| /* |
| * (c) 2003-2012 Advanced Micro Devices, Inc. |
| * Your use of this code is subject to the terms and conditions of the |
| * GNU general public license version 2. See "COPYING" or |
| * http://www.gnu.org/licenses/gpl.html |
| * |
| * Maintainer: |
| * Andreas Herrmann <andreas.herrmann3@amd.com> |
| * |
| * Based on the powernow-k7.c module written by Dave Jones. |
| * (C) 2003 Dave Jones on behalf of SuSE Labs |
| * (C) 2004 Dominik Brodowski <linux@brodo.de> |
| * (C) 2004 Pavel Machek <pavel@ucw.cz> |
| * Licensed under the terms of the GNU GPL License version 2. |
| * Based upon datasheets & sample CPUs kindly provided by AMD. |
| * |
| * Valuable input gratefully received from Dave Jones, Pavel Machek, |
| * Dominik Brodowski, Jacob Shin, and others. |
| * Originally developed by Paul Devriendt. |
| * |
| * Processor information obtained from Chapter 9 (Power and Thermal |
| * Management) of the "BIOS and Kernel Developer's Guide (BKDG) for |
| * the AMD Athlon 64 and AMD Opteron Processors" and section "2.x |
| * Power Management" in BKDGs for newer AMD CPU families. |
| * |
| * Tables for specific CPUs can be inferred from AMD's processor |
| * power and thermal data sheets, (e.g. 30417.pdf, 30430.pdf, 43375.pdf) |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/smp.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/cpufreq.h> |
| #include <linux/slab.h> |
| #include <linux/string.h> |
| #include <linux/cpumask.h> |
| #include <linux/sched.h> /* for current / set_cpus_allowed() */ |
| #include <linux/io.h> |
| #include <linux/delay.h> |
| |
| #include <asm/msr.h> |
| #include <asm/cpu_device_id.h> |
| |
| #include <linux/acpi.h> |
| #include <linux/mutex.h> |
| #include <acpi/processor.h> |
| |
| #define PFX "powernow-k8: " |
| #define VERSION "version 2.20.00" |
| #include "powernow-k8.h" |
| |
| /* serialize freq changes */ |
| static DEFINE_MUTEX(fidvid_mutex); |
| |
| static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data); |
| |
| static struct cpufreq_driver cpufreq_amd64_driver; |
| |
| #ifndef CONFIG_SMP |
| static inline const struct cpumask *cpu_core_mask(int cpu) |
| { |
| return cpumask_of(0); |
| } |
| #endif |
| |
| /* Return a frequency in MHz, given an input fid */ |
| static u32 find_freq_from_fid(u32 fid) |
| { |
| return 800 + (fid * 100); |
| } |
| |
| /* Return a frequency in KHz, given an input fid */ |
| static u32 find_khz_freq_from_fid(u32 fid) |
| { |
| return 1000 * find_freq_from_fid(fid); |
| } |
| |
| /* Return the vco fid for an input fid |
| * |
| * Each "low" fid has corresponding "high" fid, and you can get to "low" fids |
| * only from corresponding high fids. This returns "high" fid corresponding to |
| * "low" one. |
| */ |
| static u32 convert_fid_to_vco_fid(u32 fid) |
| { |
| if (fid < HI_FID_TABLE_BOTTOM) |
| return 8 + (2 * fid); |
| else |
| return fid; |
| } |
| |
| /* |
| * Return 1 if the pending bit is set. Unless we just instructed the processor |
| * to transition to a new state, seeing this bit set is really bad news. |
| */ |
| static int pending_bit_stuck(void) |
| { |
| u32 lo, hi; |
| |
| rdmsr(MSR_FIDVID_STATUS, lo, hi); |
| return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0; |
| } |
| |
| /* |
| * Update the global current fid / vid values from the status msr. |
| * Returns 1 on error. |
| */ |
| static int query_current_values_with_pending_wait(struct powernow_k8_data *data) |
| { |
| u32 lo, hi; |
| u32 i = 0; |
| |
| do { |
| if (i++ > 10000) { |
| pr_debug("detected change pending stuck\n"); |
| return 1; |
| } |
| rdmsr(MSR_FIDVID_STATUS, lo, hi); |
| } while (lo & MSR_S_LO_CHANGE_PENDING); |
| |
| data->currvid = hi & MSR_S_HI_CURRENT_VID; |
| data->currfid = lo & MSR_S_LO_CURRENT_FID; |
| |
| return 0; |
| } |
| |
| /* the isochronous relief time */ |
| static void count_off_irt(struct powernow_k8_data *data) |
| { |
| udelay((1 << data->irt) * 10); |
| return; |
| } |
| |
| /* the voltage stabilization time */ |
| static void count_off_vst(struct powernow_k8_data *data) |
| { |
| udelay(data->vstable * VST_UNITS_20US); |
| return; |
| } |
| |
| /* need to init the control msr to a safe value (for each cpu) */ |
| static void fidvid_msr_init(void) |
| { |
| u32 lo, hi; |
| u8 fid, vid; |
| |
| rdmsr(MSR_FIDVID_STATUS, lo, hi); |
| vid = hi & MSR_S_HI_CURRENT_VID; |
| fid = lo & MSR_S_LO_CURRENT_FID; |
| lo = fid | (vid << MSR_C_LO_VID_SHIFT); |
| hi = MSR_C_HI_STP_GNT_BENIGN; |
| pr_debug("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi); |
| wrmsr(MSR_FIDVID_CTL, lo, hi); |
| } |
| |
| /* write the new fid value along with the other control fields to the msr */ |
| static int write_new_fid(struct powernow_k8_data *data, u32 fid) |
| { |
| u32 lo; |
| u32 savevid = data->currvid; |
| u32 i = 0; |
| |
| if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) { |
| printk(KERN_ERR PFX "internal error - overflow on fid write\n"); |
| return 1; |
| } |
| |
| lo = fid; |
| lo |= (data->currvid << MSR_C_LO_VID_SHIFT); |
| lo |= MSR_C_LO_INIT_FID_VID; |
| |
| pr_debug("writing fid 0x%x, lo 0x%x, hi 0x%x\n", |
| fid, lo, data->plllock * PLL_LOCK_CONVERSION); |
| |
| do { |
| wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION); |
| if (i++ > 100) { |
| printk(KERN_ERR PFX |
| "Hardware error - pending bit very stuck - " |
| "no further pstate changes possible\n"); |
| return 1; |
| } |
| } while (query_current_values_with_pending_wait(data)); |
| |
| count_off_irt(data); |
| |
| if (savevid != data->currvid) { |
| printk(KERN_ERR PFX |
| "vid change on fid trans, old 0x%x, new 0x%x\n", |
| savevid, data->currvid); |
| return 1; |
| } |
| |
| if (fid != data->currfid) { |
| printk(KERN_ERR PFX |
| "fid trans failed, fid 0x%x, curr 0x%x\n", fid, |
| data->currfid); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* Write a new vid to the hardware */ |
| static int write_new_vid(struct powernow_k8_data *data, u32 vid) |
| { |
| u32 lo; |
| u32 savefid = data->currfid; |
| int i = 0; |
| |
| if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) { |
| printk(KERN_ERR PFX "internal error - overflow on vid write\n"); |
| return 1; |
| } |
| |
| lo = data->currfid; |
| lo |= (vid << MSR_C_LO_VID_SHIFT); |
| lo |= MSR_C_LO_INIT_FID_VID; |
| |
| pr_debug("writing vid 0x%x, lo 0x%x, hi 0x%x\n", |
| vid, lo, STOP_GRANT_5NS); |
| |
| do { |
| wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS); |
| if (i++ > 100) { |
| printk(KERN_ERR PFX "internal error - pending bit " |
| "very stuck - no further pstate " |
| "changes possible\n"); |
| return 1; |
| } |
| } while (query_current_values_with_pending_wait(data)); |
| |
| if (savefid != data->currfid) { |
| printk(KERN_ERR PFX "fid changed on vid trans, old " |
| "0x%x new 0x%x\n", |
| savefid, data->currfid); |
| return 1; |
| } |
| |
| if (vid != data->currvid) { |
| printk(KERN_ERR PFX "vid trans failed, vid 0x%x, " |
| "curr 0x%x\n", |
| vid, data->currvid); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Reduce the vid by the max of step or reqvid. |
| * Decreasing vid codes represent increasing voltages: |
| * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off. |
| */ |
| static int decrease_vid_code_by_step(struct powernow_k8_data *data, |
| u32 reqvid, u32 step) |
| { |
| if ((data->currvid - reqvid) > step) |
| reqvid = data->currvid - step; |
| |
| if (write_new_vid(data, reqvid)) |
| return 1; |
| |
| count_off_vst(data); |
| |
| return 0; |
| } |
| |
| /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */ |
| static int transition_fid_vid(struct powernow_k8_data *data, |
| u32 reqfid, u32 reqvid) |
| { |
| if (core_voltage_pre_transition(data, reqvid, reqfid)) |
| return 1; |
| |
| if (core_frequency_transition(data, reqfid)) |
| return 1; |
| |
| if (core_voltage_post_transition(data, reqvid)) |
| return 1; |
| |
| if (query_current_values_with_pending_wait(data)) |
| return 1; |
| |
| if ((reqfid != data->currfid) || (reqvid != data->currvid)) { |
| printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, " |
| "curr 0x%x 0x%x\n", |
| smp_processor_id(), |
| reqfid, reqvid, data->currfid, data->currvid); |
| return 1; |
| } |
| |
| pr_debug("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n", |
| smp_processor_id(), data->currfid, data->currvid); |
| |
| return 0; |
| } |
| |
| /* Phase 1 - core voltage transition ... setup voltage */ |
| static int core_voltage_pre_transition(struct powernow_k8_data *data, |
| u32 reqvid, u32 reqfid) |
| { |
| u32 rvosteps = data->rvo; |
| u32 savefid = data->currfid; |
| u32 maxvid, lo, rvomult = 1; |
| |
| pr_debug("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, " |
| "reqvid 0x%x, rvo 0x%x\n", |
| smp_processor_id(), |
| data->currfid, data->currvid, reqvid, data->rvo); |
| |
| if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP)) |
| rvomult = 2; |
| rvosteps *= rvomult; |
| rdmsr(MSR_FIDVID_STATUS, lo, maxvid); |
| maxvid = 0x1f & (maxvid >> 16); |
| pr_debug("ph1 maxvid=0x%x\n", maxvid); |
| if (reqvid < maxvid) /* lower numbers are higher voltages */ |
| reqvid = maxvid; |
| |
| while (data->currvid > reqvid) { |
| pr_debug("ph1: curr 0x%x, req vid 0x%x\n", |
| data->currvid, reqvid); |
| if (decrease_vid_code_by_step(data, reqvid, data->vidmvs)) |
| return 1; |
| } |
| |
| while ((rvosteps > 0) && |
| ((rvomult * data->rvo + data->currvid) > reqvid)) { |
| if (data->currvid == maxvid) { |
| rvosteps = 0; |
| } else { |
| pr_debug("ph1: changing vid for rvo, req 0x%x\n", |
| data->currvid - 1); |
| if (decrease_vid_code_by_step(data, data->currvid-1, 1)) |
| return 1; |
| rvosteps--; |
| } |
| } |
| |
| if (query_current_values_with_pending_wait(data)) |
| return 1; |
| |
| if (savefid != data->currfid) { |
| printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n", |
| data->currfid); |
| return 1; |
| } |
| |
| pr_debug("ph1 complete, currfid 0x%x, currvid 0x%x\n", |
| data->currfid, data->currvid); |
| |
| return 0; |
| } |
| |
| /* Phase 2 - core frequency transition */ |
| static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid) |
| { |
| u32 vcoreqfid, vcocurrfid, vcofiddiff; |
| u32 fid_interval, savevid = data->currvid; |
| |
| if (data->currfid == reqfid) { |
| printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n", |
| data->currfid); |
| return 0; |
| } |
| |
| pr_debug("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, " |
| "reqfid 0x%x\n", |
| smp_processor_id(), |
| data->currfid, data->currvid, reqfid); |
| |
| vcoreqfid = convert_fid_to_vco_fid(reqfid); |
| vcocurrfid = convert_fid_to_vco_fid(data->currfid); |
| vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid |
| : vcoreqfid - vcocurrfid; |
| |
| if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP)) |
| vcofiddiff = 0; |
| |
| while (vcofiddiff > 2) { |
| (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2); |
| |
| if (reqfid > data->currfid) { |
| if (data->currfid > LO_FID_TABLE_TOP) { |
| if (write_new_fid(data, |
| data->currfid + fid_interval)) |
| return 1; |
| } else { |
| if (write_new_fid |
| (data, |
| 2 + convert_fid_to_vco_fid(data->currfid))) |
| return 1; |
| } |
| } else { |
| if (write_new_fid(data, data->currfid - fid_interval)) |
| return 1; |
| } |
| |
| vcocurrfid = convert_fid_to_vco_fid(data->currfid); |
| vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid |
| : vcoreqfid - vcocurrfid; |
| } |
| |
| if (write_new_fid(data, reqfid)) |
| return 1; |
| |
| if (query_current_values_with_pending_wait(data)) |
| return 1; |
| |
| if (data->currfid != reqfid) { |
| printk(KERN_ERR PFX |
| "ph2: mismatch, failed fid transition, " |
| "curr 0x%x, req 0x%x\n", |
| data->currfid, reqfid); |
| return 1; |
| } |
| |
| if (savevid != data->currvid) { |
| printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n", |
| savevid, data->currvid); |
| return 1; |
| } |
| |
| pr_debug("ph2 complete, currfid 0x%x, currvid 0x%x\n", |
| data->currfid, data->currvid); |
| |
| return 0; |
| } |
| |
| /* Phase 3 - core voltage transition flow ... jump to the final vid. */ |
| static int core_voltage_post_transition(struct powernow_k8_data *data, |
| u32 reqvid) |
| { |
| u32 savefid = data->currfid; |
| u32 savereqvid = reqvid; |
| |
| pr_debug("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n", |
| smp_processor_id(), |
| data->currfid, data->currvid); |
| |
| if (reqvid != data->currvid) { |
| if (write_new_vid(data, reqvid)) |
| return 1; |
| |
| if (savefid != data->currfid) { |
| printk(KERN_ERR PFX |
| "ph3: bad fid change, save 0x%x, curr 0x%x\n", |
| savefid, data->currfid); |
| return 1; |
| } |
| |
| if (data->currvid != reqvid) { |
| printk(KERN_ERR PFX |
| "ph3: failed vid transition\n, " |
| "req 0x%x, curr 0x%x", |
| reqvid, data->currvid); |
| return 1; |
| } |
| } |
| |
| if (query_current_values_with_pending_wait(data)) |
| return 1; |
| |
| if (savereqvid != data->currvid) { |
| pr_debug("ph3 failed, currvid 0x%x\n", data->currvid); |
| return 1; |
| } |
| |
| if (savefid != data->currfid) { |
| pr_debug("ph3 failed, currfid changed 0x%x\n", |
| data->currfid); |
| return 1; |
| } |
| |
| pr_debug("ph3 complete, currfid 0x%x, currvid 0x%x\n", |
| data->currfid, data->currvid); |
| |
| return 0; |
| } |
| |
| static const struct x86_cpu_id powernow_k8_ids[] = { |
| /* IO based frequency switching */ |
| { X86_VENDOR_AMD, 0xf }, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(x86cpu, powernow_k8_ids); |
| |
| static void check_supported_cpu(void *_rc) |
| { |
| u32 eax, ebx, ecx, edx; |
| int *rc = _rc; |
| |
| *rc = -ENODEV; |
| |
| eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE); |
| |
| if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) { |
| if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) || |
| ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) { |
| printk(KERN_INFO PFX |
| "Processor cpuid %x not supported\n", eax); |
| return; |
| } |
| |
| eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES); |
| if (eax < CPUID_FREQ_VOLT_CAPABILITIES) { |
| printk(KERN_INFO PFX |
| "No frequency change capabilities detected\n"); |
| return; |
| } |
| |
| cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx); |
| if ((edx & P_STATE_TRANSITION_CAPABLE) |
| != P_STATE_TRANSITION_CAPABLE) { |
| printk(KERN_INFO PFX |
| "Power state transitions not supported\n"); |
| return; |
| } |
| *rc = 0; |
| } |
| } |
| |
| static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst, |
| u8 maxvid) |
| { |
| unsigned int j; |
| u8 lastfid = 0xff; |
| |
| for (j = 0; j < data->numps; j++) { |
| if (pst[j].vid > LEAST_VID) { |
| printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n", |
| j, pst[j].vid); |
| return -EINVAL; |
| } |
| if (pst[j].vid < data->rvo) { |
| /* vid + rvo >= 0 */ |
| printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate" |
| " %d\n", j); |
| return -ENODEV; |
| } |
| if (pst[j].vid < maxvid + data->rvo) { |
| /* vid + rvo >= maxvid */ |
| printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate" |
| " %d\n", j); |
| return -ENODEV; |
| } |
| if (pst[j].fid > MAX_FID) { |
| printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate" |
| " %d\n", j); |
| return -ENODEV; |
| } |
| if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) { |
| /* Only first fid is allowed to be in "low" range */ |
| printk(KERN_ERR FW_BUG PFX "two low fids - %d : " |
| "0x%x\n", j, pst[j].fid); |
| return -EINVAL; |
| } |
| if (pst[j].fid < lastfid) |
| lastfid = pst[j].fid; |
| } |
| if (lastfid & 1) { |
| printk(KERN_ERR FW_BUG PFX "lastfid invalid\n"); |
| return -EINVAL; |
| } |
| if (lastfid > LO_FID_TABLE_TOP) |
| printk(KERN_INFO FW_BUG PFX |
| "first fid not from lo freq table\n"); |
| |
| return 0; |
| } |
| |
| static void invalidate_entry(struct cpufreq_frequency_table *powernow_table, |
| unsigned int entry) |
| { |
| powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID; |
| } |
| |
| static void print_basics(struct powernow_k8_data *data) |
| { |
| int j; |
| for (j = 0; j < data->numps; j++) { |
| if (data->powernow_table[j].frequency != |
| CPUFREQ_ENTRY_INVALID) { |
| printk(KERN_INFO PFX |
| "fid 0x%x (%d MHz), vid 0x%x\n", |
| data->powernow_table[j].index & 0xff, |
| data->powernow_table[j].frequency/1000, |
| data->powernow_table[j].index >> 8); |
| } |
| } |
| if (data->batps) |
| printk(KERN_INFO PFX "Only %d pstates on battery\n", |
| data->batps); |
| } |
| |
| static int fill_powernow_table(struct powernow_k8_data *data, |
| struct pst_s *pst, u8 maxvid) |
| { |
| struct cpufreq_frequency_table *powernow_table; |
| unsigned int j; |
| |
| if (data->batps) { |
| /* use ACPI support to get full speed on mains power */ |
| printk(KERN_WARNING PFX |
| "Only %d pstates usable (use ACPI driver for full " |
| "range\n", data->batps); |
| data->numps = data->batps; |
| } |
| |
| for (j = 1; j < data->numps; j++) { |
| if (pst[j-1].fid >= pst[j].fid) { |
| printk(KERN_ERR PFX "PST out of sequence\n"); |
| return -EINVAL; |
| } |
| } |
| |
| if (data->numps < 2) { |
| printk(KERN_ERR PFX "no p states to transition\n"); |
| return -ENODEV; |
| } |
| |
| if (check_pst_table(data, pst, maxvid)) |
| return -EINVAL; |
| |
| powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table) |
| * (data->numps + 1)), GFP_KERNEL); |
| if (!powernow_table) { |
| printk(KERN_ERR PFX "powernow_table memory alloc failure\n"); |
| return -ENOMEM; |
| } |
| |
| for (j = 0; j < data->numps; j++) { |
| int freq; |
| powernow_table[j].index = pst[j].fid; /* lower 8 bits */ |
| powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */ |
| freq = find_khz_freq_from_fid(pst[j].fid); |
| powernow_table[j].frequency = freq; |
| } |
| powernow_table[data->numps].frequency = CPUFREQ_TABLE_END; |
| powernow_table[data->numps].index = 0; |
| |
| if (query_current_values_with_pending_wait(data)) { |
| kfree(powernow_table); |
| return -EIO; |
| } |
| |
| pr_debug("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid); |
| data->powernow_table = powernow_table; |
| if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu) |
| print_basics(data); |
| |
| for (j = 0; j < data->numps; j++) |
| if ((pst[j].fid == data->currfid) && |
| (pst[j].vid == data->currvid)) |
| return 0; |
| |
| pr_debug("currfid/vid do not match PST, ignoring\n"); |
| return 0; |
| } |
| |
| /* Find and validate the PSB/PST table in BIOS. */ |
| static int find_psb_table(struct powernow_k8_data *data) |
| { |
| struct psb_s *psb; |
| unsigned int i; |
| u32 mvs; |
| u8 maxvid; |
| u32 cpst = 0; |
| u32 thiscpuid; |
| |
| for (i = 0xc0000; i < 0xffff0; i += 0x10) { |
| /* Scan BIOS looking for the signature. */ |
| /* It can not be at ffff0 - it is too big. */ |
| |
| psb = phys_to_virt(i); |
| if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0) |
| continue; |
| |
| pr_debug("found PSB header at 0x%p\n", psb); |
| |
| pr_debug("table vers: 0x%x\n", psb->tableversion); |
| if (psb->tableversion != PSB_VERSION_1_4) { |
| printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n"); |
| return -ENODEV; |
| } |
| |
| pr_debug("flags: 0x%x\n", psb->flags1); |
| if (psb->flags1) { |
| printk(KERN_ERR FW_BUG PFX "unknown flags\n"); |
| return -ENODEV; |
| } |
| |
| data->vstable = psb->vstable; |
| pr_debug("voltage stabilization time: %d(*20us)\n", |
| data->vstable); |
| |
| pr_debug("flags2: 0x%x\n", psb->flags2); |
| data->rvo = psb->flags2 & 3; |
| data->irt = ((psb->flags2) >> 2) & 3; |
| mvs = ((psb->flags2) >> 4) & 3; |
| data->vidmvs = 1 << mvs; |
| data->batps = ((psb->flags2) >> 6) & 3; |
| |
| pr_debug("ramp voltage offset: %d\n", data->rvo); |
| pr_debug("isochronous relief time: %d\n", data->irt); |
| pr_debug("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs); |
| |
| pr_debug("numpst: 0x%x\n", psb->num_tables); |
| cpst = psb->num_tables; |
| if ((psb->cpuid == 0x00000fc0) || |
| (psb->cpuid == 0x00000fe0)) { |
| thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE); |
| if ((thiscpuid == 0x00000fc0) || |
| (thiscpuid == 0x00000fe0)) |
| cpst = 1; |
| } |
| if (cpst != 1) { |
| printk(KERN_ERR FW_BUG PFX "numpst must be 1\n"); |
| return -ENODEV; |
| } |
| |
| data->plllock = psb->plllocktime; |
| pr_debug("plllocktime: 0x%x (units 1us)\n", psb->plllocktime); |
| pr_debug("maxfid: 0x%x\n", psb->maxfid); |
| pr_debug("maxvid: 0x%x\n", psb->maxvid); |
| maxvid = psb->maxvid; |
| |
| data->numps = psb->numps; |
| pr_debug("numpstates: 0x%x\n", data->numps); |
| return fill_powernow_table(data, |
| (struct pst_s *)(psb+1), maxvid); |
| } |
| /* |
| * If you see this message, complain to BIOS manufacturer. If |
| * he tells you "we do not support Linux" or some similar |
| * nonsense, remember that Windows 2000 uses the same legacy |
| * mechanism that the old Linux PSB driver uses. Tell them it |
| * is broken with Windows 2000. |
| * |
| * The reference to the AMD documentation is chapter 9 in the |
| * BIOS and Kernel Developer's Guide, which is available on |
| * www.amd.com |
| */ |
| printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n"); |
| printk(KERN_ERR PFX "Make sure that your BIOS is up to date" |
| " and Cool'N'Quiet support is enabled in BIOS setup\n"); |
| return -ENODEV; |
| } |
| |
| static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, |
| unsigned int index) |
| { |
| u64 control; |
| |
| if (!data->acpi_data.state_count) |
| return; |
| |
| control = data->acpi_data.states[index].control; |
| data->irt = (control >> IRT_SHIFT) & IRT_MASK; |
| data->rvo = (control >> RVO_SHIFT) & RVO_MASK; |
| data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK; |
| data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK; |
| data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK); |
| data->vstable = (control >> VST_SHIFT) & VST_MASK; |
| } |
| |
| static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) |
| { |
| struct cpufreq_frequency_table *powernow_table; |
| int ret_val = -ENODEV; |
| u64 control, status; |
| |
| if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) { |
| pr_debug("register performance failed: bad ACPI data\n"); |
| return -EIO; |
| } |
| |
| /* verify the data contained in the ACPI structures */ |
| if (data->acpi_data.state_count <= 1) { |
| pr_debug("No ACPI P-States\n"); |
| goto err_out; |
| } |
| |
| control = data->acpi_data.control_register.space_id; |
| status = data->acpi_data.status_register.space_id; |
| |
| if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) || |
| (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) { |
| pr_debug("Invalid control/status registers (%llx - %llx)\n", |
| control, status); |
| goto err_out; |
| } |
| |
| /* fill in data->powernow_table */ |
| powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table) |
| * (data->acpi_data.state_count + 1)), GFP_KERNEL); |
| if (!powernow_table) { |
| pr_debug("powernow_table memory alloc failure\n"); |
| goto err_out; |
| } |
| |
| /* fill in data */ |
| data->numps = data->acpi_data.state_count; |
| powernow_k8_acpi_pst_values(data, 0); |
| |
| ret_val = fill_powernow_table_fidvid(data, powernow_table); |
| if (ret_val) |
| goto err_out_mem; |
| |
| powernow_table[data->acpi_data.state_count].frequency = |
| CPUFREQ_TABLE_END; |
| powernow_table[data->acpi_data.state_count].index = 0; |
| data->powernow_table = powernow_table; |
| |
| if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu) |
| print_basics(data); |
| |
| /* notify BIOS that we exist */ |
| acpi_processor_notify_smm(THIS_MODULE); |
| |
| if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) { |
| printk(KERN_ERR PFX |
| "unable to alloc powernow_k8_data cpumask\n"); |
| ret_val = -ENOMEM; |
| goto err_out_mem; |
| } |
| |
| return 0; |
| |
| err_out_mem: |
| kfree(powernow_table); |
| |
| err_out: |
| acpi_processor_unregister_performance(&data->acpi_data, data->cpu); |
| |
| /* data->acpi_data.state_count informs us at ->exit() |
| * whether ACPI was used */ |
| data->acpi_data.state_count = 0; |
| |
| return ret_val; |
| } |
| |
| static int fill_powernow_table_fidvid(struct powernow_k8_data *data, |
| struct cpufreq_frequency_table *powernow_table) |
| { |
| int i; |
| |
| for (i = 0; i < data->acpi_data.state_count; i++) { |
| u32 fid; |
| u32 vid; |
| u32 freq, index; |
| u64 status, control; |
| |
| if (data->exttype) { |
| status = data->acpi_data.states[i].status; |
| fid = status & EXT_FID_MASK; |
| vid = (status >> VID_SHIFT) & EXT_VID_MASK; |
| } else { |
| control = data->acpi_data.states[i].control; |
| fid = control & FID_MASK; |
| vid = (control >> VID_SHIFT) & VID_MASK; |
| } |
| |
| pr_debug(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid); |
| |
| index = fid | (vid<<8); |
| powernow_table[i].index = index; |
| |
| freq = find_khz_freq_from_fid(fid); |
| powernow_table[i].frequency = freq; |
| |
| /* verify frequency is OK */ |
| if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) { |
| pr_debug("invalid freq %u kHz, ignoring\n", freq); |
| invalidate_entry(powernow_table, i); |
| continue; |
| } |
| |
| /* verify voltage is OK - |
| * BIOSs are using "off" to indicate invalid */ |
| if (vid == VID_OFF) { |
| pr_debug("invalid vid %u, ignoring\n", vid); |
| invalidate_entry(powernow_table, i); |
| continue; |
| } |
| |
| if (freq != (data->acpi_data.states[i].core_frequency * 1000)) { |
| printk(KERN_INFO PFX "invalid freq entries " |
| "%u kHz vs. %u kHz\n", freq, |
| (unsigned int) |
| (data->acpi_data.states[i].core_frequency |
| * 1000)); |
| invalidate_entry(powernow_table, i); |
| continue; |
| } |
| } |
| return 0; |
| } |
| |
| static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data) |
| { |
| if (data->acpi_data.state_count) |
| acpi_processor_unregister_performance(&data->acpi_data, |
| data->cpu); |
| free_cpumask_var(data->acpi_data.shared_cpu_map); |
| } |
| |
| static int get_transition_latency(struct powernow_k8_data *data) |
| { |
| int max_latency = 0; |
| int i; |
| for (i = 0; i < data->acpi_data.state_count; i++) { |
| int cur_latency = data->acpi_data.states[i].transition_latency |
| + data->acpi_data.states[i].bus_master_latency; |
| if (cur_latency > max_latency) |
| max_latency = cur_latency; |
| } |
| if (max_latency == 0) { |
| pr_err(FW_WARN PFX "Invalid zero transition latency\n"); |
| max_latency = 1; |
| } |
| /* value in usecs, needs to be in nanoseconds */ |
| return 1000 * max_latency; |
| } |
| |
| /* Take a frequency, and issue the fid/vid transition command */ |
| static int transition_frequency_fidvid(struct powernow_k8_data *data, |
| unsigned int index) |
| { |
| u32 fid = 0; |
| u32 vid = 0; |
| int res, i; |
| struct cpufreq_freqs freqs; |
| |
| pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index); |
| |
| /* fid/vid correctness check for k8 */ |
| /* fid are the lower 8 bits of the index we stored into |
| * the cpufreq frequency table in find_psb_table, vid |
| * are the upper 8 bits. |
| */ |
| fid = data->powernow_table[index].index & 0xFF; |
| vid = (data->powernow_table[index].index & 0xFF00) >> 8; |
| |
| pr_debug("table matched fid 0x%x, giving vid 0x%x\n", fid, vid); |
| |
| if (query_current_values_with_pending_wait(data)) |
| return 1; |
| |
| if ((data->currvid == vid) && (data->currfid == fid)) { |
| pr_debug("target matches current values (fid 0x%x, vid 0x%x)\n", |
| fid, vid); |
| return 0; |
| } |
| |
| pr_debug("cpu %d, changing to fid 0x%x, vid 0x%x\n", |
| smp_processor_id(), fid, vid); |
| freqs.old = find_khz_freq_from_fid(data->currfid); |
| freqs.new = find_khz_freq_from_fid(fid); |
| |
| for_each_cpu(i, data->available_cores) { |
| freqs.cpu = i; |
| cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); |
| } |
| |
| res = transition_fid_vid(data, fid, vid); |
| if (res) |
| return res; |
| |
| freqs.new = find_khz_freq_from_fid(data->currfid); |
| |
| for_each_cpu(i, data->available_cores) { |
| freqs.cpu = i; |
| cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); |
| } |
| return res; |
| } |
| |
| /* Driver entry point to switch to the target frequency */ |
| static int powernowk8_target(struct cpufreq_policy *pol, |
| unsigned targfreq, unsigned relation) |
| { |
| cpumask_var_t oldmask; |
| struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu); |
| u32 checkfid; |
| u32 checkvid; |
| unsigned int newstate; |
| int ret = -EIO; |
| |
| if (!data) |
| return -EINVAL; |
| |
| checkfid = data->currfid; |
| checkvid = data->currvid; |
| |
| /* only run on specific CPU from here on. */ |
| /* This is poor form: use a workqueue or smp_call_function_single */ |
| if (!alloc_cpumask_var(&oldmask, GFP_KERNEL)) |
| return -ENOMEM; |
| |
| cpumask_copy(oldmask, tsk_cpus_allowed(current)); |
| set_cpus_allowed_ptr(current, cpumask_of(pol->cpu)); |
| |
| if (smp_processor_id() != pol->cpu) { |
| printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu); |
| goto err_out; |
| } |
| |
| if (pending_bit_stuck()) { |
| printk(KERN_ERR PFX "failing targ, change pending bit set\n"); |
| goto err_out; |
| } |
| |
| pr_debug("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n", |
| pol->cpu, targfreq, pol->min, pol->max, relation); |
| |
| if (query_current_values_with_pending_wait(data)) |
| goto err_out; |
| |
| pr_debug("targ: curr fid 0x%x, vid 0x%x\n", |
| data->currfid, data->currvid); |
| |
| if ((checkvid != data->currvid) || |
| (checkfid != data->currfid)) { |
| pr_info(PFX |
| "error - out of sync, fix 0x%x 0x%x, vid 0x%x 0x%x\n", |
| checkfid, data->currfid, |
| checkvid, data->currvid); |
| } |
| |
| if (cpufreq_frequency_table_target(pol, data->powernow_table, |
| targfreq, relation, &newstate)) |
| goto err_out; |
| |
| mutex_lock(&fidvid_mutex); |
| |
| powernow_k8_acpi_pst_values(data, newstate); |
| |
| ret = transition_frequency_fidvid(data, newstate); |
| |
| if (ret) { |
| printk(KERN_ERR PFX "transition frequency failed\n"); |
| ret = 1; |
| mutex_unlock(&fidvid_mutex); |
| goto err_out; |
| } |
| mutex_unlock(&fidvid_mutex); |
| |
| pol->cur = find_khz_freq_from_fid(data->currfid); |
| ret = 0; |
| |
| err_out: |
| set_cpus_allowed_ptr(current, oldmask); |
| free_cpumask_var(oldmask); |
| return ret; |
| } |
| |
| /* Driver entry point to verify the policy and range of frequencies */ |
| static int powernowk8_verify(struct cpufreq_policy *pol) |
| { |
| struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu); |
| |
| if (!data) |
| return -EINVAL; |
| |
| return cpufreq_frequency_table_verify(pol, data->powernow_table); |
| } |
| |
| struct init_on_cpu { |
| struct powernow_k8_data *data; |
| int rc; |
| }; |
| |
| static void __cpuinit powernowk8_cpu_init_on_cpu(void *_init_on_cpu) |
| { |
| struct init_on_cpu *init_on_cpu = _init_on_cpu; |
| |
| if (pending_bit_stuck()) { |
| printk(KERN_ERR PFX "failing init, change pending bit set\n"); |
| init_on_cpu->rc = -ENODEV; |
| return; |
| } |
| |
| if (query_current_values_with_pending_wait(init_on_cpu->data)) { |
| init_on_cpu->rc = -ENODEV; |
| return; |
| } |
| |
| fidvid_msr_init(); |
| |
| init_on_cpu->rc = 0; |
| } |
| |
| static const char missing_pss_msg[] = |
| KERN_ERR |
| FW_BUG PFX "No compatible ACPI _PSS objects found.\n" |
| FW_BUG PFX "First, make sure Cool'N'Quiet is enabled in the BIOS.\n" |
| FW_BUG PFX "If that doesn't help, try upgrading your BIOS.\n"; |
| |
| /* per CPU init entry point to the driver */ |
| static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol) |
| { |
| struct powernow_k8_data *data; |
| struct init_on_cpu init_on_cpu; |
| int rc; |
| |
| if (!cpu_online(pol->cpu)) |
| return -ENODEV; |
| |
| smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1); |
| if (rc) |
| return -ENODEV; |
| |
| data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL); |
| if (!data) { |
| printk(KERN_ERR PFX "unable to alloc powernow_k8_data"); |
| return -ENOMEM; |
| } |
| |
| data->cpu = pol->cpu; |
| |
| if (powernow_k8_cpu_init_acpi(data)) { |
| /* |
| * Use the PSB BIOS structure. This is only available on |
| * an UP version, and is deprecated by AMD. |
| */ |
| if (num_online_cpus() != 1) { |
| printk_once(missing_pss_msg); |
| goto err_out; |
| } |
| if (pol->cpu != 0) { |
| printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for " |
| "CPU other than CPU0. Complain to your BIOS " |
| "vendor.\n"); |
| goto err_out; |
| } |
| rc = find_psb_table(data); |
| if (rc) |
| goto err_out; |
| |
| /* Take a crude guess here. |
| * That guess was in microseconds, so multiply with 1000 */ |
| pol->cpuinfo.transition_latency = ( |
| ((data->rvo + 8) * data->vstable * VST_UNITS_20US) + |
| ((1 << data->irt) * 30)) * 1000; |
| } else /* ACPI _PSS objects available */ |
| pol->cpuinfo.transition_latency = get_transition_latency(data); |
| |
| /* only run on specific CPU from here on */ |
| init_on_cpu.data = data; |
| smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu, |
| &init_on_cpu, 1); |
| rc = init_on_cpu.rc; |
| if (rc != 0) |
| goto err_out_exit_acpi; |
| |
| cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu)); |
| data->available_cores = pol->cpus; |
| |
| pol->cur = find_khz_freq_from_fid(data->currfid); |
| pr_debug("policy current frequency %d kHz\n", pol->cur); |
| |
| /* min/max the cpu is capable of */ |
| if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) { |
| printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n"); |
| powernow_k8_cpu_exit_acpi(data); |
| kfree(data->powernow_table); |
| kfree(data); |
| return -EINVAL; |
| } |
| |
| cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu); |
| |
| pr_debug("cpu_init done, current fid 0x%x, vid 0x%x\n", |
| data->currfid, data->currvid); |
| |
| per_cpu(powernow_data, pol->cpu) = data; |
| |
| return 0; |
| |
| err_out_exit_acpi: |
| powernow_k8_cpu_exit_acpi(data); |
| |
| err_out: |
| kfree(data); |
| return -ENODEV; |
| } |
| |
| static int __devexit powernowk8_cpu_exit(struct cpufreq_policy *pol) |
| { |
| struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu); |
| |
| if (!data) |
| return -EINVAL; |
| |
| powernow_k8_cpu_exit_acpi(data); |
| |
| cpufreq_frequency_table_put_attr(pol->cpu); |
| |
| kfree(data->powernow_table); |
| kfree(data); |
| per_cpu(powernow_data, pol->cpu) = NULL; |
| |
| return 0; |
| } |
| |
| static void query_values_on_cpu(void *_err) |
| { |
| int *err = _err; |
| struct powernow_k8_data *data = __this_cpu_read(powernow_data); |
| |
| *err = query_current_values_with_pending_wait(data); |
| } |
| |
| static unsigned int powernowk8_get(unsigned int cpu) |
| { |
| struct powernow_k8_data *data = per_cpu(powernow_data, cpu); |
| unsigned int khz = 0; |
| int err; |
| |
| if (!data) |
| return 0; |
| |
| smp_call_function_single(cpu, query_values_on_cpu, &err, true); |
| if (err) |
| goto out; |
| |
| khz = find_khz_freq_from_fid(data->currfid); |
| |
| |
| out: |
| return khz; |
| } |
| |
| static struct freq_attr *powernow_k8_attr[] = { |
| &cpufreq_freq_attr_scaling_available_freqs, |
| NULL, |
| }; |
| |
| static struct cpufreq_driver cpufreq_amd64_driver = { |
| .verify = powernowk8_verify, |
| .target = powernowk8_target, |
| .bios_limit = acpi_processor_get_bios_limit, |
| .init = powernowk8_cpu_init, |
| .exit = __devexit_p(powernowk8_cpu_exit), |
| .get = powernowk8_get, |
| .name = "powernow-k8", |
| .owner = THIS_MODULE, |
| .attr = powernow_k8_attr, |
| }; |
| |
| /* driver entry point for init */ |
| static int __cpuinit powernowk8_init(void) |
| { |
| unsigned int i, supported_cpus = 0; |
| int rv; |
| |
| if (static_cpu_has(X86_FEATURE_HW_PSTATE)) { |
| pr_warn(PFX "this CPU is not supported anymore, using acpi-cpufreq instead.\n"); |
| request_module("acpi-cpufreq"); |
| return -ENODEV; |
| } |
| |
| if (!x86_match_cpu(powernow_k8_ids)) |
| return -ENODEV; |
| |
| for_each_online_cpu(i) { |
| int rc; |
| smp_call_function_single(i, check_supported_cpu, &rc, 1); |
| if (rc == 0) |
| supported_cpus++; |
| } |
| |
| if (supported_cpus != num_online_cpus()) |
| return -ENODEV; |
| |
| rv = cpufreq_register_driver(&cpufreq_amd64_driver); |
| |
| if (!rv) |
| pr_info(PFX "Found %d %s (%d cpu cores) (" VERSION ")\n", |
| num_online_nodes(), boot_cpu_data.x86_model_id, |
| supported_cpus); |
| |
| return rv; |
| } |
| |
| /* driver entry point for term */ |
| static void __exit powernowk8_exit(void) |
| { |
| pr_debug("exit\n"); |
| |
| cpufreq_unregister_driver(&cpufreq_amd64_driver); |
| } |
| |
| MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and " |
| "Mark Langsdorf <mark.langsdorf@amd.com>"); |
| MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver."); |
| MODULE_LICENSE("GPL"); |
| |
| late_initcall(powernowk8_init); |
| module_exit(powernowk8_exit); |