| /****************************************************************************** |
| * |
| * Copyright(c) 2009-2012 Realtek Corporation. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of version 2 of the GNU General Public License as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * The full GNU General Public License is included in this distribution in the |
| * file called LICENSE. |
| * |
| * Contact Information: |
| * wlanfae <wlanfae@realtek.com> |
| * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park, |
| * Hsinchu 300, Taiwan. |
| * |
| * Larry Finger <Larry.Finger@lwfinger.net> |
| * |
| *****************************************************************************/ |
| |
| #include "../wifi.h" |
| #include "reg.h" |
| #include "def.h" |
| #include "phy.h" |
| #include "rf.h" |
| #include "dm.h" |
| #include "hw.h" |
| |
| void rtl92d_phy_rf6052_set_bandwidth(struct ieee80211_hw *hw, u8 bandwidth) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_phy *rtlphy = &(rtlpriv->phy); |
| u8 rfpath; |
| |
| switch (bandwidth) { |
| case HT_CHANNEL_WIDTH_20: |
| for (rfpath = 0; rfpath < rtlphy->num_total_rfpath; rfpath++) { |
| rtlphy->rfreg_chnlval[rfpath] = ((rtlphy->rfreg_chnlval |
| [rfpath] & 0xfffff3ff) | 0x0400); |
| rtl_set_rfreg(hw, rfpath, RF_CHNLBW, BIT(10) | |
| BIT(11), 0x01); |
| |
| RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, |
| "20M RF 0x18 = 0x%x\n", |
| rtlphy->rfreg_chnlval[rfpath]); |
| } |
| |
| break; |
| case HT_CHANNEL_WIDTH_20_40: |
| for (rfpath = 0; rfpath < rtlphy->num_total_rfpath; rfpath++) { |
| rtlphy->rfreg_chnlval[rfpath] = |
| ((rtlphy->rfreg_chnlval[rfpath] & 0xfffff3ff)); |
| rtl_set_rfreg(hw, rfpath, RF_CHNLBW, BIT(10) | BIT(11), |
| 0x00); |
| RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, |
| "40M RF 0x18 = 0x%x\n", |
| rtlphy->rfreg_chnlval[rfpath]); |
| } |
| break; |
| default: |
| pr_err("unknown bandwidth: %#X\n", bandwidth); |
| break; |
| } |
| } |
| |
| void rtl92d_phy_rf6052_set_cck_txpower(struct ieee80211_hw *hw, |
| u8 *ppowerlevel) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_phy *rtlphy = &(rtlpriv->phy); |
| struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); |
| struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); |
| u32 tx_agc[2] = {0, 0}, tmpval; |
| bool turbo_scanoff = false; |
| u8 idx1, idx2; |
| u8 *ptr; |
| |
| if (rtlefuse->eeprom_regulatory != 0) |
| turbo_scanoff = true; |
| if (mac->act_scanning) { |
| tx_agc[RF90_PATH_A] = 0x3f3f3f3f; |
| tx_agc[RF90_PATH_B] = 0x3f3f3f3f; |
| if (turbo_scanoff) { |
| for (idx1 = RF90_PATH_A; idx1 <= RF90_PATH_B; idx1++) { |
| tx_agc[idx1] = ppowerlevel[idx1] | |
| (ppowerlevel[idx1] << 8) | |
| (ppowerlevel[idx1] << 16) | |
| (ppowerlevel[idx1] << 24); |
| } |
| } |
| } else { |
| for (idx1 = RF90_PATH_A; idx1 <= RF90_PATH_B; idx1++) { |
| tx_agc[idx1] = ppowerlevel[idx1] | |
| (ppowerlevel[idx1] << 8) | |
| (ppowerlevel[idx1] << 16) | |
| (ppowerlevel[idx1] << 24); |
| } |
| if (rtlefuse->eeprom_regulatory == 0) { |
| tmpval = (rtlphy->mcs_offset[0][6]) + |
| (rtlphy->mcs_offset[0][7] << 8); |
| tx_agc[RF90_PATH_A] += tmpval; |
| tmpval = (rtlphy->mcs_offset[0][14]) + |
| (rtlphy->mcs_offset[0][15] << 24); |
| tx_agc[RF90_PATH_B] += tmpval; |
| } |
| } |
| |
| for (idx1 = RF90_PATH_A; idx1 <= RF90_PATH_B; idx1++) { |
| ptr = (u8 *) (&(tx_agc[idx1])); |
| for (idx2 = 0; idx2 < 4; idx2++) { |
| if (*ptr > RF6052_MAX_TX_PWR) |
| *ptr = RF6052_MAX_TX_PWR; |
| ptr++; |
| } |
| } |
| |
| tmpval = tx_agc[RF90_PATH_A] & 0xff; |
| rtl_set_bbreg(hw, RTXAGC_A_CCK1_MCS32, MASKBYTE1, tmpval); |
| RTPRINT(rtlpriv, FPHY, PHY_TXPWR, |
| "CCK PWR 1M (rf-A) = 0x%x (reg 0x%x)\n", |
| tmpval, RTXAGC_A_CCK1_MCS32); |
| tmpval = tx_agc[RF90_PATH_A] >> 8; |
| rtl_set_bbreg(hw, RTXAGC_B_CCK11_A_CCK2_11, 0xffffff00, tmpval); |
| RTPRINT(rtlpriv, FPHY, PHY_TXPWR, |
| "CCK PWR 2~11M (rf-A) = 0x%x (reg 0x%x)\n", |
| tmpval, RTXAGC_B_CCK11_A_CCK2_11); |
| tmpval = tx_agc[RF90_PATH_B] >> 24; |
| rtl_set_bbreg(hw, RTXAGC_B_CCK11_A_CCK2_11, MASKBYTE0, tmpval); |
| RTPRINT(rtlpriv, FPHY, PHY_TXPWR, |
| "CCK PWR 11M (rf-B) = 0x%x (reg 0x%x)\n", |
| tmpval, RTXAGC_B_CCK11_A_CCK2_11); |
| tmpval = tx_agc[RF90_PATH_B] & 0x00ffffff; |
| rtl_set_bbreg(hw, RTXAGC_B_CCK1_55_MCS32, 0xffffff00, tmpval); |
| RTPRINT(rtlpriv, FPHY, PHY_TXPWR, |
| "CCK PWR 1~5.5M (rf-B) = 0x%x (reg 0x%x)\n", |
| tmpval, RTXAGC_B_CCK1_55_MCS32); |
| } |
| |
| static void _rtl92d_phy_get_power_base(struct ieee80211_hw *hw, |
| u8 *ppowerlevel, u8 channel, |
| u32 *ofdmbase, u32 *mcsbase) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_phy *rtlphy = &(rtlpriv->phy); |
| struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); |
| u32 powerbase0, powerbase1; |
| u8 legacy_pwrdiff, ht20_pwrdiff; |
| u8 i, powerlevel[2]; |
| |
| for (i = 0; i < 2; i++) { |
| powerlevel[i] = ppowerlevel[i]; |
| legacy_pwrdiff = rtlefuse->txpwr_legacyhtdiff[i][channel - 1]; |
| powerbase0 = powerlevel[i] + legacy_pwrdiff; |
| powerbase0 = (powerbase0 << 24) | (powerbase0 << 16) | |
| (powerbase0 << 8) | powerbase0; |
| *(ofdmbase + i) = powerbase0; |
| RTPRINT(rtlpriv, FPHY, PHY_TXPWR, |
| " [OFDM power base index rf(%c) = 0x%x]\n", |
| i == 0 ? 'A' : 'B', *(ofdmbase + i)); |
| } |
| |
| for (i = 0; i < 2; i++) { |
| if (rtlphy->current_chan_bw == HT_CHANNEL_WIDTH_20) { |
| ht20_pwrdiff = rtlefuse->txpwr_ht20diff[i][channel - 1]; |
| powerlevel[i] += ht20_pwrdiff; |
| } |
| powerbase1 = powerlevel[i]; |
| powerbase1 = (powerbase1 << 24) | (powerbase1 << 16) | |
| (powerbase1 << 8) | powerbase1; |
| *(mcsbase + i) = powerbase1; |
| RTPRINT(rtlpriv, FPHY, PHY_TXPWR, |
| " [MCS power base index rf(%c) = 0x%x]\n", |
| i == 0 ? 'A' : 'B', *(mcsbase + i)); |
| } |
| } |
| |
| static u8 _rtl92d_phy_get_chnlgroup_bypg(u8 chnlindex) |
| { |
| u8 group; |
| u8 channel_info[59] = { |
| 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, |
| 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, |
| 60, 62, 64, 100, 102, 104, 106, 108, 110, 112, |
| 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, |
| 134, 136, 138, 140, 149, 151, 153, 155, 157, 159, |
| 161, 163, 165 |
| }; |
| |
| if (channel_info[chnlindex] <= 3) /* Chanel 1-3 */ |
| group = 0; |
| else if (channel_info[chnlindex] <= 9) /* Channel 4-9 */ |
| group = 1; |
| else if (channel_info[chnlindex] <= 14) /* Channel 10-14 */ |
| group = 2; |
| else if (channel_info[chnlindex] <= 64) |
| group = 6; |
| else if (channel_info[chnlindex] <= 140) |
| group = 7; |
| else |
| group = 8; |
| return group; |
| } |
| |
| static void _rtl92d_get_txpower_writeval_by_regulatory(struct ieee80211_hw *hw, |
| u8 channel, u8 index, |
| u32 *powerbase0, |
| u32 *powerbase1, |
| u32 *p_outwriteval) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_phy *rtlphy = &(rtlpriv->phy); |
| struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); |
| u8 i, chnlgroup = 0, pwr_diff_limit[4]; |
| u32 writeval = 0, customer_limit, rf; |
| |
| for (rf = 0; rf < 2; rf++) { |
| switch (rtlefuse->eeprom_regulatory) { |
| case 0: |
| chnlgroup = 0; |
| writeval = rtlphy->mcs_offset |
| [chnlgroup][index + |
| (rf ? 8 : 0)] + ((index < 2) ? |
| powerbase0[rf] : |
| powerbase1[rf]); |
| RTPRINT(rtlpriv, FPHY, PHY_TXPWR, |
| "RTK better performance, writeval(%c) = 0x%x\n", |
| rf == 0 ? 'A' : 'B', writeval); |
| break; |
| case 1: |
| if (rtlphy->pwrgroup_cnt == 1) |
| chnlgroup = 0; |
| if (rtlphy->pwrgroup_cnt >= MAX_PG_GROUP) { |
| chnlgroup = _rtl92d_phy_get_chnlgroup_bypg( |
| channel - 1); |
| if (rtlphy->current_chan_bw == |
| HT_CHANNEL_WIDTH_20) |
| chnlgroup++; |
| else |
| chnlgroup += 4; |
| writeval = rtlphy->mcs_offset |
| [chnlgroup][index + |
| (rf ? 8 : 0)] + ((index < 2) ? |
| powerbase0[rf] : |
| powerbase1[rf]); |
| RTPRINT(rtlpriv, FPHY, PHY_TXPWR, |
| "Realtek regulatory, 20MHz, writeval(%c) = 0x%x\n", |
| rf == 0 ? 'A' : 'B', writeval); |
| } |
| break; |
| case 2: |
| writeval = ((index < 2) ? powerbase0[rf] : |
| powerbase1[rf]); |
| RTPRINT(rtlpriv, FPHY, PHY_TXPWR, |
| "Better regulatory, writeval(%c) = 0x%x\n", |
| rf == 0 ? 'A' : 'B', writeval); |
| break; |
| case 3: |
| chnlgroup = 0; |
| if (rtlphy->current_chan_bw == HT_CHANNEL_WIDTH_20_40) { |
| RTPRINT(rtlpriv, FPHY, PHY_TXPWR, |
| "customer's limit, 40MHz rf(%c) = 0x%x\n", |
| rf == 0 ? 'A' : 'B', |
| rtlefuse->pwrgroup_ht40[rf] |
| [channel - 1]); |
| } else { |
| RTPRINT(rtlpriv, FPHY, PHY_TXPWR, |
| "customer's limit, 20MHz rf(%c) = 0x%x\n", |
| rf == 0 ? 'A' : 'B', |
| rtlefuse->pwrgroup_ht20[rf] |
| [channel - 1]); |
| } |
| for (i = 0; i < 4; i++) { |
| pwr_diff_limit[i] = (u8)((rtlphy->mcs_offset |
| [chnlgroup][index + (rf ? 8 : 0)] & |
| (0x7f << (i * 8))) >> (i * 8)); |
| if (rtlphy->current_chan_bw == |
| HT_CHANNEL_WIDTH_20_40) { |
| if (pwr_diff_limit[i] > |
| rtlefuse->pwrgroup_ht40[rf] |
| [channel - 1]) |
| pwr_diff_limit[i] = |
| rtlefuse->pwrgroup_ht40 |
| [rf][channel - 1]; |
| } else { |
| if (pwr_diff_limit[i] > |
| rtlefuse->pwrgroup_ht20[rf][ |
| channel - 1]) |
| pwr_diff_limit[i] = |
| rtlefuse->pwrgroup_ht20[rf] |
| [channel - 1]; |
| } |
| } |
| customer_limit = (pwr_diff_limit[3] << 24) | |
| (pwr_diff_limit[2] << 16) | |
| (pwr_diff_limit[1] << 8) | |
| (pwr_diff_limit[0]); |
| RTPRINT(rtlpriv, FPHY, PHY_TXPWR, |
| "Customer's limit rf(%c) = 0x%x\n", |
| rf == 0 ? 'A' : 'B', customer_limit); |
| writeval = customer_limit + ((index < 2) ? |
| powerbase0[rf] : powerbase1[rf]); |
| RTPRINT(rtlpriv, FPHY, PHY_TXPWR, |
| "Customer, writeval rf(%c)= 0x%x\n", |
| rf == 0 ? 'A' : 'B', writeval); |
| break; |
| default: |
| chnlgroup = 0; |
| writeval = rtlphy->mcs_offset[chnlgroup][index + |
| (rf ? 8 : 0)] + ((index < 2) ? |
| powerbase0[rf] : powerbase1[rf]); |
| RTPRINT(rtlpriv, FPHY, PHY_TXPWR, |
| "RTK better performance, writeval rf(%c) = 0x%x\n", |
| rf == 0 ? 'A' : 'B', writeval); |
| break; |
| } |
| *(p_outwriteval + rf) = writeval; |
| } |
| } |
| |
| static void _rtl92d_write_ofdm_power_reg(struct ieee80211_hw *hw, |
| u8 index, u32 *pvalue) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_phy *rtlphy = &(rtlpriv->phy); |
| static u16 regoffset_a[6] = { |
| RTXAGC_A_RATE18_06, RTXAGC_A_RATE54_24, |
| RTXAGC_A_MCS03_MCS00, RTXAGC_A_MCS07_MCS04, |
| RTXAGC_A_MCS11_MCS08, RTXAGC_A_MCS15_MCS12 |
| }; |
| static u16 regoffset_b[6] = { |
| RTXAGC_B_RATE18_06, RTXAGC_B_RATE54_24, |
| RTXAGC_B_MCS03_MCS00, RTXAGC_B_MCS07_MCS04, |
| RTXAGC_B_MCS11_MCS08, RTXAGC_B_MCS15_MCS12 |
| }; |
| u8 i, rf, pwr_val[4]; |
| u32 writeval; |
| u16 regoffset; |
| |
| for (rf = 0; rf < 2; rf++) { |
| writeval = pvalue[rf]; |
| for (i = 0; i < 4; i++) { |
| pwr_val[i] = (u8) ((writeval & (0x7f << |
| (i * 8))) >> (i * 8)); |
| if (pwr_val[i] > RF6052_MAX_TX_PWR) |
| pwr_val[i] = RF6052_MAX_TX_PWR; |
| } |
| writeval = (pwr_val[3] << 24) | (pwr_val[2] << 16) | |
| (pwr_val[1] << 8) | pwr_val[0]; |
| if (rf == 0) |
| regoffset = regoffset_a[index]; |
| else |
| regoffset = regoffset_b[index]; |
| rtl_set_bbreg(hw, regoffset, MASKDWORD, writeval); |
| RTPRINT(rtlpriv, FPHY, PHY_TXPWR, |
| "Set 0x%x = %08x\n", regoffset, writeval); |
| if (((get_rf_type(rtlphy) == RF_2T2R) && |
| (regoffset == RTXAGC_A_MCS15_MCS12 || |
| regoffset == RTXAGC_B_MCS15_MCS12)) || |
| ((get_rf_type(rtlphy) != RF_2T2R) && |
| (regoffset == RTXAGC_A_MCS07_MCS04 || |
| regoffset == RTXAGC_B_MCS07_MCS04))) { |
| writeval = pwr_val[3]; |
| if (regoffset == RTXAGC_A_MCS15_MCS12 || |
| regoffset == RTXAGC_A_MCS07_MCS04) |
| regoffset = 0xc90; |
| if (regoffset == RTXAGC_B_MCS15_MCS12 || |
| regoffset == RTXAGC_B_MCS07_MCS04) |
| regoffset = 0xc98; |
| for (i = 0; i < 3; i++) { |
| if (i != 2) |
| writeval = (writeval > 8) ? |
| (writeval - 8) : 0; |
| else |
| writeval = (writeval > 6) ? |
| (writeval - 6) : 0; |
| rtl_write_byte(rtlpriv, (u32) (regoffset + i), |
| (u8) writeval); |
| } |
| } |
| } |
| } |
| |
| void rtl92d_phy_rf6052_set_ofdm_txpower(struct ieee80211_hw *hw, |
| u8 *ppowerlevel, u8 channel) |
| { |
| u32 writeval[2], powerbase0[2], powerbase1[2]; |
| u8 index; |
| |
| _rtl92d_phy_get_power_base(hw, ppowerlevel, channel, |
| &powerbase0[0], &powerbase1[0]); |
| for (index = 0; index < 6; index++) { |
| _rtl92d_get_txpower_writeval_by_regulatory(hw, |
| channel, index, &powerbase0[0], |
| &powerbase1[0], &writeval[0]); |
| _rtl92d_write_ofdm_power_reg(hw, index, &writeval[0]); |
| } |
| } |
| |
| bool rtl92d_phy_enable_anotherphy(struct ieee80211_hw *hw, bool bmac0) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_hal *rtlhal = &(rtlpriv->rtlhal); |
| u8 u1btmp; |
| u8 direct = bmac0 ? BIT(3) | BIT(2) : BIT(3); |
| u8 mac_reg = bmac0 ? REG_MAC1 : REG_MAC0; |
| u8 mac_on_bit = bmac0 ? MAC1_ON : MAC0_ON; |
| bool bresult = true; /* true: need to enable BB/RF power */ |
| |
| rtlhal->during_mac0init_radiob = false; |
| rtlhal->during_mac1init_radioa = false; |
| RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "===>\n"); |
| /* MAC0 Need PHY1 load radio_b.txt . Driver use DBI to write. */ |
| u1btmp = rtl_read_byte(rtlpriv, mac_reg); |
| if (!(u1btmp & mac_on_bit)) { |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "enable BB & RF\n"); |
| /* Enable BB and RF power */ |
| rtl92de_write_dword_dbi(hw, REG_SYS_ISO_CTRL, |
| rtl92de_read_dword_dbi(hw, REG_SYS_ISO_CTRL, direct) | |
| BIT(29) | BIT(16) | BIT(17), direct); |
| } else { |
| /* We think if MAC1 is ON,then radio_a.txt |
| * and radio_b.txt has been load. */ |
| bresult = false; |
| } |
| RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "<===\n"); |
| return bresult; |
| |
| } |
| |
| void rtl92d_phy_powerdown_anotherphy(struct ieee80211_hw *hw, bool bmac0) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_hal *rtlhal = &(rtlpriv->rtlhal); |
| u8 u1btmp; |
| u8 direct = bmac0 ? BIT(3) | BIT(2) : BIT(3); |
| u8 mac_reg = bmac0 ? REG_MAC1 : REG_MAC0; |
| u8 mac_on_bit = bmac0 ? MAC1_ON : MAC0_ON; |
| |
| rtlhal->during_mac0init_radiob = false; |
| rtlhal->during_mac1init_radioa = false; |
| RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "====>\n"); |
| /* check MAC0 enable or not again now, if |
| * enabled, not power down radio A. */ |
| u1btmp = rtl_read_byte(rtlpriv, mac_reg); |
| if (!(u1btmp & mac_on_bit)) { |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "power down\n"); |
| /* power down RF radio A according to YuNan's advice. */ |
| rtl92de_write_dword_dbi(hw, RFPGA0_XA_LSSIPARAMETER, |
| 0x00000000, direct); |
| } |
| RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "<====\n"); |
| } |
| |
| bool rtl92d_phy_rf6052_config(struct ieee80211_hw *hw) |
| { |
| struct rtl_priv *rtlpriv = rtl_priv(hw); |
| struct rtl_phy *rtlphy = &(rtlpriv->phy); |
| bool rtstatus = true; |
| struct rtl_hal *rtlhal = &(rtlpriv->rtlhal); |
| u32 u4_regvalue = 0; |
| u8 rfpath; |
| struct bb_reg_def *pphyreg; |
| bool mac1_initradioa_first = false, mac0_initradiob_first = false; |
| bool need_pwrdown_radioa = false, need_pwrdown_radiob = false; |
| bool true_bpath = false; |
| |
| if (rtlphy->rf_type == RF_1T1R) |
| rtlphy->num_total_rfpath = 1; |
| else |
| rtlphy->num_total_rfpath = 2; |
| |
| /* Single phy mode: use radio_a radio_b config path_A path_B */ |
| /* seperately by MAC0, and MAC1 needn't configure RF; */ |
| /* Dual PHY mode:MAC0 use radio_a config 1st phy path_A, */ |
| /* MAC1 use radio_b config 2nd PHY path_A. */ |
| /* DMDP,MAC0 on G band,MAC1 on A band. */ |
| if (rtlhal->macphymode == DUALMAC_DUALPHY) { |
| if (rtlhal->current_bandtype == BAND_ON_2_4G && |
| rtlhal->interfaceindex == 0) { |
| /* MAC0 needs PHY1 load radio_b.txt. |
| * Driver use DBI to write. */ |
| if (rtl92d_phy_enable_anotherphy(hw, true)) { |
| rtlphy->num_total_rfpath = 2; |
| mac0_initradiob_first = true; |
| } else { |
| /* We think if MAC1 is ON,then radio_a.txt and |
| * radio_b.txt has been load. */ |
| return rtstatus; |
| } |
| } else if (rtlhal->current_bandtype == BAND_ON_5G && |
| rtlhal->interfaceindex == 1) { |
| /* MAC1 needs PHY0 load radio_a.txt. |
| * Driver use DBI to write. */ |
| if (rtl92d_phy_enable_anotherphy(hw, false)) { |
| rtlphy->num_total_rfpath = 2; |
| mac1_initradioa_first = true; |
| } else { |
| /* We think if MAC0 is ON,then radio_a.txt and |
| * radio_b.txt has been load. */ |
| return rtstatus; |
| } |
| } else if (rtlhal->interfaceindex == 1) { |
| /* MAC0 enabled, only init radia B. */ |
| true_bpath = true; |
| } |
| } |
| |
| for (rfpath = 0; rfpath < rtlphy->num_total_rfpath; rfpath++) { |
| /* Mac1 use PHY0 write */ |
| if (mac1_initradioa_first) { |
| if (rfpath == RF90_PATH_A) { |
| rtlhal->during_mac1init_radioa = true; |
| need_pwrdown_radioa = true; |
| } else if (rfpath == RF90_PATH_B) { |
| rtlhal->during_mac1init_radioa = false; |
| mac1_initradioa_first = false; |
| rfpath = RF90_PATH_A; |
| true_bpath = true; |
| rtlphy->num_total_rfpath = 1; |
| } |
| } else if (mac0_initradiob_first) { |
| /* Mac0 use PHY1 write */ |
| if (rfpath == RF90_PATH_A) |
| rtlhal->during_mac0init_radiob = false; |
| if (rfpath == RF90_PATH_B) { |
| rtlhal->during_mac0init_radiob = true; |
| mac0_initradiob_first = false; |
| need_pwrdown_radiob = true; |
| rfpath = RF90_PATH_A; |
| true_bpath = true; |
| rtlphy->num_total_rfpath = 1; |
| } |
| } |
| pphyreg = &rtlphy->phyreg_def[rfpath]; |
| switch (rfpath) { |
| case RF90_PATH_A: |
| case RF90_PATH_C: |
| u4_regvalue = rtl_get_bbreg(hw, pphyreg->rfintfs, |
| BRFSI_RFENV); |
| break; |
| case RF90_PATH_B: |
| case RF90_PATH_D: |
| u4_regvalue = rtl_get_bbreg(hw, pphyreg->rfintfs, |
| BRFSI_RFENV << 16); |
| break; |
| } |
| rtl_set_bbreg(hw, pphyreg->rfintfe, BRFSI_RFENV << 16, 0x1); |
| udelay(1); |
| rtl_set_bbreg(hw, pphyreg->rfintfo, BRFSI_RFENV, 0x1); |
| udelay(1); |
| /* Set bit number of Address and Data for RF register */ |
| /* Set 1 to 4 bits for 8255 */ |
| rtl_set_bbreg(hw, pphyreg->rfhssi_para2, |
| B3WIREADDRESSLENGTH, 0x0); |
| udelay(1); |
| /* Set 0 to 12 bits for 8255 */ |
| rtl_set_bbreg(hw, pphyreg->rfhssi_para2, B3WIREDATALENGTH, 0x0); |
| udelay(1); |
| switch (rfpath) { |
| case RF90_PATH_A: |
| if (true_bpath) |
| rtstatus = rtl92d_phy_config_rf_with_headerfile( |
| hw, radiob_txt, |
| (enum radio_path)rfpath); |
| else |
| rtstatus = rtl92d_phy_config_rf_with_headerfile( |
| hw, radioa_txt, |
| (enum radio_path)rfpath); |
| break; |
| case RF90_PATH_B: |
| rtstatus = |
| rtl92d_phy_config_rf_with_headerfile(hw, radiob_txt, |
| (enum radio_path) rfpath); |
| break; |
| case RF90_PATH_C: |
| break; |
| case RF90_PATH_D: |
| break; |
| } |
| switch (rfpath) { |
| case RF90_PATH_A: |
| case RF90_PATH_C: |
| rtl_set_bbreg(hw, pphyreg->rfintfs, BRFSI_RFENV, |
| u4_regvalue); |
| break; |
| case RF90_PATH_B: |
| case RF90_PATH_D: |
| rtl_set_bbreg(hw, pphyreg->rfintfs, BRFSI_RFENV << 16, |
| u4_regvalue); |
| break; |
| } |
| if (!rtstatus) { |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, |
| "Radio[%d] Fail!!\n", rfpath); |
| goto phy_rf_cfg_fail; |
| } |
| |
| } |
| |
| /* check MAC0 enable or not again, if enabled, |
| * not power down radio A. */ |
| /* check MAC1 enable or not again, if enabled, |
| * not power down radio B. */ |
| if (need_pwrdown_radioa) |
| rtl92d_phy_powerdown_anotherphy(hw, false); |
| else if (need_pwrdown_radiob) |
| rtl92d_phy_powerdown_anotherphy(hw, true); |
| RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "<---\n"); |
| return rtstatus; |
| |
| phy_rf_cfg_fail: |
| return rtstatus; |
| } |