/**
* The type of the stream, one of the camera3_stream_type_t values.
*/
int stream_type;
/**
* The width in pixels of the buffers in this stream
*/
uint32_t width;
/**
* The height in pixels of the buffers in this stream
*/
uint32_t height;
/**
* The pixel format for the buffers in this stream. Format is a value from
* the HAL_PIXEL_FORMAT_* list in system/core/include/system/graphics.h, or
* from device-specific headers.
*
* If HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED is used, then the platform
* gralloc module will select a format based on the usage flags provided by
* the camera device and the other endpoint of the stream.
*
* The camera HAL device must inspect the buffers handed to it in the
* subsequent register_stream_buffers() call to obtain the
* implementation-specific format details, if necessary.
*/
int format;
/*****
* Set by HAL during configure_streams().
*/
/**
* The gralloc usage flags for this stream, as needed by the HAL. The usage
* flags are defined in gralloc.h (GRALLOC_USAGE_*), or in device-specific
* headers.
*
* For output streams, these are the HAL's producer usage flags. For input
* streams, these are the HAL's consumer usage flags. The usage flags from
* the producer and the consumer will be combined together and then passed
* to the platform gralloc HAL module for allocating the gralloc buffers for
* each stream.
*/
uint32_t usage;
/**
* The maximum number of buffers the HAL device may need to have dequeued at
* the same time. The HAL device may not have more buffers in-flight from
* this stream than this value.
*/
uint32_t max_buffers;
/**
* A handle to HAL-private information for the stream. Will not be inspected
* by the framework code.
*/
void *priv;
} camera3_stream_t;
/**
* camera3_stream_configuration_t:
*
* A structure of stream definitions, used by configure_streams(). This
* structure defines all the output streams and the reprocessing input
* stream for the current camera use case.
*/
typedef struct camera3_stream_configuration {
/**
* The total number of streams requested by the framework. This includes
* both input and output streams. The number of streams will be at least 1,
* and there will be at least one output-capable stream.
*/
uint32_t num_streams;
/**
* An array of camera streams, defining the input/output configuration for
* the camera HAL device.
*
* At most one input-capable stream may be defined (INPUT or BIDIRECTIONAL)
* in a single configuration.
*
* At least one output-capable stream must be defined (OUTPUT or
* BIDIRECTIONAL).
*/
camera3_stream_t *streams;
} camera3_stream_configuration_t;
/**
* camera3_stream_buffer_t:
*
* A single buffer from a camera3 stream. It includes a handle to its parent
* stream, the handle to the gralloc buffer itself, and sync fences
*
* The buffer does not specify whether it is to be used for input or output;
* that is determined by its parent stream type and how the buffer is passed to
* the HAL device.
*/
typedef struct camera3_stream_buffer {
/**
* The handle of the stream this buffer is associated with
*/
camera3_stream_t *stream;
/**
* The native handle to the buffer
*/
buffer_handle_t *buffer;
/**
* The acquire sync fence for this buffer. The HAL must wait on this fence
* fd before attempting to read from or write to this buffer.
*
* The framework may be set to -1 to indicate that no waiting is necessary
* for this buffer. This field should not be changed by the HAL.
*/
int acquire_fence;
/**
* The release sync fence for this buffer. The HAL must set this fence when
* returning buffers to the framework, or write -1 to indicate that no
* waiting is required for this buffer.
*
* For the input buffer, the release fence must be set by the
* process_capture_request() call. For the output buffers, the fences must
* be set in the output_buffers array passed to process_capture_result().
*/
int release_fence;
} camera3_stream_buffer_t;
/**
* camera3_stream_buffer_set_t:
*
* The complete set of gralloc buffers for a stream. This structure is given to
* register_stream_buffers() to allow the camera HAL device to register/map/etc
* newly allocated stream buffers.
*/
typedef struct camera3_stream_buffer_set {
/**
* The stream handle for the stream these buffers belong to
*/
camera3_stream_t *stream;
/**
* The number of buffers in this stream. It is guaranteed to be at least
* stream->max_buffers.
*/
uint32_t num_buffers;
/**
* The array of gralloc buffer handles for this stream. If the stream format
* is set to HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED, the camera HAL device
* should inspect the passed-in buffers to determine any platform-private
* pixel format information.
*/
buffer_handle_t *buffers;
} camera3_stream_buffer_set_t;
/**
* camera3_jpeg_blob:
*
* Transport header for compressed JPEG buffers in output streams.
*
* To capture JPEG images, a stream is created using the pixel format
* HAL_PIXEL_FORMAT_BLOB, and the static metadata field android.jpeg.maxSize is
* used as the buffer size. Since compressed JPEG images are of variable size,
* the HAL needs to include the final size of the compressed image using this
* structure inside the output stream buffer. The JPEG blob ID field must be set
* to CAMERA3_JPEG_BLOB_ID.
*
* Transport header should be at the end of the JPEG output stream buffer. That
* means the jpeg_blob_id must start at byte[android.jpeg.maxSize -
* sizeof(camera3_jpeg_blob)]. Any HAL using this transport header must
* account for it in android.jpeg.maxSize. The JPEG data itself starts at
* the beginning of the buffer and should be jpeg_size bytes long.
*/
typedef struct camera3_jpeg_blob {
uint16_t jpeg_blob_id;
uint32_t jpeg_size;
} camera3_jpeg_blob_t;
enum {
CAMERA3_JPEG_BLOB_ID = 0x00FF
};
/**********************************************************************
*
* Message definitions for the HAL notify() callback.
*
* These definitions are used for the HAL notify callback, to signal
* asynchronous events from the HAL device to the Android framework.
*
*/
/**
* camera3_msg_type:
*
* Indicates the type of message sent, which specifies which member of the
* message union is valid.
*
*/
typedef enum camera3_msg_type {
/**
* An error has occurred. camera3_notify_msg.message.error contains the
* error information.
*/
CAMERA3_MSG_ERROR = 1,
/**
* The exposure of a given request has
* begun. camera3_notify_msg.message.shutter contains the information
* the capture.
*/
CAMERA3_MSG_SHUTTER = 2,
/**
* Number of framework message types
*/
CAMERA3_NUM_MESSAGES
} camera3_msg_type_t;
/**
* Defined error codes for CAMERA_MSG_ERROR
*/
typedef enum camera3_error_msg_code {
/**
* A serious failure occured. The camera device may not work again
* without reboot, and no further frames or buffer streams will be
* produced by the device. Device should be treated as closed. The
* frame_number field is unused.
*/
CAMERA3_MSG_ERROR_HARDWARE = 1,
/**
* A serious failure occured. No further frames or buffer streams will
* be produced by the device. Device should be treated as closed. The
* client must reopen the device to use it again. The frame_number field
* is unused.
*/
CAMERA3_MSG_ERROR_DEVICE = 2,
/**
* An error has occurred in processing a request. No output (metadata or
* buffers) will be produced for this request. The frame_number field
* specifies which request has been dropped. Subsequent requests are
* unaffected, and the device remains operational.
*/
CAMERA3_MSG_ERROR_REQUEST = 3,
/**
* An error has occurred in producing an output result metadata buffer
* for a request, but output stream buffers for it will still be
* available. Subsequent requests are unaffected, and the device remains
* operational. The frame_number field specifies the request for which
* result metadata won't be available.
*/
CAMERA3_MSG_ERROR_RESULT = 4,
/**
* An error has occurred in placing an output buffer into a stream for a
* request. The frame metadata and other buffers may still be
* available. Subsequent requests are unaffected, and the device remains
* operational. The frame_number field specifies the request for which the
* buffer was dropped, and error_stream contains a pointer to the stream
* that dropped the frame.u
*/
CAMERA3_MSG_ERROR_BUFFER = 5,
/**
* Number of error types
*/
CAMERA3_MSG_NUM_ERRORS
} camera3_error_msg_code_t;
/**
* camera3_error_msg_t:
*
* Message contents for CAMERA3_MSG_ERROR
*/
typedef struct camera3_error_msg {
/**
* Frame number of the request the error applies to. 0 if the frame number
* isn't applicable to the error.
*/
uint32_t frame_number;
/**
* Pointer to the stream that had a failure. NULL if the stream isn't
* applicable to the error.
*/
camera3_stream_t *error_stream;
/**
* The code for this error; one of the CAMERA_MSG_ERROR enum values.
*/
int error_code;
} camera3_error_msg_t;
/**
* camera3_shutter_msg_t:
*
* Message contents for CAMERA3_MSG_SHUTTER
*/
typedef struct camera3_shutter_msg {
/**
* Frame number of the request that has begun exposure
*/
uint32_t frame_number;
/**
* Timestamp for the start of capture. This must match the capture result
* metadata's sensor exposure start timestamp.
*/
uint64_t timestamp;
} camera3_shutter_msg_t;
/**
* camera3_notify_msg_t:
*
* The message structure sent to camera3_callback_ops_t.notify()
*/
typedef struct camera3_notify_msg {
/**
* The message type. One of camera3_notify_msg_type, or a private extension.
*/
int type;
union {
/**
* Error message contents. Valid if type is CAMERA3_MSG_ERROR
*/
camera3_error_msg_t error;
/**
* Shutter message contents. Valid if type is CAMERA3_MSG_SHUTTER
*/
camera3_shutter_msg_t shutter;
/**
* Generic message contents. Used to ensure a minimum size for custom
* message types.
*/
uint8_t generic[32];
} message;
} camera3_notify_msg_t;
/**********************************************************************
*
* Capture request/result definitions for the HAL process_capture_request()
* method, and the process_capture_result() callback.
*
*/
/**
* camera3_request_template_t:
*
* Available template types for
* camera3_device_ops.construct_default_request_settings()
*/
typedef enum camera3_request_template {
/**
* Standard camera preview operation with 3A on auto.
*/
CAMERA3_TEMPLATE_PREVIEW = 1,
/**
* Standard camera high-quality still capture with 3A and flash on auto.
*/
CAMERA3_TEMPLATE_STILL_CAPTURE = 2,
/**
* Standard video recording plus preview with 3A on auto, torch off.
*/
CAMERA3_TEMPLATE_VIDEO_RECORD = 3,
/**
* High-quality still capture while recording video. Application will
* include preview, video record, and full-resolution YUV or JPEG streams in
* request. Must not cause stuttering on video stream. 3A on auto.
*/
CAMERA3_TEMPLATE_VIDEO_SNAPSHOT = 4,
/**
* Zero-shutter-lag mode. Application will request preview and
* full-resolution data for each frame, and reprocess it to JPEG when a
* still image is requested by user. Settings should provide highest-quality
* full-resolution images without compromising preview frame rate. 3A on
* auto.
*/
CAMERA3_TEMPLATE_ZERO_SHUTTER_LAG = 5,
/* Total number of templates */
CAMERA3_TEMPLATE_COUNT,
/**
* First value for vendor-defined request templates
*/
CAMERA3_VENDOR_TEMPLATE_START = 0x40000000
} camera3_request_template_t;
/**
* camera3_capture_request_t:
*
* A single request for image capture/buffer reprocessing, sent to the Camera
* HAL device by the framework in process_capture_request().
*
* The request contains the settings to be used for this capture, and the set of
* output buffers to write the resulting image data in. It may optionally
* contain an input buffer, in which case the request is for reprocessing that
* input buffer instead of capturing a new image with the camera sensor. The
* capture is identified by the frame_number.
*
* In response, the camera HAL device must send a camera3_capture_result
* structure asynchronously to the framework, using the process_capture_result()
* callback.
*/
typedef struct camera3_capture_request {
/**
* The frame number is an incrementing integer set by the framework to
* uniquely identify this capture. It needs to be returned in the result
* call, and is also used to identify the request in asynchronous
* notifications sent to camera3_callback_ops_t.notify().
*/
uint32_t frame_number;
/**
* The settings buffer contains the capture and processing parameters for
* the request. As a special case, a NULL settings buffer indicates that the
* settings are identical to the most-recently submitted capture request. A
* NULL buffer cannot be used as the first submitted request after a
* configure_streams() call.
*/
const camera_metadata_t *settings;
/**
* The input stream buffer to use for this request, if any.
*
* If input_buffer is NULL, then the request is for a new capture from the
* imager. If input_buffer is valid, the request is for reprocessing the
* image contained in input_buffer.
*
* In the latter case, the HAL must set the release_fence of the
* input_buffer to a valid sync fence, or to -1 if the HAL does not support
* sync, before process_capture_request() returns.
*
* The HAL is required to wait on the acquire sync fence of the input buffer
* before accessing it.
*
* Any input buffer included here will have been registered with the HAL
* through register_stream_buffers() before its inclusion in a request.
*/
camera3_stream_buffer_t *input_buffer;
/**
* The number of output buffers for this capture request. Must be at least
* 1.
*/
uint32_t num_output_buffers;
/**
* An array of num_output_buffers stream buffers, to be filled with image
* data from this capture/reprocess. The HAL must wait on the acquire fences
* of each stream buffer before writing to them. All the buffers included
* here will have been registered with the HAL through
* register_stream_buffers() before their inclusion in a request.
*
* The HAL takes ownership of the actual buffer_handle_t entries in
* output_buffers; the framework does not access them until they are
* returned in a camera3_capture_result_t.
*/
const camera3_stream_buffer_t *output_buffers;
} camera3_capture_request_t;
/**
* camera3_capture_result_t:
*
* The result of a single capture/reprocess by the camera HAL device. This is
* sent to the framework asynchronously with process_capture_result(), in
* response to a single capture request sent to the HAL with
* process_capture_request().
*
* The result structure contains the output metadata from this capture, and the
* set of output buffers that have been/will be filled for this capture. Each
* output buffer may come with a release sync fence that the framework will wait
* on before reading, in case the buffer has not yet been filled by the HAL.
*
*/
typedef struct camera3_capture_result {
/**
* The frame number is an incrementing integer set by the framework in the
* submitted request to uniquely identify this capture. It is also used to
* identify the request in asynchronous notifications sent to
* camera3_callback_ops_t.notify().
*/
uint32_t frame_number;
/**
* The result metadata for this capture. This contains information about the
* final capture parameters, the state of the capture and post-processing
* hardware, the state of the 3A algorithms, if enabled, and the output of
* any enabled statistics units.
*/
const camera_metadata_t *result;
/**
* The number of output buffers used for this capture. Must equal the
* matching capture request's count.
*/
uint32_t num_output_buffers;
/**
* The handles for the output stream buffers for this capture. They may not
* yet be filled at the time the HAL calls process_capture_result(); the
* framework will wait on the release sync fences provided by the HAL before
* reading the buffers.
*
* The HAL must set the stream buffer's release sync fence to a valid sync
* fd, or to -1 if the buffer has already been filled.
*/
const camera3_stream_buffer_t *output_buffers;
} camera3_capture_result_t;
/**********************************************************************
*
* Callback methods for the HAL to call into the framework.
*
* These methods are used to return metadata and image buffers for a completed
* or failed captures, and to notify the framework of asynchronous events such
* as errors.
*
* The framework will not call back into the HAL from within these callbacks,
* and these calls will not block for extended periods.
*
*/
typedef struct camera3_callback_ops {
/**
* process_capture_result:
*
* Send a completed capture result metadata buffer to the framework, along
* with the possibly completed output stream buffers.
*
* Captures must be processed in-order, so that the Nth request submitted
* will match with the Nth result returned. Only one call to
* process_capture_request() should be made at a time to ensure correct
* ordering.
*
* The HAL retains ownership of result structure, which only needs to be
* valid to access during this call. The framework will copy whatever it
* needs before this call returns.
*
* The output buffers do not need to be filled yet; the framework will wait
* on the stream buffer release sync fence before reading the buffer
* data. Therefore, this method must be called by the HAL as soon as the
* result metadata is available, even if some or all of the output buffers
* are still in processing. The HAL must include valid release sync fences
* into each output_buffers stream buffer entry, or -1 if it does not
* support streams or if that stream buffer is already filled.
*
* If the result buffer cannot be constructed for a request, the HAL should
* return a NULL buffer here, but still provide the output buffers and their
* sync fences. In addition, notify() must be called with an ERROR_RESULT
* message.
*
* If an output buffer cannot be filled, a sync error should be produced by
* the HAL for that buffer; this method should still be called with a valid
* (possibly in an error state) sync fence, if the HAL is using them. In
* addition, notify() must be called with a ERROR_BUFFER message.
*
* If the entire capture has failed, then this method still needs to be
* called to return the output buffers to the framework. All the sync
* fences, if used, should be in the error state, and the result metadata
* should be NULL. In addition, notify() must be called with a ERROR_REQUEST
* message. In this case, individual ERROR_RESULT/ERROR_BUFFER messages
* should not be sent.
*
*/
void (*process_capture_result)(const struct camera3_callback_ops *,
const camera3_capture_result_t *result);
/**
* notify:
*
* Asynchronous notification callback from the HAL, fired for various
* reasons. Only for information independent of frame capture, or that
* require specific timing. The ownership of the message structure remains
* with the HAL, and the msg only needs to be valid for the duration of this
* call.
*
* Multiple threads may call notify() simultaneously.
*/
void (*notify)(const struct camera3_callback_ops *,
const camera3_notify_msg_t *msg);
} camera3_callback_ops_t;
/**********************************************************************
*
* Camera device operations
*
*/
typedef struct camera3_device_ops {
/**
* initialize:
*
* One-time initialization to pass framework callback function pointers to
* the HAL. Will be called once after a successful open() call, before any
* other functions are called on the camera3_device_ops structure.
*
* Return values:
*
* 0: On successful initialization
*
* -ENODEV: If initialization fails. Only close() can be called successfully
* by the framework after this.
*/
int (*initialize)(const struct camera3_device *,
const camera3_callback_ops_t *callback_ops);
/**********************************************************************
* Stream management
*/
/**
* configure_streams:
*
* Reset the HAL camera device processing pipeline and set up new input and
* output streams. This call replaces any existing stream configuration with
* the streams defined in the stream_list. This method will be called at
* least once after initialize() before a request is submitted with
* process_capture_request().
*
* The stream_list must contain at least one output-capable stream, and may
* not contain more than one input-capable stream.
*
* The stream_list may contain streams that are also in the currently-active
* set of streams (from the previous call to configure_stream()). These
* streams will already have valid values for usage, max_buffers, and the
* private pointer. If such a stream has already had its buffers registered,
* register_stream_buffers() will not be called again for the stream, and
* buffers from the stream can be immediately included in input requests.
*
* If the HAL needs to change the stream configuration for an existing
* stream due to the new configuration, it may rewrite the values of usage
* and/or max_buffers during the configure call. The framework will detect
* such a change, and will then reallocate the stream buffers, and call
* register_stream_buffers() again before using buffers from that stream in
* a request.
*
* If a currently-active stream is not included in stream_list, the HAL may
* safely remove any references to that stream. It will not be reused in a
* later configure() call by the framework, and all the gralloc buffers for
* it will be freed after the configure_streams() call returns.
*
* The stream_list structure is owned by the framework, and may not be
* accessed once this call completes. The address of an individual
* camera3_stream_t structure will remain valid for access by the HAL until
* the end of the first configure_stream() call which no longer includes
* that camera3_stream_t in the stream_list argument. The HAL may not change
* values in the stream structure outside of the private pointer, except for
* the usage and max_buffers members during the configure_streams() call
* itself.
*
* If the stream is new, the usage, max_buffer, and private pointer fields
* of the stream structure will all be set to 0. The HAL device must set
* these fields before the configure_streams() call returns. These fields
* are then used by the framework and the platform gralloc module to
* allocate the gralloc buffers for each stream.
*
* Before such a new stream can have its buffers included in a capture
* request, the framework will call register_stream_buffers() with that
* stream. However, the framework is not required to register buffers for
* _all_ streams before submitting a request. This allows for quick startup
* of (for example) a preview stream, with allocation for other streams
* happening later or concurrently.
*
* Preconditions:
*
* The framework will only call this method when no captures are being
* processed. That is, all results have been returned to the framework, and
* all in-flight input and output buffers have been returned and their
* release sync fences have been signaled by the HAL. The framework will not
* submit new requests for capture while the configure_streams() call is
* underway.
*
* Postconditions:
*
* The HAL device must configure itself to provide maximum possible output
* frame rate given the sizes and formats of the output streams, as
* documented in the camera device's static metadata.
*
* Performance expectations:
*
* This call is expected to be heavyweight and possibly take several hundred
* milliseconds to complete, since it may require resetting and
* reconfiguring the image sensor and the camera processing pipeline.
* Nevertheless, the HAL device should attempt to minimize the
* reconfiguration delay to minimize the user-visible pauses during
* application operational mode changes (such as switching from still
* capture to video recording).
*
* Return values:
*
* 0: On successful stream configuration
*
* -EINVAL: If the requested stream configuration is invalid. Some examples
* of invalid stream configurations include:
*
* - Including more than 1 input-capable stream (INPUT or
* BIDIRECTIONAL)
*
* - Not including any output-capable streams (OUTPUT or
* BIDIRECTIONAL)
*
* - Including streams with unsupported formats, or an unsupported
* size for that format.
*
* - Including too many output streams of a certain format.
*
* Note that the framework submitting an invalid stream
* configuration is not normal operation, since stream
* configurations are checked before configure. An invalid
* configuration means that a bug exists in the framework code, or
* there is a mismatch between the HAL's static metadata and the
* requirements on streams.
*
* -ENODEV: If there has been a fatal error and the device is no longer
* operational. Only close() can be called successfully by the
* framework after this error is returned.
*/
int (*configure_streams)(const struct camera3_device *,
camera3_stream_configuration_t *stream_list);
/**
* register_stream_buffers:
*
* Register buffers for a given stream with the HAL device. This method is
* called by the framework after a new stream is defined by
* configure_streams, and before buffers from that stream are included in a
* capture request. If the same stream is listed in a subsequent
* configure_streams() call, register_stream_buffers will _not_ be called
* again for that stream.
*
* The framework does not need to register buffers for all configured
* streams before it submits the first capture request. This allows quick
* startup for preview (or similar use cases) while other streams are still
* being allocated.
*
* This method is intended to allow the HAL device to map or otherwise
* prepare the buffers for later use. The buffers passed in will already be
* locked for use. At the end of the call, all the buffers must be ready to
* be returned to the stream. The buffer_set argument is only valid for the
* duration of this call.
*
* If the stream format was set to HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED,
* the camera HAL should inspect the passed-in buffers here to determine any
* platform-private pixel format information.
*
* Return values:
*
* 0: On successful registration of the new stream buffers
*
* -EINVAL: If the stream_buffer_set does not refer to a valid active
* stream, or if the buffers array is invalid.
*
* -ENOMEM: If there was a failure in registering the buffers. The framework
* must consider all the stream buffers to be unregistered, and can
* try to register again later.
*
* -ENODEV: If there is a fatal error, and the device is no longer
* operational. Only close() can be called successfully by the
* framework after this error is returned.
*/
int (*register_stream_buffers)(const struct camera3_device *,
const camera3_stream_buffer_set_t *buffer_set);
/**********************************************************************
* Request creation and submission
*/
/**
* construct_default_request_settings:
*
* Create capture settings for standard camera use cases.
*
* The device must return a settings buffer that is configured to meet the
* requested use case, which must be one of the CAMERA3_TEMPLATE_*
* enums. All request control fields must be included.
*
* The HAL retains ownership of this structure, but the pointer to the
* structure must be valid until the device is closed. The framework and the
* HAL may not modify the buffer once it is returned by this call. The same
* buffer may be returned for subsequent calls for the same template, or for
* other templates.
*
* Return values:
*
* Valid metadata: On successful creation of a default settings
* buffer.
*
* NULL: In case of a fatal error. After this is returned, only
* the close() method can be called succesfully by the
* framework.
*/
const camera_metadata_t* (*construct_default_request_settings)(
const struct camera3_device *,
int type);
/**
* process_capture_request:
*
* Send a new capture request to the HAL. The HAL should not return from
* this call until it is ready to accept the next request to process. Only
* one call to process_capture_request() will be made at a time by the
* framework, and the calls will all be from the same thread. The next call
* to process_capture_request() will be made as soon as a new request and
* its associated buffers are available. In a normal preview scenario, this
* means the function will be called again by the framework almost
* instantly.
*
* The actual request processing is asynchronous, with the results of
* capture being returned by the HAL through the process_capture_result()
* call. This call requires the result metadata to be available, but output
* buffers may simply provide sync fences to wait on. Multiple requests are
* expected to be in flight at once, to maintain full output frame rate.
*
* The framework retains ownership of the request structure. It is only
* guaranteed to be valid during this call. The HAL device must make copies
* of the information it needs to retain for the capture processing.
*
* The HAL must write the file descriptor for the input buffer's release
* sync fence into input_buffer->release_fence, if input_buffer is not
* NULL. If the HAL returns -1 for the input buffer release sync fence, the
* framework is free to immediately reuse the input buffer. Otherwise, the
* framework will wait on the sync fence before refilling and reusing the
* input buffer.
*
* Return values:
*
* 0: On a successful start to processing the capture request
*
* -EINVAL: If the input is malformed (the settings are NULL when not
* allowed, there are 0 output buffers, etc) and capture processing
* cannot start. Failures during request processing should be
* handled by calling camera3_callback_ops_t.notify().
*
* -ENODEV: If the camera device has encountered a serious error. After this
* error is returned, only the close() method can be successfully
* called by the framework.
*
*/
int (*process_capture_request)(const struct camera3_device *,
camera3_capture_request_t *request);
/**********************************************************************
* Miscellaneous methods
*/
/**
* get_metadata_vendor_tag_ops:
*
* Get methods to query for vendor extension metadata tag infomation. The
* HAL should fill in all the vendor tag operation methods, or leave ops
* unchanged if no vendor tags are defined.
*
* The definition of vendor_tag_query_ops_t can be found in
* system/media/camera/include/system/camera_metadata.h.
*
*/
void (*get_metadata_vendor_tag_ops)(const struct camera3_device*,
vendor_tag_query_ops_t* ops);
/**
* dump:
*
* Print out debugging state for the camera device. This will be called by
* the framework when the camera service is asked for a debug dump, which
* happens when using the dumpsys tool, or when capturing a bugreport.
*
* The passed-in file descriptor can be used to write debugging text using
* dprintf() or write(). The text should be in ASCII encoding only.
*/
void (*dump)(const struct camera3_device *, int fd);
} camera3_device_ops_t;
/**********************************************************************
*
* Camera device definition
*
*/
typedef struct camera3_device {
/**
* common.version must equal CAMERA_DEVICE_API_VERSION_3_0 to identify this
* device as implementing version 3.0 of the camera device HAL.
*/
hw_device_t common;
camera3_device_ops_t *ops;
void *priv;
} camera3_device_t;
__END_DECLS
#endif /* #ifdef ANDROID_INCLUDE_CAMERA3_H */