| /* |
| * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with |
| * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c |
| * |
| * Copyright (C) 2005, Intec Automation Inc. |
| * Copyright (C) 2014, Freescale Semiconductor, Inc. |
| * |
| * This code is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| |
| #include <linux/err.h> |
| #include <linux/errno.h> |
| #include <linux/module.h> |
| #include <linux/device.h> |
| #include <linux/mutex.h> |
| #include <linux/math64.h> |
| #include <linux/sizes.h> |
| |
| #include <linux/mtd/mtd.h> |
| #include <linux/of_platform.h> |
| #include <linux/spi/flash.h> |
| #include <linux/mtd/spi-nor.h> |
| |
| /* Define max times to check status register before we give up. */ |
| |
| /* |
| * For everything but full-chip erase; probably could be much smaller, but kept |
| * around for safety for now |
| */ |
| #define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ) |
| |
| /* |
| * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up |
| * for larger flash |
| */ |
| #define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ) |
| |
| #define SPI_NOR_MAX_ID_LEN 6 |
| #define SPI_NOR_MAX_ADDR_WIDTH 4 |
| |
| struct flash_info { |
| char *name; |
| |
| /* |
| * This array stores the ID bytes. |
| * The first three bytes are the JEDIC ID. |
| * JEDEC ID zero means "no ID" (mostly older chips). |
| */ |
| u8 id[SPI_NOR_MAX_ID_LEN]; |
| u8 id_len; |
| |
| /* The size listed here is what works with SPINOR_OP_SE, which isn't |
| * necessarily called a "sector" by the vendor. |
| */ |
| unsigned sector_size; |
| u16 n_sectors; |
| |
| u16 page_size; |
| u16 addr_width; |
| |
| u16 flags; |
| #define SECT_4K BIT(0) /* SPINOR_OP_BE_4K works uniformly */ |
| #define SPI_NOR_NO_ERASE BIT(1) /* No erase command needed */ |
| #define SST_WRITE BIT(2) /* use SST byte programming */ |
| #define SPI_NOR_NO_FR BIT(3) /* Can't do fastread */ |
| #define SECT_4K_PMC BIT(4) /* SPINOR_OP_BE_4K_PMC works uniformly */ |
| #define SPI_NOR_DUAL_READ BIT(5) /* Flash supports Dual Read */ |
| #define SPI_NOR_QUAD_READ BIT(6) /* Flash supports Quad Read */ |
| #define USE_FSR BIT(7) /* use flag status register */ |
| #define SPI_NOR_HAS_LOCK BIT(8) /* Flash supports lock/unlock via SR */ |
| #define SPI_NOR_HAS_TB BIT(9) /* |
| * Flash SR has Top/Bottom (TB) protect |
| * bit. Must be used with |
| * SPI_NOR_HAS_LOCK. |
| */ |
| #define SPI_S3AN BIT(10) /* |
| * Xilinx Spartan 3AN In-System Flash |
| * (MFR cannot be used for probing |
| * because it has the same value as |
| * ATMEL flashes) |
| */ |
| #define SPI_NOR_4B_OPCODES BIT(11) /* |
| * Use dedicated 4byte address op codes |
| * to support memory size above 128Mib. |
| */ |
| #define NO_CHIP_ERASE BIT(12) /* Chip does not support chip erase */ |
| }; |
| |
| #define JEDEC_MFR(info) ((info)->id[0]) |
| |
| static const struct flash_info *spi_nor_match_id(const char *name); |
| |
| /* |
| * Read the status register, returning its value in the location |
| * Return the status register value. |
| * Returns negative if error occurred. |
| */ |
| static int read_sr(struct spi_nor *nor) |
| { |
| int ret; |
| u8 val; |
| |
| ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1); |
| if (ret < 0) { |
| pr_err("error %d reading SR\n", (int) ret); |
| return ret; |
| } |
| |
| return val; |
| } |
| |
| /* |
| * Read the flag status register, returning its value in the location |
| * Return the status register value. |
| * Returns negative if error occurred. |
| */ |
| static int read_fsr(struct spi_nor *nor) |
| { |
| int ret; |
| u8 val; |
| |
| ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1); |
| if (ret < 0) { |
| pr_err("error %d reading FSR\n", ret); |
| return ret; |
| } |
| |
| return val; |
| } |
| |
| /* |
| * Read configuration register, returning its value in the |
| * location. Return the configuration register value. |
| * Returns negative if error occurred. |
| */ |
| static int read_cr(struct spi_nor *nor) |
| { |
| int ret; |
| u8 val; |
| |
| ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1); |
| if (ret < 0) { |
| dev_err(nor->dev, "error %d reading CR\n", ret); |
| return ret; |
| } |
| |
| return val; |
| } |
| |
| /* |
| * Dummy Cycle calculation for different type of read. |
| * It can be used to support more commands with |
| * different dummy cycle requirements. |
| */ |
| static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor) |
| { |
| switch (nor->flash_read) { |
| case SPI_NOR_FAST: |
| case SPI_NOR_DUAL: |
| case SPI_NOR_QUAD: |
| return 8; |
| case SPI_NOR_NORMAL: |
| return 0; |
| } |
| return 0; |
| } |
| |
| /* |
| * Write status register 1 byte |
| * Returns negative if error occurred. |
| */ |
| static inline int write_sr(struct spi_nor *nor, u8 val) |
| { |
| nor->cmd_buf[0] = val; |
| return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1); |
| } |
| |
| /* |
| * Set write enable latch with Write Enable command. |
| * Returns negative if error occurred. |
| */ |
| static inline int write_enable(struct spi_nor *nor) |
| { |
| return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0); |
| } |
| |
| /* |
| * Send write disble instruction to the chip. |
| */ |
| static inline int write_disable(struct spi_nor *nor) |
| { |
| return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0); |
| } |
| |
| static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd) |
| { |
| return mtd->priv; |
| } |
| |
| |
| static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size) |
| { |
| size_t i; |
| |
| for (i = 0; i < size; i++) |
| if (table[i][0] == opcode) |
| return table[i][1]; |
| |
| /* No conversion found, keep input op code. */ |
| return opcode; |
| } |
| |
| static inline u8 spi_nor_convert_3to4_read(u8 opcode) |
| { |
| static const u8 spi_nor_3to4_read[][2] = { |
| { SPINOR_OP_READ, SPINOR_OP_READ_4B }, |
| { SPINOR_OP_READ_FAST, SPINOR_OP_READ_FAST_4B }, |
| { SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B }, |
| { SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B }, |
| { SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B }, |
| { SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B }, |
| }; |
| |
| return spi_nor_convert_opcode(opcode, spi_nor_3to4_read, |
| ARRAY_SIZE(spi_nor_3to4_read)); |
| } |
| |
| static inline u8 spi_nor_convert_3to4_program(u8 opcode) |
| { |
| static const u8 spi_nor_3to4_program[][2] = { |
| { SPINOR_OP_PP, SPINOR_OP_PP_4B }, |
| { SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B }, |
| { SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B }, |
| }; |
| |
| return spi_nor_convert_opcode(opcode, spi_nor_3to4_program, |
| ARRAY_SIZE(spi_nor_3to4_program)); |
| } |
| |
| static inline u8 spi_nor_convert_3to4_erase(u8 opcode) |
| { |
| static const u8 spi_nor_3to4_erase[][2] = { |
| { SPINOR_OP_BE_4K, SPINOR_OP_BE_4K_4B }, |
| { SPINOR_OP_BE_32K, SPINOR_OP_BE_32K_4B }, |
| { SPINOR_OP_SE, SPINOR_OP_SE_4B }, |
| }; |
| |
| return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase, |
| ARRAY_SIZE(spi_nor_3to4_erase)); |
| } |
| |
| static void spi_nor_set_4byte_opcodes(struct spi_nor *nor, |
| const struct flash_info *info) |
| { |
| /* Do some manufacturer fixups first */ |
| switch (JEDEC_MFR(info)) { |
| case SNOR_MFR_SPANSION: |
| /* No small sector erase for 4-byte command set */ |
| nor->erase_opcode = SPINOR_OP_SE; |
| nor->mtd.erasesize = info->sector_size; |
| break; |
| |
| default: |
| break; |
| } |
| |
| nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode); |
| nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode); |
| nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode); |
| } |
| |
| /* Enable/disable 4-byte addressing mode. */ |
| static inline int set_4byte(struct spi_nor *nor, const struct flash_info *info, |
| int enable) |
| { |
| int status; |
| bool need_wren = false; |
| u8 cmd; |
| |
| switch (JEDEC_MFR(info)) { |
| case SNOR_MFR_MICRON: |
| /* Some Micron need WREN command; all will accept it */ |
| need_wren = true; |
| case SNOR_MFR_MACRONIX: |
| case SNOR_MFR_WINBOND: |
| if (need_wren) |
| write_enable(nor); |
| |
| cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B; |
| status = nor->write_reg(nor, cmd, NULL, 0); |
| if (need_wren) |
| write_disable(nor); |
| |
| return status; |
| default: |
| /* Spansion style */ |
| nor->cmd_buf[0] = enable << 7; |
| return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1); |
| } |
| } |
| |
| static int s3an_sr_ready(struct spi_nor *nor) |
| { |
| int ret; |
| u8 val; |
| |
| ret = nor->read_reg(nor, SPINOR_OP_XRDSR, &val, 1); |
| if (ret < 0) { |
| dev_err(nor->dev, "error %d reading XRDSR\n", (int) ret); |
| return ret; |
| } |
| |
| return !!(val & XSR_RDY); |
| } |
| |
| static inline int spi_nor_sr_ready(struct spi_nor *nor) |
| { |
| int sr = read_sr(nor); |
| if (sr < 0) |
| return sr; |
| else |
| return !(sr & SR_WIP); |
| } |
| |
| static inline int spi_nor_fsr_ready(struct spi_nor *nor) |
| { |
| int fsr = read_fsr(nor); |
| if (fsr < 0) |
| return fsr; |
| else |
| return fsr & FSR_READY; |
| } |
| |
| static int spi_nor_ready(struct spi_nor *nor) |
| { |
| int sr, fsr; |
| |
| if (nor->flags & SNOR_F_READY_XSR_RDY) |
| sr = s3an_sr_ready(nor); |
| else |
| sr = spi_nor_sr_ready(nor); |
| if (sr < 0) |
| return sr; |
| fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1; |
| if (fsr < 0) |
| return fsr; |
| return sr && fsr; |
| } |
| |
| /* |
| * Service routine to read status register until ready, or timeout occurs. |
| * Returns non-zero if error. |
| */ |
| static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor, |
| unsigned long timeout_jiffies) |
| { |
| unsigned long deadline; |
| int timeout = 0, ret; |
| |
| deadline = jiffies + timeout_jiffies; |
| |
| while (!timeout) { |
| if (time_after_eq(jiffies, deadline)) |
| timeout = 1; |
| |
| ret = spi_nor_ready(nor); |
| if (ret < 0) |
| return ret; |
| if (ret) |
| return 0; |
| |
| cond_resched(); |
| } |
| |
| dev_err(nor->dev, "flash operation timed out\n"); |
| |
| return -ETIMEDOUT; |
| } |
| |
| static int spi_nor_wait_till_ready(struct spi_nor *nor) |
| { |
| return spi_nor_wait_till_ready_with_timeout(nor, |
| DEFAULT_READY_WAIT_JIFFIES); |
| } |
| |
| /* |
| * Erase the whole flash memory |
| * |
| * Returns 0 if successful, non-zero otherwise. |
| */ |
| static int erase_chip(struct spi_nor *nor) |
| { |
| dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10)); |
| |
| return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0); |
| } |
| |
| static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops) |
| { |
| int ret = 0; |
| |
| mutex_lock(&nor->lock); |
| |
| if (nor->prepare) { |
| ret = nor->prepare(nor, ops); |
| if (ret) { |
| dev_err(nor->dev, "failed in the preparation.\n"); |
| mutex_unlock(&nor->lock); |
| return ret; |
| } |
| } |
| return ret; |
| } |
| |
| static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops) |
| { |
| if (nor->unprepare) |
| nor->unprepare(nor, ops); |
| mutex_unlock(&nor->lock); |
| } |
| |
| /* |
| * This code converts an address to the Default Address Mode, that has non |
| * power of two page sizes. We must support this mode because it is the default |
| * mode supported by Xilinx tools, it can access the whole flash area and |
| * changing over to the Power-of-two mode is irreversible and corrupts the |
| * original data. |
| * Addr can safely be unsigned int, the biggest S3AN device is smaller than |
| * 4 MiB. |
| */ |
| static loff_t spi_nor_s3an_addr_convert(struct spi_nor *nor, unsigned int addr) |
| { |
| unsigned int offset; |
| unsigned int page; |
| |
| offset = addr % nor->page_size; |
| page = addr / nor->page_size; |
| page <<= (nor->page_size > 512) ? 10 : 9; |
| |
| return page | offset; |
| } |
| |
| /* |
| * Initiate the erasure of a single sector |
| */ |
| static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr) |
| { |
| u8 buf[SPI_NOR_MAX_ADDR_WIDTH]; |
| int i; |
| |
| if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT) |
| addr = spi_nor_s3an_addr_convert(nor, addr); |
| |
| if (nor->erase) |
| return nor->erase(nor, addr); |
| |
| /* |
| * Default implementation, if driver doesn't have a specialized HW |
| * control |
| */ |
| for (i = nor->addr_width - 1; i >= 0; i--) { |
| buf[i] = addr & 0xff; |
| addr >>= 8; |
| } |
| |
| return nor->write_reg(nor, nor->erase_opcode, buf, nor->addr_width); |
| } |
| |
| /* |
| * Erase an address range on the nor chip. The address range may extend |
| * one or more erase sectors. Return an error is there is a problem erasing. |
| */ |
| static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr) |
| { |
| struct spi_nor *nor = mtd_to_spi_nor(mtd); |
| u32 addr, len; |
| uint32_t rem; |
| int ret; |
| |
| dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr, |
| (long long)instr->len); |
| |
| div_u64_rem(instr->len, mtd->erasesize, &rem); |
| if (rem) |
| return -EINVAL; |
| |
| addr = instr->addr; |
| len = instr->len; |
| |
| ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE); |
| if (ret) |
| return ret; |
| |
| /* whole-chip erase? */ |
| if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) { |
| unsigned long timeout; |
| |
| write_enable(nor); |
| |
| if (erase_chip(nor)) { |
| ret = -EIO; |
| goto erase_err; |
| } |
| |
| /* |
| * Scale the timeout linearly with the size of the flash, with |
| * a minimum calibrated to an old 2MB flash. We could try to |
| * pull these from CFI/SFDP, but these values should be good |
| * enough for now. |
| */ |
| timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES, |
| CHIP_ERASE_2MB_READY_WAIT_JIFFIES * |
| (unsigned long)(mtd->size / SZ_2M)); |
| ret = spi_nor_wait_till_ready_with_timeout(nor, timeout); |
| if (ret) |
| goto erase_err; |
| |
| /* REVISIT in some cases we could speed up erasing large regions |
| * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up |
| * to use "small sector erase", but that's not always optimal. |
| */ |
| |
| /* "sector"-at-a-time erase */ |
| } else { |
| while (len) { |
| write_enable(nor); |
| |
| ret = spi_nor_erase_sector(nor, addr); |
| if (ret) |
| goto erase_err; |
| |
| addr += mtd->erasesize; |
| len -= mtd->erasesize; |
| |
| ret = spi_nor_wait_till_ready(nor); |
| if (ret) |
| goto erase_err; |
| } |
| } |
| |
| write_disable(nor); |
| |
| erase_err: |
| spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE); |
| |
| instr->state = ret ? MTD_ERASE_FAILED : MTD_ERASE_DONE; |
| mtd_erase_callback(instr); |
| |
| return ret; |
| } |
| |
| static void stm_get_locked_range(struct spi_nor *nor, u8 sr, loff_t *ofs, |
| uint64_t *len) |
| { |
| struct mtd_info *mtd = &nor->mtd; |
| u8 mask = SR_BP2 | SR_BP1 | SR_BP0; |
| int shift = ffs(mask) - 1; |
| int pow; |
| |
| if (!(sr & mask)) { |
| /* No protection */ |
| *ofs = 0; |
| *len = 0; |
| } else { |
| pow = ((sr & mask) ^ mask) >> shift; |
| *len = mtd->size >> pow; |
| if (nor->flags & SNOR_F_HAS_SR_TB && sr & SR_TB) |
| *ofs = 0; |
| else |
| *ofs = mtd->size - *len; |
| } |
| } |
| |
| /* |
| * Return 1 if the entire region is locked (if @locked is true) or unlocked (if |
| * @locked is false); 0 otherwise |
| */ |
| static int stm_check_lock_status_sr(struct spi_nor *nor, loff_t ofs, uint64_t len, |
| u8 sr, bool locked) |
| { |
| loff_t lock_offs; |
| uint64_t lock_len; |
| |
| if (!len) |
| return 1; |
| |
| stm_get_locked_range(nor, sr, &lock_offs, &lock_len); |
| |
| if (locked) |
| /* Requested range is a sub-range of locked range */ |
| return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs); |
| else |
| /* Requested range does not overlap with locked range */ |
| return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs); |
| } |
| |
| static int stm_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len, |
| u8 sr) |
| { |
| return stm_check_lock_status_sr(nor, ofs, len, sr, true); |
| } |
| |
| static int stm_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len, |
| u8 sr) |
| { |
| return stm_check_lock_status_sr(nor, ofs, len, sr, false); |
| } |
| |
| /* |
| * Lock a region of the flash. Compatible with ST Micro and similar flash. |
| * Supports the block protection bits BP{0,1,2} in the status register |
| * (SR). Does not support these features found in newer SR bitfields: |
| * - SEC: sector/block protect - only handle SEC=0 (block protect) |
| * - CMP: complement protect - only support CMP=0 (range is not complemented) |
| * |
| * Support for the following is provided conditionally for some flash: |
| * - TB: top/bottom protect |
| * |
| * Sample table portion for 8MB flash (Winbond w25q64fw): |
| * |
| * SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion |
| * -------------------------------------------------------------------------- |
| * X | X | 0 | 0 | 0 | NONE | NONE |
| * 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64 |
| * 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32 |
| * 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16 |
| * 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8 |
| * 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4 |
| * 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2 |
| * X | X | 1 | 1 | 1 | 8 MB | ALL |
| * ------|-------|-------|-------|-------|---------------|------------------- |
| * 0 | 1 | 0 | 0 | 1 | 128 KB | Lower 1/64 |
| * 0 | 1 | 0 | 1 | 0 | 256 KB | Lower 1/32 |
| * 0 | 1 | 0 | 1 | 1 | 512 KB | Lower 1/16 |
| * 0 | 1 | 1 | 0 | 0 | 1 MB | Lower 1/8 |
| * 0 | 1 | 1 | 0 | 1 | 2 MB | Lower 1/4 |
| * 0 | 1 | 1 | 1 | 0 | 4 MB | Lower 1/2 |
| * |
| * Returns negative on errors, 0 on success. |
| */ |
| static int stm_lock(struct spi_nor *nor, loff_t ofs, uint64_t len) |
| { |
| struct mtd_info *mtd = &nor->mtd; |
| int status_old, status_new; |
| u8 mask = SR_BP2 | SR_BP1 | SR_BP0; |
| u8 shift = ffs(mask) - 1, pow, val; |
| loff_t lock_len; |
| bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB; |
| bool use_top; |
| int ret; |
| |
| status_old = read_sr(nor); |
| if (status_old < 0) |
| return status_old; |
| |
| /* If nothing in our range is unlocked, we don't need to do anything */ |
| if (stm_is_locked_sr(nor, ofs, len, status_old)) |
| return 0; |
| |
| /* If anything below us is unlocked, we can't use 'bottom' protection */ |
| if (!stm_is_locked_sr(nor, 0, ofs, status_old)) |
| can_be_bottom = false; |
| |
| /* If anything above us is unlocked, we can't use 'top' protection */ |
| if (!stm_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len), |
| status_old)) |
| can_be_top = false; |
| |
| if (!can_be_bottom && !can_be_top) |
| return -EINVAL; |
| |
| /* Prefer top, if both are valid */ |
| use_top = can_be_top; |
| |
| /* lock_len: length of region that should end up locked */ |
| if (use_top) |
| lock_len = mtd->size - ofs; |
| else |
| lock_len = ofs + len; |
| |
| /* |
| * Need smallest pow such that: |
| * |
| * 1 / (2^pow) <= (len / size) |
| * |
| * so (assuming power-of-2 size) we do: |
| * |
| * pow = ceil(log2(size / len)) = log2(size) - floor(log2(len)) |
| */ |
| pow = ilog2(mtd->size) - ilog2(lock_len); |
| val = mask - (pow << shift); |
| if (val & ~mask) |
| return -EINVAL; |
| /* Don't "lock" with no region! */ |
| if (!(val & mask)) |
| return -EINVAL; |
| |
| status_new = (status_old & ~mask & ~SR_TB) | val; |
| |
| /* Disallow further writes if WP pin is asserted */ |
| status_new |= SR_SRWD; |
| |
| if (!use_top) |
| status_new |= SR_TB; |
| |
| /* Don't bother if they're the same */ |
| if (status_new == status_old) |
| return 0; |
| |
| /* Only modify protection if it will not unlock other areas */ |
| if ((status_new & mask) < (status_old & mask)) |
| return -EINVAL; |
| |
| write_enable(nor); |
| ret = write_sr(nor, status_new); |
| if (ret) |
| return ret; |
| return spi_nor_wait_till_ready(nor); |
| } |
| |
| /* |
| * Unlock a region of the flash. See stm_lock() for more info |
| * |
| * Returns negative on errors, 0 on success. |
| */ |
| static int stm_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len) |
| { |
| struct mtd_info *mtd = &nor->mtd; |
| int status_old, status_new; |
| u8 mask = SR_BP2 | SR_BP1 | SR_BP0; |
| u8 shift = ffs(mask) - 1, pow, val; |
| loff_t lock_len; |
| bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB; |
| bool use_top; |
| int ret; |
| |
| status_old = read_sr(nor); |
| if (status_old < 0) |
| return status_old; |
| |
| /* If nothing in our range is locked, we don't need to do anything */ |
| if (stm_is_unlocked_sr(nor, ofs, len, status_old)) |
| return 0; |
| |
| /* If anything below us is locked, we can't use 'top' protection */ |
| if (!stm_is_unlocked_sr(nor, 0, ofs, status_old)) |
| can_be_top = false; |
| |
| /* If anything above us is locked, we can't use 'bottom' protection */ |
| if (!stm_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len), |
| status_old)) |
| can_be_bottom = false; |
| |
| if (!can_be_bottom && !can_be_top) |
| return -EINVAL; |
| |
| /* Prefer top, if both are valid */ |
| use_top = can_be_top; |
| |
| /* lock_len: length of region that should remain locked */ |
| if (use_top) |
| lock_len = mtd->size - (ofs + len); |
| else |
| lock_len = ofs; |
| |
| /* |
| * Need largest pow such that: |
| * |
| * 1 / (2^pow) >= (len / size) |
| * |
| * so (assuming power-of-2 size) we do: |
| * |
| * pow = floor(log2(size / len)) = log2(size) - ceil(log2(len)) |
| */ |
| pow = ilog2(mtd->size) - order_base_2(lock_len); |
| if (lock_len == 0) { |
| val = 0; /* fully unlocked */ |
| } else { |
| val = mask - (pow << shift); |
| /* Some power-of-two sizes are not supported */ |
| if (val & ~mask) |
| return -EINVAL; |
| } |
| |
| status_new = (status_old & ~mask & ~SR_TB) | val; |
| |
| /* Don't protect status register if we're fully unlocked */ |
| if (lock_len == 0) |
| status_new &= ~SR_SRWD; |
| |
| if (!use_top) |
| status_new |= SR_TB; |
| |
| /* Don't bother if they're the same */ |
| if (status_new == status_old) |
| return 0; |
| |
| /* Only modify protection if it will not lock other areas */ |
| if ((status_new & mask) > (status_old & mask)) |
| return -EINVAL; |
| |
| write_enable(nor); |
| ret = write_sr(nor, status_new); |
| if (ret) |
| return ret; |
| return spi_nor_wait_till_ready(nor); |
| } |
| |
| /* |
| * Check if a region of the flash is (completely) locked. See stm_lock() for |
| * more info. |
| * |
| * Returns 1 if entire region is locked, 0 if any portion is unlocked, and |
| * negative on errors. |
| */ |
| static int stm_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len) |
| { |
| int status; |
| |
| status = read_sr(nor); |
| if (status < 0) |
| return status; |
| |
| return stm_is_locked_sr(nor, ofs, len, status); |
| } |
| |
| static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) |
| { |
| struct spi_nor *nor = mtd_to_spi_nor(mtd); |
| int ret; |
| |
| ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK); |
| if (ret) |
| return ret; |
| |
| ret = nor->flash_lock(nor, ofs, len); |
| |
| spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK); |
| return ret; |
| } |
| |
| static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) |
| { |
| struct spi_nor *nor = mtd_to_spi_nor(mtd); |
| int ret; |
| |
| ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK); |
| if (ret) |
| return ret; |
| |
| ret = nor->flash_unlock(nor, ofs, len); |
| |
| spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK); |
| return ret; |
| } |
| |
| static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) |
| { |
| struct spi_nor *nor = mtd_to_spi_nor(mtd); |
| int ret; |
| |
| ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK); |
| if (ret) |
| return ret; |
| |
| ret = nor->flash_is_locked(nor, ofs, len); |
| |
| spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK); |
| return ret; |
| } |
| |
| /* Used when the "_ext_id" is two bytes at most */ |
| #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \ |
| .id = { \ |
| ((_jedec_id) >> 16) & 0xff, \ |
| ((_jedec_id) >> 8) & 0xff, \ |
| (_jedec_id) & 0xff, \ |
| ((_ext_id) >> 8) & 0xff, \ |
| (_ext_id) & 0xff, \ |
| }, \ |
| .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))), \ |
| .sector_size = (_sector_size), \ |
| .n_sectors = (_n_sectors), \ |
| .page_size = 256, \ |
| .flags = (_flags), |
| |
| #define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \ |
| .id = { \ |
| ((_jedec_id) >> 16) & 0xff, \ |
| ((_jedec_id) >> 8) & 0xff, \ |
| (_jedec_id) & 0xff, \ |
| ((_ext_id) >> 16) & 0xff, \ |
| ((_ext_id) >> 8) & 0xff, \ |
| (_ext_id) & 0xff, \ |
| }, \ |
| .id_len = 6, \ |
| .sector_size = (_sector_size), \ |
| .n_sectors = (_n_sectors), \ |
| .page_size = 256, \ |
| .flags = (_flags), |
| |
| #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \ |
| .sector_size = (_sector_size), \ |
| .n_sectors = (_n_sectors), \ |
| .page_size = (_page_size), \ |
| .addr_width = (_addr_width), \ |
| .flags = (_flags), |
| |
| #define S3AN_INFO(_jedec_id, _n_sectors, _page_size) \ |
| .id = { \ |
| ((_jedec_id) >> 16) & 0xff, \ |
| ((_jedec_id) >> 8) & 0xff, \ |
| (_jedec_id) & 0xff \ |
| }, \ |
| .id_len = 3, \ |
| .sector_size = (8*_page_size), \ |
| .n_sectors = (_n_sectors), \ |
| .page_size = _page_size, \ |
| .addr_width = 3, \ |
| .flags = SPI_NOR_NO_FR | SPI_S3AN, |
| |
| /* NOTE: double check command sets and memory organization when you add |
| * more nor chips. This current list focusses on newer chips, which |
| * have been converging on command sets which including JEDEC ID. |
| * |
| * All newly added entries should describe *hardware* and should use SECT_4K |
| * (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage |
| * scenarios excluding small sectors there is config option that can be |
| * disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS. |
| * For historical (and compatibility) reasons (before we got above config) some |
| * old entries may be missing 4K flag. |
| */ |
| static const struct flash_info spi_nor_ids[] = { |
| /* Atmel -- some are (confusingly) marketed as "DataFlash" */ |
| { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) }, |
| { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) }, |
| |
| { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) }, |
| { "at25df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) }, |
| { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) }, |
| { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) }, |
| |
| { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) }, |
| { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) }, |
| { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) }, |
| { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) }, |
| |
| { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) }, |
| |
| /* EON -- en25xxx */ |
| { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) }, |
| { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) }, |
| { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) }, |
| { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) }, |
| { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) }, |
| { "en25qh128", INFO(0x1c7018, 0, 64 * 1024, 256, 0) }, |
| { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) }, |
| { "en25s64", INFO(0x1c3817, 0, 64 * 1024, 128, SECT_4K) }, |
| |
| /* ESMT */ |
| { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_HAS_LOCK) }, |
| { "f25l32qa", INFO(0x8c4116, 0, 64 * 1024, 64, SECT_4K | SPI_NOR_HAS_LOCK) }, |
| { "f25l64qa", INFO(0x8c4117, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_HAS_LOCK) }, |
| |
| /* Everspin */ |
| { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, |
| { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, |
| { "mr25h40", CAT25_INFO(512 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, |
| |
| /* Fujitsu */ |
| { "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE) }, |
| |
| /* GigaDevice */ |
| { |
| "gd25q16", INFO(0xc84015, 0, 64 * 1024, 32, |
| SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | |
| SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) |
| }, |
| { |
| "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64, |
| SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | |
| SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) |
| }, |
| { |
| "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, |
| SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | |
| SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) |
| }, |
| { |
| "gd25lq64c", INFO(0xc86017, 0, 64 * 1024, 128, |
| SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | |
| SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) |
| }, |
| { |
| "gd25q128", INFO(0xc84018, 0, 64 * 1024, 256, |
| SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | |
| SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) |
| }, |
| |
| /* Intel/Numonyx -- xxxs33b */ |
| { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) }, |
| { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) }, |
| { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) }, |
| |
| /* ISSI */ |
| { "is25cd512", INFO(0x7f9d20, 0, 32 * 1024, 2, SECT_4K) }, |
| |
| /* Macronix */ |
| { "mx25l512e", INFO(0xc22010, 0, 64 * 1024, 1, SECT_4K) }, |
| { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) }, |
| { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) }, |
| { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) }, |
| { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) }, |
| { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, SECT_4K) }, |
| { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) }, |
| { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, SECT_4K) }, |
| { "mx25u6435f", INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K) }, |
| { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) }, |
| { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) }, |
| { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) }, |
| { "mx25u25635f", INFO(0xc22539, 0, 64 * 1024, 512, SECT_4K) }, |
| { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) }, |
| { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) }, |
| { "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) }, |
| |
| /* Micron */ |
| { "n25q016a", INFO(0x20bb15, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_QUAD_READ) }, |
| { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) }, |
| { "n25q032a", INFO(0x20bb16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ) }, |
| { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_QUAD_READ) }, |
| { "n25q064a", INFO(0x20bb17, 0, 64 * 1024, 128, SECT_4K | SPI_NOR_QUAD_READ) }, |
| { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) }, |
| { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) }, |
| { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_QUAD_READ) }, |
| { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) }, |
| { "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ) }, |
| { "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) }, |
| { "n25q00a", INFO(0x20bb21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) }, |
| |
| /* PMC */ |
| { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) }, |
| { "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) }, |
| { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K) }, |
| |
| /* Spansion -- single (large) sector size only, at least |
| * for the chips listed here (without boot sectors). |
| */ |
| { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, |
| { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, |
| { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) }, |
| { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, |
| { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, |
| { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) }, |
| { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) }, |
| { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) }, |
| { "s25fl128s", INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, |
| { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, |
| { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, |
| { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) }, |
| { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) }, |
| { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) }, |
| { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) }, |
| { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) }, |
| { "s25fl004k", INFO(0xef4013, 0, 64 * 1024, 8, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, |
| { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, |
| { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, |
| { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) }, |
| { "s25fl116k", INFO(0x014015, 0, 64 * 1024, 32, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) }, |
| { "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64, SECT_4K) }, |
| { "s25fl164k", INFO(0x014017, 0, 64 * 1024, 128, SECT_4K) }, |
| { "s25fl204k", INFO(0x014013, 0, 64 * 1024, 8, SECT_4K | SPI_NOR_DUAL_READ) }, |
| { "s25fl208k", INFO(0x014014, 0, 64 * 1024, 16, SECT_4K | SPI_NOR_DUAL_READ) }, |
| |
| /* SST -- large erase sizes are "overlays", "sectors" are 4K */ |
| { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) }, |
| { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) }, |
| { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) }, |
| { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) }, |
| { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) }, |
| { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) }, |
| { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) }, |
| { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) }, |
| { "sst25wf020a", INFO(0x621612, 0, 64 * 1024, 4, SECT_4K) }, |
| { "sst25wf040b", INFO(0x621613, 0, 64 * 1024, 8, SECT_4K) }, |
| { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) }, |
| { "sst25wf080", INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) }, |
| |
| /* ST Microelectronics -- newer production may have feature updates */ |
| { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) }, |
| { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) }, |
| { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) }, |
| { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) }, |
| { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) }, |
| { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) }, |
| { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) }, |
| { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) }, |
| { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) }, |
| |
| { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) }, |
| { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) }, |
| { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) }, |
| { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) }, |
| { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) }, |
| { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) }, |
| { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) }, |
| { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) }, |
| { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) }, |
| |
| { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) }, |
| { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) }, |
| { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) }, |
| |
| { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) }, |
| { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) }, |
| { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) }, |
| |
| { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) }, |
| { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) }, |
| { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) }, |
| { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) }, |
| { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) }, |
| { "m25px80", INFO(0x207114, 0, 64 * 1024, 16, 0) }, |
| |
| /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */ |
| { "w25x05", INFO(0xef3010, 0, 64 * 1024, 1, SECT_4K) }, |
| { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) }, |
| { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) }, |
| { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) }, |
| { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) }, |
| { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) }, |
| { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) }, |
| { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) }, |
| { |
| "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, |
| SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | |
| SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) |
| }, |
| { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) }, |
| { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) }, |
| { |
| "w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128, |
| SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | |
| SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) |
| }, |
| { |
| "w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256, |
| SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | |
| SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB) |
| }, |
| { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) }, |
| { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) }, |
| { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) }, |
| { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) }, |
| |
| /* Catalyst / On Semiconductor -- non-JEDEC */ |
| { "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, |
| { "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, |
| { "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, |
| { "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, |
| { "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) }, |
| |
| /* Xilinx S3AN Internal Flash */ |
| { "3S50AN", S3AN_INFO(0x1f2200, 64, 264) }, |
| { "3S200AN", S3AN_INFO(0x1f2400, 256, 264) }, |
| { "3S400AN", S3AN_INFO(0x1f2400, 256, 264) }, |
| { "3S700AN", S3AN_INFO(0x1f2500, 512, 264) }, |
| { "3S1400AN", S3AN_INFO(0x1f2600, 512, 528) }, |
| { }, |
| }; |
| |
| static const struct flash_info *spi_nor_read_id(struct spi_nor *nor) |
| { |
| int tmp; |
| u8 id[SPI_NOR_MAX_ID_LEN]; |
| const struct flash_info *info; |
| |
| tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, SPI_NOR_MAX_ID_LEN); |
| if (tmp < 0) { |
| dev_dbg(nor->dev, "error %d reading JEDEC ID\n", tmp); |
| return ERR_PTR(tmp); |
| } |
| |
| for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) { |
| info = &spi_nor_ids[tmp]; |
| if (info->id_len) { |
| if (!memcmp(info->id, id, info->id_len)) |
| return &spi_nor_ids[tmp]; |
| } |
| } |
| dev_err(nor->dev, "unrecognized JEDEC id bytes: %02x, %02x, %02x\n", |
| id[0], id[1], id[2]); |
| return ERR_PTR(-ENODEV); |
| } |
| |
| static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len, |
| size_t *retlen, u_char *buf) |
| { |
| struct spi_nor *nor = mtd_to_spi_nor(mtd); |
| int ret; |
| |
| dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len); |
| |
| ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ); |
| if (ret) |
| return ret; |
| |
| while (len) { |
| loff_t addr = from; |
| |
| if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT) |
| addr = spi_nor_s3an_addr_convert(nor, addr); |
| |
| ret = nor->read(nor, addr, len, buf); |
| if (ret == 0) { |
| /* We shouldn't see 0-length reads */ |
| ret = -EIO; |
| goto read_err; |
| } |
| if (ret < 0) |
| goto read_err; |
| |
| WARN_ON(ret > len); |
| *retlen += ret; |
| buf += ret; |
| from += ret; |
| len -= ret; |
| } |
| ret = 0; |
| |
| read_err: |
| spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ); |
| return ret; |
| } |
| |
| static int sst_write(struct mtd_info *mtd, loff_t to, size_t len, |
| size_t *retlen, const u_char *buf) |
| { |
| struct spi_nor *nor = mtd_to_spi_nor(mtd); |
| size_t actual; |
| int ret; |
| |
| dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len); |
| |
| ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE); |
| if (ret) |
| return ret; |
| |
| write_enable(nor); |
| |
| nor->sst_write_second = false; |
| |
| actual = to % 2; |
| /* Start write from odd address. */ |
| if (actual) { |
| nor->program_opcode = SPINOR_OP_BP; |
| |
| /* write one byte. */ |
| ret = nor->write(nor, to, 1, buf); |
| if (ret < 0) |
| goto sst_write_err; |
| WARN(ret != 1, "While writing 1 byte written %i bytes\n", |
| (int)ret); |
| ret = spi_nor_wait_till_ready(nor); |
| if (ret) |
| goto sst_write_err; |
| } |
| to += actual; |
| |
| /* Write out most of the data here. */ |
| for (; actual < len - 1; actual += 2) { |
| nor->program_opcode = SPINOR_OP_AAI_WP; |
| |
| /* write two bytes. */ |
| ret = nor->write(nor, to, 2, buf + actual); |
| if (ret < 0) |
| goto sst_write_err; |
| WARN(ret != 2, "While writing 2 bytes written %i bytes\n", |
| (int)ret); |
| ret = spi_nor_wait_till_ready(nor); |
| if (ret) |
| goto sst_write_err; |
| to += 2; |
| nor->sst_write_second = true; |
| } |
| nor->sst_write_second = false; |
| |
| write_disable(nor); |
| ret = spi_nor_wait_till_ready(nor); |
| if (ret) |
| goto sst_write_err; |
| |
| /* Write out trailing byte if it exists. */ |
| if (actual != len) { |
| write_enable(nor); |
| |
| nor->program_opcode = SPINOR_OP_BP; |
| ret = nor->write(nor, to, 1, buf + actual); |
| if (ret < 0) |
| goto sst_write_err; |
| WARN(ret != 1, "While writing 1 byte written %i bytes\n", |
| (int)ret); |
| ret = spi_nor_wait_till_ready(nor); |
| if (ret) |
| goto sst_write_err; |
| write_disable(nor); |
| actual += 1; |
| } |
| sst_write_err: |
| *retlen += actual; |
| spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE); |
| return ret; |
| } |
| |
| /* |
| * Write an address range to the nor chip. Data must be written in |
| * FLASH_PAGESIZE chunks. The address range may be any size provided |
| * it is within the physical boundaries. |
| */ |
| static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len, |
| size_t *retlen, const u_char *buf) |
| { |
| struct spi_nor *nor = mtd_to_spi_nor(mtd); |
| size_t page_offset, page_remain, i; |
| ssize_t ret; |
| |
| dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len); |
| |
| ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < len; ) { |
| ssize_t written; |
| loff_t addr = to + i; |
| |
| /* |
| * If page_size is a power of two, the offset can be quickly |
| * calculated with an AND operation. On the other cases we |
| * need to do a modulus operation (more expensive). |
| * Power of two numbers have only one bit set and we can use |
| * the instruction hweight32 to detect if we need to do a |
| * modulus (do_div()) or not. |
| */ |
| if (hweight32(nor->page_size) == 1) { |
| page_offset = addr & (nor->page_size - 1); |
| } else { |
| uint64_t aux = addr; |
| |
| page_offset = do_div(aux, nor->page_size); |
| } |
| /* the size of data remaining on the first page */ |
| page_remain = min_t(size_t, |
| nor->page_size - page_offset, len - i); |
| |
| if (nor->flags & SNOR_F_S3AN_ADDR_DEFAULT) |
| addr = spi_nor_s3an_addr_convert(nor, addr); |
| |
| write_enable(nor); |
| ret = nor->write(nor, addr, page_remain, buf + i); |
| if (ret < 0) |
| goto write_err; |
| written = ret; |
| |
| ret = spi_nor_wait_till_ready(nor); |
| if (ret) |
| goto write_err; |
| *retlen += written; |
| i += written; |
| if (written != page_remain) { |
| dev_err(nor->dev, |
| "While writing %zu bytes written %zd bytes\n", |
| page_remain, written); |
| ret = -EIO; |
| goto write_err; |
| } |
| } |
| |
| write_err: |
| spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE); |
| return ret; |
| } |
| |
| static int macronix_quad_enable(struct spi_nor *nor) |
| { |
| int ret, val; |
| |
| val = read_sr(nor); |
| if (val < 0) |
| return val; |
| if (val & SR_QUAD_EN_MX) |
| return 0; |
| |
| write_enable(nor); |
| |
| write_sr(nor, val | SR_QUAD_EN_MX); |
| |
| if (spi_nor_wait_till_ready(nor)) |
| return 1; |
| |
| ret = read_sr(nor); |
| if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) { |
| dev_err(nor->dev, "Macronix Quad bit not set\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Write status Register and configuration register with 2 bytes |
| * The first byte will be written to the status register, while the |
| * second byte will be written to the configuration register. |
| * Return negative if error occurred. |
| */ |
| static int write_sr_cr(struct spi_nor *nor, u16 val) |
| { |
| nor->cmd_buf[0] = val & 0xff; |
| nor->cmd_buf[1] = (val >> 8); |
| |
| return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2); |
| } |
| |
| static int spansion_quad_enable(struct spi_nor *nor) |
| { |
| int ret; |
| int quad_en = CR_QUAD_EN_SPAN << 8; |
| |
| write_enable(nor); |
| |
| ret = write_sr_cr(nor, quad_en); |
| if (ret < 0) { |
| dev_err(nor->dev, |
| "error while writing configuration register\n"); |
| return -EINVAL; |
| } |
| |
| ret = spi_nor_wait_till_ready(nor); |
| if (ret) { |
| dev_err(nor->dev, |
| "timeout while writing configuration register\n"); |
| return ret; |
| } |
| |
| /* read back and check it */ |
| ret = read_cr(nor); |
| if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) { |
| dev_err(nor->dev, "Spansion Quad bit not set\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int set_quad_mode(struct spi_nor *nor, const struct flash_info *info) |
| { |
| int status; |
| |
| switch (JEDEC_MFR(info)) { |
| case SNOR_MFR_MACRONIX: |
| status = macronix_quad_enable(nor); |
| if (status) { |
| dev_err(nor->dev, "Macronix quad-read not enabled\n"); |
| return -EINVAL; |
| } |
| return status; |
| case SNOR_MFR_MICRON: |
| return 0; |
| default: |
| status = spansion_quad_enable(nor); |
| if (status) { |
| dev_err(nor->dev, "Spansion quad-read not enabled\n"); |
| return -EINVAL; |
| } |
| return status; |
| } |
| } |
| |
| static int spi_nor_check(struct spi_nor *nor) |
| { |
| if (!nor->dev || !nor->read || !nor->write || |
| !nor->read_reg || !nor->write_reg) { |
| pr_err("spi-nor: please fill all the necessary fields!\n"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int s3an_nor_scan(const struct flash_info *info, struct spi_nor *nor) |
| { |
| int ret; |
| u8 val; |
| |
| ret = nor->read_reg(nor, SPINOR_OP_XRDSR, &val, 1); |
| if (ret < 0) { |
| dev_err(nor->dev, "error %d reading XRDSR\n", (int) ret); |
| return ret; |
| } |
| |
| nor->erase_opcode = SPINOR_OP_XSE; |
| nor->program_opcode = SPINOR_OP_XPP; |
| nor->read_opcode = SPINOR_OP_READ; |
| nor->flags |= SNOR_F_NO_OP_CHIP_ERASE; |
| |
| /* |
| * This flashes have a page size of 264 or 528 bytes (known as |
| * Default addressing mode). It can be changed to a more standard |
| * Power of two mode where the page size is 256/512. This comes |
| * with a price: there is 3% less of space, the data is corrupted |
| * and the page size cannot be changed back to default addressing |
| * mode. |
| * |
| * The current addressing mode can be read from the XRDSR register |
| * and should not be changed, because is a destructive operation. |
| */ |
| if (val & XSR_PAGESIZE) { |
| /* Flash in Power of 2 mode */ |
| nor->page_size = (nor->page_size == 264) ? 256 : 512; |
| nor->mtd.writebufsize = nor->page_size; |
| nor->mtd.size = 8 * nor->page_size * info->n_sectors; |
| nor->mtd.erasesize = 8 * nor->page_size; |
| } else { |
| /* Flash in Default addressing mode */ |
| nor->flags |= SNOR_F_S3AN_ADDR_DEFAULT; |
| } |
| |
| return 0; |
| } |
| |
| int spi_nor_scan(struct spi_nor *nor, const char *name, enum read_mode mode) |
| { |
| const struct flash_info *info = NULL; |
| struct device *dev = nor->dev; |
| struct mtd_info *mtd = &nor->mtd; |
| struct device_node *np = spi_nor_get_flash_node(nor); |
| int ret; |
| int i; |
| |
| ret = spi_nor_check(nor); |
| if (ret) |
| return ret; |
| |
| if (name) |
| info = spi_nor_match_id(name); |
| /* Try to auto-detect if chip name wasn't specified or not found */ |
| if (!info) |
| info = spi_nor_read_id(nor); |
| if (IS_ERR_OR_NULL(info)) |
| return -ENOENT; |
| |
| /* |
| * If caller has specified name of flash model that can normally be |
| * detected using JEDEC, let's verify it. |
| */ |
| if (name && info->id_len) { |
| const struct flash_info *jinfo; |
| |
| jinfo = spi_nor_read_id(nor); |
| if (IS_ERR(jinfo)) { |
| return PTR_ERR(jinfo); |
| } else if (jinfo != info) { |
| /* |
| * JEDEC knows better, so overwrite platform ID. We |
| * can't trust partitions any longer, but we'll let |
| * mtd apply them anyway, since some partitions may be |
| * marked read-only, and we don't want to lose that |
| * information, even if it's not 100% accurate. |
| */ |
| dev_warn(dev, "found %s, expected %s\n", |
| jinfo->name, info->name); |
| info = jinfo; |
| } |
| } |
| |
| mutex_init(&nor->lock); |
| |
| /* |
| * Make sure the XSR_RDY flag is set before calling |
| * spi_nor_wait_till_ready(). Xilinx S3AN share MFR |
| * with Atmel spi-nor |
| */ |
| if (info->flags & SPI_S3AN) |
| nor->flags |= SNOR_F_READY_XSR_RDY; |
| |
| /* |
| * Atmel, SST, Intel/Numonyx, and others serial NOR tend to power up |
| * with the software protection bits set |
| */ |
| |
| if (JEDEC_MFR(info) == SNOR_MFR_ATMEL || |
| JEDEC_MFR(info) == SNOR_MFR_INTEL || |
| JEDEC_MFR(info) == SNOR_MFR_SST || |
| info->flags & SPI_NOR_HAS_LOCK) { |
| write_enable(nor); |
| write_sr(nor, 0); |
| spi_nor_wait_till_ready(nor); |
| } |
| |
| if (!mtd->name) |
| mtd->name = dev_name(dev); |
| mtd->priv = nor; |
| mtd->type = MTD_NORFLASH; |
| mtd->writesize = 1; |
| mtd->flags = MTD_CAP_NORFLASH; |
| mtd->size = info->sector_size * info->n_sectors; |
| mtd->_erase = spi_nor_erase; |
| mtd->_read = spi_nor_read; |
| |
| /* NOR protection support for STmicro/Micron chips and similar */ |
| if (JEDEC_MFR(info) == SNOR_MFR_MICRON || |
| info->flags & SPI_NOR_HAS_LOCK) { |
| nor->flash_lock = stm_lock; |
| nor->flash_unlock = stm_unlock; |
| nor->flash_is_locked = stm_is_locked; |
| } |
| |
| if (nor->flash_lock && nor->flash_unlock && nor->flash_is_locked) { |
| mtd->_lock = spi_nor_lock; |
| mtd->_unlock = spi_nor_unlock; |
| mtd->_is_locked = spi_nor_is_locked; |
| } |
| |
| /* sst nor chips use AAI word program */ |
| if (info->flags & SST_WRITE) |
| mtd->_write = sst_write; |
| else |
| mtd->_write = spi_nor_write; |
| |
| if (info->flags & USE_FSR) |
| nor->flags |= SNOR_F_USE_FSR; |
| if (info->flags & SPI_NOR_HAS_TB) |
| nor->flags |= SNOR_F_HAS_SR_TB; |
| if (info->flags & NO_CHIP_ERASE) |
| nor->flags |= SNOR_F_NO_OP_CHIP_ERASE; |
| |
| #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS |
| /* prefer "small sector" erase if possible */ |
| if (info->flags & SECT_4K) { |
| nor->erase_opcode = SPINOR_OP_BE_4K; |
| mtd->erasesize = 4096; |
| } else if (info->flags & SECT_4K_PMC) { |
| nor->erase_opcode = SPINOR_OP_BE_4K_PMC; |
| mtd->erasesize = 4096; |
| } else |
| #endif |
| { |
| nor->erase_opcode = SPINOR_OP_SE; |
| mtd->erasesize = info->sector_size; |
| } |
| |
| if (info->flags & SPI_NOR_NO_ERASE) |
| mtd->flags |= MTD_NO_ERASE; |
| |
| mtd->dev.parent = dev; |
| nor->page_size = info->page_size; |
| mtd->writebufsize = nor->page_size; |
| |
| if (np) { |
| /* If we were instantiated by DT, use it */ |
| if (of_property_read_bool(np, "m25p,fast-read")) |
| nor->flash_read = SPI_NOR_FAST; |
| else |
| nor->flash_read = SPI_NOR_NORMAL; |
| } else { |
| /* If we weren't instantiated by DT, default to fast-read */ |
| nor->flash_read = SPI_NOR_FAST; |
| } |
| |
| /* Some devices cannot do fast-read, no matter what DT tells us */ |
| if (info->flags & SPI_NOR_NO_FR) |
| nor->flash_read = SPI_NOR_NORMAL; |
| |
| /* Quad/Dual-read mode takes precedence over fast/normal */ |
| if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) { |
| ret = set_quad_mode(nor, info); |
| if (ret) { |
| dev_err(dev, "quad mode not supported\n"); |
| return ret; |
| } |
| nor->flash_read = SPI_NOR_QUAD; |
| } else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) { |
| nor->flash_read = SPI_NOR_DUAL; |
| } |
| |
| /* Default commands */ |
| switch (nor->flash_read) { |
| case SPI_NOR_QUAD: |
| nor->read_opcode = SPINOR_OP_READ_1_1_4; |
| break; |
| case SPI_NOR_DUAL: |
| nor->read_opcode = SPINOR_OP_READ_1_1_2; |
| break; |
| case SPI_NOR_FAST: |
| nor->read_opcode = SPINOR_OP_READ_FAST; |
| break; |
| case SPI_NOR_NORMAL: |
| nor->read_opcode = SPINOR_OP_READ; |
| break; |
| default: |
| dev_err(dev, "No Read opcode defined\n"); |
| return -EINVAL; |
| } |
| |
| nor->program_opcode = SPINOR_OP_PP; |
| |
| if (info->addr_width) |
| nor->addr_width = info->addr_width; |
| else if (mtd->size > 0x1000000) { |
| /* enable 4-byte addressing if the device exceeds 16MiB */ |
| nor->addr_width = 4; |
| if (JEDEC_MFR(info) == SNOR_MFR_SPANSION || |
| info->flags & SPI_NOR_4B_OPCODES) |
| spi_nor_set_4byte_opcodes(nor, info); |
| else |
| set_4byte(nor, info, 1); |
| } else { |
| nor->addr_width = 3; |
| } |
| |
| if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) { |
| dev_err(dev, "address width is too large: %u\n", |
| nor->addr_width); |
| return -EINVAL; |
| } |
| |
| nor->read_dummy = spi_nor_read_dummy_cycles(nor); |
| |
| if (info->flags & SPI_S3AN) { |
| ret = s3an_nor_scan(info, nor); |
| if (ret) |
| return ret; |
| } |
| |
| dev_info(dev, "%s (%lld Kbytes)\n", info->name, |
| (long long)mtd->size >> 10); |
| |
| dev_dbg(dev, |
| "mtd .name = %s, .size = 0x%llx (%lldMiB), " |
| ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n", |
| mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20), |
| mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions); |
| |
| if (mtd->numeraseregions) |
| for (i = 0; i < mtd->numeraseregions; i++) |
| dev_dbg(dev, |
| "mtd.eraseregions[%d] = { .offset = 0x%llx, " |
| ".erasesize = 0x%.8x (%uKiB), " |
| ".numblocks = %d }\n", |
| i, (long long)mtd->eraseregions[i].offset, |
| mtd->eraseregions[i].erasesize, |
| mtd->eraseregions[i].erasesize / 1024, |
| mtd->eraseregions[i].numblocks); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(spi_nor_scan); |
| |
| static const struct flash_info *spi_nor_match_id(const char *name) |
| { |
| const struct flash_info *id = spi_nor_ids; |
| |
| while (id->name) { |
| if (!strcmp(name, id->name)) |
| return id; |
| id++; |
| } |
| return NULL; |
| } |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>"); |
| MODULE_AUTHOR("Mike Lavender"); |
| MODULE_DESCRIPTION("framework for SPI NOR"); |