Refactor and expand KeyBlob capabilities.

KeyBlob's responsibilities have grown, it makes sense to make it a
first-class class, and to use the Serializable infrastructure.

Change-Id: I76a8dac5b4b4fe47d6677c27ab9eba2755f02dfe
diff --git a/key_blob.cpp b/key_blob.cpp
new file mode 100644
index 0000000..a75e8dd
--- /dev/null
+++ b/key_blob.cpp
@@ -0,0 +1,212 @@
+/*
+ * Copyright 2014 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include <assert.h>
+
+#include <openssl/aes.h>
+#include <openssl/sha.h>
+
+#include "ae.h"
+#include "key_blob.h"
+#include "google_keymaster_utils.h"
+
+namespace keymaster {
+
+struct AeCtxDelete {
+    void operator()(ae_ctx* p) {
+        ae_clear(p);
+        ae_free(p);
+    }
+};
+
+const size_t KeyBlob::NONCE_LENGTH;
+const size_t KeyBlob::TAG_LENGTH;
+
+KeyBlob::KeyBlob(const AuthorizationSet& enforced, const AuthorizationSet& unenforced,
+                 const keymaster_key_blob_t& key, const keymaster_key_blob_t& master_key,
+                 uint8_t nonce[NONCE_LENGTH])
+    : error_(KM_ERROR_OK), enforced_(enforced), unenforced_(unenforced) {
+    if (enforced_.is_valid() == AuthorizationSet::ALLOCATION_FAILURE ||
+        unenforced_.is_valid() == AuthorizationSet::ALLOCATION_FAILURE) {
+        error_ = KM_ERROR_MEMORY_ALLOCATION_FAILED;
+        return;
+    }
+
+    if (enforced_.is_valid() != AuthorizationSet::OK ||
+        unenforced_.is_valid() != AuthorizationSet::OK) {
+        error_ = KM_ERROR_UNKNOWN_ERROR;
+        return;
+    }
+
+    memcpy(nonce_, nonce, NONCE_LENGTH);
+
+    key_material_length_ = key.key_material_size;
+    key_material_.reset(new uint8_t[key_material_length_]);
+    encrypted_key_material_.reset(new uint8_t[key_material_length_]);
+
+    if (key_material_.get() == NULL || encrypted_key_material_.get() == NULL) {
+        error_ = KM_ERROR_MEMORY_ALLOCATION_FAILED;
+        return;
+    }
+
+    memcpy(key_material_.get(), key.key_material, key_material_length_);
+    EncryptKey(master_key);
+}
+
+KeyBlob::KeyBlob(const keymaster_key_blob_t& key, const keymaster_key_blob_t& master_key) {
+    if (!Deserialize(const_cast<const uint8_t**>(&(key.key_material)),
+                     key.key_material + key.key_material_size))
+        return;
+    DecryptKey(master_key);
+}
+
+size_t KeyBlob::SerializedSize() const {
+    return NONCE_LENGTH + sizeof(uint32_t) + key_material_length() + TAG_LENGTH +
+           enforced_.SerializedSize() + unenforced_.SerializedSize();
+}
+
+uint8_t* KeyBlob::Serialize(uint8_t* buf, const uint8_t* end) const {
+    const uint8_t* start = buf;
+    buf = append_to_buf(buf, end, nonce(), NONCE_LENGTH);
+    buf = append_size_and_data_to_buf(buf, end, encrypted_key_material(), key_material_length());
+    buf = append_to_buf(buf, end, tag(), TAG_LENGTH);
+    buf = enforced_.Serialize(buf, end);
+    buf = unenforced_.Serialize(buf, end);
+    assert(buf - start == static_cast<ptrdiff_t>(SerializedSize()));
+    return buf;
+}
+
+bool KeyBlob::Deserialize(const uint8_t** buf, const uint8_t* end) {
+    uint8_t* tmp_key_ptr = NULL;
+
+    if (!copy_from_buf(buf, end, nonce_, NONCE_LENGTH) ||
+        !copy_size_and_data_from_buf(buf, end, &key_material_length_, &tmp_key_ptr) ||
+        !copy_from_buf(buf, end, tag_, TAG_LENGTH) || !enforced_.Deserialize(buf, end) ||
+        !unenforced_.Deserialize(buf, end)) {
+        if (tmp_key_ptr != NULL)
+            delete [] tmp_key_ptr;
+        error_ = KM_ERROR_INVALID_KEY_BLOB;
+        return false;
+    }
+
+    encrypted_key_material_.reset(tmp_key_ptr);
+    key_material_.reset(new uint8_t[key_material_length_]);
+    return true;
+}
+
+void KeyBlob::EncryptKey(const keymaster_key_blob_t& master_key) {
+    UniquePtr<ae_ctx, AeCtxDelete> ctx(InitializeKeyWrappingContext(master_key, &error_));
+    if (error_ != KM_ERROR_OK)
+        return;
+
+    int ae_err = ae_encrypt(ctx.get(), nonce_, key_material(), key_material_length(),
+                            NULL /* additional data */, 0 /* additional data length */,
+                            encrypted_key_material_.get(), tag_, 1 /* final */);
+    if (ae_err < 0) {
+        error_ = KM_ERROR_UNKNOWN_ERROR;
+        return;
+    }
+    assert(ae_err == static_cast<int>(key_material_length_));
+    error_ = KM_ERROR_OK;
+}
+
+void KeyBlob::DecryptKey(const keymaster_key_blob_t& master_key) {
+    UniquePtr<ae_ctx, AeCtxDelete> ctx(InitializeKeyWrappingContext(master_key, &error_));
+    if (error_ != KM_ERROR_OK)
+        return;
+
+    int ae_err = ae_decrypt(ctx.get(), nonce_, encrypted_key_material(), key_material_length(),
+                            NULL /* additional data */, 0 /* additional data length */,
+                            key_material_.get(), tag(), 1 /* final */);
+    if (ae_err == AE_INVALID) {
+        // Authentication failed!  Decryption probably succeeded(ish), but we don't want to return
+        // any data when the authentication fails, so clear it.
+        memset(key_material_.get(), 0, key_material_length());
+        error_ = KM_ERROR_INVALID_KEY_BLOB;
+        return;
+    } else if (ae_err < 0) {
+        error_ = KM_ERROR_UNKNOWN_ERROR;
+        return;
+    }
+    assert(ae_err == static_cast<int>(key_material_length_));
+    error_ = KM_ERROR_OK;
+}
+
+ae_ctx* KeyBlob::InitializeKeyWrappingContext(const keymaster_key_blob_t& master_key,
+                                              keymaster_error_t* error) const {
+    size_t auth_data_length;
+    UniquePtr<const uint8_t[]> auth_data(BuildAuthData(&auth_data_length));
+    if (auth_data.get() == NULL) {
+        *error = KM_ERROR_MEMORY_ALLOCATION_FAILED;
+        return NULL;
+    }
+
+    *error = KM_ERROR_OK;
+    UniquePtr<ae_ctx, AeCtxDelete> ctx(ae_allocate(NULL));
+
+    SHA256_CTX sha256_ctx;
+    UniquePtr<uint8_t[]> hash_buf(new uint8_t[SHA256_DIGEST_LENGTH]);
+    Eraser hash_eraser(hash_buf.get(), SHA256_DIGEST_LENGTH);
+    UniquePtr<uint8_t[]> derived_key(new uint8_t[AES_BLOCK_SIZE]);
+    Eraser derived_key_eraser(derived_key.get(), AES_BLOCK_SIZE);
+
+    if (ctx.get() == NULL || hash_buf.get() == NULL || derived_key.get() == NULL) {
+        *error = KM_ERROR_MEMORY_ALLOCATION_FAILED;
+        return NULL;
+    }
+
+    Eraser sha256_ctx_eraser(sha256_ctx);
+
+    // Hash derivation data.
+    SHA256_Init(&sha256_ctx);
+    SHA256_Update(&sha256_ctx, auth_data.get(), auth_data_length);
+    SHA256_Final(hash_buf.get(), &sha256_ctx);
+
+    // Encrypt hash with master key to build derived key.
+    AES_KEY aes_key;
+    Eraser aes_key_eraser(AES_KEY);
+    if (AES_set_encrypt_key(master_key.key_material, master_key.key_material_size * 8, &aes_key) !=
+        0) {
+        *error = KM_ERROR_UNKNOWN_ERROR;
+        return NULL;
+    }
+    AES_encrypt(hash_buf.get(), derived_key.get(), &aes_key);
+
+    // Set up AES OCB context using derived key.
+    if (ae_init(ctx.get(), derived_key.get(), AES_BLOCK_SIZE, NONCE_LENGTH, TAG_LENGTH) ==
+        AE_SUCCESS)
+        return ctx.release();
+    else {
+        memset(ctx.get(), 0, ae_ctx_sizeof());
+        return NULL;
+    }
+}
+
+const uint8_t* KeyBlob::BuildAuthData(size_t* auth_data_length) const {
+    *auth_data_length = enforced_.SerializedSize() + unenforced_.SerializedSize();
+    uint8_t* auth_data = new uint8_t[*auth_data_length];
+    if (auth_data == NULL)
+        return NULL;
+
+    uint8_t* end = auth_data + *auth_data_length;
+    uint8_t* buf = auth_data;
+    buf = enforced_.Serialize(buf, end);
+    buf = unenforced_.Serialize(buf, end);
+
+    return auth_data;
+}
+
+}  // namespace keymaster