f2fs: add superblock and major in-memory structure

This adds the following major in-memory structures in f2fs.

- f2fs_sb_info:
  contains f2fs-specific information, two special inode pointers for node and
  meta address spaces, and orphan inode management.

- f2fs_inode_info:
  contains vfs_inode and other fs-specific information.

- f2fs_nm_info:
  contains node manager information such as NAT entry cache, free nid list,
  and NAT page management.

- f2fs_node_info:
  represents a node as node id, inode number, block address, and its version.

- f2fs_sm_info:
  contains segment manager information such as SIT entry cache, free segment
  map, current active logs, dirty segment management, and segment utilization.
  The specific structures are sit_info, free_segmap_info, dirty_seglist_info,
  curseg_info.

In addition, add F2FS_SUPER_MAGIC in magic.h.

Signed-off-by: Chul Lee <chur.lee@samsung.com>
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
diff --git a/fs/f2fs/node.h b/fs/f2fs/node.h
new file mode 100644
index 0000000..5d525ed
--- /dev/null
+++ b/fs/f2fs/node.h
@@ -0,0 +1,353 @@
+/**
+ * fs/f2fs/node.h
+ *
+ * Copyright (c) 2012 Samsung Electronics Co., Ltd.
+ *             http://www.samsung.com/
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+/* start node id of a node block dedicated to the given node id */
+#define	START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
+
+/* node block offset on the NAT area dedicated to the given start node id */
+#define	NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
+
+/* # of pages to perform readahead before building free nids */
+#define FREE_NID_PAGES 4
+
+/* maximum # of free node ids to produce during build_free_nids */
+#define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
+
+/* maximum readahead size for node during getting data blocks */
+#define MAX_RA_NODE		128
+
+/* maximum cached nat entries to manage memory footprint */
+#define NM_WOUT_THRESHOLD	(64 * NAT_ENTRY_PER_BLOCK)
+
+/* vector size for gang look-up from nat cache that consists of radix tree */
+#define NATVEC_SIZE	64
+
+/*
+ * For node information
+ */
+struct node_info {
+	nid_t nid;		/* node id */
+	nid_t ino;		/* inode number of the node's owner */
+	block_t	blk_addr;	/* block address of the node */
+	unsigned char version;	/* version of the node */
+};
+
+struct nat_entry {
+	struct list_head list;	/* for clean or dirty nat list */
+	bool checkpointed;	/* whether it is checkpointed or not */
+	struct node_info ni;	/* in-memory node information */
+};
+
+#define nat_get_nid(nat)		(nat->ni.nid)
+#define nat_set_nid(nat, n)		(nat->ni.nid = n)
+#define nat_get_blkaddr(nat)		(nat->ni.blk_addr)
+#define nat_set_blkaddr(nat, b)		(nat->ni.blk_addr = b)
+#define nat_get_ino(nat)		(nat->ni.ino)
+#define nat_set_ino(nat, i)		(nat->ni.ino = i)
+#define nat_get_version(nat)		(nat->ni.version)
+#define nat_set_version(nat, v)		(nat->ni.version = v)
+
+#define __set_nat_cache_dirty(nm_i, ne)					\
+	list_move_tail(&ne->list, &nm_i->dirty_nat_entries);
+#define __clear_nat_cache_dirty(nm_i, ne)				\
+	list_move_tail(&ne->list, &nm_i->nat_entries);
+#define inc_node_version(version)	(++version)
+
+static inline void node_info_from_raw_nat(struct node_info *ni,
+						struct f2fs_nat_entry *raw_ne)
+{
+	ni->ino = le32_to_cpu(raw_ne->ino);
+	ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
+	ni->version = raw_ne->version;
+}
+
+/*
+ * For free nid mangement
+ */
+enum nid_state {
+	NID_NEW,	/* newly added to free nid list */
+	NID_ALLOC	/* it is allocated */
+};
+
+struct free_nid {
+	struct list_head list;	/* for free node id list */
+	nid_t nid;		/* node id */
+	int state;		/* in use or not: NID_NEW or NID_ALLOC */
+};
+
+static inline int next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
+{
+	struct f2fs_nm_info *nm_i = NM_I(sbi);
+	struct free_nid *fnid;
+
+	if (nm_i->fcnt <= 0)
+		return -1;
+	spin_lock(&nm_i->free_nid_list_lock);
+	fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
+	*nid = fnid->nid;
+	spin_unlock(&nm_i->free_nid_list_lock);
+	return 0;
+}
+
+/*
+ * inline functions
+ */
+static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
+{
+	struct f2fs_nm_info *nm_i = NM_I(sbi);
+	memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
+}
+
+static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
+{
+	struct f2fs_nm_info *nm_i = NM_I(sbi);
+	pgoff_t block_off;
+	pgoff_t block_addr;
+	int seg_off;
+
+	block_off = NAT_BLOCK_OFFSET(start);
+	seg_off = block_off >> sbi->log_blocks_per_seg;
+
+	block_addr = (pgoff_t)(nm_i->nat_blkaddr +
+		(seg_off << sbi->log_blocks_per_seg << 1) +
+		(block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
+
+	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
+		block_addr += sbi->blocks_per_seg;
+
+	return block_addr;
+}
+
+static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
+						pgoff_t block_addr)
+{
+	struct f2fs_nm_info *nm_i = NM_I(sbi);
+
+	block_addr -= nm_i->nat_blkaddr;
+	if ((block_addr >> sbi->log_blocks_per_seg) % 2)
+		block_addr -= sbi->blocks_per_seg;
+	else
+		block_addr += sbi->blocks_per_seg;
+
+	return block_addr + nm_i->nat_blkaddr;
+}
+
+static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
+{
+	unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
+
+	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
+		f2fs_clear_bit(block_off, nm_i->nat_bitmap);
+	else
+		f2fs_set_bit(block_off, nm_i->nat_bitmap);
+}
+
+static inline void fill_node_footer(struct page *page, nid_t nid,
+				nid_t ino, unsigned int ofs, bool reset)
+{
+	void *kaddr = page_address(page);
+	struct f2fs_node *rn = (struct f2fs_node *)kaddr;
+	if (reset)
+		memset(rn, 0, sizeof(*rn));
+	rn->footer.nid = cpu_to_le32(nid);
+	rn->footer.ino = cpu_to_le32(ino);
+	rn->footer.flag = cpu_to_le32(ofs << OFFSET_BIT_SHIFT);
+}
+
+static inline void copy_node_footer(struct page *dst, struct page *src)
+{
+	void *src_addr = page_address(src);
+	void *dst_addr = page_address(dst);
+	struct f2fs_node *src_rn = (struct f2fs_node *)src_addr;
+	struct f2fs_node *dst_rn = (struct f2fs_node *)dst_addr;
+	memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
+}
+
+static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
+{
+	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
+	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
+	void *kaddr = page_address(page);
+	struct f2fs_node *rn = (struct f2fs_node *)kaddr;
+	rn->footer.cp_ver = ckpt->checkpoint_ver;
+	rn->footer.next_blkaddr = blkaddr;
+}
+
+static inline nid_t ino_of_node(struct page *node_page)
+{
+	void *kaddr = page_address(node_page);
+	struct f2fs_node *rn = (struct f2fs_node *)kaddr;
+	return le32_to_cpu(rn->footer.ino);
+}
+
+static inline nid_t nid_of_node(struct page *node_page)
+{
+	void *kaddr = page_address(node_page);
+	struct f2fs_node *rn = (struct f2fs_node *)kaddr;
+	return le32_to_cpu(rn->footer.nid);
+}
+
+static inline unsigned int ofs_of_node(struct page *node_page)
+{
+	void *kaddr = page_address(node_page);
+	struct f2fs_node *rn = (struct f2fs_node *)kaddr;
+	unsigned flag = le32_to_cpu(rn->footer.flag);
+	return flag >> OFFSET_BIT_SHIFT;
+}
+
+static inline unsigned long long cpver_of_node(struct page *node_page)
+{
+	void *kaddr = page_address(node_page);
+	struct f2fs_node *rn = (struct f2fs_node *)kaddr;
+	return le64_to_cpu(rn->footer.cp_ver);
+}
+
+static inline block_t next_blkaddr_of_node(struct page *node_page)
+{
+	void *kaddr = page_address(node_page);
+	struct f2fs_node *rn = (struct f2fs_node *)kaddr;
+	return le32_to_cpu(rn->footer.next_blkaddr);
+}
+
+/*
+ * f2fs assigns the following node offsets described as (num).
+ * N = NIDS_PER_BLOCK
+ *
+ *  Inode block (0)
+ *    |- direct node (1)
+ *    |- direct node (2)
+ *    |- indirect node (3)
+ *    |            `- direct node (4 => 4 + N - 1)
+ *    |- indirect node (4 + N)
+ *    |            `- direct node (5 + N => 5 + 2N - 1)
+ *    `- double indirect node (5 + 2N)
+ *                 `- indirect node (6 + 2N)
+ *                       `- direct node (x(N + 1))
+ */
+static inline bool IS_DNODE(struct page *node_page)
+{
+	unsigned int ofs = ofs_of_node(node_page);
+	if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
+			ofs == 5 + 2 * NIDS_PER_BLOCK)
+		return false;
+	if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
+		ofs -= 6 + 2 * NIDS_PER_BLOCK;
+		if ((long int)ofs % (NIDS_PER_BLOCK + 1))
+			return false;
+	}
+	return true;
+}
+
+static inline void set_nid(struct page *p, int off, nid_t nid, bool i)
+{
+	struct f2fs_node *rn = (struct f2fs_node *)page_address(p);
+
+	wait_on_page_writeback(p);
+
+	if (i)
+		rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
+	else
+		rn->in.nid[off] = cpu_to_le32(nid);
+	set_page_dirty(p);
+}
+
+static inline nid_t get_nid(struct page *p, int off, bool i)
+{
+	struct f2fs_node *rn = (struct f2fs_node *)page_address(p);
+	if (i)
+		return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
+	return le32_to_cpu(rn->in.nid[off]);
+}
+
+/*
+ * Coldness identification:
+ *  - Mark cold files in f2fs_inode_info
+ *  - Mark cold node blocks in their node footer
+ *  - Mark cold data pages in page cache
+ */
+static inline int is_cold_file(struct inode *inode)
+{
+	return F2FS_I(inode)->i_advise & FADVISE_COLD_BIT;
+}
+
+static inline int is_cold_data(struct page *page)
+{
+	return PageChecked(page);
+}
+
+static inline void set_cold_data(struct page *page)
+{
+	SetPageChecked(page);
+}
+
+static inline void clear_cold_data(struct page *page)
+{
+	ClearPageChecked(page);
+}
+
+static inline int is_cold_node(struct page *page)
+{
+	void *kaddr = page_address(page);
+	struct f2fs_node *rn = (struct f2fs_node *)kaddr;
+	unsigned int flag = le32_to_cpu(rn->footer.flag);
+	return flag & (0x1 << COLD_BIT_SHIFT);
+}
+
+static inline unsigned char is_fsync_dnode(struct page *page)
+{
+	void *kaddr = page_address(page);
+	struct f2fs_node *rn = (struct f2fs_node *)kaddr;
+	unsigned int flag = le32_to_cpu(rn->footer.flag);
+	return flag & (0x1 << FSYNC_BIT_SHIFT);
+}
+
+static inline unsigned char is_dent_dnode(struct page *page)
+{
+	void *kaddr = page_address(page);
+	struct f2fs_node *rn = (struct f2fs_node *)kaddr;
+	unsigned int flag = le32_to_cpu(rn->footer.flag);
+	return flag & (0x1 << DENT_BIT_SHIFT);
+}
+
+static inline void set_cold_node(struct inode *inode, struct page *page)
+{
+	struct f2fs_node *rn = (struct f2fs_node *)page_address(page);
+	unsigned int flag = le32_to_cpu(rn->footer.flag);
+
+	if (S_ISDIR(inode->i_mode))
+		flag &= ~(0x1 << COLD_BIT_SHIFT);
+	else
+		flag |= (0x1 << COLD_BIT_SHIFT);
+	rn->footer.flag = cpu_to_le32(flag);
+}
+
+static inline void set_fsync_mark(struct page *page, int mark)
+{
+	void *kaddr = page_address(page);
+	struct f2fs_node *rn = (struct f2fs_node *)kaddr;
+	unsigned int flag = le32_to_cpu(rn->footer.flag);
+	if (mark)
+		flag |= (0x1 << FSYNC_BIT_SHIFT);
+	else
+		flag &= ~(0x1 << FSYNC_BIT_SHIFT);
+	rn->footer.flag = cpu_to_le32(flag);
+}
+
+static inline void set_dentry_mark(struct page *page, int mark)
+{
+	void *kaddr = page_address(page);
+	struct f2fs_node *rn = (struct f2fs_node *)kaddr;
+	unsigned int flag = le32_to_cpu(rn->footer.flag);
+	if (mark)
+		flag |= (0x1 << DENT_BIT_SHIFT);
+	else
+		flag &= ~(0x1 << DENT_BIT_SHIFT);
+	rn->footer.flag = cpu_to_le32(flag);
+}