[media] tda18271c2dd: Lots of coding-style fixes

Signed-off-by: Oliver Endriss <o.endriss@gmx.de>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
diff --git a/drivers/media/dvb/frontends/tda18271c2dd.c b/drivers/media/dvb/frontends/tda18271c2dd.c
index b4a23bf..a8afc22 100644
--- a/drivers/media/dvb/frontends/tda18271c2dd.c
+++ b/drivers/media/dvb/frontends/tda18271c2dd.c
@@ -64,8 +64,7 @@
 	u32   m_RF3_Default;
 };
 
-enum ERegister
-{
+enum ERegister {
 	ID = 0,
 	TM,
 	PL,
@@ -115,13 +114,13 @@
 };
 
 static int PowerScan(struct tda_state *state,
-		     u8 RFBand,u32 RF_in,
-		     u32 * pRF_Out, bool *pbcal);
+		     u8 RFBand, u32 RF_in,
+		     u32 *pRF_Out, bool *pbcal);
 
 static int i2c_readn(struct i2c_adapter *adapter, u8 adr, u8 *data, int len)
 {
 	struct i2c_msg msgs[1] = {{.addr = adr,  .flags = I2C_M_RD,
-				   .buf  = data, .len   = len}};
+				   .buf  = data, .len   = len} };
 	return (i2c_transfer(adapter, msgs, 1) == 1) ? 0 : -1;
 }
 
@@ -131,7 +130,7 @@
 			      .buf = data, .len = len};
 
 	if (i2c_transfer(adap, &msg, 1) != 1) {
-		printk("i2c_write error\n");
+		printk(KERN_ERR "i2c_write error\n");
 		return -1;
 	}
 	return 0;
@@ -147,7 +146,7 @@
 	return i2c_write(state->i2c, state->adr, data, nRegs+1);
 }
 
-static int WriteReg(struct tda_state *state, u8 SubAddr,u8 Reg)
+static int WriteReg(struct tda_state *state, u8 SubAddr, u8 Reg)
 {
 	u8 msg[2] = {SubAddr, Reg};
 
@@ -164,14 +163,14 @@
 	return i2c_readn(state->i2c, state->adr, Regs, NUM_REGS);
 }
 
-static int UpdateRegs(struct tda_state *state, u8 RegFrom,u8 RegTo)
+static int UpdateRegs(struct tda_state *state, u8 RegFrom, u8 RegTo)
 {
 	return WriteRegs(state, RegFrom,
 			 &state->m_Regs[RegFrom], RegTo-RegFrom+1);
 }
 static int UpdateReg(struct tda_state *state, u8 Reg)
 {
-	return WriteReg(state, Reg,state->m_Regs[Reg]);
+	return WriteReg(state, Reg, state->m_Regs[Reg]);
 }
 
 #include "tda18271c2dd_maps.h"
@@ -186,7 +185,7 @@
 	u32   ulIFLevelDVBC = 7;
 	u32   ulIFLevelDVBT = 6;
 	u32   ulXTOut = 0;
-	u32   ulStandbyMode = 0x06;    // Send in stdb, but leave osc on
+	u32   ulStandbyMode = 0x06;    /* Send in stdb, but leave osc on */
 	u32   ulSlave = 0;
 	u32   ulFMInput = 0;
 	u32   ulSettlingTime = 100;
@@ -199,7 +198,8 @@
 	state->m_IFLevelDVBT = (ulIFLevelDVBT & 0x07) << 2;
 
 	state->m_EP4 = 0x20;
-	if( ulXTOut != 0 ) state->m_EP4 |= 0x40;
+	if (ulXTOut != 0)
+		state->m_EP4 |= 0x40;
 
 	state->m_EP3_Standby = ((ulStandbyMode & 0x07) << 5) | 0x0F;
 	state->m_bMaster = (ulSlave == 0);
@@ -214,7 +214,7 @@
 {
 	int i = 0;
 
-	while ((Map[i].m_Frequency != 0) && (Frequency > Map[i].m_Frequency) )
+	while ((Map[i].m_Frequency != 0) && (Frequency > Map[i].m_Frequency))
 		i += 1;
 	if (Map[i].m_Frequency == 0)
 		return false;
@@ -228,7 +228,7 @@
 	int i = 0;
 
 	while ((Map[i].m_Frequency != 0) &&
-	       (Frequency > Map[i].m_Frequency) )
+	       (Frequency > Map[i].m_Frequency))
 		i += 1;
 	if (Map[i].m_Frequency == 0)
 		return false;
@@ -236,13 +236,13 @@
 	return true;
 }
 
-static bool SearchMap3(struct SMap2 Map[],u32 Frequency,
+static bool SearchMap3(struct SMap2 Map[], u32 Frequency,
 		       u8 *pParam1, u8 *pParam2)
 {
 	int i = 0;
 
 	while ((Map[i].m_Frequency != 0) &&
-	       (Frequency > Map[i].m_Frequency) )
+	       (Frequency > Map[i].m_Frequency))
 		i += 1;
 	if (Map[i].m_Frequency == 0)
 		return false;
@@ -271,22 +271,23 @@
 	do {
 		u8 Regs[16];
 		state->m_Regs[TM] |= 0x10;
-		CHK_ERROR(UpdateReg(state,TM));
-		CHK_ERROR(Read(state,Regs));
-		if( ( (Regs[TM] & 0x0F) == 0 && (Regs[TM] & 0x20) == 0x20 ) ||
-		    ( (Regs[TM] & 0x0F) == 8 && (Regs[TM] & 0x20) == 0x00 ) ) {
+		CHK_ERROR(UpdateReg(state, TM));
+		CHK_ERROR(Read(state, Regs));
+		if (((Regs[TM] & 0x0F) == 0 && (Regs[TM] & 0x20) == 0x20) ||
+		    ((Regs[TM] & 0x0F) == 8 && (Regs[TM] & 0x20) == 0x00)) {
 			state->m_Regs[TM] ^= 0x20;
-			CHK_ERROR(UpdateReg(state,TM));
+			CHK_ERROR(UpdateReg(state, TM));
 			msleep(10);
-			CHK_ERROR(Read(state,Regs));
+			CHK_ERROR(Read(state, Regs));
 		}
-		*pTM_Value = (Regs[TM] & 0x20 ) ? m_Thermometer_Map_2[Regs[TM] & 0x0F] :
-			m_Thermometer_Map_1[Regs[TM] & 0x0F] ;
-		state->m_Regs[TM] &= ~0x10;        // Thermometer off
-		CHK_ERROR(UpdateReg(state,TM));
-		state->m_Regs[EP4] &= ~0x03;       // CAL_mode = 0 ?????????
-		CHK_ERROR(UpdateReg(state,EP4));
-	} while(0);
+		*pTM_Value = (Regs[TM] & 0x20)
+				? m_Thermometer_Map_2[Regs[TM] & 0x0F]
+				: m_Thermometer_Map_1[Regs[TM] & 0x0F] ;
+		state->m_Regs[TM] &= ~0x10;        /* Thermometer off */
+		CHK_ERROR(UpdateReg(state, TM));
+		state->m_Regs[EP4] &= ~0x03;       /* CAL_mode = 0 ????????? */
+		CHK_ERROR(UpdateReg(state, EP4));
+	} while (0);
 
 	return status;
 }
@@ -295,16 +296,16 @@
 {
 	int status = 0;
 	do {
-		state->m_Regs[EB12] &= ~0x20;  // PD_AGC1_Det = 0
-		CHK_ERROR(UpdateReg(state,EB12));
-		state->m_Regs[EB18] &= ~0x83;  // AGC1_loop_off = 0, AGC1_Gain = 6 dB
-		CHK_ERROR(UpdateReg(state,EB18));
-		state->m_Regs[EB21] |= 0x03; // AGC2_Gain = -6 dB
+		state->m_Regs[EB12] &= ~0x20;  /* PD_AGC1_Det = 0 */
+		CHK_ERROR(UpdateReg(state, EB12));
+		state->m_Regs[EB18] &= ~0x83;  /* AGC1_loop_off = 0, AGC1_Gain = 6 dB */
+		CHK_ERROR(UpdateReg(state, EB18));
+		state->m_Regs[EB21] |= 0x03; /* AGC2_Gain = -6 dB */
 		state->m_Regs[EP3] = state->m_EP3_Standby;
-		CHK_ERROR(UpdateReg(state,EP3));
-		state->m_Regs[EB23] &= ~0x06; // ForceLP_Fc2_En = 0, LP_Fc[2] = 0
-		CHK_ERROR(UpdateRegs(state,EB21,EB23));
-	} while(0);
+		CHK_ERROR(UpdateReg(state, EP3));
+		state->m_Regs[EB23] &= ~0x06; /* ForceLP_Fc2_En = 0, LP_Fc[2] = 0 */
+		CHK_ERROR(UpdateRegs(state, EB21, EB23));
+	} while (0);
 	return status;
 }
 
@@ -316,9 +317,8 @@
 	u64 OscFreq;
 	u32 MainDiv;
 
-	if (!SearchMap3(m_Main_PLL_Map, freq, &PostDiv, &Div)) {
+	if (!SearchMap3(m_Main_PLL_Map, freq, &PostDiv, &Div))
 		return -EINVAL;
-	}
 
 	OscFreq = (u64) freq * (u64) Div;
 	OscFreq *= (u64) 16384;
@@ -328,133 +328,122 @@
 	state->m_Regs[MPD] = PostDiv & 0x77;
 	state->m_Regs[MD1] = ((MainDiv >> 16) & 0x7F);
 	state->m_Regs[MD2] = ((MainDiv >>  8) & 0xFF);
-	state->m_Regs[MD3] = ((MainDiv      ) & 0xFF);
+	state->m_Regs[MD3] = (MainDiv & 0xFF);
 
 	return UpdateRegs(state, MPD, MD3);
 }
 
 static int CalcCalPLL(struct tda_state *state, u32 freq)
 {
-	//KdPrintEx((MSG_TRACE " - " __FUNCTION__ "(%d)\n",freq));
-
 	u8 PostDiv;
 	u8 Div;
 	u64 OscFreq;
 	u32 CalDiv;
 
-	if( !SearchMap3(m_Cal_PLL_Map,freq,&PostDiv,&Div) )
-	{
+	if (!SearchMap3(m_Cal_PLL_Map, freq, &PostDiv, &Div))
 		return -EINVAL;
-	}
 
 	OscFreq = (u64)freq * (u64)Div;
-	//CalDiv = u32( OscFreq * 16384 / 16000000 );
-	OscFreq*=(u64)16384;
+	/* CalDiv = u32( OscFreq * 16384 / 16000000 ); */
+	OscFreq *= (u64)16384;
 	do_div(OscFreq, (u64)16000000);
-	CalDiv=OscFreq;
+	CalDiv = OscFreq;
 
 	state->m_Regs[CPD] = PostDiv;
 	state->m_Regs[CD1] = ((CalDiv >> 16) & 0xFF);
 	state->m_Regs[CD2] = ((CalDiv >>  8) & 0xFF);
-	state->m_Regs[CD3] = ((CalDiv      ) & 0xFF);
+	state->m_Regs[CD3] = (CalDiv & 0xFF);
 
-	return UpdateRegs(state,CPD,CD3);
+	return UpdateRegs(state, CPD, CD3);
 }
 
 static int CalibrateRF(struct tda_state *state,
-		       u8 RFBand,u32 freq, s32 * pCprog)
+		       u8 RFBand, u32 freq, s32 *pCprog)
 {
-	//KdPrintEx((MSG_TRACE " - " __FUNCTION__ " ID = %02x\n",state->m_Regs[ID]));
 	int status = 0;
 	u8 Regs[NUM_REGS];
 	do {
-		u8 BP_Filter=0;
-		u8 GainTaper=0;
-		u8 RFC_K=0;
-		u8 RFC_M=0;
+		u8 BP_Filter = 0;
+		u8 GainTaper = 0;
+		u8 RFC_K = 0;
+		u8 RFC_M = 0;
 
-		state->m_Regs[EP4] &= ~0x03; // CAL_mode = 0
-		CHK_ERROR(UpdateReg(state,EP4));
-		state->m_Regs[EB18] |= 0x03;  // AGC1_Gain = 3
-		CHK_ERROR(UpdateReg(state,EB18));
+		state->m_Regs[EP4] &= ~0x03; /* CAL_mode = 0 */
+		CHK_ERROR(UpdateReg(state, EP4));
+		state->m_Regs[EB18] |= 0x03;  /* AGC1_Gain = 3 */
+		CHK_ERROR(UpdateReg(state, EB18));
 
-		// Switching off LT (as datasheet says) causes calibration on C1 to fail
-		// (Readout of Cprog is allways 255)
-		if( state->m_Regs[ID] != 0x83 )    // C1: ID == 83, C2: ID == 84
-		{
-			state->m_Regs[EP3] |= 0x40; // SM_LT = 1
-		}
+		/* Switching off LT (as datasheet says) causes calibration on C1 to fail */
+		/* (Readout of Cprog is allways 255) */
+		if (state->m_Regs[ID] != 0x83)    /* C1: ID == 83, C2: ID == 84 */
+			state->m_Regs[EP3] |= 0x40; /* SM_LT = 1 */
 
-		if( ! ( SearchMap1(m_BP_Filter_Map,freq,&BP_Filter) &&
-			SearchMap1(m_GainTaper_Map,freq,&GainTaper) &&
-			SearchMap3(m_KM_Map,freq,&RFC_K,&RFC_M)) )
-		{
+		if (!(SearchMap1(m_BP_Filter_Map, freq, &BP_Filter) &&
+			SearchMap1(m_GainTaper_Map, freq, &GainTaper) &&
+			SearchMap3(m_KM_Map, freq, &RFC_K, &RFC_M)))
 			return -EINVAL;
-		}
 
 		state->m_Regs[EP1] = (state->m_Regs[EP1] & ~0x07) | BP_Filter;
 		state->m_Regs[EP2] = (RFBand << 5) | GainTaper;
 
 		state->m_Regs[EB13] = (state->m_Regs[EB13] & ~0x7C) | (RFC_K << 4) | (RFC_M << 2);
 
-		CHK_ERROR(UpdateRegs(state,EP1,EP3));
-		CHK_ERROR(UpdateReg(state,EB13));
+		CHK_ERROR(UpdateRegs(state, EP1, EP3));
+		CHK_ERROR(UpdateReg(state, EB13));
 
-		state->m_Regs[EB4] |= 0x20;    // LO_ForceSrce = 1
-		CHK_ERROR(UpdateReg(state,EB4));
+		state->m_Regs[EB4] |= 0x20;    /* LO_ForceSrce = 1 */
+		CHK_ERROR(UpdateReg(state, EB4));
 
-		state->m_Regs[EB7] |= 0x20;    // CAL_ForceSrce = 1
-		CHK_ERROR(UpdateReg(state,EB7));
+		state->m_Regs[EB7] |= 0x20;    /* CAL_ForceSrce = 1 */
+		CHK_ERROR(UpdateReg(state, EB7));
 
-		state->m_Regs[EB14] = 0; // RFC_Cprog = 0
-		CHK_ERROR(UpdateReg(state,EB14));
+		state->m_Regs[EB14] = 0; /* RFC_Cprog = 0 */
+		CHK_ERROR(UpdateReg(state, EB14));
 
-		state->m_Regs[EB20] &= ~0x20;  // ForceLock = 0;
-		CHK_ERROR(UpdateReg(state,EB20));
+		state->m_Regs[EB20] &= ~0x20;  /* ForceLock = 0; */
+		CHK_ERROR(UpdateReg(state, EB20));
 
-		state->m_Regs[EP4] |= 0x03;  // CAL_Mode = 3
-		CHK_ERROR(UpdateRegs(state,EP4,EP5));
+		state->m_Regs[EP4] |= 0x03;  /* CAL_Mode = 3 */
+		CHK_ERROR(UpdateRegs(state, EP4, EP5));
 
-		CHK_ERROR(CalcCalPLL(state,freq));
-		CHK_ERROR(CalcMainPLL(state,freq + 1000000));
+		CHK_ERROR(CalcCalPLL(state, freq));
+		CHK_ERROR(CalcMainPLL(state, freq + 1000000));
 
 		msleep(5);
-		CHK_ERROR(UpdateReg(state,EP2));
-		CHK_ERROR(UpdateReg(state,EP1));
-		CHK_ERROR(UpdateReg(state,EP2));
-		CHK_ERROR(UpdateReg(state,EP1));
+		CHK_ERROR(UpdateReg(state, EP2));
+		CHK_ERROR(UpdateReg(state, EP1));
+		CHK_ERROR(UpdateReg(state, EP2));
+		CHK_ERROR(UpdateReg(state, EP1));
 
-		state->m_Regs[EB4] &= ~0x20;    // LO_ForceSrce = 0
-		CHK_ERROR(UpdateReg(state,EB4));
+		state->m_Regs[EB4] &= ~0x20;    /* LO_ForceSrce = 0 */
+		CHK_ERROR(UpdateReg(state, EB4));
 
-		state->m_Regs[EB7] &= ~0x20;    // CAL_ForceSrce = 0
-		CHK_ERROR(UpdateReg(state,EB7));
+		state->m_Regs[EB7] &= ~0x20;    /* CAL_ForceSrce = 0 */
+		CHK_ERROR(UpdateReg(state, EB7));
 		msleep(10);
 
-		state->m_Regs[EB20] |= 0x20;  // ForceLock = 1;
-		CHK_ERROR(UpdateReg(state,EB20));
+		state->m_Regs[EB20] |= 0x20;  /* ForceLock = 1; */
+		CHK_ERROR(UpdateReg(state, EB20));
 		msleep(60);
 
-		state->m_Regs[EP4] &= ~0x03;  // CAL_Mode = 0
-		state->m_Regs[EP3] &= ~0x40; // SM_LT = 0
-		state->m_Regs[EB18] &= ~0x03;  // AGC1_Gain = 0
-		CHK_ERROR(UpdateReg(state,EB18));
-		CHK_ERROR(UpdateRegs(state,EP3,EP4));
-		CHK_ERROR(UpdateReg(state,EP1));
+		state->m_Regs[EP4] &= ~0x03;  /* CAL_Mode = 0 */
+		state->m_Regs[EP3] &= ~0x40; /* SM_LT = 0 */
+		state->m_Regs[EB18] &= ~0x03;  /* AGC1_Gain = 0 */
+		CHK_ERROR(UpdateReg(state, EB18));
+		CHK_ERROR(UpdateRegs(state, EP3, EP4));
+		CHK_ERROR(UpdateReg(state, EP1));
 
-		CHK_ERROR(ReadExtented(state,Regs));
+		CHK_ERROR(ReadExtented(state, Regs));
 
 		*pCprog = Regs[EB14];
-		//KdPrintEx((MSG_TRACE " - " __FUNCTION__ " Cprog = %d\n",Regs[EB14]));
 
-	} while(0);
+	} while (0);
 	return status;
 }
 
 static int RFTrackingFiltersInit(struct tda_state *state,
 				 u8 RFBand)
 {
-	//KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
 	int status = 0;
 
 	u32   RF1 = m_RF_Band_Map[RFBand].m_RF1_Default;
@@ -475,171 +464,161 @@
 	state->m_RF_B2[RFBand] = 0;
 
 	do {
-		CHK_ERROR(PowerScan(state,RFBand,RF1,&RF1,&bcal));
-		if( bcal ) {
-			CHK_ERROR(CalibrateRF(state,RFBand,RF1,&Cprog_cal1));
+		CHK_ERROR(PowerScan(state, RFBand, RF1, &RF1, &bcal));
+		if (bcal) {
+			CHK_ERROR(CalibrateRF(state, RFBand, RF1, &Cprog_cal1));
 		}
-		SearchMap2(m_RF_Cal_Map,RF1,&Cprog_table1);
-		if( !bcal ) {
+		SearchMap2(m_RF_Cal_Map, RF1, &Cprog_table1);
+		if (!bcal)
 			Cprog_cal1 = Cprog_table1;
-		}
 		state->m_RF_B1[RFBand] = Cprog_cal1 - Cprog_table1;
-		//state->m_RF_A1[RF_Band] = ????
+		/* state->m_RF_A1[RF_Band] = ???? */
 
-		if( RF2 == 0 ) break;
+		if (RF2 == 0)
+			break;
 
-		CHK_ERROR(PowerScan(state,RFBand,RF2,&RF2,&bcal));
-		if( bcal ) {
-			CHK_ERROR(CalibrateRF(state,RFBand,RF2,&Cprog_cal2));
+		CHK_ERROR(PowerScan(state, RFBand, RF2, &RF2, &bcal));
+		if (bcal) {
+			CHK_ERROR(CalibrateRF(state, RFBand, RF2, &Cprog_cal2));
 		}
-		SearchMap2(m_RF_Cal_Map,RF2,&Cprog_table2);
-		if( !bcal )
-		{
+		SearchMap2(m_RF_Cal_Map, RF2, &Cprog_table2);
+		if (!bcal)
 			Cprog_cal2 = Cprog_table2;
-		}
 
 		state->m_RF_A1[RFBand] =
 			(Cprog_cal2 - Cprog_table2 - Cprog_cal1 + Cprog_table1) /
-			((s32)(RF2)-(s32)(RF1));
+			((s32)(RF2) - (s32)(RF1));
 
-		if( RF3 == 0 ) break;
+		if (RF3 == 0)
+			break;
 
-		CHK_ERROR(PowerScan(state,RFBand,RF3,&RF3,&bcal));
-		if( bcal )
-		{
-			CHK_ERROR(CalibrateRF(state,RFBand,RF3,&Cprog_cal3));
+		CHK_ERROR(PowerScan(state, RFBand, RF3, &RF3, &bcal));
+		if (bcal) {
+			CHK_ERROR(CalibrateRF(state, RFBand, RF3, &Cprog_cal3));
 		}
-		SearchMap2(m_RF_Cal_Map,RF3,&Cprog_table3);
-		if( !bcal )
-		{
+		SearchMap2(m_RF_Cal_Map, RF3, &Cprog_table3);
+		if (!bcal)
 			Cprog_cal3 = Cprog_table3;
-		}
-		state->m_RF_A2[RFBand] = (Cprog_cal3 - Cprog_table3 - Cprog_cal2 + Cprog_table2) / ((s32)(RF3)-(s32)(RF2));
+		state->m_RF_A2[RFBand] = (Cprog_cal3 - Cprog_table3 - Cprog_cal2 + Cprog_table2) / ((s32)(RF3) - (s32)(RF2));
 		state->m_RF_B2[RFBand] = Cprog_cal2 - Cprog_table2;
 
-	} while(0);
+	} while (0);
 
 	state->m_RF1[RFBand] = RF1;
 	state->m_RF2[RFBand] = RF2;
 	state->m_RF3[RFBand] = RF3;
 
 #if 0
-	printk("%s %d RF1 = %d A1 = %d B1 = %d RF2 = %d A2 = %d B2 = %d RF3 = %d\n", __FUNCTION__,
-	       RFBand,RF1,state->m_RF_A1[RFBand],state->m_RF_B1[RFBand],RF2,
-	       state->m_RF_A2[RFBand],state->m_RF_B2[RFBand],RF3);
+	printk(KERN_ERR "%s %d RF1 = %d A1 = %d B1 = %d RF2 = %d A2 = %d B2 = %d RF3 = %d\n", __func__,
+	       RFBand, RF1, state->m_RF_A1[RFBand], state->m_RF_B1[RFBand], RF2,
+	       state->m_RF_A2[RFBand], state->m_RF_B2[RFBand], RF3);
 #endif
 
 	return status;
 }
 
 static int PowerScan(struct tda_state *state,
-		     u8 RFBand,u32 RF_in, u32 * pRF_Out, bool *pbcal)
+		     u8 RFBand, u32 RF_in, u32 *pRF_Out, bool *pbcal)
 {
-    //KdPrintEx((MSG_TRACE " - " __FUNCTION__ "(%d,%d)\n",RFBand,RF_in));
-    int status = 0;
-    do {
-	    u8   Gain_Taper=0;
-	    s32  RFC_Cprog=0;
-	    u8   CID_Target=0;
-	    u8   CountLimit=0;
-	    u32  freq_MainPLL;
-	    u8   Regs[NUM_REGS];
-	    u8   CID_Gain;
-	    s32  Count = 0;
-	    int  sign  = 1;
-	    bool wait = false;
+	int status = 0;
+	do {
+		u8   Gain_Taper = 0;
+		s32  RFC_Cprog = 0;
+		u8   CID_Target = 0;
+		u8   CountLimit = 0;
+		u32  freq_MainPLL;
+		u8   Regs[NUM_REGS];
+		u8   CID_Gain;
+		s32  Count = 0;
+		int  sign  = 1;
+		bool wait = false;
 
-	    if( ! (SearchMap2(m_RF_Cal_Map,RF_in,&RFC_Cprog) &&
-		   SearchMap1(m_GainTaper_Map,RF_in,&Gain_Taper) &&
-		   SearchMap3(m_CID_Target_Map,RF_in,&CID_Target,&CountLimit) )) {
-		    printk("%s Search map failed\n", __FUNCTION__);
-		    return -EINVAL;
-	    }
+		if (!(SearchMap2(m_RF_Cal_Map, RF_in, &RFC_Cprog) &&
+		      SearchMap1(m_GainTaper_Map, RF_in, &Gain_Taper) &&
+		      SearchMap3(m_CID_Target_Map, RF_in, &CID_Target, &CountLimit))) {
 
-	    state->m_Regs[EP2] = (RFBand << 5) | Gain_Taper;
-	    state->m_Regs[EB14] = (RFC_Cprog);
-	    CHK_ERROR(UpdateReg(state,EP2));
-	    CHK_ERROR(UpdateReg(state,EB14));
+			printk(KERN_ERR "%s Search map failed\n", __func__);
+			return -EINVAL;
+		}
 
-	    freq_MainPLL = RF_in + 1000000;
-	    CHK_ERROR(CalcMainPLL(state,freq_MainPLL));
-	    msleep(5);
-	    state->m_Regs[EP4] = (state->m_Regs[EP4] & ~0x03) | 1;    // CAL_mode = 1
-	    CHK_ERROR(UpdateReg(state,EP4));
-	    CHK_ERROR(UpdateReg(state,EP2));  // Launch power measurement
-	    CHK_ERROR(ReadExtented(state,Regs));
-	    CID_Gain = Regs[EB10] & 0x3F;
-	    state->m_Regs[ID] = Regs[ID];  // Chip version, (needed for C1 workarround in CalibrateRF )
+		state->m_Regs[EP2] = (RFBand << 5) | Gain_Taper;
+		state->m_Regs[EB14] = (RFC_Cprog);
+		CHK_ERROR(UpdateReg(state, EP2));
+		CHK_ERROR(UpdateReg(state, EB14));
 
-	    *pRF_Out = RF_in;
+		freq_MainPLL = RF_in + 1000000;
+		CHK_ERROR(CalcMainPLL(state, freq_MainPLL));
+		msleep(5);
+		state->m_Regs[EP4] = (state->m_Regs[EP4] & ~0x03) | 1;    /* CAL_mode = 1 */
+		CHK_ERROR(UpdateReg(state, EP4));
+		CHK_ERROR(UpdateReg(state, EP2));  /* Launch power measurement */
+		CHK_ERROR(ReadExtented(state, Regs));
+		CID_Gain = Regs[EB10] & 0x3F;
+		state->m_Regs[ID] = Regs[ID];  /* Chip version, (needed for C1 workarround in CalibrateRF) */
 
-	    while( CID_Gain < CID_Target ) {
-		    freq_MainPLL = RF_in + sign * Count + 1000000;
-		    CHK_ERROR(CalcMainPLL(state,freq_MainPLL));
-		    msleep( wait ? 5 : 1 );
-		    wait = false;
-		    CHK_ERROR(UpdateReg(state,EP2));  // Launch power measurement
-		    CHK_ERROR(ReadExtented(state,Regs));
-		    CID_Gain = Regs[EB10] & 0x3F;
-		    Count += 200000;
+		*pRF_Out = RF_in;
 
-		    if( Count < CountLimit * 100000 ) continue;
-		    if( sign < 0 ) break;
+		while (CID_Gain < CID_Target) {
+			freq_MainPLL = RF_in + sign * Count + 1000000;
+			CHK_ERROR(CalcMainPLL(state, freq_MainPLL));
+			msleep(wait ? 5 : 1);
+			wait = false;
+			CHK_ERROR(UpdateReg(state, EP2));  /* Launch power measurement */
+			CHK_ERROR(ReadExtented(state, Regs));
+			CID_Gain = Regs[EB10] & 0x3F;
+			Count += 200000;
 
-		    sign = -sign;
-		    Count = 200000;
-		    wait = true;
-	    }
-	    CHK_ERROR(status);
-	    if( CID_Gain >= CID_Target )
-	    {
-		    *pbcal = true;
-		    *pRF_Out = freq_MainPLL - 1000000;
-	    }
-	    else
-	    {
-		    *pbcal = false;
-	    }
-    } while(0);
-    //KdPrintEx((MSG_TRACE " - " __FUNCTION__ " Found = %d RF = %d\n",*pbcal,*pRF_Out));
-    return status;
+			if (Count < CountLimit * 100000)
+				continue;
+			if (sign < 0)
+				break;
+
+			sign = -sign;
+			Count = 200000;
+			wait = true;
+		}
+		CHK_ERROR(status);
+		if (CID_Gain >= CID_Target) {
+			*pbcal = true;
+			*pRF_Out = freq_MainPLL - 1000000;
+		} else
+			*pbcal = false;
+	} while (0);
+
+	return status;
 }
 
 static int PowerScanInit(struct tda_state *state)
 {
-	//KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
 	int status = 0;
-	do
-	{
+	do {
 		state->m_Regs[EP3] = (state->m_Regs[EP3] & ~0x1F) | 0x12;
-		state->m_Regs[EP4] = (state->m_Regs[EP4] & ~0x1F); // If level = 0, Cal mode = 0
-		CHK_ERROR(UpdateRegs(state,EP3,EP4));
-		state->m_Regs[EB18] = (state->m_Regs[EB18] & ~0x03 ); // AGC 1 Gain = 0
-		CHK_ERROR(UpdateReg(state,EB18));
-		state->m_Regs[EB21] = (state->m_Regs[EB21] & ~0x03 ); // AGC 2 Gain = 0 (Datasheet = 3)
-		state->m_Regs[EB23] = (state->m_Regs[EB23] | 0x06 ); // ForceLP_Fc2_En = 1, LPFc[2] = 1
-		CHK_ERROR(UpdateRegs(state,EB21,EB23));
-	} while(0);
+		state->m_Regs[EP4] = (state->m_Regs[EP4] & ~0x1F); /* If level = 0, Cal mode = 0 */
+		CHK_ERROR(UpdateRegs(state, EP3, EP4));
+		state->m_Regs[EB18] = (state->m_Regs[EB18] & ~0x03); /* AGC 1 Gain = 0 */
+		CHK_ERROR(UpdateReg(state, EB18));
+		state->m_Regs[EB21] = (state->m_Regs[EB21] & ~0x03); /* AGC 2 Gain = 0 (Datasheet = 3) */
+		state->m_Regs[EB23] = (state->m_Regs[EB23] | 0x06); /* ForceLP_Fc2_En = 1, LPFc[2] = 1 */
+		CHK_ERROR(UpdateRegs(state, EB21, EB23));
+	} while (0);
 	return status;
 }
 
 static int CalcRFFilterCurve(struct tda_state *state)
 {
-	//KdPrintEx((MSG_TRACE " - " __FUNCTION__ "\n"));
 	int status = 0;
-	do
-	{
-		msleep(200);      // Temperature stabilisation
+	do {
+		msleep(200);      /* Temperature stabilisation */
 		CHK_ERROR(PowerScanInit(state));
-		CHK_ERROR(RFTrackingFiltersInit(state,0));
-		CHK_ERROR(RFTrackingFiltersInit(state,1));
-		CHK_ERROR(RFTrackingFiltersInit(state,2));
-		CHK_ERROR(RFTrackingFiltersInit(state,3));
-		CHK_ERROR(RFTrackingFiltersInit(state,4));
-		CHK_ERROR(RFTrackingFiltersInit(state,5));
-		CHK_ERROR(RFTrackingFiltersInit(state,6));
-		CHK_ERROR(ThermometerRead(state,&state->m_TMValue_RFCal)); // also switches off Cal mode !!!
-	} while(0);
+		CHK_ERROR(RFTrackingFiltersInit(state, 0));
+		CHK_ERROR(RFTrackingFiltersInit(state, 1));
+		CHK_ERROR(RFTrackingFiltersInit(state, 2));
+		CHK_ERROR(RFTrackingFiltersInit(state, 3));
+		CHK_ERROR(RFTrackingFiltersInit(state, 4));
+		CHK_ERROR(RFTrackingFiltersInit(state, 5));
+		CHK_ERROR(RFTrackingFiltersInit(state, 6));
+		CHK_ERROR(ThermometerRead(state, &state->m_TMValue_RFCal)); /* also switches off Cal mode !!! */
+	} while (0);
 
 	return status;
 }
@@ -647,33 +626,33 @@
 static int FixedContentsI2CUpdate(struct tda_state *state)
 {
 	static u8 InitRegs[] = {
-		0x08,0x80,0xC6,
-		0xDF,0x16,0x60,0x80,
-		0x80,0x00,0x00,0x00,
-		0x00,0x00,0x00,0x00,
-		0xFC,0x01,0x84,0x41,
-		0x01,0x84,0x40,0x07,
-		0x00,0x00,0x96,0x3F,
-		0xC1,0x00,0x8F,0x00,
-		0x00,0x8C,0x00,0x20,
-		0xB3,0x48,0xB0,
+		0x08, 0x80, 0xC6,
+		0xDF, 0x16, 0x60, 0x80,
+		0x80, 0x00, 0x00, 0x00,
+		0x00, 0x00, 0x00, 0x00,
+		0xFC, 0x01, 0x84, 0x41,
+		0x01, 0x84, 0x40, 0x07,
+		0x00, 0x00, 0x96, 0x3F,
+		0xC1, 0x00, 0x8F, 0x00,
+		0x00, 0x8C, 0x00, 0x20,
+		0xB3, 0x48, 0xB0,
 	};
 	int status = 0;
-	memcpy(&state->m_Regs[TM],InitRegs,EB23-TM+1);
+	memcpy(&state->m_Regs[TM], InitRegs, EB23 - TM + 1);
 	do {
-		CHK_ERROR(UpdateRegs(state,TM,EB23));
+		CHK_ERROR(UpdateRegs(state, TM, EB23));
 
-		// AGC1 gain setup
+		/* AGC1 gain setup */
 		state->m_Regs[EB17] = 0x00;
-		CHK_ERROR(UpdateReg(state,EB17));
+		CHK_ERROR(UpdateReg(state, EB17));
 		state->m_Regs[EB17] = 0x03;
-		CHK_ERROR(UpdateReg(state,EB17));
+		CHK_ERROR(UpdateReg(state, EB17));
 		state->m_Regs[EB17] = 0x43;
-		CHK_ERROR(UpdateReg(state,EB17));
+		CHK_ERROR(UpdateReg(state, EB17));
 		state->m_Regs[EB17] = 0x4C;
-		CHK_ERROR(UpdateReg(state,EB17));
+		CHK_ERROR(UpdateReg(state, EB17));
 
-		// IRC Cal Low band
+		/* IRC Cal Low band */
 		state->m_Regs[EP3] = 0x1F;
 		state->m_Regs[EP4] = 0x66;
 		state->m_Regs[EP5] = 0x81;
@@ -685,75 +664,77 @@
 		state->m_Regs[MD1] = 0x77;
 		state->m_Regs[MD2] = 0x08;
 		state->m_Regs[MD3] = 0x00;
-		CHK_ERROR(UpdateRegs(state,EP2,MD3)); // diff between sw and datasheet (ep3-md3)
+		CHK_ERROR(UpdateRegs(state, EP2, MD3)); /* diff between sw and datasheet (ep3-md3) */
 
-		//state->m_Regs[EB4] = 0x61;          // missing in sw
-		//CHK_ERROR(UpdateReg(state,EB4));
-		//msleep(1);
-		//state->m_Regs[EB4] = 0x41;
-		//CHK_ERROR(UpdateReg(state,EB4));
+#if 0
+		state->m_Regs[EB4] = 0x61;          /* missing in sw */
+		CHK_ERROR(UpdateReg(state, EB4));
+		msleep(1);
+		state->m_Regs[EB4] = 0x41;
+		CHK_ERROR(UpdateReg(state, EB4));
+#endif
 
 		msleep(5);
-		CHK_ERROR(UpdateReg(state,EP1));
+		CHK_ERROR(UpdateReg(state, EP1));
 		msleep(5);
 
 		state->m_Regs[EP5] = 0x85;
 		state->m_Regs[CPD] = 0xCB;
 		state->m_Regs[CD1] = 0x66;
 		state->m_Regs[CD2] = 0x70;
-		CHK_ERROR(UpdateRegs(state,EP3,CD3));
+		CHK_ERROR(UpdateRegs(state, EP3, CD3));
 		msleep(5);
-		CHK_ERROR(UpdateReg(state,EP2));
+		CHK_ERROR(UpdateReg(state, EP2));
 		msleep(30);
 
-		// IRC Cal mid band
+		/* IRC Cal mid band */
 		state->m_Regs[EP5] = 0x82;
 		state->m_Regs[CPD] = 0xA8;
 		state->m_Regs[CD2] = 0x00;
-		state->m_Regs[MPD] = 0xA1; // Datasheet = 0xA9
+		state->m_Regs[MPD] = 0xA1; /* Datasheet = 0xA9 */
 		state->m_Regs[MD1] = 0x73;
 		state->m_Regs[MD2] = 0x1A;
-		CHK_ERROR(UpdateRegs(state,EP3,MD3));
+		CHK_ERROR(UpdateRegs(state, EP3, MD3));
 
 		msleep(5);
-		CHK_ERROR(UpdateReg(state,EP1));
+		CHK_ERROR(UpdateReg(state, EP1));
 		msleep(5);
 
 		state->m_Regs[EP5] = 0x86;
 		state->m_Regs[CPD] = 0xA8;
 		state->m_Regs[CD1] = 0x66;
 		state->m_Regs[CD2] = 0xA0;
-		CHK_ERROR(UpdateRegs(state,EP3,CD3));
+		CHK_ERROR(UpdateRegs(state, EP3, CD3));
 		msleep(5);
-		CHK_ERROR(UpdateReg(state,EP2));
+		CHK_ERROR(UpdateReg(state, EP2));
 		msleep(30);
 
-		// IRC Cal high band
+		/* IRC Cal high band */
 		state->m_Regs[EP5] = 0x83;
 		state->m_Regs[CPD] = 0x98;
 		state->m_Regs[CD1] = 0x65;
 		state->m_Regs[CD2] = 0x00;
-		state->m_Regs[MPD] = 0x91;  // Datasheet = 0x91
+		state->m_Regs[MPD] = 0x91;  /* Datasheet = 0x91 */
 		state->m_Regs[MD1] = 0x71;
 		state->m_Regs[MD2] = 0xCD;
-		CHK_ERROR(UpdateRegs(state,EP3,MD3));
+		CHK_ERROR(UpdateRegs(state, EP3, MD3));
 		msleep(5);
-		CHK_ERROR(UpdateReg(state,EP1));
+		CHK_ERROR(UpdateReg(state, EP1));
 		msleep(5);
 		state->m_Regs[EP5] = 0x87;
 		state->m_Regs[CD1] = 0x65;
 		state->m_Regs[CD2] = 0x50;
-		CHK_ERROR(UpdateRegs(state,EP3,CD3));
+		CHK_ERROR(UpdateRegs(state, EP3, CD3));
 		msleep(5);
-		CHK_ERROR(UpdateReg(state,EP2));
+		CHK_ERROR(UpdateReg(state, EP2));
 		msleep(30);
 
-		// Back to normal
+		/* Back to normal */
 		state->m_Regs[EP4] = 0x64;
-		CHK_ERROR(UpdateReg(state,EP4));
-		CHK_ERROR(UpdateReg(state,EP1));
+		CHK_ERROR(UpdateReg(state, EP4));
+		CHK_ERROR(UpdateReg(state, EP1));
 
-	} while(0);
+	} while (0);
 	return status;
 }
 
@@ -761,13 +742,12 @@
 {
 	int status = 0;
 
-	do
-	{
+	do {
 		CHK_ERROR(FixedContentsI2CUpdate(state));
 		CHK_ERROR(CalcRFFilterCurve(state));
 		CHK_ERROR(StandBy(state));
-		//m_bInitDone = true;
-	} while(0);
+		/* m_bInitDone = true; */
+	} while (0);
 	return status;
 };
 
@@ -779,15 +759,13 @@
 	u8 RFBand;
 	u8 dCoverdT;
 
-	if( !SearchMap2(m_RF_Cal_Map,Frequency,&Cprog_table) ||
-	    !SearchMap4(m_RF_Band_Map,Frequency,&RFBand) ||
-	    !SearchMap1(m_RF_Cal_DC_Over_DT_Map,Frequency,&dCoverdT) )
-	{
-		return -EINVAL;
-	}
+	if (!SearchMap2(m_RF_Cal_Map, Frequency, &Cprog_table) ||
+	    !SearchMap4(m_RF_Band_Map, Frequency, &RFBand) ||
+	    !SearchMap1(m_RF_Cal_DC_Over_DT_Map, Frequency, &dCoverdT))
 
-	do
-	{
+		return -EINVAL;
+
+	do {
 		u8 TMValue_Current;
 		u32   RF1 = state->m_RF1[RFBand];
 		u32   RF2 = state->m_RF1[RFBand];
@@ -799,35 +777,33 @@
 		s32 Capprox = 0;
 		int TComp;
 
-		state->m_Regs[EP3] &= ~0xE0;  // Power up
-		CHK_ERROR(UpdateReg(state,EP3));
+		state->m_Regs[EP3] &= ~0xE0;  /* Power up */
+		CHK_ERROR(UpdateReg(state, EP3));
 
-		CHK_ERROR(ThermometerRead(state,&TMValue_Current));
+		CHK_ERROR(ThermometerRead(state, &TMValue_Current));
 
-		if( RF3 == 0 || Frequency < RF2 )
-		{
+		if (RF3 == 0 || Frequency < RF2)
 			Capprox = RF_A1 * ((s32)(Frequency) - (s32)(RF1)) + RF_B1 + Cprog_table;
-		}
 		else
-		{
 			Capprox = RF_A2 * ((s32)(Frequency) - (s32)(RF2)) + RF_B2 + Cprog_table;
-		}
 
 		TComp = (int)(dCoverdT) * ((int)(TMValue_Current) - (int)(state->m_TMValue_RFCal))/1000;
 
 		Capprox += TComp;
 
-		if( Capprox < 0 ) Capprox = 0;
-		else if( Capprox > 255 ) Capprox = 255;
+		if (Capprox < 0)
+			Capprox = 0;
+		else if (Capprox > 255)
+			Capprox = 255;
 
 
-		// TODO Temperature compensation. There is defenitely a scale factor
-		//      missing in the datasheet, so leave it out for now.
-		state->m_Regs[EB14] = (Capprox );
+		/* TODO Temperature compensation. There is defenitely a scale factor */
+		/*      missing in the datasheet, so leave it out for now.           */
+		state->m_Regs[EB14] = Capprox;
 
-		CHK_ERROR(UpdateReg(state,EB14));
+		CHK_ERROR(UpdateReg(state, EB14));
 
-	} while(0);
+	} while (0);
 	return status;
 }
 
@@ -843,94 +819,96 @@
 	u8 GainTaper = 0;
 	u8 IR_Meas;
 
-	state->IF=IntermediateFrequency;
-	//printk("%s Freq = %d Standard = %d IF = %d\n",__FUNCTION__,Frequency,Standard,IntermediateFrequency);
-	// get values from tables
+	state->IF = IntermediateFrequency;
+	/* printk("%s Freq = %d Standard = %d IF = %d\n", __func__, Frequency, Standard, IntermediateFrequency); */
+	/* get values from tables */
 
-	if(! ( SearchMap1(m_BP_Filter_Map,Frequency,&BP_Filter) &&
-	       SearchMap1(m_GainTaper_Map,Frequency,&GainTaper) &&
-	       SearchMap1(m_IR_Meas_Map,Frequency,&IR_Meas) &&
-	       SearchMap4(m_RF_Band_Map,Frequency,&RF_Band) ) )
-	{
-		printk("%s SearchMap failed\n", __FUNCTION__);
+	if (!(SearchMap1(m_BP_Filter_Map, Frequency, &BP_Filter) &&
+	       SearchMap1(m_GainTaper_Map, Frequency, &GainTaper) &&
+	       SearchMap1(m_IR_Meas_Map, Frequency, &IR_Meas) &&
+	       SearchMap4(m_RF_Band_Map, Frequency, &RF_Band))) {
+
+		printk(KERN_ERR "%s SearchMap failed\n", __func__);
 		return -EINVAL;
 	}
 
-	do
-	{
+	do {
 		state->m_Regs[EP3] = (state->m_Regs[EP3] & ~0x1F) | m_StandardTable[Standard].m_EP3_4_0;
-		state->m_Regs[EP3] &= ~0x04;   // switch RFAGC to high speed mode
+		state->m_Regs[EP3] &= ~0x04;   /* switch RFAGC to high speed mode */
 
-		// m_EP4 default for XToutOn, CAL_Mode (0)
-		state->m_Regs[EP4] = state->m_EP4 | ((Standard > HF_AnalogMax )? state->m_IFLevelDigital : state->m_IFLevelAnalog );
-		//state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDigital;
-		if( Standard <= HF_AnalogMax ) state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelAnalog;
-		else if( Standard <= HF_ATSC      ) state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDVBT;
-		else if( Standard <= HF_DVBC      ) state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDVBC;
-		else                                state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDigital;
+		/* m_EP4 default for XToutOn, CAL_Mode (0) */
+		state->m_Regs[EP4] = state->m_EP4 | ((Standard > HF_AnalogMax) ? state->m_IFLevelDigital : state->m_IFLevelAnalog);
+		/* state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDigital; */
+		if (Standard <= HF_AnalogMax)
+			state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelAnalog;
+		else if (Standard <= HF_ATSC)
+			state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDVBT;
+		else if (Standard <= HF_DVBC)
+			state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDVBC;
+		else
+			state->m_Regs[EP4] = state->m_EP4 | state->m_IFLevelDigital;
 
-		if( (Standard == HF_FM_Radio) && state->m_bFMInput ) state->m_Regs[EP4] |= 80;
+		if ((Standard == HF_FM_Radio) && state->m_bFMInput)
+			state->m_Regs[EP4] |= 80;
 
 		state->m_Regs[MPD] &= ~0x80;
-		if( Standard > HF_AnalogMax ) state->m_Regs[MPD] |= 0x80; // Add IF_notch for digital
+		if (Standard > HF_AnalogMax)
+			state->m_Regs[MPD] |= 0x80; /* Add IF_notch for digital */
 
 		state->m_Regs[EB22] = m_StandardTable[Standard].m_EB22;
 
-		// Note: This is missing from flowchart in TDA18271 specification ( 1.5 MHz cutoff for FM )
-		if( Standard == HF_FM_Radio ) state->m_Regs[EB23] |=  0x06; // ForceLP_Fc2_En = 1, LPFc[2] = 1
-		else                          state->m_Regs[EB23] &= ~0x06; // ForceLP_Fc2_En = 0, LPFc[2] = 0
+		/* Note: This is missing from flowchart in TDA18271 specification ( 1.5 MHz cutoff for FM ) */
+		if (Standard == HF_FM_Radio)
+			state->m_Regs[EB23] |=  0x06; /* ForceLP_Fc2_En = 1, LPFc[2] = 1 */
+		else
+			state->m_Regs[EB23] &= ~0x06; /* ForceLP_Fc2_En = 0, LPFc[2] = 0 */
 
-		CHK_ERROR(UpdateRegs(state,EB22,EB23));
+		CHK_ERROR(UpdateRegs(state, EB22, EB23));
 
-		state->m_Regs[EP1] = (state->m_Regs[EP1] & ~0x07) | 0x40 | BP_Filter;   // Dis_Power_level = 1, Filter
+		state->m_Regs[EP1] = (state->m_Regs[EP1] & ~0x07) | 0x40 | BP_Filter;   /* Dis_Power_level = 1, Filter */
 		state->m_Regs[EP5] = (state->m_Regs[EP5] & ~0x07) | IR_Meas;
 		state->m_Regs[EP2] = (RF_Band << 5) | GainTaper;
 
 		state->m_Regs[EB1] = (state->m_Regs[EB1] & ~0x07) |
-			(state->m_bMaster ? 0x04 : 0x00); // CALVCO_FortLOn = MS
-		// AGC1_always_master = 0
-		// AGC_firstn = 0
-		CHK_ERROR(UpdateReg(state,EB1));
+			(state->m_bMaster ? 0x04 : 0x00); /* CALVCO_FortLOn = MS */
+		/* AGC1_always_master = 0 */
+		/* AGC_firstn = 0 */
+		CHK_ERROR(UpdateReg(state, EB1));
 
-		if( state->m_bMaster )
-		{
-			CHK_ERROR(CalcMainPLL(state,Frequency + IntermediateFrequency));
-			CHK_ERROR(UpdateRegs(state,TM,EP5));
-			state->m_Regs[EB4] |= 0x20;    // LO_forceSrce = 1
-			CHK_ERROR(UpdateReg(state,EB4));
+		if (state->m_bMaster) {
+			CHK_ERROR(CalcMainPLL(state, Frequency + IntermediateFrequency));
+			CHK_ERROR(UpdateRegs(state, TM, EP5));
+			state->m_Regs[EB4] |= 0x20;    /* LO_forceSrce = 1 */
+			CHK_ERROR(UpdateReg(state, EB4));
 			msleep(1);
-			state->m_Regs[EB4] &= ~0x20;   // LO_forceSrce = 0
-			CHK_ERROR(UpdateReg(state,EB4));
-		}
-		else
-		{
+			state->m_Regs[EB4] &= ~0x20;   /* LO_forceSrce = 0 */
+			CHK_ERROR(UpdateReg(state, EB4));
+		} else {
 			u8 PostDiv;
 			u8 Div;
-			CHK_ERROR(CalcCalPLL(state,Frequency + IntermediateFrequency));
+			CHK_ERROR(CalcCalPLL(state, Frequency + IntermediateFrequency));
 
-			SearchMap3(m_Cal_PLL_Map,Frequency + IntermediateFrequency,&PostDiv,&Div);
+			SearchMap3(m_Cal_PLL_Map, Frequency + IntermediateFrequency, &PostDiv, &Div);
 			state->m_Regs[MPD] = (state->m_Regs[MPD] & ~0x7F) | (PostDiv & 0x77);
-			CHK_ERROR(UpdateReg(state,MPD));
-			CHK_ERROR(UpdateRegs(state,TM,EP5));
+			CHK_ERROR(UpdateReg(state, MPD));
+			CHK_ERROR(UpdateRegs(state, TM, EP5));
 
-			state->m_Regs[EB7] |= 0x20;    // CAL_forceSrce = 1
-			CHK_ERROR(UpdateReg(state,EB7));
+			state->m_Regs[EB7] |= 0x20;    /* CAL_forceSrce = 1 */
+			CHK_ERROR(UpdateReg(state, EB7));
 			msleep(1);
-			state->m_Regs[EB7] &= ~0x20;   // CAL_forceSrce = 0
-			CHK_ERROR(UpdateReg(state,EB7));
+			state->m_Regs[EB7] &= ~0x20;   /* CAL_forceSrce = 0 */
+			CHK_ERROR(UpdateReg(state, EB7));
 		}
 		msleep(20);
-		if( Standard != HF_FM_Radio )
-		{
-			state->m_Regs[EP3] |= 0x04;    // RFAGC to normal mode
-		}
-		CHK_ERROR(UpdateReg(state,EP3));
+		if (Standard != HF_FM_Radio)
+			state->m_Regs[EP3] |= 0x04;    /* RFAGC to normal mode */
+		CHK_ERROR(UpdateReg(state, EP3));
 
-	} while(0);
+	} while (0);
 	return status;
 }
 
-static int sleep(struct dvb_frontend* fe)
+static int sleep(struct dvb_frontend *fe)
 {
 	struct tda_state *state = fe->tuner_priv;
 
@@ -938,13 +916,12 @@
 	return 0;
 }
 
-static int init(struct dvb_frontend* fe)
+static int init(struct dvb_frontend *fe)
 {
-	//struct tda_state *state = fe->tuner_priv;
 	return 0;
 }
 
-static int release(struct dvb_frontend* fe)
+static int release(struct dvb_frontend *fe)
 {
 	kfree(fe->tuner_priv);
 	fe->tuner_priv = NULL;
@@ -978,22 +955,22 @@
 	} else
 		return -EINVAL;
 	do {
-		CHK_ERROR(RFTrackingFiltersCorrection(state,params->frequency));
-		CHK_ERROR(ChannelConfiguration(state,params->frequency,Standard));
+		CHK_ERROR(RFTrackingFiltersCorrection(state, params->frequency));
+		CHK_ERROR(ChannelConfiguration(state, params->frequency, Standard));
 
-		msleep(state->m_SettlingTime);  // Allow AGC's to settle down
-	} while(0);
+		msleep(state->m_SettlingTime);  /* Allow AGC's to settle down */
+	} while (0);
 	return status;
 }
 
 #if 0
-static int GetSignalStrength(s32 * pSignalStrength,u32 RFAgc,u32 IFAgc)
+static int GetSignalStrength(s32 *pSignalStrength, u32 RFAgc, u32 IFAgc)
 {
-	if( IFAgc < 500 ) {
-		// Scale this from 0 to 50000
+	if (IFAgc < 500) {
+		/* Scale this from 0 to 50000 */
 		*pSignalStrength = IFAgc * 100;
 	} else {
-		// Scale range 500-1500 to 50000-80000
+		/* Scale range 500-1500 to 50000-80000 */
 		*pSignalStrength = 50000 + (IFAgc - 500) * 30;
 	}
 
@@ -1011,8 +988,8 @@
 
 static int get_bandwidth(struct dvb_frontend *fe, u32 *bandwidth)
 {
-	//struct tda_state *state = fe->tuner_priv;
-	//*bandwidth = priv->bandwidth;
+	/* struct tda_state *state = fe->tuner_priv; */
+	/* *bandwidth = priv->bandwidth; */
 	return 0;
 }
 
@@ -1050,14 +1027,8 @@
 
 	return fe;
 }
-
 EXPORT_SYMBOL_GPL(tda18271c2dd_attach);
+
 MODULE_DESCRIPTION("TDA18271C2 driver");
 MODULE_AUTHOR("DD");
 MODULE_LICENSE("GPL");
-
-/*
- * Local variables:
- * c-basic-offset: 8
- * End:
- */