| #include "ceph_debug.h" |
| |
| #include <linux/crc32c.h> |
| #include <linux/ctype.h> |
| #include <linux/highmem.h> |
| #include <linux/inet.h> |
| #include <linux/kthread.h> |
| #include <linux/net.h> |
| #include <linux/socket.h> |
| #include <linux/string.h> |
| #include <net/tcp.h> |
| |
| #include "super.h" |
| #include "messenger.h" |
| #include "decode.h" |
| |
| /* |
| * Ceph uses the messenger to exchange ceph_msg messages with other |
| * hosts in the system. The messenger provides ordered and reliable |
| * delivery. We tolerate TCP disconnects by reconnecting (with |
| * exponential backoff) in the case of a fault (disconnection, bad |
| * crc, protocol error). Acks allow sent messages to be discarded by |
| * the sender. |
| */ |
| |
| /* static tag bytes (protocol control messages) */ |
| static char tag_msg = CEPH_MSGR_TAG_MSG; |
| static char tag_ack = CEPH_MSGR_TAG_ACK; |
| static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE; |
| |
| |
| static void queue_con(struct ceph_connection *con); |
| static void con_work(struct work_struct *); |
| static void ceph_fault(struct ceph_connection *con); |
| |
| const char *ceph_name_type_str(int t) |
| { |
| switch (t) { |
| case CEPH_ENTITY_TYPE_MON: return "mon"; |
| case CEPH_ENTITY_TYPE_MDS: return "mds"; |
| case CEPH_ENTITY_TYPE_OSD: return "osd"; |
| case CEPH_ENTITY_TYPE_CLIENT: return "client"; |
| case CEPH_ENTITY_TYPE_ADMIN: return "admin"; |
| default: return "???"; |
| } |
| } |
| |
| /* |
| * nicely render a sockaddr as a string. |
| */ |
| #define MAX_ADDR_STR 20 |
| static char addr_str[MAX_ADDR_STR][40]; |
| static DEFINE_SPINLOCK(addr_str_lock); |
| static int last_addr_str; |
| |
| const char *pr_addr(const struct sockaddr_storage *ss) |
| { |
| int i; |
| char *s; |
| struct sockaddr_in *in4 = (void *)ss; |
| unsigned char *quad = (void *)&in4->sin_addr.s_addr; |
| struct sockaddr_in6 *in6 = (void *)ss; |
| |
| spin_lock(&addr_str_lock); |
| i = last_addr_str++; |
| if (last_addr_str == MAX_ADDR_STR) |
| last_addr_str = 0; |
| spin_unlock(&addr_str_lock); |
| s = addr_str[i]; |
| |
| switch (ss->ss_family) { |
| case AF_INET: |
| sprintf(s, "%u.%u.%u.%u:%u", |
| (unsigned int)quad[0], |
| (unsigned int)quad[1], |
| (unsigned int)quad[2], |
| (unsigned int)quad[3], |
| (unsigned int)ntohs(in4->sin_port)); |
| break; |
| |
| case AF_INET6: |
| sprintf(s, "%04x:%04x:%04x:%04x:%04x:%04x:%04x:%04x:%u", |
| in6->sin6_addr.s6_addr16[0], |
| in6->sin6_addr.s6_addr16[1], |
| in6->sin6_addr.s6_addr16[2], |
| in6->sin6_addr.s6_addr16[3], |
| in6->sin6_addr.s6_addr16[4], |
| in6->sin6_addr.s6_addr16[5], |
| in6->sin6_addr.s6_addr16[6], |
| in6->sin6_addr.s6_addr16[7], |
| (unsigned int)ntohs(in6->sin6_port)); |
| break; |
| |
| default: |
| sprintf(s, "(unknown sockaddr family %d)", (int)ss->ss_family); |
| } |
| |
| return s; |
| } |
| |
| static void encode_my_addr(struct ceph_messenger *msgr) |
| { |
| memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr)); |
| ceph_encode_addr(&msgr->my_enc_addr); |
| } |
| |
| /* |
| * work queue for all reading and writing to/from the socket. |
| */ |
| struct workqueue_struct *ceph_msgr_wq; |
| |
| int __init ceph_msgr_init(void) |
| { |
| ceph_msgr_wq = create_workqueue("ceph-msgr"); |
| if (IS_ERR(ceph_msgr_wq)) { |
| int ret = PTR_ERR(ceph_msgr_wq); |
| pr_err("msgr_init failed to create workqueue: %d\n", ret); |
| ceph_msgr_wq = NULL; |
| return ret; |
| } |
| return 0; |
| } |
| |
| void ceph_msgr_exit(void) |
| { |
| destroy_workqueue(ceph_msgr_wq); |
| } |
| |
| /* |
| * socket callback functions |
| */ |
| |
| /* data available on socket, or listen socket received a connect */ |
| static void ceph_data_ready(struct sock *sk, int count_unused) |
| { |
| struct ceph_connection *con = |
| (struct ceph_connection *)sk->sk_user_data; |
| if (sk->sk_state != TCP_CLOSE_WAIT) { |
| dout("ceph_data_ready on %p state = %lu, queueing work\n", |
| con, con->state); |
| queue_con(con); |
| } |
| } |
| |
| /* socket has buffer space for writing */ |
| static void ceph_write_space(struct sock *sk) |
| { |
| struct ceph_connection *con = |
| (struct ceph_connection *)sk->sk_user_data; |
| |
| /* only queue to workqueue if there is data we want to write. */ |
| if (test_bit(WRITE_PENDING, &con->state)) { |
| dout("ceph_write_space %p queueing write work\n", con); |
| queue_con(con); |
| } else { |
| dout("ceph_write_space %p nothing to write\n", con); |
| } |
| |
| /* since we have our own write_space, clear the SOCK_NOSPACE flag */ |
| clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags); |
| } |
| |
| /* socket's state has changed */ |
| static void ceph_state_change(struct sock *sk) |
| { |
| struct ceph_connection *con = |
| (struct ceph_connection *)sk->sk_user_data; |
| |
| dout("ceph_state_change %p state = %lu sk_state = %u\n", |
| con, con->state, sk->sk_state); |
| |
| if (test_bit(CLOSED, &con->state)) |
| return; |
| |
| switch (sk->sk_state) { |
| case TCP_CLOSE: |
| dout("ceph_state_change TCP_CLOSE\n"); |
| case TCP_CLOSE_WAIT: |
| dout("ceph_state_change TCP_CLOSE_WAIT\n"); |
| if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) { |
| if (test_bit(CONNECTING, &con->state)) |
| con->error_msg = "connection failed"; |
| else |
| con->error_msg = "socket closed"; |
| queue_con(con); |
| } |
| break; |
| case TCP_ESTABLISHED: |
| dout("ceph_state_change TCP_ESTABLISHED\n"); |
| queue_con(con); |
| break; |
| } |
| } |
| |
| /* |
| * set up socket callbacks |
| */ |
| static void set_sock_callbacks(struct socket *sock, |
| struct ceph_connection *con) |
| { |
| struct sock *sk = sock->sk; |
| sk->sk_user_data = (void *)con; |
| sk->sk_data_ready = ceph_data_ready; |
| sk->sk_write_space = ceph_write_space; |
| sk->sk_state_change = ceph_state_change; |
| } |
| |
| |
| /* |
| * socket helpers |
| */ |
| |
| /* |
| * initiate connection to a remote socket. |
| */ |
| static struct socket *ceph_tcp_connect(struct ceph_connection *con) |
| { |
| struct sockaddr *paddr = (struct sockaddr *)&con->peer_addr.in_addr; |
| struct socket *sock; |
| int ret; |
| |
| BUG_ON(con->sock); |
| ret = sock_create_kern(AF_INET, SOCK_STREAM, IPPROTO_TCP, &sock); |
| if (ret) |
| return ERR_PTR(ret); |
| con->sock = sock; |
| sock->sk->sk_allocation = GFP_NOFS; |
| |
| set_sock_callbacks(sock, con); |
| |
| dout("connect %s\n", pr_addr(&con->peer_addr.in_addr)); |
| |
| ret = sock->ops->connect(sock, paddr, sizeof(*paddr), O_NONBLOCK); |
| if (ret == -EINPROGRESS) { |
| dout("connect %s EINPROGRESS sk_state = %u\n", |
| pr_addr(&con->peer_addr.in_addr), |
| sock->sk->sk_state); |
| ret = 0; |
| } |
| if (ret < 0) { |
| pr_err("connect %s error %d\n", |
| pr_addr(&con->peer_addr.in_addr), ret); |
| sock_release(sock); |
| con->sock = NULL; |
| con->error_msg = "connect error"; |
| } |
| |
| if (ret < 0) |
| return ERR_PTR(ret); |
| return sock; |
| } |
| |
| static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len) |
| { |
| struct kvec iov = {buf, len}; |
| struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; |
| |
| return kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags); |
| } |
| |
| /* |
| * write something. @more is true if caller will be sending more data |
| * shortly. |
| */ |
| static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov, |
| size_t kvlen, size_t len, int more) |
| { |
| struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL }; |
| |
| if (more) |
| msg.msg_flags |= MSG_MORE; |
| else |
| msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */ |
| |
| return kernel_sendmsg(sock, &msg, iov, kvlen, len); |
| } |
| |
| |
| /* |
| * Shutdown/close the socket for the given connection. |
| */ |
| static int con_close_socket(struct ceph_connection *con) |
| { |
| int rc; |
| |
| dout("con_close_socket on %p sock %p\n", con, con->sock); |
| if (!con->sock) |
| return 0; |
| set_bit(SOCK_CLOSED, &con->state); |
| rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR); |
| sock_release(con->sock); |
| con->sock = NULL; |
| clear_bit(SOCK_CLOSED, &con->state); |
| return rc; |
| } |
| |
| /* |
| * Reset a connection. Discard all incoming and outgoing messages |
| * and clear *_seq state. |
| */ |
| static void ceph_msg_remove(struct ceph_msg *msg) |
| { |
| list_del_init(&msg->list_head); |
| ceph_msg_put(msg); |
| } |
| static void ceph_msg_remove_list(struct list_head *head) |
| { |
| while (!list_empty(head)) { |
| struct ceph_msg *msg = list_first_entry(head, struct ceph_msg, |
| list_head); |
| ceph_msg_remove(msg); |
| } |
| } |
| |
| static void reset_connection(struct ceph_connection *con) |
| { |
| /* reset connection, out_queue, msg_ and connect_seq */ |
| /* discard existing out_queue and msg_seq */ |
| mutex_lock(&con->out_mutex); |
| ceph_msg_remove_list(&con->out_queue); |
| ceph_msg_remove_list(&con->out_sent); |
| |
| con->connect_seq = 0; |
| con->out_seq = 0; |
| con->out_msg = NULL; |
| con->in_seq = 0; |
| mutex_unlock(&con->out_mutex); |
| } |
| |
| /* |
| * mark a peer down. drop any open connections. |
| */ |
| void ceph_con_close(struct ceph_connection *con) |
| { |
| dout("con_close %p peer %s\n", con, pr_addr(&con->peer_addr.in_addr)); |
| set_bit(CLOSED, &con->state); /* in case there's queued work */ |
| clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */ |
| reset_connection(con); |
| queue_con(con); |
| } |
| |
| /* |
| * Reopen a closed connection, with a new peer address. |
| */ |
| void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr) |
| { |
| dout("con_open %p %s\n", con, pr_addr(&addr->in_addr)); |
| set_bit(OPENING, &con->state); |
| clear_bit(CLOSED, &con->state); |
| memcpy(&con->peer_addr, addr, sizeof(*addr)); |
| queue_con(con); |
| } |
| |
| /* |
| * generic get/put |
| */ |
| struct ceph_connection *ceph_con_get(struct ceph_connection *con) |
| { |
| dout("con_get %p nref = %d -> %d\n", con, |
| atomic_read(&con->nref), atomic_read(&con->nref) + 1); |
| if (atomic_inc_not_zero(&con->nref)) |
| return con; |
| return NULL; |
| } |
| |
| void ceph_con_put(struct ceph_connection *con) |
| { |
| dout("con_put %p nref = %d -> %d\n", con, |
| atomic_read(&con->nref), atomic_read(&con->nref) - 1); |
| BUG_ON(atomic_read(&con->nref) == 0); |
| if (atomic_dec_and_test(&con->nref)) { |
| BUG_ON(con->sock); |
| kfree(con); |
| } |
| } |
| |
| /* |
| * initialize a new connection. |
| */ |
| void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con) |
| { |
| dout("con_init %p\n", con); |
| memset(con, 0, sizeof(*con)); |
| atomic_set(&con->nref, 1); |
| con->msgr = msgr; |
| mutex_init(&con->out_mutex); |
| INIT_LIST_HEAD(&con->out_queue); |
| INIT_LIST_HEAD(&con->out_sent); |
| INIT_DELAYED_WORK(&con->work, con_work); |
| } |
| |
| |
| /* |
| * We maintain a global counter to order connection attempts. Get |
| * a unique seq greater than @gt. |
| */ |
| static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt) |
| { |
| u32 ret; |
| |
| spin_lock(&msgr->global_seq_lock); |
| if (msgr->global_seq < gt) |
| msgr->global_seq = gt; |
| ret = ++msgr->global_seq; |
| spin_unlock(&msgr->global_seq_lock); |
| return ret; |
| } |
| |
| |
| /* |
| * Prepare footer for currently outgoing message, and finish things |
| * off. Assumes out_kvec* are already valid.. we just add on to the end. |
| */ |
| static void prepare_write_message_footer(struct ceph_connection *con, int v) |
| { |
| struct ceph_msg *m = con->out_msg; |
| |
| dout("prepare_write_message_footer %p\n", con); |
| con->out_kvec_is_msg = true; |
| con->out_kvec[v].iov_base = &m->footer; |
| con->out_kvec[v].iov_len = sizeof(m->footer); |
| con->out_kvec_bytes += sizeof(m->footer); |
| con->out_kvec_left++; |
| con->out_more = m->more_to_follow; |
| con->out_msg = NULL; /* we're done with this one */ |
| } |
| |
| /* |
| * Prepare headers for the next outgoing message. |
| */ |
| static void prepare_write_message(struct ceph_connection *con) |
| { |
| struct ceph_msg *m; |
| int v = 0; |
| |
| con->out_kvec_bytes = 0; |
| con->out_kvec_is_msg = true; |
| |
| /* Sneak an ack in there first? If we can get it into the same |
| * TCP packet that's a good thing. */ |
| if (con->in_seq > con->in_seq_acked) { |
| con->in_seq_acked = con->in_seq; |
| con->out_kvec[v].iov_base = &tag_ack; |
| con->out_kvec[v++].iov_len = 1; |
| con->out_temp_ack = cpu_to_le64(con->in_seq_acked); |
| con->out_kvec[v].iov_base = &con->out_temp_ack; |
| con->out_kvec[v++].iov_len = sizeof(con->out_temp_ack); |
| con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack); |
| } |
| |
| /* move message to sending/sent list */ |
| m = list_first_entry(&con->out_queue, |
| struct ceph_msg, list_head); |
| list_move_tail(&m->list_head, &con->out_sent); |
| con->out_msg = m; /* we don't bother taking a reference here. */ |
| |
| m->hdr.seq = cpu_to_le64(++con->out_seq); |
| |
| dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n", |
| m, con->out_seq, le16_to_cpu(m->hdr.type), |
| le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len), |
| le32_to_cpu(m->hdr.data_len), |
| m->nr_pages); |
| BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len); |
| |
| /* tag + hdr + front + middle */ |
| con->out_kvec[v].iov_base = &tag_msg; |
| con->out_kvec[v++].iov_len = 1; |
| con->out_kvec[v].iov_base = &m->hdr; |
| con->out_kvec[v++].iov_len = sizeof(m->hdr); |
| con->out_kvec[v++] = m->front; |
| if (m->middle) |
| con->out_kvec[v++] = m->middle->vec; |
| con->out_kvec_left = v; |
| con->out_kvec_bytes += 1 + sizeof(m->hdr) + m->front.iov_len + |
| (m->middle ? m->middle->vec.iov_len : 0); |
| con->out_kvec_cur = con->out_kvec; |
| |
| /* fill in crc (except data pages), footer */ |
| con->out_msg->hdr.crc = |
| cpu_to_le32(crc32c(0, (void *)&m->hdr, |
| sizeof(m->hdr) - sizeof(m->hdr.crc))); |
| con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE; |
| con->out_msg->footer.front_crc = |
| cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len)); |
| if (m->middle) |
| con->out_msg->footer.middle_crc = |
| cpu_to_le32(crc32c(0, m->middle->vec.iov_base, |
| m->middle->vec.iov_len)); |
| else |
| con->out_msg->footer.middle_crc = 0; |
| con->out_msg->footer.data_crc = 0; |
| dout("prepare_write_message front_crc %u data_crc %u\n", |
| le32_to_cpu(con->out_msg->footer.front_crc), |
| le32_to_cpu(con->out_msg->footer.middle_crc)); |
| |
| /* is there a data payload? */ |
| if (le32_to_cpu(m->hdr.data_len) > 0) { |
| /* initialize page iterator */ |
| con->out_msg_pos.page = 0; |
| con->out_msg_pos.page_pos = |
| le16_to_cpu(m->hdr.data_off) & ~PAGE_MASK; |
| con->out_msg_pos.data_pos = 0; |
| con->out_msg_pos.did_page_crc = 0; |
| con->out_more = 1; /* data + footer will follow */ |
| } else { |
| /* no, queue up footer too and be done */ |
| prepare_write_message_footer(con, v); |
| } |
| |
| set_bit(WRITE_PENDING, &con->state); |
| } |
| |
| /* |
| * Prepare an ack. |
| */ |
| static void prepare_write_ack(struct ceph_connection *con) |
| { |
| dout("prepare_write_ack %p %llu -> %llu\n", con, |
| con->in_seq_acked, con->in_seq); |
| con->in_seq_acked = con->in_seq; |
| |
| con->out_kvec[0].iov_base = &tag_ack; |
| con->out_kvec[0].iov_len = 1; |
| con->out_temp_ack = cpu_to_le64(con->in_seq_acked); |
| con->out_kvec[1].iov_base = &con->out_temp_ack; |
| con->out_kvec[1].iov_len = sizeof(con->out_temp_ack); |
| con->out_kvec_left = 2; |
| con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack); |
| con->out_kvec_cur = con->out_kvec; |
| con->out_more = 1; /* more will follow.. eventually.. */ |
| set_bit(WRITE_PENDING, &con->state); |
| } |
| |
| /* |
| * Prepare to write keepalive byte. |
| */ |
| static void prepare_write_keepalive(struct ceph_connection *con) |
| { |
| dout("prepare_write_keepalive %p\n", con); |
| con->out_kvec[0].iov_base = &tag_keepalive; |
| con->out_kvec[0].iov_len = 1; |
| con->out_kvec_left = 1; |
| con->out_kvec_bytes = 1; |
| con->out_kvec_cur = con->out_kvec; |
| set_bit(WRITE_PENDING, &con->state); |
| } |
| |
| /* |
| * Connection negotiation. |
| */ |
| |
| static void prepare_connect_authorizer(struct ceph_connection *con) |
| { |
| void *auth_buf; |
| int auth_len = 0; |
| int auth_protocol = 0; |
| |
| if (con->ops->get_authorizer) |
| con->ops->get_authorizer(con, &auth_buf, &auth_len, |
| &auth_protocol, &con->auth_reply_buf, |
| &con->auth_reply_buf_len, |
| con->auth_retry); |
| |
| con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol); |
| con->out_connect.authorizer_len = cpu_to_le32(auth_len); |
| |
| con->out_kvec[con->out_kvec_left].iov_base = auth_buf; |
| con->out_kvec[con->out_kvec_left].iov_len = auth_len; |
| con->out_kvec_left++; |
| con->out_kvec_bytes += auth_len; |
| } |
| |
| /* |
| * We connected to a peer and are saying hello. |
| */ |
| static void prepare_write_banner(struct ceph_messenger *msgr, |
| struct ceph_connection *con) |
| { |
| int len = strlen(CEPH_BANNER); |
| |
| con->out_kvec[0].iov_base = CEPH_BANNER; |
| con->out_kvec[0].iov_len = len; |
| con->out_kvec[1].iov_base = &msgr->my_enc_addr; |
| con->out_kvec[1].iov_len = sizeof(msgr->my_enc_addr); |
| con->out_kvec_left = 2; |
| con->out_kvec_bytes = len + sizeof(msgr->my_enc_addr); |
| con->out_kvec_cur = con->out_kvec; |
| con->out_more = 0; |
| set_bit(WRITE_PENDING, &con->state); |
| } |
| |
| static void prepare_write_connect(struct ceph_messenger *msgr, |
| struct ceph_connection *con, |
| int after_banner) |
| { |
| unsigned global_seq = get_global_seq(con->msgr, 0); |
| int proto; |
| |
| switch (con->peer_name.type) { |
| case CEPH_ENTITY_TYPE_MON: |
| proto = CEPH_MONC_PROTOCOL; |
| break; |
| case CEPH_ENTITY_TYPE_OSD: |
| proto = CEPH_OSDC_PROTOCOL; |
| break; |
| case CEPH_ENTITY_TYPE_MDS: |
| proto = CEPH_MDSC_PROTOCOL; |
| break; |
| default: |
| BUG(); |
| } |
| |
| dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con, |
| con->connect_seq, global_seq, proto); |
| |
| con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT); |
| con->out_connect.connect_seq = cpu_to_le32(con->connect_seq); |
| con->out_connect.global_seq = cpu_to_le32(global_seq); |
| con->out_connect.protocol_version = cpu_to_le32(proto); |
| con->out_connect.flags = 0; |
| if (test_bit(LOSSYTX, &con->state)) |
| con->out_connect.flags = CEPH_MSG_CONNECT_LOSSY; |
| |
| if (!after_banner) { |
| con->out_kvec_left = 0; |
| con->out_kvec_bytes = 0; |
| } |
| con->out_kvec[con->out_kvec_left].iov_base = &con->out_connect; |
| con->out_kvec[con->out_kvec_left].iov_len = sizeof(con->out_connect); |
| con->out_kvec_left++; |
| con->out_kvec_bytes += sizeof(con->out_connect); |
| con->out_kvec_cur = con->out_kvec; |
| con->out_more = 0; |
| set_bit(WRITE_PENDING, &con->state); |
| |
| prepare_connect_authorizer(con); |
| } |
| |
| |
| /* |
| * write as much of pending kvecs to the socket as we can. |
| * 1 -> done |
| * 0 -> socket full, but more to do |
| * <0 -> error |
| */ |
| static int write_partial_kvec(struct ceph_connection *con) |
| { |
| int ret; |
| |
| dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes); |
| while (con->out_kvec_bytes > 0) { |
| ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur, |
| con->out_kvec_left, con->out_kvec_bytes, |
| con->out_more); |
| if (ret <= 0) |
| goto out; |
| con->out_kvec_bytes -= ret; |
| if (con->out_kvec_bytes == 0) |
| break; /* done */ |
| while (ret > 0) { |
| if (ret >= con->out_kvec_cur->iov_len) { |
| ret -= con->out_kvec_cur->iov_len; |
| con->out_kvec_cur++; |
| con->out_kvec_left--; |
| } else { |
| con->out_kvec_cur->iov_len -= ret; |
| con->out_kvec_cur->iov_base += ret; |
| ret = 0; |
| break; |
| } |
| } |
| } |
| con->out_kvec_left = 0; |
| con->out_kvec_is_msg = false; |
| ret = 1; |
| out: |
| dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con, |
| con->out_kvec_bytes, con->out_kvec_left, ret); |
| return ret; /* done! */ |
| } |
| |
| /* |
| * Write as much message data payload as we can. If we finish, queue |
| * up the footer. |
| * 1 -> done, footer is now queued in out_kvec[]. |
| * 0 -> socket full, but more to do |
| * <0 -> error |
| */ |
| static int write_partial_msg_pages(struct ceph_connection *con) |
| { |
| struct ceph_msg *msg = con->out_msg; |
| unsigned data_len = le32_to_cpu(msg->hdr.data_len); |
| size_t len; |
| int crc = con->msgr->nocrc; |
| int ret; |
| |
| dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n", |
| con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages, |
| con->out_msg_pos.page_pos); |
| |
| while (con->out_msg_pos.page < con->out_msg->nr_pages) { |
| struct page *page = NULL; |
| void *kaddr = NULL; |
| |
| /* |
| * if we are calculating the data crc (the default), we need |
| * to map the page. if our pages[] has been revoked, use the |
| * zero page. |
| */ |
| if (msg->pages) { |
| page = msg->pages[con->out_msg_pos.page]; |
| if (crc) |
| kaddr = kmap(page); |
| } else { |
| page = con->msgr->zero_page; |
| if (crc) |
| kaddr = page_address(con->msgr->zero_page); |
| } |
| len = min((int)(PAGE_SIZE - con->out_msg_pos.page_pos), |
| (int)(data_len - con->out_msg_pos.data_pos)); |
| if (crc && !con->out_msg_pos.did_page_crc) { |
| void *base = kaddr + con->out_msg_pos.page_pos; |
| u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc); |
| |
| BUG_ON(kaddr == NULL); |
| con->out_msg->footer.data_crc = |
| cpu_to_le32(crc32c(tmpcrc, base, len)); |
| con->out_msg_pos.did_page_crc = 1; |
| } |
| |
| ret = kernel_sendpage(con->sock, page, |
| con->out_msg_pos.page_pos, len, |
| MSG_DONTWAIT | MSG_NOSIGNAL | |
| MSG_MORE); |
| |
| if (crc && msg->pages) |
| kunmap(page); |
| |
| if (ret <= 0) |
| goto out; |
| |
| con->out_msg_pos.data_pos += ret; |
| con->out_msg_pos.page_pos += ret; |
| if (ret == len) { |
| con->out_msg_pos.page_pos = 0; |
| con->out_msg_pos.page++; |
| con->out_msg_pos.did_page_crc = 0; |
| } |
| } |
| |
| dout("write_partial_msg_pages %p msg %p done\n", con, msg); |
| |
| /* prepare and queue up footer, too */ |
| if (!crc) |
| con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC; |
| con->out_kvec_bytes = 0; |
| con->out_kvec_left = 0; |
| con->out_kvec_cur = con->out_kvec; |
| prepare_write_message_footer(con, 0); |
| ret = 1; |
| out: |
| return ret; |
| } |
| |
| /* |
| * write some zeros |
| */ |
| static int write_partial_skip(struct ceph_connection *con) |
| { |
| int ret; |
| |
| while (con->out_skip > 0) { |
| struct kvec iov = { |
| .iov_base = page_address(con->msgr->zero_page), |
| .iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE) |
| }; |
| |
| ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1); |
| if (ret <= 0) |
| goto out; |
| con->out_skip -= ret; |
| } |
| ret = 1; |
| out: |
| return ret; |
| } |
| |
| /* |
| * Prepare to read connection handshake, or an ack. |
| */ |
| static void prepare_read_banner(struct ceph_connection *con) |
| { |
| dout("prepare_read_banner %p\n", con); |
| con->in_base_pos = 0; |
| } |
| |
| static void prepare_read_connect(struct ceph_connection *con) |
| { |
| dout("prepare_read_connect %p\n", con); |
| con->in_base_pos = 0; |
| } |
| |
| static void prepare_read_connect_retry(struct ceph_connection *con) |
| { |
| dout("prepare_read_connect_retry %p\n", con); |
| con->in_base_pos = strlen(CEPH_BANNER) + sizeof(con->actual_peer_addr) |
| + sizeof(con->peer_addr_for_me); |
| } |
| |
| static void prepare_read_ack(struct ceph_connection *con) |
| { |
| dout("prepare_read_ack %p\n", con); |
| con->in_base_pos = 0; |
| } |
| |
| static void prepare_read_tag(struct ceph_connection *con) |
| { |
| dout("prepare_read_tag %p\n", con); |
| con->in_base_pos = 0; |
| con->in_tag = CEPH_MSGR_TAG_READY; |
| } |
| |
| /* |
| * Prepare to read a message. |
| */ |
| static int prepare_read_message(struct ceph_connection *con) |
| { |
| dout("prepare_read_message %p\n", con); |
| BUG_ON(con->in_msg != NULL); |
| con->in_base_pos = 0; |
| con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0; |
| return 0; |
| } |
| |
| |
| static int read_partial(struct ceph_connection *con, |
| int *to, int size, void *object) |
| { |
| *to += size; |
| while (con->in_base_pos < *to) { |
| int left = *to - con->in_base_pos; |
| int have = size - left; |
| int ret = ceph_tcp_recvmsg(con->sock, object + have, left); |
| if (ret <= 0) |
| return ret; |
| con->in_base_pos += ret; |
| } |
| return 1; |
| } |
| |
| |
| /* |
| * Read all or part of the connect-side handshake on a new connection |
| */ |
| static int read_partial_banner(struct ceph_connection *con) |
| { |
| int ret, to = 0; |
| |
| dout("read_partial_banner %p at %d\n", con, con->in_base_pos); |
| |
| /* peer's banner */ |
| ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner); |
| if (ret <= 0) |
| goto out; |
| ret = read_partial(con, &to, sizeof(con->actual_peer_addr), |
| &con->actual_peer_addr); |
| if (ret <= 0) |
| goto out; |
| ret = read_partial(con, &to, sizeof(con->peer_addr_for_me), |
| &con->peer_addr_for_me); |
| if (ret <= 0) |
| goto out; |
| out: |
| return ret; |
| } |
| |
| static int read_partial_connect(struct ceph_connection *con) |
| { |
| int ret, to = 0; |
| |
| dout("read_partial_connect %p at %d\n", con, con->in_base_pos); |
| |
| ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply); |
| if (ret <= 0) |
| goto out; |
| ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len), |
| con->auth_reply_buf); |
| if (ret <= 0) |
| goto out; |
| |
| dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n", |
| con, (int)con->in_reply.tag, |
| le32_to_cpu(con->in_reply.connect_seq), |
| le32_to_cpu(con->in_reply.global_seq)); |
| out: |
| return ret; |
| |
| } |
| |
| /* |
| * Verify the hello banner looks okay. |
| */ |
| static int verify_hello(struct ceph_connection *con) |
| { |
| if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) { |
| pr_err("connect to %s got bad banner\n", |
| pr_addr(&con->peer_addr.in_addr)); |
| con->error_msg = "protocol error, bad banner"; |
| return -1; |
| } |
| return 0; |
| } |
| |
| static bool addr_is_blank(struct sockaddr_storage *ss) |
| { |
| switch (ss->ss_family) { |
| case AF_INET: |
| return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0; |
| case AF_INET6: |
| return |
| ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 && |
| ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 && |
| ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 && |
| ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0; |
| } |
| return false; |
| } |
| |
| static int addr_port(struct sockaddr_storage *ss) |
| { |
| switch (ss->ss_family) { |
| case AF_INET: |
| return ntohs(((struct sockaddr_in *)ss)->sin_port); |
| case AF_INET6: |
| return ntohs(((struct sockaddr_in6 *)ss)->sin6_port); |
| } |
| return 0; |
| } |
| |
| static void addr_set_port(struct sockaddr_storage *ss, int p) |
| { |
| switch (ss->ss_family) { |
| case AF_INET: |
| ((struct sockaddr_in *)ss)->sin_port = htons(p); |
| case AF_INET6: |
| ((struct sockaddr_in6 *)ss)->sin6_port = htons(p); |
| } |
| } |
| |
| /* |
| * Parse an ip[:port] list into an addr array. Use the default |
| * monitor port if a port isn't specified. |
| */ |
| int ceph_parse_ips(const char *c, const char *end, |
| struct ceph_entity_addr *addr, |
| int max_count, int *count) |
| { |
| int i; |
| const char *p = c; |
| |
| dout("parse_ips on '%.*s'\n", (int)(end-c), c); |
| for (i = 0; i < max_count; i++) { |
| const char *ipend; |
| struct sockaddr_storage *ss = &addr[i].in_addr; |
| struct sockaddr_in *in4 = (void *)ss; |
| struct sockaddr_in6 *in6 = (void *)ss; |
| int port; |
| |
| memset(ss, 0, sizeof(*ss)); |
| if (in4_pton(p, end - p, (u8 *)&in4->sin_addr.s_addr, |
| ',', &ipend)) { |
| ss->ss_family = AF_INET; |
| } else if (in6_pton(p, end - p, (u8 *)&in6->sin6_addr.s6_addr, |
| ',', &ipend)) { |
| ss->ss_family = AF_INET6; |
| } else { |
| goto bad; |
| } |
| p = ipend; |
| |
| /* port? */ |
| if (p < end && *p == ':') { |
| port = 0; |
| p++; |
| while (p < end && *p >= '0' && *p <= '9') { |
| port = (port * 10) + (*p - '0'); |
| p++; |
| } |
| if (port > 65535 || port == 0) |
| goto bad; |
| } else { |
| port = CEPH_MON_PORT; |
| } |
| |
| addr_set_port(ss, port); |
| |
| dout("parse_ips got %s\n", pr_addr(ss)); |
| |
| if (p == end) |
| break; |
| if (*p != ',') |
| goto bad; |
| p++; |
| } |
| |
| if (p != end) |
| goto bad; |
| |
| if (count) |
| *count = i + 1; |
| return 0; |
| |
| bad: |
| pr_err("parse_ips bad ip '%s'\n", c); |
| return -EINVAL; |
| } |
| |
| static int process_banner(struct ceph_connection *con) |
| { |
| dout("process_banner on %p\n", con); |
| |
| if (verify_hello(con) < 0) |
| return -1; |
| |
| ceph_decode_addr(&con->actual_peer_addr); |
| ceph_decode_addr(&con->peer_addr_for_me); |
| |
| /* |
| * Make sure the other end is who we wanted. note that the other |
| * end may not yet know their ip address, so if it's 0.0.0.0, give |
| * them the benefit of the doubt. |
| */ |
| if (!ceph_entity_addr_is_local(&con->peer_addr, |
| &con->actual_peer_addr) && |
| !(addr_is_blank(&con->actual_peer_addr.in_addr) && |
| con->actual_peer_addr.nonce == con->peer_addr.nonce)) { |
| pr_err("wrong peer, want %s/%d, " |
| "got %s/%d, wtf\n", |
| pr_addr(&con->peer_addr.in_addr), |
| con->peer_addr.nonce, |
| pr_addr(&con->actual_peer_addr.in_addr), |
| con->actual_peer_addr.nonce); |
| con->error_msg = "protocol error, wrong peer"; |
| return -1; |
| } |
| |
| /* |
| * did we learn our address? |
| */ |
| if (addr_is_blank(&con->msgr->inst.addr.in_addr)) { |
| int port = addr_port(&con->msgr->inst.addr.in_addr); |
| |
| memcpy(&con->msgr->inst.addr.in_addr, |
| &con->peer_addr_for_me.in_addr, |
| sizeof(con->peer_addr_for_me.in_addr)); |
| addr_set_port(&con->msgr->inst.addr.in_addr, port); |
| encode_my_addr(con->msgr); |
| dout("process_banner learned my addr is %s\n", |
| pr_addr(&con->msgr->inst.addr.in_addr)); |
| } |
| |
| set_bit(NEGOTIATING, &con->state); |
| prepare_read_connect(con); |
| return 0; |
| } |
| |
| static int process_connect(struct ceph_connection *con) |
| { |
| dout("process_connect on %p tag %d\n", con, (int)con->in_tag); |
| |
| switch (con->in_reply.tag) { |
| case CEPH_MSGR_TAG_BADPROTOVER: |
| dout("process_connect got BADPROTOVER my %d != their %d\n", |
| le32_to_cpu(con->out_connect.protocol_version), |
| le32_to_cpu(con->in_reply.protocol_version)); |
| pr_err("%s%lld %s protocol version mismatch," |
| " my %d != server's %d\n", |
| ENTITY_NAME(con->peer_name), |
| pr_addr(&con->peer_addr.in_addr), |
| le32_to_cpu(con->out_connect.protocol_version), |
| le32_to_cpu(con->in_reply.protocol_version)); |
| con->error_msg = "protocol version mismatch"; |
| if (con->ops->bad_proto) |
| con->ops->bad_proto(con); |
| reset_connection(con); |
| set_bit(CLOSED, &con->state); /* in case there's queued work */ |
| return -1; |
| |
| case CEPH_MSGR_TAG_BADAUTHORIZER: |
| con->auth_retry++; |
| dout("process_connect %p got BADAUTHORIZER attempt %d\n", con, |
| con->auth_retry); |
| if (con->auth_retry == 2) { |
| con->error_msg = "connect authorization failure"; |
| reset_connection(con); |
| set_bit(CLOSED, &con->state); |
| return -1; |
| } |
| con->auth_retry = 1; |
| prepare_write_connect(con->msgr, con, 0); |
| prepare_read_connect_retry(con); |
| break; |
| |
| case CEPH_MSGR_TAG_RESETSESSION: |
| /* |
| * If we connected with a large connect_seq but the peer |
| * has no record of a session with us (no connection, or |
| * connect_seq == 0), they will send RESETSESION to indicate |
| * that they must have reset their session, and may have |
| * dropped messages. |
| */ |
| dout("process_connect got RESET peer seq %u\n", |
| le32_to_cpu(con->in_connect.connect_seq)); |
| pr_err("%s%lld %s connection reset\n", |
| ENTITY_NAME(con->peer_name), |
| pr_addr(&con->peer_addr.in_addr)); |
| reset_connection(con); |
| prepare_write_connect(con->msgr, con, 0); |
| prepare_read_connect(con); |
| |
| /* Tell ceph about it. */ |
| pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name)); |
| if (con->ops->peer_reset) |
| con->ops->peer_reset(con); |
| break; |
| |
| case CEPH_MSGR_TAG_RETRY_SESSION: |
| /* |
| * If we sent a smaller connect_seq than the peer has, try |
| * again with a larger value. |
| */ |
| dout("process_connect got RETRY my seq = %u, peer_seq = %u\n", |
| le32_to_cpu(con->out_connect.connect_seq), |
| le32_to_cpu(con->in_connect.connect_seq)); |
| con->connect_seq = le32_to_cpu(con->in_connect.connect_seq); |
| prepare_write_connect(con->msgr, con, 0); |
| prepare_read_connect(con); |
| break; |
| |
| case CEPH_MSGR_TAG_RETRY_GLOBAL: |
| /* |
| * If we sent a smaller global_seq than the peer has, try |
| * again with a larger value. |
| */ |
| dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n", |
| con->peer_global_seq, |
| le32_to_cpu(con->in_connect.global_seq)); |
| get_global_seq(con->msgr, |
| le32_to_cpu(con->in_connect.global_seq)); |
| prepare_write_connect(con->msgr, con, 0); |
| prepare_read_connect(con); |
| break; |
| |
| case CEPH_MSGR_TAG_READY: |
| clear_bit(CONNECTING, &con->state); |
| con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq); |
| con->connect_seq++; |
| dout("process_connect got READY gseq %d cseq %d (%d)\n", |
| con->peer_global_seq, |
| le32_to_cpu(con->in_reply.connect_seq), |
| con->connect_seq); |
| WARN_ON(con->connect_seq != |
| le32_to_cpu(con->in_reply.connect_seq)); |
| |
| con->delay = 0; /* reset backoff memory */ |
| prepare_read_tag(con); |
| break; |
| |
| case CEPH_MSGR_TAG_WAIT: |
| /* |
| * If there is a connection race (we are opening |
| * connections to each other), one of us may just have |
| * to WAIT. This shouldn't happen if we are the |
| * client. |
| */ |
| pr_err("process_connect peer connecting WAIT\n"); |
| |
| default: |
| pr_err("connect protocol error, will retry\n"); |
| con->error_msg = "protocol error, garbage tag during connect"; |
| return -1; |
| } |
| return 0; |
| } |
| |
| |
| /* |
| * read (part of) an ack |
| */ |
| static int read_partial_ack(struct ceph_connection *con) |
| { |
| int to = 0; |
| |
| return read_partial(con, &to, sizeof(con->in_temp_ack), |
| &con->in_temp_ack); |
| } |
| |
| |
| /* |
| * We can finally discard anything that's been acked. |
| */ |
| static void process_ack(struct ceph_connection *con) |
| { |
| struct ceph_msg *m; |
| u64 ack = le64_to_cpu(con->in_temp_ack); |
| u64 seq; |
| |
| mutex_lock(&con->out_mutex); |
| while (!list_empty(&con->out_sent)) { |
| m = list_first_entry(&con->out_sent, struct ceph_msg, |
| list_head); |
| seq = le64_to_cpu(m->hdr.seq); |
| if (seq > ack) |
| break; |
| dout("got ack for seq %llu type %d at %p\n", seq, |
| le16_to_cpu(m->hdr.type), m); |
| ceph_msg_remove(m); |
| } |
| mutex_unlock(&con->out_mutex); |
| prepare_read_tag(con); |
| } |
| |
| |
| |
| |
| |
| |
| /* |
| * read (part of) a message. |
| */ |
| static int read_partial_message(struct ceph_connection *con) |
| { |
| struct ceph_msg *m = con->in_msg; |
| void *p; |
| int ret; |
| int to, want, left; |
| unsigned front_len, middle_len, data_len, data_off; |
| int datacrc = con->msgr->nocrc; |
| |
| dout("read_partial_message con %p msg %p\n", con, m); |
| |
| /* header */ |
| while (con->in_base_pos < sizeof(con->in_hdr)) { |
| left = sizeof(con->in_hdr) - con->in_base_pos; |
| ret = ceph_tcp_recvmsg(con->sock, |
| (char *)&con->in_hdr + con->in_base_pos, |
| left); |
| if (ret <= 0) |
| return ret; |
| con->in_base_pos += ret; |
| if (con->in_base_pos == sizeof(con->in_hdr)) { |
| u32 crc = crc32c(0, (void *)&con->in_hdr, |
| sizeof(con->in_hdr) - sizeof(con->in_hdr.crc)); |
| if (crc != le32_to_cpu(con->in_hdr.crc)) { |
| pr_err("read_partial_message bad hdr " |
| " crc %u != expected %u\n", |
| crc, con->in_hdr.crc); |
| return -EBADMSG; |
| } |
| } |
| } |
| |
| front_len = le32_to_cpu(con->in_hdr.front_len); |
| if (front_len > CEPH_MSG_MAX_FRONT_LEN) |
| return -EIO; |
| middle_len = le32_to_cpu(con->in_hdr.middle_len); |
| if (middle_len > CEPH_MSG_MAX_DATA_LEN) |
| return -EIO; |
| data_len = le32_to_cpu(con->in_hdr.data_len); |
| if (data_len > CEPH_MSG_MAX_DATA_LEN) |
| return -EIO; |
| |
| /* allocate message? */ |
| if (!con->in_msg) { |
| dout("got hdr type %d front %d data %d\n", con->in_hdr.type, |
| con->in_hdr.front_len, con->in_hdr.data_len); |
| con->in_msg = con->ops->alloc_msg(con, &con->in_hdr); |
| if (!con->in_msg) { |
| /* skip this message */ |
| dout("alloc_msg returned NULL, skipping message\n"); |
| con->in_base_pos = -front_len - middle_len - data_len - |
| sizeof(m->footer); |
| con->in_tag = CEPH_MSGR_TAG_READY; |
| return 0; |
| } |
| if (IS_ERR(con->in_msg)) { |
| ret = PTR_ERR(con->in_msg); |
| con->in_msg = NULL; |
| con->error_msg = "out of memory for incoming message"; |
| return ret; |
| } |
| m = con->in_msg; |
| m->front.iov_len = 0; /* haven't read it yet */ |
| memcpy(&m->hdr, &con->in_hdr, sizeof(con->in_hdr)); |
| } |
| |
| /* front */ |
| while (m->front.iov_len < front_len) { |
| BUG_ON(m->front.iov_base == NULL); |
| left = front_len - m->front.iov_len; |
| ret = ceph_tcp_recvmsg(con->sock, (char *)m->front.iov_base + |
| m->front.iov_len, left); |
| if (ret <= 0) |
| return ret; |
| m->front.iov_len += ret; |
| if (m->front.iov_len == front_len) |
| con->in_front_crc = crc32c(0, m->front.iov_base, |
| m->front.iov_len); |
| } |
| |
| /* middle */ |
| while (middle_len > 0 && (!m->middle || |
| m->middle->vec.iov_len < middle_len)) { |
| if (m->middle == NULL) { |
| ret = -EOPNOTSUPP; |
| if (con->ops->alloc_middle) |
| ret = con->ops->alloc_middle(con, m); |
| if (ret < 0) { |
| dout("alloc_middle failed, skipping payload\n"); |
| con->in_base_pos = -middle_len - data_len |
| - sizeof(m->footer); |
| ceph_msg_put(con->in_msg); |
| con->in_msg = NULL; |
| con->in_tag = CEPH_MSGR_TAG_READY; |
| return 0; |
| } |
| m->middle->vec.iov_len = 0; |
| } |
| left = middle_len - m->middle->vec.iov_len; |
| ret = ceph_tcp_recvmsg(con->sock, |
| (char *)m->middle->vec.iov_base + |
| m->middle->vec.iov_len, left); |
| if (ret <= 0) |
| return ret; |
| m->middle->vec.iov_len += ret; |
| if (m->middle->vec.iov_len == middle_len) |
| con->in_middle_crc = crc32c(0, m->middle->vec.iov_base, |
| m->middle->vec.iov_len); |
| } |
| |
| /* (page) data */ |
| data_off = le16_to_cpu(m->hdr.data_off); |
| if (data_len == 0) |
| goto no_data; |
| |
| if (m->nr_pages == 0) { |
| con->in_msg_pos.page = 0; |
| con->in_msg_pos.page_pos = data_off & ~PAGE_MASK; |
| con->in_msg_pos.data_pos = 0; |
| /* find pages for data payload */ |
| want = calc_pages_for(data_off & ~PAGE_MASK, data_len); |
| ret = -1; |
| if (con->ops->prepare_pages) |
| ret = con->ops->prepare_pages(con, m, want); |
| if (ret < 0) { |
| dout("%p prepare_pages failed, skipping payload\n", m); |
| con->in_base_pos = -data_len - sizeof(m->footer); |
| ceph_msg_put(con->in_msg); |
| con->in_msg = NULL; |
| con->in_tag = CEPH_MSGR_TAG_READY; |
| return 0; |
| } |
| BUG_ON(m->nr_pages < want); |
| } |
| while (con->in_msg_pos.data_pos < data_len) { |
| left = min((int)(data_len - con->in_msg_pos.data_pos), |
| (int)(PAGE_SIZE - con->in_msg_pos.page_pos)); |
| BUG_ON(m->pages == NULL); |
| p = kmap(m->pages[con->in_msg_pos.page]); |
| ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos, |
| left); |
| if (ret > 0 && datacrc) |
| con->in_data_crc = |
| crc32c(con->in_data_crc, |
| p + con->in_msg_pos.page_pos, ret); |
| kunmap(m->pages[con->in_msg_pos.page]); |
| if (ret <= 0) |
| return ret; |
| con->in_msg_pos.data_pos += ret; |
| con->in_msg_pos.page_pos += ret; |
| if (con->in_msg_pos.page_pos == PAGE_SIZE) { |
| con->in_msg_pos.page_pos = 0; |
| con->in_msg_pos.page++; |
| } |
| } |
| |
| no_data: |
| /* footer */ |
| to = sizeof(m->hdr) + sizeof(m->footer); |
| while (con->in_base_pos < to) { |
| left = to - con->in_base_pos; |
| ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer + |
| (con->in_base_pos - sizeof(m->hdr)), |
| left); |
| if (ret <= 0) |
| return ret; |
| con->in_base_pos += ret; |
| } |
| dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n", |
| m, front_len, m->footer.front_crc, middle_len, |
| m->footer.middle_crc, data_len, m->footer.data_crc); |
| |
| /* crc ok? */ |
| if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) { |
| pr_err("read_partial_message %p front crc %u != exp. %u\n", |
| m, con->in_front_crc, m->footer.front_crc); |
| return -EBADMSG; |
| } |
| if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) { |
| pr_err("read_partial_message %p middle crc %u != exp %u\n", |
| m, con->in_middle_crc, m->footer.middle_crc); |
| return -EBADMSG; |
| } |
| if (datacrc && |
| (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 && |
| con->in_data_crc != le32_to_cpu(m->footer.data_crc)) { |
| pr_err("read_partial_message %p data crc %u != exp. %u\n", m, |
| con->in_data_crc, le32_to_cpu(m->footer.data_crc)); |
| return -EBADMSG; |
| } |
| |
| return 1; /* done! */ |
| } |
| |
| /* |
| * Process message. This happens in the worker thread. The callback should |
| * be careful not to do anything that waits on other incoming messages or it |
| * may deadlock. |
| */ |
| static void process_message(struct ceph_connection *con) |
| { |
| struct ceph_msg *msg = con->in_msg; |
| |
| con->in_msg = NULL; |
| |
| /* if first message, set peer_name */ |
| if (con->peer_name.type == 0) |
| con->peer_name = msg->hdr.src.name; |
| |
| mutex_lock(&con->out_mutex); |
| con->in_seq++; |
| mutex_unlock(&con->out_mutex); |
| |
| dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n", |
| msg, le64_to_cpu(msg->hdr.seq), |
| ENTITY_NAME(msg->hdr.src.name), |
| le16_to_cpu(msg->hdr.type), |
| ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), |
| le32_to_cpu(msg->hdr.front_len), |
| le32_to_cpu(msg->hdr.data_len), |
| con->in_front_crc, con->in_middle_crc, con->in_data_crc); |
| con->ops->dispatch(con, msg); |
| prepare_read_tag(con); |
| } |
| |
| |
| /* |
| * Write something to the socket. Called in a worker thread when the |
| * socket appears to be writeable and we have something ready to send. |
| */ |
| static int try_write(struct ceph_connection *con) |
| { |
| struct ceph_messenger *msgr = con->msgr; |
| int ret = 1; |
| |
| dout("try_write start %p state %lu nref %d\n", con, con->state, |
| atomic_read(&con->nref)); |
| |
| mutex_lock(&con->out_mutex); |
| more: |
| dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes); |
| |
| /* open the socket first? */ |
| if (con->sock == NULL) { |
| /* |
| * if we were STANDBY and are reconnecting _this_ |
| * connection, bump connect_seq now. Always bump |
| * global_seq. |
| */ |
| if (test_and_clear_bit(STANDBY, &con->state)) |
| con->connect_seq++; |
| |
| prepare_write_banner(msgr, con); |
| prepare_write_connect(msgr, con, 1); |
| prepare_read_banner(con); |
| set_bit(CONNECTING, &con->state); |
| clear_bit(NEGOTIATING, &con->state); |
| |
| con->in_tag = CEPH_MSGR_TAG_READY; |
| dout("try_write initiating connect on %p new state %lu\n", |
| con, con->state); |
| con->sock = ceph_tcp_connect(con); |
| if (IS_ERR(con->sock)) { |
| con->sock = NULL; |
| con->error_msg = "connect error"; |
| ret = -1; |
| goto out; |
| } |
| } |
| |
| more_kvec: |
| /* kvec data queued? */ |
| if (con->out_skip) { |
| ret = write_partial_skip(con); |
| if (ret <= 0) |
| goto done; |
| if (ret < 0) { |
| dout("try_write write_partial_skip err %d\n", ret); |
| goto done; |
| } |
| } |
| if (con->out_kvec_left) { |
| ret = write_partial_kvec(con); |
| if (ret <= 0) |
| goto done; |
| if (ret < 0) { |
| dout("try_write write_partial_kvec err %d\n", ret); |
| goto done; |
| } |
| } |
| |
| /* msg pages? */ |
| if (con->out_msg) { |
| ret = write_partial_msg_pages(con); |
| if (ret == 1) |
| goto more_kvec; /* we need to send the footer, too! */ |
| if (ret == 0) |
| goto done; |
| if (ret < 0) { |
| dout("try_write write_partial_msg_pages err %d\n", |
| ret); |
| goto done; |
| } |
| } |
| |
| if (!test_bit(CONNECTING, &con->state)) { |
| /* is anything else pending? */ |
| if (!list_empty(&con->out_queue)) { |
| prepare_write_message(con); |
| goto more; |
| } |
| if (con->in_seq > con->in_seq_acked) { |
| prepare_write_ack(con); |
| goto more; |
| } |
| if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) { |
| prepare_write_keepalive(con); |
| goto more; |
| } |
| } |
| |
| /* Nothing to do! */ |
| clear_bit(WRITE_PENDING, &con->state); |
| dout("try_write nothing else to write.\n"); |
| done: |
| ret = 0; |
| out: |
| mutex_unlock(&con->out_mutex); |
| dout("try_write done on %p\n", con); |
| return ret; |
| } |
| |
| |
| |
| /* |
| * Read what we can from the socket. |
| */ |
| static int try_read(struct ceph_connection *con) |
| { |
| struct ceph_messenger *msgr; |
| int ret = -1; |
| |
| if (!con->sock) |
| return 0; |
| |
| if (test_bit(STANDBY, &con->state)) |
| return 0; |
| |
| dout("try_read start on %p\n", con); |
| msgr = con->msgr; |
| |
| more: |
| dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag, |
| con->in_base_pos); |
| if (test_bit(CONNECTING, &con->state)) { |
| if (!test_bit(NEGOTIATING, &con->state)) { |
| dout("try_read connecting\n"); |
| ret = read_partial_banner(con); |
| if (ret <= 0) |
| goto done; |
| if (process_banner(con) < 0) { |
| ret = -1; |
| goto out; |
| } |
| } |
| ret = read_partial_connect(con); |
| if (ret <= 0) |
| goto done; |
| if (process_connect(con) < 0) { |
| ret = -1; |
| goto out; |
| } |
| goto more; |
| } |
| |
| if (con->in_base_pos < 0) { |
| /* |
| * skipping + discarding content. |
| * |
| * FIXME: there must be a better way to do this! |
| */ |
| static char buf[1024]; |
| int skip = min(1024, -con->in_base_pos); |
| dout("skipping %d / %d bytes\n", skip, -con->in_base_pos); |
| ret = ceph_tcp_recvmsg(con->sock, buf, skip); |
| if (ret <= 0) |
| goto done; |
| con->in_base_pos += ret; |
| if (con->in_base_pos) |
| goto more; |
| } |
| if (con->in_tag == CEPH_MSGR_TAG_READY) { |
| /* |
| * what's next? |
| */ |
| ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1); |
| if (ret <= 0) |
| goto done; |
| dout("try_read got tag %d\n", (int)con->in_tag); |
| switch (con->in_tag) { |
| case CEPH_MSGR_TAG_MSG: |
| prepare_read_message(con); |
| break; |
| case CEPH_MSGR_TAG_ACK: |
| prepare_read_ack(con); |
| break; |
| case CEPH_MSGR_TAG_CLOSE: |
| set_bit(CLOSED, &con->state); /* fixme */ |
| goto done; |
| default: |
| goto bad_tag; |
| } |
| } |
| if (con->in_tag == CEPH_MSGR_TAG_MSG) { |
| ret = read_partial_message(con); |
| if (ret <= 0) { |
| switch (ret) { |
| case -EBADMSG: |
| con->error_msg = "bad crc"; |
| ret = -EIO; |
| goto out; |
| case -EIO: |
| con->error_msg = "io error"; |
| goto out; |
| default: |
| goto done; |
| } |
| } |
| if (con->in_tag == CEPH_MSGR_TAG_READY) |
| goto more; |
| process_message(con); |
| goto more; |
| } |
| if (con->in_tag == CEPH_MSGR_TAG_ACK) { |
| ret = read_partial_ack(con); |
| if (ret <= 0) |
| goto done; |
| process_ack(con); |
| goto more; |
| } |
| |
| done: |
| ret = 0; |
| out: |
| dout("try_read done on %p\n", con); |
| return ret; |
| |
| bad_tag: |
| pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag); |
| con->error_msg = "protocol error, garbage tag"; |
| ret = -1; |
| goto out; |
| } |
| |
| |
| /* |
| * Atomically queue work on a connection. Bump @con reference to |
| * avoid races with connection teardown. |
| * |
| * There is some trickery going on with QUEUED and BUSY because we |
| * only want a _single_ thread operating on each connection at any |
| * point in time, but we want to use all available CPUs. |
| * |
| * The worker thread only proceeds if it can atomically set BUSY. It |
| * clears QUEUED and does it's thing. When it thinks it's done, it |
| * clears BUSY, then rechecks QUEUED.. if it's set again, it loops |
| * (tries again to set BUSY). |
| * |
| * To queue work, we first set QUEUED, _then_ if BUSY isn't set, we |
| * try to queue work. If that fails (work is already queued, or BUSY) |
| * we give up (work also already being done or is queued) but leave QUEUED |
| * set so that the worker thread will loop if necessary. |
| */ |
| static void queue_con(struct ceph_connection *con) |
| { |
| if (test_bit(DEAD, &con->state)) { |
| dout("queue_con %p ignoring: DEAD\n", |
| con); |
| return; |
| } |
| |
| if (!con->ops->get(con)) { |
| dout("queue_con %p ref count 0\n", con); |
| return; |
| } |
| |
| set_bit(QUEUED, &con->state); |
| if (test_bit(BUSY, &con->state)) { |
| dout("queue_con %p - already BUSY\n", con); |
| con->ops->put(con); |
| } else if (!queue_work(ceph_msgr_wq, &con->work.work)) { |
| dout("queue_con %p - already queued\n", con); |
| con->ops->put(con); |
| } else { |
| dout("queue_con %p\n", con); |
| } |
| } |
| |
| /* |
| * Do some work on a connection. Drop a connection ref when we're done. |
| */ |
| static void con_work(struct work_struct *work) |
| { |
| struct ceph_connection *con = container_of(work, struct ceph_connection, |
| work.work); |
| int backoff = 0; |
| |
| more: |
| if (test_and_set_bit(BUSY, &con->state) != 0) { |
| dout("con_work %p BUSY already set\n", con); |
| goto out; |
| } |
| dout("con_work %p start, clearing QUEUED\n", con); |
| clear_bit(QUEUED, &con->state); |
| |
| if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */ |
| dout("con_work CLOSED\n"); |
| con_close_socket(con); |
| goto done; |
| } |
| if (test_and_clear_bit(OPENING, &con->state)) { |
| /* reopen w/ new peer */ |
| dout("con_work OPENING\n"); |
| con_close_socket(con); |
| } |
| |
| if (test_and_clear_bit(SOCK_CLOSED, &con->state) || |
| try_read(con) < 0 || |
| try_write(con) < 0) { |
| backoff = 1; |
| ceph_fault(con); /* error/fault path */ |
| } |
| |
| done: |
| clear_bit(BUSY, &con->state); |
| dout("con->state=%lu\n", con->state); |
| if (test_bit(QUEUED, &con->state)) { |
| if (!backoff) { |
| dout("con_work %p QUEUED reset, looping\n", con); |
| goto more; |
| } |
| dout("con_work %p QUEUED reset, but just faulted\n", con); |
| clear_bit(QUEUED, &con->state); |
| } |
| dout("con_work %p done\n", con); |
| |
| out: |
| con->ops->put(con); |
| } |
| |
| |
| /* |
| * Generic error/fault handler. A retry mechanism is used with |
| * exponential backoff |
| */ |
| static void ceph_fault(struct ceph_connection *con) |
| { |
| pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name), |
| pr_addr(&con->peer_addr.in_addr), con->error_msg); |
| dout("fault %p state %lu to peer %s\n", |
| con, con->state, pr_addr(&con->peer_addr.in_addr)); |
| |
| if (test_bit(LOSSYTX, &con->state)) { |
| dout("fault on LOSSYTX channel\n"); |
| goto out; |
| } |
| |
| clear_bit(BUSY, &con->state); /* to avoid an improbable race */ |
| |
| con_close_socket(con); |
| con->in_msg = NULL; |
| |
| /* If there are no messages in the queue, place the connection |
| * in a STANDBY state (i.e., don't try to reconnect just yet). */ |
| mutex_lock(&con->out_mutex); |
| if (list_empty(&con->out_queue) && !con->out_keepalive_pending) { |
| dout("fault setting STANDBY\n"); |
| set_bit(STANDBY, &con->state); |
| mutex_unlock(&con->out_mutex); |
| goto out; |
| } |
| |
| /* Requeue anything that hasn't been acked, and retry after a |
| * delay. */ |
| list_splice_init(&con->out_sent, &con->out_queue); |
| mutex_unlock(&con->out_mutex); |
| |
| if (con->delay == 0) |
| con->delay = BASE_DELAY_INTERVAL; |
| else if (con->delay < MAX_DELAY_INTERVAL) |
| con->delay *= 2; |
| |
| /* explicitly schedule work to try to reconnect again later. */ |
| dout("fault queueing %p delay %lu\n", con, con->delay); |
| con->ops->get(con); |
| if (queue_delayed_work(ceph_msgr_wq, &con->work, |
| round_jiffies_relative(con->delay)) == 0) |
| con->ops->put(con); |
| |
| out: |
| if (con->ops->fault) |
| con->ops->fault(con); |
| } |
| |
| |
| |
| /* |
| * create a new messenger instance |
| */ |
| struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr) |
| { |
| struct ceph_messenger *msgr; |
| |
| msgr = kzalloc(sizeof(*msgr), GFP_KERNEL); |
| if (msgr == NULL) |
| return ERR_PTR(-ENOMEM); |
| |
| spin_lock_init(&msgr->global_seq_lock); |
| |
| /* the zero page is needed if a request is "canceled" while the message |
| * is being written over the socket */ |
| msgr->zero_page = alloc_page(GFP_KERNEL | __GFP_ZERO); |
| if (!msgr->zero_page) { |
| kfree(msgr); |
| return ERR_PTR(-ENOMEM); |
| } |
| kmap(msgr->zero_page); |
| |
| if (myaddr) |
| msgr->inst.addr = *myaddr; |
| |
| /* select a random nonce */ |
| get_random_bytes(&msgr->inst.addr.nonce, |
| sizeof(msgr->inst.addr.nonce)); |
| encode_my_addr(msgr); |
| |
| dout("messenger_create %p\n", msgr); |
| return msgr; |
| } |
| |
| void ceph_messenger_destroy(struct ceph_messenger *msgr) |
| { |
| dout("destroy %p\n", msgr); |
| kunmap(msgr->zero_page); |
| __free_page(msgr->zero_page); |
| kfree(msgr); |
| dout("destroyed messenger %p\n", msgr); |
| } |
| |
| /* |
| * Queue up an outgoing message on the given connection. |
| */ |
| void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg) |
| { |
| if (test_bit(CLOSED, &con->state)) { |
| dout("con_send %p closed, dropping %p\n", con, msg); |
| ceph_msg_put(msg); |
| return; |
| } |
| |
| /* set src+dst */ |
| msg->hdr.src.name = con->msgr->inst.name; |
| msg->hdr.src.addr = con->msgr->my_enc_addr; |
| msg->hdr.orig_src = msg->hdr.src; |
| msg->hdr.dst_erank = con->peer_addr.erank; |
| |
| /* queue */ |
| mutex_lock(&con->out_mutex); |
| BUG_ON(!list_empty(&msg->list_head)); |
| list_add_tail(&msg->list_head, &con->out_queue); |
| dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg, |
| ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type), |
| ceph_msg_type_name(le16_to_cpu(msg->hdr.type)), |
| le32_to_cpu(msg->hdr.front_len), |
| le32_to_cpu(msg->hdr.middle_len), |
| le32_to_cpu(msg->hdr.data_len)); |
| mutex_unlock(&con->out_mutex); |
| |
| /* if there wasn't anything waiting to send before, queue |
| * new work */ |
| if (test_and_set_bit(WRITE_PENDING, &con->state) == 0) |
| queue_con(con); |
| } |
| |
| /* |
| * Revoke a message that was previously queued for send |
| */ |
| void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg) |
| { |
| mutex_lock(&con->out_mutex); |
| if (!list_empty(&msg->list_head)) { |
| dout("con_revoke %p msg %p\n", con, msg); |
| list_del_init(&msg->list_head); |
| ceph_msg_put(msg); |
| msg->hdr.seq = 0; |
| if (con->out_msg == msg) |
| con->out_msg = NULL; |
| if (con->out_kvec_is_msg) { |
| con->out_skip = con->out_kvec_bytes; |
| con->out_kvec_is_msg = false; |
| } |
| } else { |
| dout("con_revoke %p msg %p - not queued (sent?)\n", con, msg); |
| } |
| mutex_unlock(&con->out_mutex); |
| } |
| |
| /* |
| * Queue a keepalive byte to ensure the tcp connection is alive. |
| */ |
| void ceph_con_keepalive(struct ceph_connection *con) |
| { |
| if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 && |
| test_and_set_bit(WRITE_PENDING, &con->state) == 0) |
| queue_con(con); |
| } |
| |
| |
| /* |
| * construct a new message with given type, size |
| * the new msg has a ref count of 1. |
| */ |
| struct ceph_msg *ceph_msg_new(int type, int front_len, |
| int page_len, int page_off, struct page **pages) |
| { |
| struct ceph_msg *m; |
| |
| m = kmalloc(sizeof(*m), GFP_NOFS); |
| if (m == NULL) |
| goto out; |
| atomic_set(&m->nref, 1); |
| INIT_LIST_HEAD(&m->list_head); |
| |
| m->hdr.type = cpu_to_le16(type); |
| m->hdr.front_len = cpu_to_le32(front_len); |
| m->hdr.middle_len = 0; |
| m->hdr.data_len = cpu_to_le32(page_len); |
| m->hdr.data_off = cpu_to_le16(page_off); |
| m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT); |
| m->footer.front_crc = 0; |
| m->footer.middle_crc = 0; |
| m->footer.data_crc = 0; |
| m->front_max = front_len; |
| m->front_is_vmalloc = false; |
| m->more_to_follow = false; |
| m->pool = NULL; |
| |
| /* front */ |
| if (front_len) { |
| if (front_len > PAGE_CACHE_SIZE) { |
| m->front.iov_base = __vmalloc(front_len, GFP_NOFS, |
| PAGE_KERNEL); |
| m->front_is_vmalloc = true; |
| } else { |
| m->front.iov_base = kmalloc(front_len, GFP_NOFS); |
| } |
| if (m->front.iov_base == NULL) { |
| pr_err("msg_new can't allocate %d bytes\n", |
| front_len); |
| goto out2; |
| } |
| } else { |
| m->front.iov_base = NULL; |
| } |
| m->front.iov_len = front_len; |
| |
| /* middle */ |
| m->middle = NULL; |
| |
| /* data */ |
| m->nr_pages = calc_pages_for(page_off, page_len); |
| m->pages = pages; |
| |
| dout("ceph_msg_new %p page %d~%d -> %d\n", m, page_off, page_len, |
| m->nr_pages); |
| return m; |
| |
| out2: |
| ceph_msg_put(m); |
| out: |
| pr_err("msg_new can't create type %d len %d\n", type, front_len); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| /* |
| * Generic message allocator, for incoming messages. |
| */ |
| struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con, |
| struct ceph_msg_header *hdr) |
| { |
| int type = le16_to_cpu(hdr->type); |
| int front_len = le32_to_cpu(hdr->front_len); |
| struct ceph_msg *msg = ceph_msg_new(type, front_len, 0, 0, NULL); |
| |
| if (!msg) { |
| pr_err("unable to allocate msg type %d len %d\n", |
| type, front_len); |
| return ERR_PTR(-ENOMEM); |
| } |
| return msg; |
| } |
| |
| /* |
| * Allocate "middle" portion of a message, if it is needed and wasn't |
| * allocated by alloc_msg. This allows us to read a small fixed-size |
| * per-type header in the front and then gracefully fail (i.e., |
| * propagate the error to the caller based on info in the front) when |
| * the middle is too large. |
| */ |
| int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg) |
| { |
| int type = le16_to_cpu(msg->hdr.type); |
| int middle_len = le32_to_cpu(msg->hdr.middle_len); |
| |
| dout("alloc_middle %p type %d %s middle_len %d\n", msg, type, |
| ceph_msg_type_name(type), middle_len); |
| BUG_ON(!middle_len); |
| BUG_ON(msg->middle); |
| |
| msg->middle = ceph_buffer_new_alloc(middle_len, GFP_NOFS); |
| if (!msg->middle) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| |
| /* |
| * Free a generically kmalloc'd message. |
| */ |
| void ceph_msg_kfree(struct ceph_msg *m) |
| { |
| dout("msg_kfree %p\n", m); |
| if (m->front_is_vmalloc) |
| vfree(m->front.iov_base); |
| else |
| kfree(m->front.iov_base); |
| kfree(m); |
| } |
| |
| /* |
| * Drop a msg ref. Destroy as needed. |
| */ |
| void ceph_msg_put(struct ceph_msg *m) |
| { |
| dout("ceph_msg_put %p %d -> %d\n", m, atomic_read(&m->nref), |
| atomic_read(&m->nref)-1); |
| if (atomic_read(&m->nref) <= 0) { |
| pr_err("bad ceph_msg_put on %p %llu %d=%s %d+%d\n", |
| m, le64_to_cpu(m->hdr.seq), |
| le16_to_cpu(m->hdr.type), |
| ceph_msg_type_name(le16_to_cpu(m->hdr.type)), |
| le32_to_cpu(m->hdr.front_len), |
| le32_to_cpu(m->hdr.data_len)); |
| WARN_ON(1); |
| } |
| if (atomic_dec_and_test(&m->nref)) { |
| dout("ceph_msg_put last one on %p\n", m); |
| WARN_ON(!list_empty(&m->list_head)); |
| |
| /* drop middle, data, if any */ |
| if (m->middle) { |
| ceph_buffer_put(m->middle); |
| m->middle = NULL; |
| } |
| m->nr_pages = 0; |
| m->pages = NULL; |
| |
| if (m->pool) |
| ceph_msgpool_put(m->pool, m); |
| else |
| ceph_msg_kfree(m); |
| } |
| } |