Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
diff --git a/drivers/usb/storage/sddr09.c b/drivers/usb/storage/sddr09.c
new file mode 100644
index 0000000..0ea2f5a
--- /dev/null
+++ b/drivers/usb/storage/sddr09.c
@@ -0,0 +1,1608 @@
+/* Driver for SanDisk SDDR-09 SmartMedia reader
+ *
+ * $Id: sddr09.c,v 1.24 2002/04/22 03:39:43 mdharm Exp $
+ *   (c) 2000, 2001 Robert Baruch (autophile@starband.net)
+ *   (c) 2002 Andries Brouwer (aeb@cwi.nl)
+ * Developed with the assistance of:
+ *   (c) 2002 Alan Stern <stern@rowland.org>
+ *
+ * The SanDisk SDDR-09 SmartMedia reader uses the Shuttle EUSB-01 chip.
+ * This chip is a programmable USB controller. In the SDDR-09, it has
+ * been programmed to obey a certain limited set of SCSI commands.
+ * This driver translates the "real" SCSI commands to the SDDR-09 SCSI
+ * commands.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the
+ * Free Software Foundation; either version 2, or (at your option) any
+ * later version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this program; if not, write to the Free Software Foundation, Inc.,
+ * 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+/*
+ * Known vendor commands: 12 bytes, first byte is opcode
+ *
+ * E7: read scatter gather
+ * E8: read
+ * E9: write
+ * EA: erase
+ * EB: reset
+ * EC: read status
+ * ED: read ID
+ * EE: write CIS (?)
+ * EF: compute checksum (?)
+ */
+
+#include <linux/sched.h>
+#include <linux/errno.h>
+#include <linux/slab.h>
+
+#include <scsi/scsi.h>
+#include <scsi/scsi_cmnd.h>
+
+#include "usb.h"
+#include "transport.h"
+#include "protocol.h"
+#include "debug.h"
+#include "sddr09.h"
+
+
+#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
+#define LSB_of(s) ((s)&0xFF)
+#define MSB_of(s) ((s)>>8)
+
+/* #define US_DEBUGP printk */
+
+/*
+ * First some stuff that does not belong here:
+ * data on SmartMedia and other cards, completely
+ * unrelated to this driver.
+ * Similar stuff occurs in <linux/mtd/nand_ids.h>.
+ */
+
+struct nand_flash_dev {
+	int model_id;
+	int chipshift;		/* 1<<cs bytes total capacity */
+	char pageshift;		/* 1<<ps bytes in a page */
+	char blockshift;	/* 1<<bs pages in an erase block */
+	char zoneshift;		/* 1<<zs blocks in a zone */
+				/* # of logical blocks is 125/128 of this */
+	char pageadrlen;	/* length of an address in bytes - 1 */
+};
+
+/*
+ * NAND Flash Manufacturer ID Codes
+ */
+#define NAND_MFR_AMD		0x01
+#define NAND_MFR_NATSEMI	0x8f
+#define NAND_MFR_TOSHIBA	0x98
+#define NAND_MFR_SAMSUNG	0xec
+
+static inline char *nand_flash_manufacturer(int manuf_id) {
+	switch(manuf_id) {
+	case NAND_MFR_AMD:
+		return "AMD";
+	case NAND_MFR_NATSEMI:
+		return "NATSEMI";
+	case NAND_MFR_TOSHIBA:
+		return "Toshiba";
+	case NAND_MFR_SAMSUNG:
+		return "Samsung";
+	default:
+		return "unknown";
+	}
+}
+
+/*
+ * It looks like it is unnecessary to attach manufacturer to the
+ * remaining data: SSFDC prescribes manufacturer-independent id codes.
+ *
+ * 256 MB NAND flash has a 5-byte ID with 2nd byte 0xaa, 0xba, 0xca or 0xda.
+ */
+
+static struct nand_flash_dev nand_flash_ids[] = {
+	/* NAND flash */
+	{ 0x6e, 20, 8, 4, 8, 2},	/* 1 MB */
+	{ 0xe8, 20, 8, 4, 8, 2},	/* 1 MB */
+	{ 0xec, 20, 8, 4, 8, 2},	/* 1 MB */
+	{ 0x64, 21, 8, 4, 9, 2}, 	/* 2 MB */
+	{ 0xea, 21, 8, 4, 9, 2},	/* 2 MB */
+	{ 0x6b, 22, 9, 4, 9, 2},	/* 4 MB */
+	{ 0xe3, 22, 9, 4, 9, 2},	/* 4 MB */
+	{ 0xe5, 22, 9, 4, 9, 2},	/* 4 MB */
+	{ 0xe6, 23, 9, 4, 10, 2},	/* 8 MB */
+	{ 0x73, 24, 9, 5, 10, 2},	/* 16 MB */
+	{ 0x75, 25, 9, 5, 10, 2},	/* 32 MB */
+	{ 0x76, 26, 9, 5, 10, 3},	/* 64 MB */
+	{ 0x79, 27, 9, 5, 10, 3},	/* 128 MB */
+
+	/* MASK ROM */
+	{ 0x5d, 21, 9, 4, 8, 2},	/* 2 MB */
+	{ 0xd5, 22, 9, 4, 9, 2},	/* 4 MB */
+	{ 0xd6, 23, 9, 4, 10, 2},	/* 8 MB */
+	{ 0x57, 24, 9, 4, 11, 2},	/* 16 MB */
+	{ 0x58, 25, 9, 4, 12, 2},	/* 32 MB */
+	{ 0,}
+};
+
+#define SIZE(a)	(sizeof(a)/sizeof((a)[0]))
+
+static struct nand_flash_dev *
+nand_find_id(unsigned char id) {
+	int i;
+
+	for (i = 0; i < SIZE(nand_flash_ids); i++)
+		if (nand_flash_ids[i].model_id == id)
+			return &(nand_flash_ids[i]);
+	return NULL;
+}
+
+/*
+ * ECC computation.
+ */
+static unsigned char parity[256];
+static unsigned char ecc2[256];
+
+static void nand_init_ecc(void) {
+	int i, j, a;
+
+	parity[0] = 0;
+	for (i = 1; i < 256; i++)
+		parity[i] = (parity[i&(i-1)] ^ 1);
+
+	for (i = 0; i < 256; i++) {
+		a = 0;
+		for (j = 0; j < 8; j++) {
+			if (i & (1<<j)) {
+				if ((j & 1) == 0)
+					a ^= 0x04;
+				if ((j & 2) == 0)
+					a ^= 0x10;
+				if ((j & 4) == 0)
+					a ^= 0x40;
+			}
+		}
+		ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
+	}
+}
+
+/* compute 3-byte ecc on 256 bytes */
+static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
+	int i, j, a;
+	unsigned char par, bit, bits[8];
+
+	par = 0;
+	for (j = 0; j < 8; j++)
+		bits[j] = 0;
+
+	/* collect 16 checksum bits */
+	for (i = 0; i < 256; i++) {
+		par ^= data[i];
+		bit = parity[data[i]];
+		for (j = 0; j < 8; j++)
+			if ((i & (1<<j)) == 0)
+				bits[j] ^= bit;
+	}
+
+	/* put 4+4+4 = 12 bits in the ecc */
+	a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
+	ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
+
+	a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
+	ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
+
+	ecc[2] = ecc2[par];
+}
+
+static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
+	return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
+}
+
+static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
+	memcpy(data, ecc, 3);
+}
+
+/*
+ * The actual driver starts here.
+ */
+
+/*
+ * On my 16MB card, control blocks have size 64 (16 real control bytes,
+ * and 48 junk bytes). In reality of course the card uses 16 control bytes,
+ * so the reader makes up the remaining 48. Don't know whether these numbers
+ * depend on the card. For now a constant.
+ */
+#define CONTROL_SHIFT 6
+
+/*
+ * On my Combo CF/SM reader, the SM reader has LUN 1.
+ * (and things fail with LUN 0).
+ * It seems LUN is irrelevant for others.
+ */
+#define LUN	1
+#define	LUNBITS	(LUN << 5)
+
+/*
+ * LBA and PBA are unsigned ints. Special values.
+ */
+#define UNDEF    0xffffffff
+#define SPARE    0xfffffffe
+#define UNUSABLE 0xfffffffd
+
+static int erase_bad_lba_entries = 0;
+
+/* send vendor interface command (0x41) */
+/* called for requests 0, 1, 8 */
+static int
+sddr09_send_command(struct us_data *us,
+		    unsigned char request,
+		    unsigned char direction,
+		    unsigned char *xfer_data,
+		    unsigned int xfer_len) {
+	unsigned int pipe;
+	unsigned char requesttype = (0x41 | direction);
+	int rc;
+
+	// Get the receive or send control pipe number
+
+	if (direction == USB_DIR_IN)
+		pipe = us->recv_ctrl_pipe;
+	else
+		pipe = us->send_ctrl_pipe;
+
+	rc = usb_stor_ctrl_transfer(us, pipe, request, requesttype,
+				   0, 0, xfer_data, xfer_len);
+	return (rc == USB_STOR_XFER_GOOD ? USB_STOR_TRANSPORT_GOOD :
+			USB_STOR_TRANSPORT_ERROR);
+}
+
+static int
+sddr09_send_scsi_command(struct us_data *us,
+			 unsigned char *command,
+			 unsigned int command_len) {
+	return sddr09_send_command(us, 0, USB_DIR_OUT, command, command_len);
+}
+
+#if 0
+/*
+ * Test Unit Ready Command: 12 bytes.
+ * byte 0: opcode: 00
+ */
+static int
+sddr09_test_unit_ready(struct us_data *us) {
+	unsigned char *command = us->iobuf;
+	int result;
+
+	memset(command, 0, 6);
+	command[1] = LUNBITS;
+
+	result = sddr09_send_scsi_command(us, command, 6);
+
+	US_DEBUGP("sddr09_test_unit_ready returns %d\n", result);
+
+	return result;
+}
+#endif
+
+/*
+ * Request Sense Command: 12 bytes.
+ * byte 0: opcode: 03
+ * byte 4: data length
+ */
+static int
+sddr09_request_sense(struct us_data *us, unsigned char *sensebuf, int buflen) {
+	unsigned char *command = us->iobuf;
+	int result;
+
+	memset(command, 0, 12);
+	command[0] = 0x03;
+	command[1] = LUNBITS;
+	command[4] = buflen;
+
+	result = sddr09_send_scsi_command(us, command, 12);
+	if (result != USB_STOR_TRANSPORT_GOOD) {
+		US_DEBUGP("request sense failed\n");
+		return result;
+	}
+
+	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
+			sensebuf, buflen, NULL);
+	if (result != USB_STOR_XFER_GOOD) {
+		US_DEBUGP("request sense bulk in failed\n");
+		return USB_STOR_TRANSPORT_ERROR;
+	} else {
+		US_DEBUGP("request sense worked\n");
+		return USB_STOR_TRANSPORT_GOOD;
+	}
+}
+
+/*
+ * Read Command: 12 bytes.
+ * byte 0: opcode: E8
+ * byte 1: last two bits: 00: read data, 01: read blockwise control,
+ *			10: read both, 11: read pagewise control.
+ *	 It turns out we need values 20, 21, 22, 23 here (LUN 1).
+ * bytes 2-5: address (interpretation depends on byte 1, see below)
+ * bytes 10-11: count (idem)
+ *
+ * A page has 512 data bytes and 64 control bytes (16 control and 48 junk).
+ * A read data command gets data in 512-byte pages.
+ * A read control command gets control in 64-byte chunks.
+ * A read both command gets data+control in 576-byte chunks.
+ *
+ * Blocks are groups of 32 pages, and read blockwise control jumps to the
+ * next block, while read pagewise control jumps to the next page after
+ * reading a group of 64 control bytes.
+ * [Here 512 = 1<<pageshift, 32 = 1<<blockshift, 64 is constant?]
+ *
+ * (1 MB and 2 MB cards are a bit different, but I have only a 16 MB card.)
+ */
+
+static int
+sddr09_readX(struct us_data *us, int x, unsigned long fromaddress,
+	     int nr_of_pages, int bulklen, unsigned char *buf,
+	     int use_sg) {
+
+	unsigned char *command = us->iobuf;
+	int result;
+
+	command[0] = 0xE8;
+	command[1] = LUNBITS | x;
+	command[2] = MSB_of(fromaddress>>16);
+	command[3] = LSB_of(fromaddress>>16); 
+	command[4] = MSB_of(fromaddress & 0xFFFF);
+	command[5] = LSB_of(fromaddress & 0xFFFF); 
+	command[6] = 0;
+	command[7] = 0;
+	command[8] = 0;
+	command[9] = 0;
+	command[10] = MSB_of(nr_of_pages);
+	command[11] = LSB_of(nr_of_pages);
+
+	result = sddr09_send_scsi_command(us, command, 12);
+
+	if (result != USB_STOR_TRANSPORT_GOOD) {
+		US_DEBUGP("Result for send_control in sddr09_read2%d %d\n",
+			  x, result);
+		return result;
+	}
+
+	result = usb_stor_bulk_transfer_sg(us, us->recv_bulk_pipe,
+				       buf, bulklen, use_sg, NULL);
+
+	if (result != USB_STOR_XFER_GOOD) {
+		US_DEBUGP("Result for bulk_transfer in sddr09_read2%d %d\n",
+			  x, result);
+		return USB_STOR_TRANSPORT_ERROR;
+	}
+	return USB_STOR_TRANSPORT_GOOD;
+}
+
+/*
+ * Read Data
+ *
+ * fromaddress counts data shorts:
+ * increasing it by 256 shifts the bytestream by 512 bytes;
+ * the last 8 bits are ignored.
+ *
+ * nr_of_pages counts pages of size (1 << pageshift).
+ */
+static int
+sddr09_read20(struct us_data *us, unsigned long fromaddress,
+	      int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
+	int bulklen = nr_of_pages << pageshift;
+
+	/* The last 8 bits of fromaddress are ignored. */
+	return sddr09_readX(us, 0, fromaddress, nr_of_pages, bulklen,
+			    buf, use_sg);
+}
+
+/*
+ * Read Blockwise Control
+ *
+ * fromaddress gives the starting position (as in read data;
+ * the last 8 bits are ignored); increasing it by 32*256 shifts
+ * the output stream by 64 bytes.
+ *
+ * count counts control groups of size (1 << controlshift).
+ * For me, controlshift = 6. Is this constant?
+ *
+ * After getting one control group, jump to the next block
+ * (fromaddress += 8192).
+ */
+static int
+sddr09_read21(struct us_data *us, unsigned long fromaddress,
+	      int count, int controlshift, unsigned char *buf, int use_sg) {
+
+	int bulklen = (count << controlshift);
+	return sddr09_readX(us, 1, fromaddress, count, bulklen,
+			    buf, use_sg);
+}
+
+/*
+ * Read both Data and Control
+ *
+ * fromaddress counts data shorts, ignoring control:
+ * increasing it by 256 shifts the bytestream by 576 = 512+64 bytes;
+ * the last 8 bits are ignored.
+ *
+ * nr_of_pages counts pages of size (1 << pageshift) + (1 << controlshift).
+ */
+static int
+sddr09_read22(struct us_data *us, unsigned long fromaddress,
+	      int nr_of_pages, int pageshift, unsigned char *buf, int use_sg) {
+
+	int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
+	US_DEBUGP("sddr09_read22: reading %d pages, %d bytes\n",
+		  nr_of_pages, bulklen);
+	return sddr09_readX(us, 2, fromaddress, nr_of_pages, bulklen,
+			    buf, use_sg);
+}
+
+#if 0
+/*
+ * Read Pagewise Control
+ *
+ * fromaddress gives the starting position (as in read data;
+ * the last 8 bits are ignored); increasing it by 256 shifts
+ * the output stream by 64 bytes.
+ *
+ * count counts control groups of size (1 << controlshift).
+ * For me, controlshift = 6. Is this constant?
+ *
+ * After getting one control group, jump to the next page
+ * (fromaddress += 256).
+ */
+static int
+sddr09_read23(struct us_data *us, unsigned long fromaddress,
+	      int count, int controlshift, unsigned char *buf, int use_sg) {
+
+	int bulklen = (count << controlshift);
+	return sddr09_readX(us, 3, fromaddress, count, bulklen,
+			    buf, use_sg);
+}
+#endif
+
+/*
+ * Erase Command: 12 bytes.
+ * byte 0: opcode: EA
+ * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
+ * 
+ * Always precisely one block is erased; bytes 2-5 and 10-11 are ignored.
+ * The byte address being erased is 2*Eaddress.
+ * The CIS cannot be erased.
+ */
+static int
+sddr09_erase(struct us_data *us, unsigned long Eaddress) {
+	unsigned char *command = us->iobuf;
+	int result;
+
+	US_DEBUGP("sddr09_erase: erase address %lu\n", Eaddress);
+
+	memset(command, 0, 12);
+	command[0] = 0xEA;
+	command[1] = LUNBITS;
+	command[6] = MSB_of(Eaddress>>16);
+	command[7] = LSB_of(Eaddress>>16);
+	command[8] = MSB_of(Eaddress & 0xFFFF);
+	command[9] = LSB_of(Eaddress & 0xFFFF);
+
+	result = sddr09_send_scsi_command(us, command, 12);
+
+	if (result != USB_STOR_TRANSPORT_GOOD)
+		US_DEBUGP("Result for send_control in sddr09_erase %d\n",
+			  result);
+
+	return result;
+}
+
+/*
+ * Write CIS Command: 12 bytes.
+ * byte 0: opcode: EE
+ * bytes 2-5: write address in shorts
+ * bytes 10-11: sector count
+ *
+ * This writes at the indicated address. Don't know how it differs
+ * from E9. Maybe it does not erase? However, it will also write to
+ * the CIS.
+ *
+ * When two such commands on the same page follow each other directly,
+ * the second one is not done.
+ */
+
+/*
+ * Write Command: 12 bytes.
+ * byte 0: opcode: E9
+ * bytes 2-5: write address (big-endian, counting shorts, sector aligned).
+ * bytes 6-9: erase address (big-endian, counting shorts, sector aligned).
+ * bytes 10-11: sector count (big-endian, in 512-byte sectors).
+ *
+ * If write address equals erase address, the erase is done first,
+ * otherwise the write is done first. When erase address equals zero
+ * no erase is done?
+ */
+static int
+sddr09_writeX(struct us_data *us,
+	      unsigned long Waddress, unsigned long Eaddress,
+	      int nr_of_pages, int bulklen, unsigned char *buf, int use_sg) {
+
+	unsigned char *command = us->iobuf;
+	int result;
+
+	command[0] = 0xE9;
+	command[1] = LUNBITS;
+
+	command[2] = MSB_of(Waddress>>16);
+	command[3] = LSB_of(Waddress>>16);
+	command[4] = MSB_of(Waddress & 0xFFFF);
+	command[5] = LSB_of(Waddress & 0xFFFF);
+
+	command[6] = MSB_of(Eaddress>>16);
+	command[7] = LSB_of(Eaddress>>16);
+	command[8] = MSB_of(Eaddress & 0xFFFF);
+	command[9] = LSB_of(Eaddress & 0xFFFF);
+
+	command[10] = MSB_of(nr_of_pages);
+	command[11] = LSB_of(nr_of_pages);
+
+	result = sddr09_send_scsi_command(us, command, 12);
+
+	if (result != USB_STOR_TRANSPORT_GOOD) {
+		US_DEBUGP("Result for send_control in sddr09_writeX %d\n",
+			  result);
+		return result;
+	}
+
+	result = usb_stor_bulk_transfer_sg(us, us->send_bulk_pipe,
+				       buf, bulklen, use_sg, NULL);
+
+	if (result != USB_STOR_XFER_GOOD) {
+		US_DEBUGP("Result for bulk_transfer in sddr09_writeX %d\n",
+			  result);
+		return USB_STOR_TRANSPORT_ERROR;
+	}
+	return USB_STOR_TRANSPORT_GOOD;
+}
+
+/* erase address, write same address */
+static int
+sddr09_write_inplace(struct us_data *us, unsigned long address,
+		     int nr_of_pages, int pageshift, unsigned char *buf,
+		     int use_sg) {
+	int bulklen = (nr_of_pages << pageshift) + (nr_of_pages << CONTROL_SHIFT);
+	return sddr09_writeX(us, address, address, nr_of_pages, bulklen,
+			     buf, use_sg);
+}
+
+#if 0
+/*
+ * Read Scatter Gather Command: 3+4n bytes.
+ * byte 0: opcode E7
+ * byte 2: n
+ * bytes 4i-1,4i,4i+1: page address
+ * byte 4i+2: page count
+ * (i=1..n)
+ *
+ * This reads several pages from the card to a single memory buffer.
+ * The last two bits of byte 1 have the same meaning as for E8.
+ */
+static int
+sddr09_read_sg_test_only(struct us_data *us) {
+	unsigned char *command = us->iobuf;
+	int result, bulklen, nsg, ct;
+	unsigned char *buf;
+	unsigned long address;
+
+	nsg = bulklen = 0;
+	command[0] = 0xE7;
+	command[1] = LUNBITS;
+	command[2] = 0;
+	address = 040000; ct = 1;
+	nsg++;
+	bulklen += (ct << 9);
+	command[4*nsg+2] = ct;
+	command[4*nsg+1] = ((address >> 9) & 0xFF);
+	command[4*nsg+0] = ((address >> 17) & 0xFF);
+	command[4*nsg-1] = ((address >> 25) & 0xFF);
+
+	address = 0340000; ct = 1;
+	nsg++;
+	bulklen += (ct << 9);
+	command[4*nsg+2] = ct;
+	command[4*nsg+1] = ((address >> 9) & 0xFF);
+	command[4*nsg+0] = ((address >> 17) & 0xFF);
+	command[4*nsg-1] = ((address >> 25) & 0xFF);
+
+	address = 01000000; ct = 2;
+	nsg++;
+	bulklen += (ct << 9);
+	command[4*nsg+2] = ct;
+	command[4*nsg+1] = ((address >> 9) & 0xFF);
+	command[4*nsg+0] = ((address >> 17) & 0xFF);
+	command[4*nsg-1] = ((address >> 25) & 0xFF);
+
+	command[2] = nsg;
+
+	result = sddr09_send_scsi_command(us, command, 4*nsg+3);
+
+	if (result != USB_STOR_TRANSPORT_GOOD) {
+		US_DEBUGP("Result for send_control in sddr09_read_sg %d\n",
+			  result);
+		return result;
+	}
+
+	buf = (unsigned char *) kmalloc(bulklen, GFP_NOIO);
+	if (!buf)
+		return USB_STOR_TRANSPORT_ERROR;
+
+	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
+				       buf, bulklen, NULL);
+	kfree(buf);
+	if (result != USB_STOR_XFER_GOOD) {
+		US_DEBUGP("Result for bulk_transfer in sddr09_read_sg %d\n",
+			  result);
+		return USB_STOR_TRANSPORT_ERROR;
+	}
+
+	return USB_STOR_TRANSPORT_GOOD;
+}
+#endif
+
+/*
+ * Read Status Command: 12 bytes.
+ * byte 0: opcode: EC
+ *
+ * Returns 64 bytes, all zero except for the first.
+ * bit 0: 1: Error
+ * bit 5: 1: Suspended
+ * bit 6: 1: Ready
+ * bit 7: 1: Not write-protected
+ */
+
+static int
+sddr09_read_status(struct us_data *us, unsigned char *status) {
+
+	unsigned char *command = us->iobuf;
+	unsigned char *data = us->iobuf;
+	int result;
+
+	US_DEBUGP("Reading status...\n");
+
+	memset(command, 0, 12);
+	command[0] = 0xEC;
+	command[1] = LUNBITS;
+
+	result = sddr09_send_scsi_command(us, command, 12);
+	if (result != USB_STOR_TRANSPORT_GOOD)
+		return result;
+
+	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
+				       data, 64, NULL);
+	*status = data[0];
+	return (result == USB_STOR_XFER_GOOD ?
+			USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
+}
+
+static int
+sddr09_read_data(struct us_data *us,
+		 unsigned long address,
+		 unsigned int sectors) {
+
+	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
+	unsigned char *buffer;
+	unsigned int lba, maxlba, pba;
+	unsigned int page, pages;
+	unsigned int len, index, offset;
+	int result;
+
+	// Since we only read in one block at a time, we have to create
+	// a bounce buffer and move the data a piece at a time between the
+	// bounce buffer and the actual transfer buffer.
+
+	len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
+	buffer = kmalloc(len, GFP_NOIO);
+	if (buffer == NULL) {
+		printk("sddr09_read_data: Out of memory\n");
+		return USB_STOR_TRANSPORT_ERROR;
+	}
+
+	// Figure out the initial LBA and page
+	lba = address >> info->blockshift;
+	page = (address & info->blockmask);
+	maxlba = info->capacity >> (info->pageshift + info->blockshift);
+
+	// This could be made much more efficient by checking for
+	// contiguous LBA's. Another exercise left to the student.
+
+	result = USB_STOR_TRANSPORT_GOOD;
+	index = offset = 0;
+
+	while (sectors > 0) {
+
+		/* Find number of pages we can read in this block */
+		pages = min(sectors, info->blocksize - page);
+		len = pages << info->pageshift;
+
+		/* Not overflowing capacity? */
+		if (lba >= maxlba) {
+			US_DEBUGP("Error: Requested lba %u exceeds "
+				  "maximum %u\n", lba, maxlba);
+			result = USB_STOR_TRANSPORT_ERROR;
+			break;
+		}
+
+		/* Find where this lba lives on disk */
+		pba = info->lba_to_pba[lba];
+
+		if (pba == UNDEF) {	/* this lba was never written */
+
+			US_DEBUGP("Read %d zero pages (LBA %d) page %d\n",
+				  pages, lba, page);
+
+			/* This is not really an error. It just means
+			   that the block has never been written.
+			   Instead of returning USB_STOR_TRANSPORT_ERROR
+			   it is better to return all zero data. */
+
+			memset(buffer, 0, len);
+
+		} else {
+			US_DEBUGP("Read %d pages, from PBA %d"
+				  " (LBA %d) page %d\n",
+				  pages, pba, lba, page);
+
+			address = ((pba << info->blockshift) + page) << 
+				info->pageshift;
+
+			result = sddr09_read20(us, address>>1,
+					pages, info->pageshift, buffer, 0);
+			if (result != USB_STOR_TRANSPORT_GOOD)
+				break;
+		}
+
+		// Store the data in the transfer buffer
+		usb_stor_access_xfer_buf(buffer, len, us->srb,
+				&index, &offset, TO_XFER_BUF);
+
+		page = 0;
+		lba++;
+		sectors -= pages;
+	}
+
+	kfree(buffer);
+	return result;
+}
+
+static unsigned int
+sddr09_find_unused_pba(struct sddr09_card_info *info, unsigned int lba) {
+	static unsigned int lastpba = 1;
+	int zonestart, end, i;
+
+	zonestart = (lba/1000) << 10;
+	end = info->capacity >> (info->blockshift + info->pageshift);
+	end -= zonestart;
+	if (end > 1024)
+		end = 1024;
+
+	for (i = lastpba+1; i < end; i++) {
+		if (info->pba_to_lba[zonestart+i] == UNDEF) {
+			lastpba = i;
+			return zonestart+i;
+		}
+	}
+	for (i = 0; i <= lastpba; i++) {
+		if (info->pba_to_lba[zonestart+i] == UNDEF) {
+			lastpba = i;
+			return zonestart+i;
+		}
+	}
+	return 0;
+}
+
+static int
+sddr09_write_lba(struct us_data *us, unsigned int lba,
+		 unsigned int page, unsigned int pages,
+		 unsigned char *ptr, unsigned char *blockbuffer) {
+
+	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
+	unsigned long address;
+	unsigned int pba, lbap;
+	unsigned int pagelen;
+	unsigned char *bptr, *cptr, *xptr;
+	unsigned char ecc[3];
+	int i, result, isnew;
+
+	lbap = ((lba % 1000) << 1) | 0x1000;
+	if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
+		lbap ^= 1;
+	pba = info->lba_to_pba[lba];
+	isnew = 0;
+
+	if (pba == UNDEF) {
+		pba = sddr09_find_unused_pba(info, lba);
+		if (!pba) {
+			printk("sddr09_write_lba: Out of unused blocks\n");
+			return USB_STOR_TRANSPORT_ERROR;
+		}
+		info->pba_to_lba[pba] = lba;
+		info->lba_to_pba[lba] = pba;
+		isnew = 1;
+	}
+
+	if (pba == 1) {
+		/* Maybe it is impossible to write to PBA 1.
+		   Fake success, but don't do anything. */
+		printk("sddr09: avoid writing to pba 1\n");
+		return USB_STOR_TRANSPORT_GOOD;
+	}
+
+	pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
+
+	/* read old contents */
+	address = (pba << (info->pageshift + info->blockshift));
+	result = sddr09_read22(us, address>>1, info->blocksize,
+			       info->pageshift, blockbuffer, 0);
+	if (result != USB_STOR_TRANSPORT_GOOD)
+		return result;
+
+	/* check old contents and fill lba */
+	for (i = 0; i < info->blocksize; i++) {
+		bptr = blockbuffer + i*pagelen;
+		cptr = bptr + info->pagesize;
+		nand_compute_ecc(bptr, ecc);
+		if (!nand_compare_ecc(cptr+13, ecc)) {
+			US_DEBUGP("Warning: bad ecc in page %d- of pba %d\n",
+				  i, pba);
+			nand_store_ecc(cptr+13, ecc);
+		}
+		nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
+		if (!nand_compare_ecc(cptr+8, ecc)) {
+			US_DEBUGP("Warning: bad ecc in page %d+ of pba %d\n",
+				  i, pba);
+			nand_store_ecc(cptr+8, ecc);
+		}
+		cptr[6] = cptr[11] = MSB_of(lbap);
+		cptr[7] = cptr[12] = LSB_of(lbap);
+	}
+
+	/* copy in new stuff and compute ECC */
+	xptr = ptr;
+	for (i = page; i < page+pages; i++) {
+		bptr = blockbuffer + i*pagelen;
+		cptr = bptr + info->pagesize;
+		memcpy(bptr, xptr, info->pagesize);
+		xptr += info->pagesize;
+		nand_compute_ecc(bptr, ecc);
+		nand_store_ecc(cptr+13, ecc);
+		nand_compute_ecc(bptr+(info->pagesize / 2), ecc);
+		nand_store_ecc(cptr+8, ecc);
+	}
+
+	US_DEBUGP("Rewrite PBA %d (LBA %d)\n", pba, lba);
+
+	result = sddr09_write_inplace(us, address>>1, info->blocksize,
+				      info->pageshift, blockbuffer, 0);
+
+	US_DEBUGP("sddr09_write_inplace returns %d\n", result);
+
+#if 0
+	{
+		unsigned char status = 0;
+		int result2 = sddr09_read_status(us, &status);
+		if (result2 != USB_STOR_TRANSPORT_GOOD)
+			US_DEBUGP("sddr09_write_inplace: cannot read status\n");
+		else if (status != 0xc0)
+			US_DEBUGP("sddr09_write_inplace: status after write: 0x%x\n",
+				  status);
+	}
+#endif
+
+#if 0
+	{
+		int result2 = sddr09_test_unit_ready(us);
+	}
+#endif
+
+	return result;
+}
+
+static int
+sddr09_write_data(struct us_data *us,
+		  unsigned long address,
+		  unsigned int sectors) {
+
+	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
+	unsigned int lba, page, pages;
+	unsigned int pagelen, blocklen;
+	unsigned char *blockbuffer;
+	unsigned char *buffer;
+	unsigned int len, index, offset;
+	int result;
+
+	// blockbuffer is used for reading in the old data, overwriting
+	// with the new data, and performing ECC calculations
+
+	/* TODO: instead of doing kmalloc/kfree for each write,
+	   add a bufferpointer to the info structure */
+
+	pagelen = (1 << info->pageshift) + (1 << CONTROL_SHIFT);
+	blocklen = (pagelen << info->blockshift);
+	blockbuffer = kmalloc(blocklen, GFP_NOIO);
+	if (!blockbuffer) {
+		printk("sddr09_write_data: Out of memory\n");
+		return USB_STOR_TRANSPORT_ERROR;
+	}
+
+	// Since we don't write the user data directly to the device,
+	// we have to create a bounce buffer and move the data a piece
+	// at a time between the bounce buffer and the actual transfer buffer.
+
+	len = min(sectors, (unsigned int) info->blocksize) * info->pagesize;
+	buffer = kmalloc(len, GFP_NOIO);
+	if (buffer == NULL) {
+		printk("sddr09_write_data: Out of memory\n");
+		kfree(blockbuffer);
+		return USB_STOR_TRANSPORT_ERROR;
+	}
+
+	// Figure out the initial LBA and page
+	lba = address >> info->blockshift;
+	page = (address & info->blockmask);
+
+	result = USB_STOR_TRANSPORT_GOOD;
+	index = offset = 0;
+
+	while (sectors > 0) {
+
+		// Write as many sectors as possible in this block
+
+		pages = min(sectors, info->blocksize - page);
+		len = (pages << info->pageshift);
+
+		// Get the data from the transfer buffer
+		usb_stor_access_xfer_buf(buffer, len, us->srb,
+				&index, &offset, FROM_XFER_BUF);
+
+		result = sddr09_write_lba(us, lba, page, pages,
+				buffer, blockbuffer);
+		if (result != USB_STOR_TRANSPORT_GOOD)
+			break;
+
+		page = 0;
+		lba++;
+		sectors -= pages;
+	}
+
+	kfree(buffer);
+	kfree(blockbuffer);
+
+	return result;
+}
+
+static int
+sddr09_read_control(struct us_data *us,
+		unsigned long address,
+		unsigned int blocks,
+		unsigned char *content,
+		int use_sg) {
+
+	US_DEBUGP("Read control address %lu, blocks %d\n",
+		address, blocks);
+
+	return sddr09_read21(us, address, blocks,
+			     CONTROL_SHIFT, content, use_sg);
+}
+
+/*
+ * Read Device ID Command: 12 bytes.
+ * byte 0: opcode: ED
+ *
+ * Returns 2 bytes: Manufacturer ID and Device ID.
+ * On more recent cards 3 bytes: the third byte is an option code A5
+ * signifying that the secret command to read an 128-bit ID is available.
+ * On still more recent cards 4 bytes: the fourth byte C0 means that
+ * a second read ID cmd is available.
+ */
+static int
+sddr09_read_deviceID(struct us_data *us, unsigned char *deviceID) {
+	unsigned char *command = us->iobuf;
+	unsigned char *content = us->iobuf;
+	int result, i;
+
+	memset(command, 0, 12);
+	command[0] = 0xED;
+	command[1] = LUNBITS;
+
+	result = sddr09_send_scsi_command(us, command, 12);
+	if (result != USB_STOR_TRANSPORT_GOOD)
+		return result;
+
+	result = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
+			content, 64, NULL);
+
+	for (i = 0; i < 4; i++)
+		deviceID[i] = content[i];
+
+	return (result == USB_STOR_XFER_GOOD ?
+			USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
+}
+
+static int
+sddr09_get_wp(struct us_data *us, struct sddr09_card_info *info) {
+	int result;
+	unsigned char status;
+
+	result = sddr09_read_status(us, &status);
+	if (result != USB_STOR_TRANSPORT_GOOD) {
+		US_DEBUGP("sddr09_get_wp: read_status fails\n");
+		return result;
+	}
+	US_DEBUGP("sddr09_get_wp: status 0x%02X", status);
+	if ((status & 0x80) == 0) {
+		info->flags |= SDDR09_WP;	/* write protected */
+		US_DEBUGP(" WP");
+	}
+	if (status & 0x40)
+		US_DEBUGP(" Ready");
+	if (status & LUNBITS)
+		US_DEBUGP(" Suspended");
+	if (status & 0x1)
+		US_DEBUGP(" Error");
+	US_DEBUGP("\n");
+	return USB_STOR_TRANSPORT_GOOD;
+}
+
+#if 0
+/*
+ * Reset Command: 12 bytes.
+ * byte 0: opcode: EB
+ */
+static int
+sddr09_reset(struct us_data *us) {
+
+	unsigned char *command = us->iobuf;
+
+	memset(command, 0, 12);
+	command[0] = 0xEB;
+	command[1] = LUNBITS;
+
+	return sddr09_send_scsi_command(us, command, 12);
+}
+#endif
+
+static struct nand_flash_dev *
+sddr09_get_cardinfo(struct us_data *us, unsigned char flags) {
+	struct nand_flash_dev *cardinfo;
+	unsigned char deviceID[4];
+	char blurbtxt[256];
+	int result;
+
+	US_DEBUGP("Reading capacity...\n");
+
+	result = sddr09_read_deviceID(us, deviceID);
+
+	if (result != USB_STOR_TRANSPORT_GOOD) {
+		US_DEBUGP("Result of read_deviceID is %d\n", result);
+		printk("sddr09: could not read card info\n");
+		return NULL;
+	}
+
+	sprintf(blurbtxt, "sddr09: Found Flash card, ID = %02X %02X %02X %02X",
+		deviceID[0], deviceID[1], deviceID[2], deviceID[3]);
+
+	/* Byte 0 is the manufacturer */
+	sprintf(blurbtxt + strlen(blurbtxt),
+		": Manuf. %s",
+		nand_flash_manufacturer(deviceID[0]));
+
+	/* Byte 1 is the device type */
+	cardinfo = nand_find_id(deviceID[1]);
+	if (cardinfo) {
+		/* MB or MiB? It is neither. A 16 MB card has
+		   17301504 raw bytes, of which 16384000 are
+		   usable for user data. */
+		sprintf(blurbtxt + strlen(blurbtxt),
+			", %d MB", 1<<(cardinfo->chipshift - 20));
+	} else {
+		sprintf(blurbtxt + strlen(blurbtxt),
+			", type unrecognized");
+	}
+
+	/* Byte 2 is code to signal availability of 128-bit ID */
+	if (deviceID[2] == 0xa5) {
+		sprintf(blurbtxt + strlen(blurbtxt),
+			", 128-bit ID");
+	}
+
+	/* Byte 3 announces the availability of another read ID command */
+	if (deviceID[3] == 0xc0) {
+		sprintf(blurbtxt + strlen(blurbtxt),
+			", extra cmd");
+	}
+
+	if (flags & SDDR09_WP)
+		sprintf(blurbtxt + strlen(blurbtxt),
+			", WP");
+
+	printk("%s\n", blurbtxt);
+
+	return cardinfo;
+}
+
+static int
+sddr09_read_map(struct us_data *us) {
+
+	struct sddr09_card_info *info = (struct sddr09_card_info *) us->extra;
+	int numblocks, alloc_len, alloc_blocks;
+	int i, j, result;
+	unsigned char *buffer, *buffer_end, *ptr;
+	unsigned int lba, lbact;
+
+	if (!info->capacity)
+		return -1;
+
+	// size of a block is 1 << (blockshift + pageshift) bytes
+	// divide into the total capacity to get the number of blocks
+
+	numblocks = info->capacity >> (info->blockshift + info->pageshift);
+
+	// read 64 bytes for every block (actually 1 << CONTROL_SHIFT)
+	// but only use a 64 KB buffer
+	// buffer size used must be a multiple of (1 << CONTROL_SHIFT)
+#define SDDR09_READ_MAP_BUFSZ 65536
+
+	alloc_blocks = min(numblocks, SDDR09_READ_MAP_BUFSZ >> CONTROL_SHIFT);
+	alloc_len = (alloc_blocks << CONTROL_SHIFT);
+	buffer = kmalloc(alloc_len, GFP_NOIO);
+	if (buffer == NULL) {
+		printk("sddr09_read_map: out of memory\n");
+		result = -1;
+		goto done;
+	}
+	buffer_end = buffer + alloc_len;
+
+#undef SDDR09_READ_MAP_BUFSZ
+
+	kfree(info->lba_to_pba);
+	kfree(info->pba_to_lba);
+	info->lba_to_pba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
+	info->pba_to_lba = kmalloc(numblocks*sizeof(int), GFP_NOIO);
+
+	if (info->lba_to_pba == NULL || info->pba_to_lba == NULL) {
+		printk("sddr09_read_map: out of memory\n");
+		result = -1;
+		goto done;
+	}
+
+	for (i = 0; i < numblocks; i++)
+		info->lba_to_pba[i] = info->pba_to_lba[i] = UNDEF;
+
+	/*
+	 * Define lba-pba translation table
+	 */
+
+	ptr = buffer_end;
+	for (i = 0; i < numblocks; i++) {
+		ptr += (1 << CONTROL_SHIFT);
+		if (ptr >= buffer_end) {
+			unsigned long address;
+
+			address = i << (info->pageshift + info->blockshift);
+			result = sddr09_read_control(
+				us, address>>1,
+				min(alloc_blocks, numblocks - i),
+				buffer, 0);
+			if (result != USB_STOR_TRANSPORT_GOOD) {
+				result = -1;
+				goto done;
+			}
+			ptr = buffer;
+		}
+
+		if (i == 0 || i == 1) {
+			info->pba_to_lba[i] = UNUSABLE;
+			continue;
+		}
+
+		/* special PBAs have control field 0^16 */
+		for (j = 0; j < 16; j++)
+			if (ptr[j] != 0)
+				goto nonz;
+		info->pba_to_lba[i] = UNUSABLE;
+		printk("sddr09: PBA %d has no logical mapping\n", i);
+		continue;
+
+	nonz:
+		/* unwritten PBAs have control field FF^16 */
+		for (j = 0; j < 16; j++)
+			if (ptr[j] != 0xff)
+				goto nonff;
+		continue;
+
+	nonff:
+		/* normal PBAs start with six FFs */
+		if (j < 6) {
+			printk("sddr09: PBA %d has no logical mapping: "
+			       "reserved area = %02X%02X%02X%02X "
+			       "data status %02X block status %02X\n",
+			       i, ptr[0], ptr[1], ptr[2], ptr[3],
+			       ptr[4], ptr[5]);
+			info->pba_to_lba[i] = UNUSABLE;
+			continue;
+		}
+
+		if ((ptr[6] >> 4) != 0x01) {
+			printk("sddr09: PBA %d has invalid address field "
+			       "%02X%02X/%02X%02X\n",
+			       i, ptr[6], ptr[7], ptr[11], ptr[12]);
+			info->pba_to_lba[i] = UNUSABLE;
+			continue;
+		}
+
+		/* check even parity */
+		if (parity[ptr[6] ^ ptr[7]]) {
+			printk("sddr09: Bad parity in LBA for block %d"
+			       " (%02X %02X)\n", i, ptr[6], ptr[7]);
+			info->pba_to_lba[i] = UNUSABLE;
+			continue;
+		}
+
+		lba = short_pack(ptr[7], ptr[6]);
+		lba = (lba & 0x07FF) >> 1;
+
+		/*
+		 * Every 1024 physical blocks ("zone"), the LBA numbers
+		 * go back to zero, but are within a higher block of LBA's.
+		 * Also, there is a maximum of 1000 LBA's per zone.
+		 * In other words, in PBA 1024-2047 you will find LBA 0-999
+		 * which are really LBA 1000-1999. This allows for 24 bad
+		 * or special physical blocks per zone.
+		 */
+
+		if (lba >= 1000) {
+			printk("sddr09: Bad low LBA %d for block %d\n",
+			       lba, i);
+			goto possibly_erase;
+		}
+
+		lba += 1000*(i/0x400);
+
+		if (info->lba_to_pba[lba] != UNDEF) {
+			printk("sddr09: LBA %d seen for PBA %d and %d\n",
+			       lba, info->lba_to_pba[lba], i);
+			goto possibly_erase;
+		}
+
+		info->pba_to_lba[i] = lba;
+		info->lba_to_pba[lba] = i;
+		continue;
+
+	possibly_erase:
+		if (erase_bad_lba_entries) {
+			unsigned long address;
+
+			address = (i << (info->pageshift + info->blockshift));
+			sddr09_erase(us, address>>1);
+			info->pba_to_lba[i] = UNDEF;
+		} else
+			info->pba_to_lba[i] = UNUSABLE;
+	}
+
+	/*
+	 * Approximate capacity. This is not entirely correct yet,
+	 * since a zone with less than 1000 usable pages leads to
+	 * missing LBAs. Especially if it is the last zone, some
+	 * LBAs can be past capacity.
+	 */
+	lbact = 0;
+	for (i = 0; i < numblocks; i += 1024) {
+		int ct = 0;
+
+		for (j = 0; j < 1024 && i+j < numblocks; j++) {
+			if (info->pba_to_lba[i+j] != UNUSABLE) {
+				if (ct >= 1000)
+					info->pba_to_lba[i+j] = SPARE;
+				else
+					ct++;
+			}
+		}
+		lbact += ct;
+	}
+	info->lbact = lbact;
+	US_DEBUGP("Found %d LBA's\n", lbact);
+	result = 0;
+
+ done:
+	if (result != 0) {
+		kfree(info->lba_to_pba);
+		kfree(info->pba_to_lba);
+		info->lba_to_pba = NULL;
+		info->pba_to_lba = NULL;
+	}
+	kfree(buffer);
+	return result;
+}
+
+static void
+sddr09_card_info_destructor(void *extra) {
+	struct sddr09_card_info *info = (struct sddr09_card_info *)extra;
+
+	if (!info)
+		return;
+
+	kfree(info->lba_to_pba);
+	kfree(info->pba_to_lba);
+}
+
+static void
+sddr09_init_card_info(struct us_data *us) {
+	if (!us->extra) {
+		us->extra = kmalloc(sizeof(struct sddr09_card_info), GFP_NOIO);
+		if (us->extra) {
+			memset(us->extra, 0, sizeof(struct sddr09_card_info));
+			us->extra_destructor = sddr09_card_info_destructor;
+		}
+	}
+}
+
+/*
+ * This is needed at a very early stage. If this is not listed in the
+ * unusual devices list but called from here then LUN 0 of the combo reader
+ * is not recognized. But I do not know what precisely these calls do.
+ */
+int
+sddr09_init(struct us_data *us) {
+	int result;
+	unsigned char *data = us->iobuf;
+
+	result = sddr09_send_command(us, 0x01, USB_DIR_IN, data, 2);
+	if (result != USB_STOR_TRANSPORT_GOOD) {
+		US_DEBUGP("sddr09_init: send_command fails\n");
+		return result;
+	}
+
+	US_DEBUGP("SDDR09init: %02X %02X\n", data[0], data[1]);
+	// get 07 02
+
+	result = sddr09_send_command(us, 0x08, USB_DIR_IN, data, 2);
+	if (result != USB_STOR_TRANSPORT_GOOD) {
+		US_DEBUGP("sddr09_init: 2nd send_command fails\n");
+		return result;
+	}
+
+	US_DEBUGP("SDDR09init: %02X %02X\n", data[0], data[1]);
+	// get 07 00
+
+	result = sddr09_request_sense(us, data, 18);
+	if (result == USB_STOR_TRANSPORT_GOOD && data[2] != 0) {
+		int j;
+		for (j=0; j<18; j++)
+			printk(" %02X", data[j]);
+		printk("\n");
+		// get 70 00 00 00 00 00 00 * 00 00 00 00 00 00
+		// 70: current command
+		// sense key 0, sense code 0, extd sense code 0
+		// additional transfer length * = sizeof(data) - 7
+		// Or: 70 00 06 00 00 00 00 0b 00 00 00 00 28 00 00 00 00 00
+		// sense key 06, sense code 28: unit attention,
+		// not ready to ready transition
+	}
+
+	// test unit ready
+
+	return USB_STOR_TRANSPORT_GOOD;		/* not result */
+}
+
+/*
+ * Transport for the Sandisk SDDR-09
+ */
+int sddr09_transport(struct scsi_cmnd *srb, struct us_data *us)
+{
+	static unsigned char sensekey = 0, sensecode = 0;
+	static unsigned char havefakesense = 0;
+	int result, i;
+	unsigned char *ptr = us->iobuf;
+	unsigned long capacity;
+	unsigned int page, pages;
+
+	struct sddr09_card_info *info;
+
+	static unsigned char inquiry_response[8] = {
+		0x00, 0x80, 0x00, 0x02, 0x1F, 0x00, 0x00, 0x00
+	};
+
+	/* note: no block descriptor support */
+	static unsigned char mode_page_01[19] = {
+		0x00, 0x0F, 0x00, 0x0, 0x0, 0x0, 0x00,
+		0x01, 0x0A,
+		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
+	};
+
+	info = (struct sddr09_card_info *)us->extra;
+	if (!info) {
+		nand_init_ecc();
+		sddr09_init_card_info(us);
+		info = (struct sddr09_card_info *)us->extra;
+		if (!info)
+			return USB_STOR_TRANSPORT_ERROR;
+	}
+
+	if (srb->cmnd[0] == REQUEST_SENSE && havefakesense) {
+		/* for a faked command, we have to follow with a faked sense */
+		memset(ptr, 0, 18);
+		ptr[0] = 0x70;
+		ptr[2] = sensekey;
+		ptr[7] = 11;
+		ptr[12] = sensecode;
+		usb_stor_set_xfer_buf(ptr, 18, srb);
+		sensekey = sensecode = havefakesense = 0;
+		return USB_STOR_TRANSPORT_GOOD;
+	}
+
+	havefakesense = 1;
+
+	/* Dummy up a response for INQUIRY since SDDR09 doesn't
+	   respond to INQUIRY commands */
+
+	if (srb->cmnd[0] == INQUIRY) {
+		memcpy(ptr, inquiry_response, 8);
+		fill_inquiry_response(us, ptr, 36);
+		return USB_STOR_TRANSPORT_GOOD;
+	}
+
+	if (srb->cmnd[0] == READ_CAPACITY) {
+		struct nand_flash_dev *cardinfo;
+
+		sddr09_get_wp(us, info);	/* read WP bit */
+
+		cardinfo = sddr09_get_cardinfo(us, info->flags);
+		if (!cardinfo) {
+			/* probably no media */
+		init_error:
+			sensekey = 0x02;	/* not ready */
+			sensecode = 0x3a;	/* medium not present */
+			return USB_STOR_TRANSPORT_FAILED;
+		}
+
+		info->capacity = (1 << cardinfo->chipshift);
+		info->pageshift = cardinfo->pageshift;
+		info->pagesize = (1 << info->pageshift);
+		info->blockshift = cardinfo->blockshift;
+		info->blocksize = (1 << info->blockshift);
+		info->blockmask = info->blocksize - 1;
+
+		// map initialization, must follow get_cardinfo()
+		if (sddr09_read_map(us)) {
+			/* probably out of memory */
+			goto init_error;
+		}
+
+		// Report capacity
+
+		capacity = (info->lbact << info->blockshift) - 1;
+
+		((__be32 *) ptr)[0] = cpu_to_be32(capacity);
+
+		// Report page size
+
+		((__be32 *) ptr)[1] = cpu_to_be32(info->pagesize);
+		usb_stor_set_xfer_buf(ptr, 8, srb);
+
+		return USB_STOR_TRANSPORT_GOOD;
+	}
+
+	if (srb->cmnd[0] == MODE_SENSE_10) {
+		int modepage = (srb->cmnd[2] & 0x3F);
+
+		/* They ask for the Read/Write error recovery page,
+		   or for all pages. */
+		/* %% We should check DBD %% */
+		if (modepage == 0x01 || modepage == 0x3F) {
+			US_DEBUGP("SDDR09: Dummy up request for "
+				  "mode page 0x%x\n", modepage);
+
+			memcpy(ptr, mode_page_01, sizeof(mode_page_01));
+			((__be16*)ptr)[0] = cpu_to_be16(sizeof(mode_page_01) - 2);
+			ptr[3] = (info->flags & SDDR09_WP) ? 0x80 : 0;
+			usb_stor_set_xfer_buf(ptr, sizeof(mode_page_01), srb);
+			return USB_STOR_TRANSPORT_GOOD;
+		}
+
+		sensekey = 0x05;	/* illegal request */
+		sensecode = 0x24;	/* invalid field in CDB */
+		return USB_STOR_TRANSPORT_FAILED;
+	}
+
+	if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL)
+		return USB_STOR_TRANSPORT_GOOD;
+
+	havefakesense = 0;
+
+	if (srb->cmnd[0] == READ_10) {
+
+		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
+		page <<= 16;
+		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
+		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
+
+		US_DEBUGP("READ_10: read page %d pagect %d\n",
+			  page, pages);
+
+		return sddr09_read_data(us, page, pages);
+	}
+
+	if (srb->cmnd[0] == WRITE_10) {
+
+		page = short_pack(srb->cmnd[3], srb->cmnd[2]);
+		page <<= 16;
+		page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
+		pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
+
+		US_DEBUGP("WRITE_10: write page %d pagect %d\n",
+			  page, pages);
+
+		return sddr09_write_data(us, page, pages);
+	}
+
+	/* catch-all for all other commands, except
+	 * pass TEST_UNIT_READY and REQUEST_SENSE through
+	 */
+	if (srb->cmnd[0] != TEST_UNIT_READY &&
+	    srb->cmnd[0] != REQUEST_SENSE) {
+		sensekey = 0x05;	/* illegal request */
+		sensecode = 0x20;	/* invalid command */
+		havefakesense = 1;
+		return USB_STOR_TRANSPORT_FAILED;
+	}
+
+	for (; srb->cmd_len<12; srb->cmd_len++)
+		srb->cmnd[srb->cmd_len] = 0;
+
+	srb->cmnd[1] = LUNBITS;
+
+	ptr[0] = 0;
+	for (i=0; i<12; i++)
+		sprintf(ptr+strlen(ptr), "%02X ", srb->cmnd[i]);
+
+	US_DEBUGP("SDDR09: Send control for command %s\n", ptr);
+
+	result = sddr09_send_scsi_command(us, srb->cmnd, 12);
+	if (result != USB_STOR_TRANSPORT_GOOD) {
+		US_DEBUGP("sddr09_transport: sddr09_send_scsi_command "
+			  "returns %d\n", result);
+		return result;
+	}
+
+	if (srb->request_bufflen == 0)
+		return USB_STOR_TRANSPORT_GOOD;
+
+	if (srb->sc_data_direction == DMA_TO_DEVICE ||
+	    srb->sc_data_direction == DMA_FROM_DEVICE) {
+		unsigned int pipe = (srb->sc_data_direction == DMA_TO_DEVICE)
+				? us->send_bulk_pipe : us->recv_bulk_pipe;
+
+		US_DEBUGP("SDDR09: %s %d bytes\n",
+			  (srb->sc_data_direction == DMA_TO_DEVICE) ?
+			  "sending" : "receiving",
+			  srb->request_bufflen);
+
+		result = usb_stor_bulk_transfer_sg(us, pipe,
+					srb->request_buffer,
+					srb->request_bufflen,
+					srb->use_sg, &srb->resid);
+
+		return (result == USB_STOR_XFER_GOOD ?
+			USB_STOR_TRANSPORT_GOOD : USB_STOR_TRANSPORT_ERROR);
+	} 
+
+	return USB_STOR_TRANSPORT_GOOD;
+}
+