blob: f95dc160c34b125e09f7572daebb6aaddbf96d42 [file] [log] [blame]
/*
* arch/arm/mach-ep93xx/core.c
* Core routines for Cirrus EP93xx chips.
*
* Copyright (C) 2006 Lennert Buytenhek <buytenh@wantstofly.org>
* Copyright (C) 2007 Herbert Valerio Riedel <hvr@gnu.org>
*
* Thanks go to Michael Burian and Ray Lehtiniemi for their key
* role in the ep93xx linux community.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/timex.h>
#include <linux/io.h>
#include <linux/gpio.h>
#include <linux/leds.h>
#include <linux/termios.h>
#include <linux/amba/bus.h>
#include <linux/amba/serial.h>
#include <linux/i2c.h>
#include <linux/i2c-gpio.h>
#include <mach/hardware.h>
#include <mach/fb.h>
#include <asm/mach/map.h>
#include <asm/mach/time.h>
#include <asm/mach/irq.h>
#include <asm/hardware/vic.h>
/*************************************************************************
* Static I/O mappings that are needed for all EP93xx platforms
*************************************************************************/
static struct map_desc ep93xx_io_desc[] __initdata = {
{
.virtual = EP93XX_AHB_VIRT_BASE,
.pfn = __phys_to_pfn(EP93XX_AHB_PHYS_BASE),
.length = EP93XX_AHB_SIZE,
.type = MT_DEVICE,
}, {
.virtual = EP93XX_APB_VIRT_BASE,
.pfn = __phys_to_pfn(EP93XX_APB_PHYS_BASE),
.length = EP93XX_APB_SIZE,
.type = MT_DEVICE,
},
};
void __init ep93xx_map_io(void)
{
iotable_init(ep93xx_io_desc, ARRAY_SIZE(ep93xx_io_desc));
}
/*************************************************************************
* Timer handling for EP93xx
*************************************************************************
* The ep93xx has four internal timers. Timers 1, 2 (both 16 bit) and
* 3 (32 bit) count down at 508 kHz, are self-reloading, and can generate
* an interrupt on underflow. Timer 4 (40 bit) counts down at 983.04 kHz,
* is free-running, and can't generate interrupts.
*
* The 508 kHz timers are ideal for use for the timer interrupt, as the
* most common values of HZ divide 508 kHz nicely. We pick one of the 16
* bit timers (timer 1) since we don't need more than 16 bits of reload
* value as long as HZ >= 8.
*
* The higher clock rate of timer 4 makes it a better choice than the
* other timers for use in gettimeoffset(), while the fact that it can't
* generate interrupts means we don't have to worry about not being able
* to use this timer for something else. We also use timer 4 for keeping
* track of lost jiffies.
*/
static unsigned int last_jiffy_time;
#define TIMER4_TICKS_PER_JIFFY DIV_ROUND_CLOSEST(CLOCK_TICK_RATE, HZ)
static irqreturn_t ep93xx_timer_interrupt(int irq, void *dev_id)
{
__raw_writel(1, EP93XX_TIMER1_CLEAR);
while ((signed long)
(__raw_readl(EP93XX_TIMER4_VALUE_LOW) - last_jiffy_time)
>= TIMER4_TICKS_PER_JIFFY) {
last_jiffy_time += TIMER4_TICKS_PER_JIFFY;
timer_tick();
}
return IRQ_HANDLED;
}
static struct irqaction ep93xx_timer_irq = {
.name = "ep93xx timer",
.flags = IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL,
.handler = ep93xx_timer_interrupt,
};
static void __init ep93xx_timer_init(void)
{
/* Enable periodic HZ timer. */
__raw_writel(0x48, EP93XX_TIMER1_CONTROL);
__raw_writel((508469 / HZ) - 1, EP93XX_TIMER1_LOAD);
__raw_writel(0xc8, EP93XX_TIMER1_CONTROL);
/* Enable lost jiffy timer. */
__raw_writel(0x100, EP93XX_TIMER4_VALUE_HIGH);
setup_irq(IRQ_EP93XX_TIMER1, &ep93xx_timer_irq);
}
static unsigned long ep93xx_gettimeoffset(void)
{
int offset;
offset = __raw_readl(EP93XX_TIMER4_VALUE_LOW) - last_jiffy_time;
/* Calculate (1000000 / 983040) * offset. */
return offset + (53 * offset / 3072);
}
struct sys_timer ep93xx_timer = {
.init = ep93xx_timer_init,
.offset = ep93xx_gettimeoffset,
};
/*************************************************************************
* GPIO handling for EP93xx
*************************************************************************/
static unsigned char gpio_int_unmasked[3];
static unsigned char gpio_int_enabled[3];
static unsigned char gpio_int_type1[3];
static unsigned char gpio_int_type2[3];
static unsigned char gpio_int_debounce[3];
/* Port ordering is: A B F */
static const u8 int_type1_register_offset[3] = { 0x90, 0xac, 0x4c };
static const u8 int_type2_register_offset[3] = { 0x94, 0xb0, 0x50 };
static const u8 eoi_register_offset[3] = { 0x98, 0xb4, 0x54 };
static const u8 int_en_register_offset[3] = { 0x9c, 0xb8, 0x58 };
static const u8 int_debounce_register_offset[3] = { 0xa8, 0xc4, 0x64 };
void ep93xx_gpio_update_int_params(unsigned port)
{
BUG_ON(port > 2);
__raw_writeb(0, EP93XX_GPIO_REG(int_en_register_offset[port]));
__raw_writeb(gpio_int_type2[port],
EP93XX_GPIO_REG(int_type2_register_offset[port]));
__raw_writeb(gpio_int_type1[port],
EP93XX_GPIO_REG(int_type1_register_offset[port]));
__raw_writeb(gpio_int_unmasked[port] & gpio_int_enabled[port],
EP93XX_GPIO_REG(int_en_register_offset[port]));
}
void ep93xx_gpio_int_mask(unsigned line)
{
gpio_int_unmasked[line >> 3] &= ~(1 << (line & 7));
}
void ep93xx_gpio_int_debounce(unsigned int irq, int enable)
{
int line = irq_to_gpio(irq);
int port = line >> 3;
int port_mask = 1 << (line & 7);
if (enable)
gpio_int_debounce[port] |= port_mask;
else
gpio_int_debounce[port] &= ~port_mask;
__raw_writeb(gpio_int_debounce[port],
EP93XX_GPIO_REG(int_debounce_register_offset[port]));
}
EXPORT_SYMBOL(ep93xx_gpio_int_debounce);
/*************************************************************************
* EP93xx IRQ handling
*************************************************************************/
static void ep93xx_gpio_ab_irq_handler(unsigned int irq, struct irq_desc *desc)
{
unsigned char status;
int i;
status = __raw_readb(EP93XX_GPIO_A_INT_STATUS);
for (i = 0; i < 8; i++) {
if (status & (1 << i)) {
int gpio_irq = gpio_to_irq(EP93XX_GPIO_LINE_A(0)) + i;
generic_handle_irq(gpio_irq);
}
}
status = __raw_readb(EP93XX_GPIO_B_INT_STATUS);
for (i = 0; i < 8; i++) {
if (status & (1 << i)) {
int gpio_irq = gpio_to_irq(EP93XX_GPIO_LINE_B(0)) + i;
desc = irq_desc + gpio_irq;
generic_handle_irq(gpio_irq);
}
}
}
static void ep93xx_gpio_f_irq_handler(unsigned int irq, struct irq_desc *desc)
{
/*
* map discontiguous hw irq range to continous sw irq range:
*
* IRQ_EP93XX_GPIO{0..7}MUX -> gpio_to_irq(EP93XX_GPIO_LINE_F({0..7})
*/
int port_f_idx = ((irq + 1) & 7) ^ 4; /* {19..22,47..50} -> {0..7} */
int gpio_irq = gpio_to_irq(EP93XX_GPIO_LINE_F(0)) + port_f_idx;
generic_handle_irq(gpio_irq);
}
static void ep93xx_gpio_irq_ack(unsigned int irq)
{
int line = irq_to_gpio(irq);
int port = line >> 3;
int port_mask = 1 << (line & 7);
if ((irq_desc[irq].status & IRQ_TYPE_SENSE_MASK) == IRQ_TYPE_EDGE_BOTH) {
gpio_int_type2[port] ^= port_mask; /* switch edge direction */
ep93xx_gpio_update_int_params(port);
}
__raw_writeb(port_mask, EP93XX_GPIO_REG(eoi_register_offset[port]));
}
static void ep93xx_gpio_irq_mask_ack(unsigned int irq)
{
int line = irq_to_gpio(irq);
int port = line >> 3;
int port_mask = 1 << (line & 7);
if ((irq_desc[irq].status & IRQ_TYPE_SENSE_MASK) == IRQ_TYPE_EDGE_BOTH)
gpio_int_type2[port] ^= port_mask; /* switch edge direction */
gpio_int_unmasked[port] &= ~port_mask;
ep93xx_gpio_update_int_params(port);
__raw_writeb(port_mask, EP93XX_GPIO_REG(eoi_register_offset[port]));
}
static void ep93xx_gpio_irq_mask(unsigned int irq)
{
int line = irq_to_gpio(irq);
int port = line >> 3;
gpio_int_unmasked[port] &= ~(1 << (line & 7));
ep93xx_gpio_update_int_params(port);
}
static void ep93xx_gpio_irq_unmask(unsigned int irq)
{
int line = irq_to_gpio(irq);
int port = line >> 3;
gpio_int_unmasked[port] |= 1 << (line & 7);
ep93xx_gpio_update_int_params(port);
}
/*
* gpio_int_type1 controls whether the interrupt is level (0) or
* edge (1) triggered, while gpio_int_type2 controls whether it
* triggers on low/falling (0) or high/rising (1).
*/
static int ep93xx_gpio_irq_type(unsigned int irq, unsigned int type)
{
struct irq_desc *desc = irq_desc + irq;
const int gpio = irq_to_gpio(irq);
const int port = gpio >> 3;
const int port_mask = 1 << (gpio & 7);
gpio_direction_input(gpio);
switch (type) {
case IRQ_TYPE_EDGE_RISING:
gpio_int_type1[port] |= port_mask;
gpio_int_type2[port] |= port_mask;
desc->handle_irq = handle_edge_irq;
break;
case IRQ_TYPE_EDGE_FALLING:
gpio_int_type1[port] |= port_mask;
gpio_int_type2[port] &= ~port_mask;
desc->handle_irq = handle_edge_irq;
break;
case IRQ_TYPE_LEVEL_HIGH:
gpio_int_type1[port] &= ~port_mask;
gpio_int_type2[port] |= port_mask;
desc->handle_irq = handle_level_irq;
break;
case IRQ_TYPE_LEVEL_LOW:
gpio_int_type1[port] &= ~port_mask;
gpio_int_type2[port] &= ~port_mask;
desc->handle_irq = handle_level_irq;
break;
case IRQ_TYPE_EDGE_BOTH:
gpio_int_type1[port] |= port_mask;
/* set initial polarity based on current input level */
if (gpio_get_value(gpio))
gpio_int_type2[port] &= ~port_mask; /* falling */
else
gpio_int_type2[port] |= port_mask; /* rising */
desc->handle_irq = handle_edge_irq;
break;
default:
pr_err("ep93xx: failed to set irq type %d for gpio %d\n",
type, gpio);
return -EINVAL;
}
gpio_int_enabled[port] |= port_mask;
desc->status &= ~IRQ_TYPE_SENSE_MASK;
desc->status |= type & IRQ_TYPE_SENSE_MASK;
ep93xx_gpio_update_int_params(port);
return 0;
}
static struct irq_chip ep93xx_gpio_irq_chip = {
.name = "GPIO",
.ack = ep93xx_gpio_irq_ack,
.mask_ack = ep93xx_gpio_irq_mask_ack,
.mask = ep93xx_gpio_irq_mask,
.unmask = ep93xx_gpio_irq_unmask,
.set_type = ep93xx_gpio_irq_type,
};
void __init ep93xx_init_irq(void)
{
int gpio_irq;
vic_init(EP93XX_VIC1_BASE, 0, EP93XX_VIC1_VALID_IRQ_MASK, 0);
vic_init(EP93XX_VIC2_BASE, 32, EP93XX_VIC2_VALID_IRQ_MASK, 0);
for (gpio_irq = gpio_to_irq(0);
gpio_irq <= gpio_to_irq(EP93XX_GPIO_LINE_MAX_IRQ); ++gpio_irq) {
set_irq_chip(gpio_irq, &ep93xx_gpio_irq_chip);
set_irq_handler(gpio_irq, handle_level_irq);
set_irq_flags(gpio_irq, IRQF_VALID);
}
set_irq_chained_handler(IRQ_EP93XX_GPIO_AB, ep93xx_gpio_ab_irq_handler);
set_irq_chained_handler(IRQ_EP93XX_GPIO0MUX, ep93xx_gpio_f_irq_handler);
set_irq_chained_handler(IRQ_EP93XX_GPIO1MUX, ep93xx_gpio_f_irq_handler);
set_irq_chained_handler(IRQ_EP93XX_GPIO2MUX, ep93xx_gpio_f_irq_handler);
set_irq_chained_handler(IRQ_EP93XX_GPIO3MUX, ep93xx_gpio_f_irq_handler);
set_irq_chained_handler(IRQ_EP93XX_GPIO4MUX, ep93xx_gpio_f_irq_handler);
set_irq_chained_handler(IRQ_EP93XX_GPIO5MUX, ep93xx_gpio_f_irq_handler);
set_irq_chained_handler(IRQ_EP93XX_GPIO6MUX, ep93xx_gpio_f_irq_handler);
set_irq_chained_handler(IRQ_EP93XX_GPIO7MUX, ep93xx_gpio_f_irq_handler);
}
/*************************************************************************
* EP93xx System Controller Software Locked register handling
*************************************************************************/
/*
* syscon_swlock prevents anything else from writing to the syscon
* block while a software locked register is being written.
*/
static DEFINE_SPINLOCK(syscon_swlock);
void ep93xx_syscon_swlocked_write(unsigned int val, void __iomem *reg)
{
unsigned long flags;
spin_lock_irqsave(&syscon_swlock, flags);
__raw_writel(0xaa, EP93XX_SYSCON_SWLOCK);
__raw_writel(val, reg);
spin_unlock_irqrestore(&syscon_swlock, flags);
}
EXPORT_SYMBOL(ep93xx_syscon_swlocked_write);
void ep93xx_devcfg_set_clear(unsigned int set_bits, unsigned int clear_bits)
{
unsigned long flags;
unsigned int val;
spin_lock_irqsave(&syscon_swlock, flags);
val = __raw_readl(EP93XX_SYSCON_DEVCFG);
val |= set_bits;
val &= ~clear_bits;
__raw_writel(0xaa, EP93XX_SYSCON_SWLOCK);
__raw_writel(val, EP93XX_SYSCON_DEVCFG);
spin_unlock_irqrestore(&syscon_swlock, flags);
}
EXPORT_SYMBOL(ep93xx_devcfg_set_clear);
/*************************************************************************
* EP93xx peripheral handling
*************************************************************************/
#define EP93XX_UART_MCR_OFFSET (0x0100)
static void ep93xx_uart_set_mctrl(struct amba_device *dev,
void __iomem *base, unsigned int mctrl)
{
unsigned int mcr;
mcr = 0;
if (!(mctrl & TIOCM_RTS))
mcr |= 2;
if (!(mctrl & TIOCM_DTR))
mcr |= 1;
__raw_writel(mcr, base + EP93XX_UART_MCR_OFFSET);
}
static struct amba_pl010_data ep93xx_uart_data = {
.set_mctrl = ep93xx_uart_set_mctrl,
};
static struct amba_device uart1_device = {
.dev = {
.init_name = "apb:uart1",
.platform_data = &ep93xx_uart_data,
},
.res = {
.start = EP93XX_UART1_PHYS_BASE,
.end = EP93XX_UART1_PHYS_BASE + 0x0fff,
.flags = IORESOURCE_MEM,
},
.irq = { IRQ_EP93XX_UART1, NO_IRQ },
.periphid = 0x00041010,
};
static struct amba_device uart2_device = {
.dev = {
.init_name = "apb:uart2",
.platform_data = &ep93xx_uart_data,
},
.res = {
.start = EP93XX_UART2_PHYS_BASE,
.end = EP93XX_UART2_PHYS_BASE + 0x0fff,
.flags = IORESOURCE_MEM,
},
.irq = { IRQ_EP93XX_UART2, NO_IRQ },
.periphid = 0x00041010,
};
static struct amba_device uart3_device = {
.dev = {
.init_name = "apb:uart3",
.platform_data = &ep93xx_uart_data,
},
.res = {
.start = EP93XX_UART3_PHYS_BASE,
.end = EP93XX_UART3_PHYS_BASE + 0x0fff,
.flags = IORESOURCE_MEM,
},
.irq = { IRQ_EP93XX_UART3, NO_IRQ },
.periphid = 0x00041010,
};
static struct resource ep93xx_rtc_resource[] = {
{
.start = EP93XX_RTC_PHYS_BASE,
.end = EP93XX_RTC_PHYS_BASE + 0x10c - 1,
.flags = IORESOURCE_MEM,
},
};
static struct platform_device ep93xx_rtc_device = {
.name = "ep93xx-rtc",
.id = -1,
.num_resources = ARRAY_SIZE(ep93xx_rtc_resource),
.resource = ep93xx_rtc_resource,
};
static struct resource ep93xx_ohci_resources[] = {
[0] = {
.start = EP93XX_USB_PHYS_BASE,
.end = EP93XX_USB_PHYS_BASE + 0x0fff,
.flags = IORESOURCE_MEM,
},
[1] = {
.start = IRQ_EP93XX_USB,
.end = IRQ_EP93XX_USB,
.flags = IORESOURCE_IRQ,
},
};
static struct platform_device ep93xx_ohci_device = {
.name = "ep93xx-ohci",
.id = -1,
.dev = {
.dma_mask = &ep93xx_ohci_device.dev.coherent_dma_mask,
.coherent_dma_mask = DMA_BIT_MASK(32),
},
.num_resources = ARRAY_SIZE(ep93xx_ohci_resources),
.resource = ep93xx_ohci_resources,
};
static struct ep93xx_eth_data ep93xx_eth_data;
static struct resource ep93xx_eth_resource[] = {
{
.start = EP93XX_ETHERNET_PHYS_BASE,
.end = EP93XX_ETHERNET_PHYS_BASE + 0xffff,
.flags = IORESOURCE_MEM,
}, {
.start = IRQ_EP93XX_ETHERNET,
.end = IRQ_EP93XX_ETHERNET,
.flags = IORESOURCE_IRQ,
}
};
static struct platform_device ep93xx_eth_device = {
.name = "ep93xx-eth",
.id = -1,
.dev = {
.platform_data = &ep93xx_eth_data,
},
.num_resources = ARRAY_SIZE(ep93xx_eth_resource),
.resource = ep93xx_eth_resource,
};
void __init ep93xx_register_eth(struct ep93xx_eth_data *data, int copy_addr)
{
if (copy_addr)
memcpy_fromio(data->dev_addr, EP93XX_ETHERNET_BASE + 0x50, 6);
ep93xx_eth_data = *data;
platform_device_register(&ep93xx_eth_device);
}
/*************************************************************************
* EP93xx i2c peripheral handling
*************************************************************************/
static struct i2c_gpio_platform_data ep93xx_i2c_data;
static struct platform_device ep93xx_i2c_device = {
.name = "i2c-gpio",
.id = 0,
.dev.platform_data = &ep93xx_i2c_data,
};
void __init ep93xx_register_i2c(struct i2c_gpio_platform_data *data,
struct i2c_board_info *devices, int num)
{
/*
* Set the EEPROM interface pin drive type control.
* Defines the driver type for the EECLK and EEDAT pins as either
* open drain, which will require an external pull-up, or a normal
* CMOS driver.
*/
if (data->sda_is_open_drain && data->sda_pin != EP93XX_GPIO_LINE_EEDAT)
pr_warning("ep93xx: sda != EEDAT, open drain has no effect\n");
if (data->scl_is_open_drain && data->scl_pin != EP93XX_GPIO_LINE_EECLK)
pr_warning("ep93xx: scl != EECLK, open drain has no effect\n");
__raw_writel((data->sda_is_open_drain << 1) |
(data->scl_is_open_drain << 0),
EP93XX_GPIO_EEDRIVE);
ep93xx_i2c_data = *data;
i2c_register_board_info(0, devices, num);
platform_device_register(&ep93xx_i2c_device);
}
/*************************************************************************
* EP93xx LEDs
*************************************************************************/
static struct gpio_led ep93xx_led_pins[] = {
{
.name = "platform:grled",
.gpio = EP93XX_GPIO_LINE_GRLED,
}, {
.name = "platform:rdled",
.gpio = EP93XX_GPIO_LINE_RDLED,
},
};
static struct gpio_led_platform_data ep93xx_led_data = {
.num_leds = ARRAY_SIZE(ep93xx_led_pins),
.leds = ep93xx_led_pins,
};
static struct platform_device ep93xx_leds = {
.name = "leds-gpio",
.id = -1,
.dev = {
.platform_data = &ep93xx_led_data,
},
};
/*************************************************************************
* EP93xx pwm peripheral handling
*************************************************************************/
static struct resource ep93xx_pwm0_resource[] = {
{
.start = EP93XX_PWM_PHYS_BASE,
.end = EP93XX_PWM_PHYS_BASE + 0x10 - 1,
.flags = IORESOURCE_MEM,
},
};
static struct platform_device ep93xx_pwm0_device = {
.name = "ep93xx-pwm",
.id = 0,
.num_resources = ARRAY_SIZE(ep93xx_pwm0_resource),
.resource = ep93xx_pwm0_resource,
};
static struct resource ep93xx_pwm1_resource[] = {
{
.start = EP93XX_PWM_PHYS_BASE + 0x20,
.end = EP93XX_PWM_PHYS_BASE + 0x30 - 1,
.flags = IORESOURCE_MEM,
},
};
static struct platform_device ep93xx_pwm1_device = {
.name = "ep93xx-pwm",
.id = 1,
.num_resources = ARRAY_SIZE(ep93xx_pwm1_resource),
.resource = ep93xx_pwm1_resource,
};
void __init ep93xx_register_pwm(int pwm0, int pwm1)
{
if (pwm0)
platform_device_register(&ep93xx_pwm0_device);
/* NOTE: EP9307 does not have PWMOUT1 (pin EGPIO14) */
if (pwm1)
platform_device_register(&ep93xx_pwm1_device);
}
int ep93xx_pwm_acquire_gpio(struct platform_device *pdev)
{
int err;
if (pdev->id == 0) {
err = 0;
} else if (pdev->id == 1) {
err = gpio_request(EP93XX_GPIO_LINE_EGPIO14,
dev_name(&pdev->dev));
if (err)
return err;
err = gpio_direction_output(EP93XX_GPIO_LINE_EGPIO14, 0);
if (err)
goto fail;
/* PWM 1 output on EGPIO[14] */
ep93xx_devcfg_set_bits(EP93XX_SYSCON_DEVCFG_PONG);
} else {
err = -ENODEV;
}
return err;
fail:
gpio_free(EP93XX_GPIO_LINE_EGPIO14);
return err;
}
EXPORT_SYMBOL(ep93xx_pwm_acquire_gpio);
void ep93xx_pwm_release_gpio(struct platform_device *pdev)
{
if (pdev->id == 1) {
gpio_direction_input(EP93XX_GPIO_LINE_EGPIO14);
gpio_free(EP93XX_GPIO_LINE_EGPIO14);
/* EGPIO[14] used for GPIO */
ep93xx_devcfg_clear_bits(EP93XX_SYSCON_DEVCFG_PONG);
}
}
EXPORT_SYMBOL(ep93xx_pwm_release_gpio);
/*************************************************************************
* EP93xx video peripheral handling
*************************************************************************/
static struct ep93xxfb_mach_info ep93xxfb_data;
static struct resource ep93xx_fb_resource[] = {
{
.start = EP93XX_RASTER_PHYS_BASE,
.end = EP93XX_RASTER_PHYS_BASE + 0x800 - 1,
.flags = IORESOURCE_MEM,
},
};
static struct platform_device ep93xx_fb_device = {
.name = "ep93xx-fb",
.id = -1,
.dev = {
.platform_data = &ep93xxfb_data,
.coherent_dma_mask = DMA_BIT_MASK(32),
.dma_mask = &ep93xx_fb_device.dev.coherent_dma_mask,
},
.num_resources = ARRAY_SIZE(ep93xx_fb_resource),
.resource = ep93xx_fb_resource,
};
void __init ep93xx_register_fb(struct ep93xxfb_mach_info *data)
{
ep93xxfb_data = *data;
platform_device_register(&ep93xx_fb_device);
}
extern void ep93xx_gpio_init(void);
void __init ep93xx_init_devices(void)
{
/* Disallow access to MaverickCrunch initially */
ep93xx_devcfg_clear_bits(EP93XX_SYSCON_DEVCFG_CPENA);
ep93xx_gpio_init();
amba_device_register(&uart1_device, &iomem_resource);
amba_device_register(&uart2_device, &iomem_resource);
amba_device_register(&uart3_device, &iomem_resource);
platform_device_register(&ep93xx_rtc_device);
platform_device_register(&ep93xx_ohci_device);
platform_device_register(&ep93xx_leds);
}