blob: 6dabf4b2f00531a6720f9ff754f79af684e8df63 [file] [log] [blame]
/*
* linux/drivers/video/omap2/dss/dispc.c
*
* Copyright (C) 2009 Nokia Corporation
* Author: Tomi Valkeinen <tomi.valkeinen@nokia.com>
*
* Some code and ideas taken from drivers/video/omap/ driver
* by Imre Deak.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#define DSS_SUBSYS_NAME "DISPC"
#include <linux/kernel.h>
#include <linux/dma-mapping.h>
#include <linux/vmalloc.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/jiffies.h>
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/workqueue.h>
#include <plat/sram.h>
#include <plat/clock.h>
#include <plat/display.h>
#include "dss.h"
/* DISPC */
#define DISPC_BASE 0x48050400
#define DISPC_SZ_REGS SZ_1K
struct dispc_reg { u16 idx; };
#define DISPC_REG(idx) ((const struct dispc_reg) { idx })
/* DISPC common */
#define DISPC_REVISION DISPC_REG(0x0000)
#define DISPC_SYSCONFIG DISPC_REG(0x0010)
#define DISPC_SYSSTATUS DISPC_REG(0x0014)
#define DISPC_IRQSTATUS DISPC_REG(0x0018)
#define DISPC_IRQENABLE DISPC_REG(0x001C)
#define DISPC_CONTROL DISPC_REG(0x0040)
#define DISPC_CONFIG DISPC_REG(0x0044)
#define DISPC_CAPABLE DISPC_REG(0x0048)
#define DISPC_DEFAULT_COLOR0 DISPC_REG(0x004C)
#define DISPC_DEFAULT_COLOR1 DISPC_REG(0x0050)
#define DISPC_TRANS_COLOR0 DISPC_REG(0x0054)
#define DISPC_TRANS_COLOR1 DISPC_REG(0x0058)
#define DISPC_LINE_STATUS DISPC_REG(0x005C)
#define DISPC_LINE_NUMBER DISPC_REG(0x0060)
#define DISPC_TIMING_H DISPC_REG(0x0064)
#define DISPC_TIMING_V DISPC_REG(0x0068)
#define DISPC_POL_FREQ DISPC_REG(0x006C)
#define DISPC_DIVISOR DISPC_REG(0x0070)
#define DISPC_GLOBAL_ALPHA DISPC_REG(0x0074)
#define DISPC_SIZE_DIG DISPC_REG(0x0078)
#define DISPC_SIZE_LCD DISPC_REG(0x007C)
/* DISPC GFX plane */
#define DISPC_GFX_BA0 DISPC_REG(0x0080)
#define DISPC_GFX_BA1 DISPC_REG(0x0084)
#define DISPC_GFX_POSITION DISPC_REG(0x0088)
#define DISPC_GFX_SIZE DISPC_REG(0x008C)
#define DISPC_GFX_ATTRIBUTES DISPC_REG(0x00A0)
#define DISPC_GFX_FIFO_THRESHOLD DISPC_REG(0x00A4)
#define DISPC_GFX_FIFO_SIZE_STATUS DISPC_REG(0x00A8)
#define DISPC_GFX_ROW_INC DISPC_REG(0x00AC)
#define DISPC_GFX_PIXEL_INC DISPC_REG(0x00B0)
#define DISPC_GFX_WINDOW_SKIP DISPC_REG(0x00B4)
#define DISPC_GFX_TABLE_BA DISPC_REG(0x00B8)
#define DISPC_DATA_CYCLE1 DISPC_REG(0x01D4)
#define DISPC_DATA_CYCLE2 DISPC_REG(0x01D8)
#define DISPC_DATA_CYCLE3 DISPC_REG(0x01DC)
#define DISPC_CPR_COEF_R DISPC_REG(0x0220)
#define DISPC_CPR_COEF_G DISPC_REG(0x0224)
#define DISPC_CPR_COEF_B DISPC_REG(0x0228)
#define DISPC_GFX_PRELOAD DISPC_REG(0x022C)
/* DISPC Video plane, n = 0 for VID1 and n = 1 for VID2 */
#define DISPC_VID_REG(n, idx) DISPC_REG(0x00BC + (n)*0x90 + idx)
#define DISPC_VID_BA0(n) DISPC_VID_REG(n, 0x0000)
#define DISPC_VID_BA1(n) DISPC_VID_REG(n, 0x0004)
#define DISPC_VID_POSITION(n) DISPC_VID_REG(n, 0x0008)
#define DISPC_VID_SIZE(n) DISPC_VID_REG(n, 0x000C)
#define DISPC_VID_ATTRIBUTES(n) DISPC_VID_REG(n, 0x0010)
#define DISPC_VID_FIFO_THRESHOLD(n) DISPC_VID_REG(n, 0x0014)
#define DISPC_VID_FIFO_SIZE_STATUS(n) DISPC_VID_REG(n, 0x0018)
#define DISPC_VID_ROW_INC(n) DISPC_VID_REG(n, 0x001C)
#define DISPC_VID_PIXEL_INC(n) DISPC_VID_REG(n, 0x0020)
#define DISPC_VID_FIR(n) DISPC_VID_REG(n, 0x0024)
#define DISPC_VID_PICTURE_SIZE(n) DISPC_VID_REG(n, 0x0028)
#define DISPC_VID_ACCU0(n) DISPC_VID_REG(n, 0x002C)
#define DISPC_VID_ACCU1(n) DISPC_VID_REG(n, 0x0030)
/* coef index i = {0, 1, 2, 3, 4, 5, 6, 7} */
#define DISPC_VID_FIR_COEF_H(n, i) DISPC_REG(0x00F0 + (n)*0x90 + (i)*0x8)
/* coef index i = {0, 1, 2, 3, 4, 5, 6, 7} */
#define DISPC_VID_FIR_COEF_HV(n, i) DISPC_REG(0x00F4 + (n)*0x90 + (i)*0x8)
/* coef index i = {0, 1, 2, 3, 4} */
#define DISPC_VID_CONV_COEF(n, i) DISPC_REG(0x0130 + (n)*0x90 + (i)*0x4)
/* coef index i = {0, 1, 2, 3, 4, 5, 6, 7} */
#define DISPC_VID_FIR_COEF_V(n, i) DISPC_REG(0x01E0 + (n)*0x20 + (i)*0x4)
#define DISPC_VID_PRELOAD(n) DISPC_REG(0x230 + (n)*0x04)
#define DISPC_IRQ_MASK_ERROR (DISPC_IRQ_GFX_FIFO_UNDERFLOW | \
DISPC_IRQ_OCP_ERR | \
DISPC_IRQ_VID1_FIFO_UNDERFLOW | \
DISPC_IRQ_VID2_FIFO_UNDERFLOW | \
DISPC_IRQ_SYNC_LOST | \
DISPC_IRQ_SYNC_LOST_DIGIT)
#define DISPC_MAX_NR_ISRS 8
struct omap_dispc_isr_data {
omap_dispc_isr_t isr;
void *arg;
u32 mask;
};
#define REG_GET(idx, start, end) \
FLD_GET(dispc_read_reg(idx), start, end)
#define REG_FLD_MOD(idx, val, start, end) \
dispc_write_reg(idx, FLD_MOD(dispc_read_reg(idx), val, start, end))
static const struct dispc_reg dispc_reg_att[] = { DISPC_GFX_ATTRIBUTES,
DISPC_VID_ATTRIBUTES(0),
DISPC_VID_ATTRIBUTES(1) };
static struct {
void __iomem *base;
u32 fifo_size[3];
spinlock_t irq_lock;
u32 irq_error_mask;
struct omap_dispc_isr_data registered_isr[DISPC_MAX_NR_ISRS];
u32 error_irqs;
struct work_struct error_work;
u32 ctx[DISPC_SZ_REGS / sizeof(u32)];
} dispc;
static void _omap_dispc_set_irqs(void);
static inline void dispc_write_reg(const struct dispc_reg idx, u32 val)
{
__raw_writel(val, dispc.base + idx.idx);
}
static inline u32 dispc_read_reg(const struct dispc_reg idx)
{
return __raw_readl(dispc.base + idx.idx);
}
#define SR(reg) \
dispc.ctx[(DISPC_##reg).idx / sizeof(u32)] = dispc_read_reg(DISPC_##reg)
#define RR(reg) \
dispc_write_reg(DISPC_##reg, dispc.ctx[(DISPC_##reg).idx / sizeof(u32)])
void dispc_save_context(void)
{
if (cpu_is_omap24xx())
return;
SR(SYSCONFIG);
SR(IRQENABLE);
SR(CONTROL);
SR(CONFIG);
SR(DEFAULT_COLOR0);
SR(DEFAULT_COLOR1);
SR(TRANS_COLOR0);
SR(TRANS_COLOR1);
SR(LINE_NUMBER);
SR(TIMING_H);
SR(TIMING_V);
SR(POL_FREQ);
SR(DIVISOR);
SR(GLOBAL_ALPHA);
SR(SIZE_DIG);
SR(SIZE_LCD);
SR(GFX_BA0);
SR(GFX_BA1);
SR(GFX_POSITION);
SR(GFX_SIZE);
SR(GFX_ATTRIBUTES);
SR(GFX_FIFO_THRESHOLD);
SR(GFX_ROW_INC);
SR(GFX_PIXEL_INC);
SR(GFX_WINDOW_SKIP);
SR(GFX_TABLE_BA);
SR(DATA_CYCLE1);
SR(DATA_CYCLE2);
SR(DATA_CYCLE3);
SR(CPR_COEF_R);
SR(CPR_COEF_G);
SR(CPR_COEF_B);
SR(GFX_PRELOAD);
/* VID1 */
SR(VID_BA0(0));
SR(VID_BA1(0));
SR(VID_POSITION(0));
SR(VID_SIZE(0));
SR(VID_ATTRIBUTES(0));
SR(VID_FIFO_THRESHOLD(0));
SR(VID_ROW_INC(0));
SR(VID_PIXEL_INC(0));
SR(VID_FIR(0));
SR(VID_PICTURE_SIZE(0));
SR(VID_ACCU0(0));
SR(VID_ACCU1(0));
SR(VID_FIR_COEF_H(0, 0));
SR(VID_FIR_COEF_H(0, 1));
SR(VID_FIR_COEF_H(0, 2));
SR(VID_FIR_COEF_H(0, 3));
SR(VID_FIR_COEF_H(0, 4));
SR(VID_FIR_COEF_H(0, 5));
SR(VID_FIR_COEF_H(0, 6));
SR(VID_FIR_COEF_H(0, 7));
SR(VID_FIR_COEF_HV(0, 0));
SR(VID_FIR_COEF_HV(0, 1));
SR(VID_FIR_COEF_HV(0, 2));
SR(VID_FIR_COEF_HV(0, 3));
SR(VID_FIR_COEF_HV(0, 4));
SR(VID_FIR_COEF_HV(0, 5));
SR(VID_FIR_COEF_HV(0, 6));
SR(VID_FIR_COEF_HV(0, 7));
SR(VID_CONV_COEF(0, 0));
SR(VID_CONV_COEF(0, 1));
SR(VID_CONV_COEF(0, 2));
SR(VID_CONV_COEF(0, 3));
SR(VID_CONV_COEF(0, 4));
SR(VID_FIR_COEF_V(0, 0));
SR(VID_FIR_COEF_V(0, 1));
SR(VID_FIR_COEF_V(0, 2));
SR(VID_FIR_COEF_V(0, 3));
SR(VID_FIR_COEF_V(0, 4));
SR(VID_FIR_COEF_V(0, 5));
SR(VID_FIR_COEF_V(0, 6));
SR(VID_FIR_COEF_V(0, 7));
SR(VID_PRELOAD(0));
/* VID2 */
SR(VID_BA0(1));
SR(VID_BA1(1));
SR(VID_POSITION(1));
SR(VID_SIZE(1));
SR(VID_ATTRIBUTES(1));
SR(VID_FIFO_THRESHOLD(1));
SR(VID_ROW_INC(1));
SR(VID_PIXEL_INC(1));
SR(VID_FIR(1));
SR(VID_PICTURE_SIZE(1));
SR(VID_ACCU0(1));
SR(VID_ACCU1(1));
SR(VID_FIR_COEF_H(1, 0));
SR(VID_FIR_COEF_H(1, 1));
SR(VID_FIR_COEF_H(1, 2));
SR(VID_FIR_COEF_H(1, 3));
SR(VID_FIR_COEF_H(1, 4));
SR(VID_FIR_COEF_H(1, 5));
SR(VID_FIR_COEF_H(1, 6));
SR(VID_FIR_COEF_H(1, 7));
SR(VID_FIR_COEF_HV(1, 0));
SR(VID_FIR_COEF_HV(1, 1));
SR(VID_FIR_COEF_HV(1, 2));
SR(VID_FIR_COEF_HV(1, 3));
SR(VID_FIR_COEF_HV(1, 4));
SR(VID_FIR_COEF_HV(1, 5));
SR(VID_FIR_COEF_HV(1, 6));
SR(VID_FIR_COEF_HV(1, 7));
SR(VID_CONV_COEF(1, 0));
SR(VID_CONV_COEF(1, 1));
SR(VID_CONV_COEF(1, 2));
SR(VID_CONV_COEF(1, 3));
SR(VID_CONV_COEF(1, 4));
SR(VID_FIR_COEF_V(1, 0));
SR(VID_FIR_COEF_V(1, 1));
SR(VID_FIR_COEF_V(1, 2));
SR(VID_FIR_COEF_V(1, 3));
SR(VID_FIR_COEF_V(1, 4));
SR(VID_FIR_COEF_V(1, 5));
SR(VID_FIR_COEF_V(1, 6));
SR(VID_FIR_COEF_V(1, 7));
SR(VID_PRELOAD(1));
}
void dispc_restore_context(void)
{
RR(SYSCONFIG);
RR(IRQENABLE);
/*RR(CONTROL);*/
RR(CONFIG);
RR(DEFAULT_COLOR0);
RR(DEFAULT_COLOR1);
RR(TRANS_COLOR0);
RR(TRANS_COLOR1);
RR(LINE_NUMBER);
RR(TIMING_H);
RR(TIMING_V);
RR(POL_FREQ);
RR(DIVISOR);
RR(GLOBAL_ALPHA);
RR(SIZE_DIG);
RR(SIZE_LCD);
RR(GFX_BA0);
RR(GFX_BA1);
RR(GFX_POSITION);
RR(GFX_SIZE);
RR(GFX_ATTRIBUTES);
RR(GFX_FIFO_THRESHOLD);
RR(GFX_ROW_INC);
RR(GFX_PIXEL_INC);
RR(GFX_WINDOW_SKIP);
RR(GFX_TABLE_BA);
RR(DATA_CYCLE1);
RR(DATA_CYCLE2);
RR(DATA_CYCLE3);
RR(CPR_COEF_R);
RR(CPR_COEF_G);
RR(CPR_COEF_B);
RR(GFX_PRELOAD);
/* VID1 */
RR(VID_BA0(0));
RR(VID_BA1(0));
RR(VID_POSITION(0));
RR(VID_SIZE(0));
RR(VID_ATTRIBUTES(0));
RR(VID_FIFO_THRESHOLD(0));
RR(VID_ROW_INC(0));
RR(VID_PIXEL_INC(0));
RR(VID_FIR(0));
RR(VID_PICTURE_SIZE(0));
RR(VID_ACCU0(0));
RR(VID_ACCU1(0));
RR(VID_FIR_COEF_H(0, 0));
RR(VID_FIR_COEF_H(0, 1));
RR(VID_FIR_COEF_H(0, 2));
RR(VID_FIR_COEF_H(0, 3));
RR(VID_FIR_COEF_H(0, 4));
RR(VID_FIR_COEF_H(0, 5));
RR(VID_FIR_COEF_H(0, 6));
RR(VID_FIR_COEF_H(0, 7));
RR(VID_FIR_COEF_HV(0, 0));
RR(VID_FIR_COEF_HV(0, 1));
RR(VID_FIR_COEF_HV(0, 2));
RR(VID_FIR_COEF_HV(0, 3));
RR(VID_FIR_COEF_HV(0, 4));
RR(VID_FIR_COEF_HV(0, 5));
RR(VID_FIR_COEF_HV(0, 6));
RR(VID_FIR_COEF_HV(0, 7));
RR(VID_CONV_COEF(0, 0));
RR(VID_CONV_COEF(0, 1));
RR(VID_CONV_COEF(0, 2));
RR(VID_CONV_COEF(0, 3));
RR(VID_CONV_COEF(0, 4));
RR(VID_FIR_COEF_V(0, 0));
RR(VID_FIR_COEF_V(0, 1));
RR(VID_FIR_COEF_V(0, 2));
RR(VID_FIR_COEF_V(0, 3));
RR(VID_FIR_COEF_V(0, 4));
RR(VID_FIR_COEF_V(0, 5));
RR(VID_FIR_COEF_V(0, 6));
RR(VID_FIR_COEF_V(0, 7));
RR(VID_PRELOAD(0));
/* VID2 */
RR(VID_BA0(1));
RR(VID_BA1(1));
RR(VID_POSITION(1));
RR(VID_SIZE(1));
RR(VID_ATTRIBUTES(1));
RR(VID_FIFO_THRESHOLD(1));
RR(VID_ROW_INC(1));
RR(VID_PIXEL_INC(1));
RR(VID_FIR(1));
RR(VID_PICTURE_SIZE(1));
RR(VID_ACCU0(1));
RR(VID_ACCU1(1));
RR(VID_FIR_COEF_H(1, 0));
RR(VID_FIR_COEF_H(1, 1));
RR(VID_FIR_COEF_H(1, 2));
RR(VID_FIR_COEF_H(1, 3));
RR(VID_FIR_COEF_H(1, 4));
RR(VID_FIR_COEF_H(1, 5));
RR(VID_FIR_COEF_H(1, 6));
RR(VID_FIR_COEF_H(1, 7));
RR(VID_FIR_COEF_HV(1, 0));
RR(VID_FIR_COEF_HV(1, 1));
RR(VID_FIR_COEF_HV(1, 2));
RR(VID_FIR_COEF_HV(1, 3));
RR(VID_FIR_COEF_HV(1, 4));
RR(VID_FIR_COEF_HV(1, 5));
RR(VID_FIR_COEF_HV(1, 6));
RR(VID_FIR_COEF_HV(1, 7));
RR(VID_CONV_COEF(1, 0));
RR(VID_CONV_COEF(1, 1));
RR(VID_CONV_COEF(1, 2));
RR(VID_CONV_COEF(1, 3));
RR(VID_CONV_COEF(1, 4));
RR(VID_FIR_COEF_V(1, 0));
RR(VID_FIR_COEF_V(1, 1));
RR(VID_FIR_COEF_V(1, 2));
RR(VID_FIR_COEF_V(1, 3));
RR(VID_FIR_COEF_V(1, 4));
RR(VID_FIR_COEF_V(1, 5));
RR(VID_FIR_COEF_V(1, 6));
RR(VID_FIR_COEF_V(1, 7));
RR(VID_PRELOAD(1));
/* enable last, because LCD & DIGIT enable are here */
RR(CONTROL);
}
#undef SR
#undef RR
static inline void enable_clocks(bool enable)
{
if (enable)
dss_clk_enable(DSS_CLK_ICK | DSS_CLK_FCK1);
else
dss_clk_disable(DSS_CLK_ICK | DSS_CLK_FCK1);
}
bool dispc_go_busy(enum omap_channel channel)
{
int bit;
if (channel == OMAP_DSS_CHANNEL_LCD)
bit = 5; /* GOLCD */
else
bit = 6; /* GODIGIT */
return REG_GET(DISPC_CONTROL, bit, bit) == 1;
}
void dispc_go(enum omap_channel channel)
{
int bit;
enable_clocks(1);
if (channel == OMAP_DSS_CHANNEL_LCD)
bit = 0; /* LCDENABLE */
else
bit = 1; /* DIGITALENABLE */
/* if the channel is not enabled, we don't need GO */
if (REG_GET(DISPC_CONTROL, bit, bit) == 0)
goto end;
if (channel == OMAP_DSS_CHANNEL_LCD)
bit = 5; /* GOLCD */
else
bit = 6; /* GODIGIT */
if (REG_GET(DISPC_CONTROL, bit, bit) == 1) {
DSSERR("GO bit not down for channel %d\n", channel);
goto end;
}
DSSDBG("GO %s\n", channel == OMAP_DSS_CHANNEL_LCD ? "LCD" : "DIGIT");
REG_FLD_MOD(DISPC_CONTROL, 1, bit, bit);
end:
enable_clocks(0);
}
static void _dispc_write_firh_reg(enum omap_plane plane, int reg, u32 value)
{
BUG_ON(plane == OMAP_DSS_GFX);
dispc_write_reg(DISPC_VID_FIR_COEF_H(plane-1, reg), value);
}
static void _dispc_write_firhv_reg(enum omap_plane plane, int reg, u32 value)
{
BUG_ON(plane == OMAP_DSS_GFX);
dispc_write_reg(DISPC_VID_FIR_COEF_HV(plane-1, reg), value);
}
static void _dispc_write_firv_reg(enum omap_plane plane, int reg, u32 value)
{
BUG_ON(plane == OMAP_DSS_GFX);
dispc_write_reg(DISPC_VID_FIR_COEF_V(plane-1, reg), value);
}
static void _dispc_set_scale_coef(enum omap_plane plane, int hscaleup,
int vscaleup, int five_taps)
{
/* Coefficients for horizontal up-sampling */
static const u32 coef_hup[8] = {
0x00800000,
0x0D7CF800,
0x1E70F5FF,
0x335FF5FE,
0xF74949F7,
0xF55F33FB,
0xF5701EFE,
0xF87C0DFF,
};
/* Coefficients for horizontal down-sampling */
static const u32 coef_hdown[8] = {
0x24382400,
0x28371FFE,
0x2C361BFB,
0x303516F9,
0x11343311,
0x1635300C,
0x1B362C08,
0x1F372804,
};
/* Coefficients for horizontal and vertical up-sampling */
static const u32 coef_hvup[2][8] = {
{
0x00800000,
0x037B02FF,
0x0C6F05FE,
0x205907FB,
0x00404000,
0x075920FE,
0x056F0CFF,
0x027B0300,
},
{
0x00800000,
0x0D7CF8FF,
0x1E70F5FE,
0x335FF5FB,
0xF7404000,
0xF55F33FE,
0xF5701EFF,
0xF87C0D00,
},
};
/* Coefficients for horizontal and vertical down-sampling */
static const u32 coef_hvdown[2][8] = {
{
0x24382400,
0x28391F04,
0x2D381B08,
0x3237170C,
0x123737F7,
0x173732F9,
0x1B382DFB,
0x1F3928FE,
},
{
0x24382400,
0x28371F04,
0x2C361B08,
0x3035160C,
0x113433F7,
0x163530F9,
0x1B362CFB,
0x1F3728FE,
},
};
/* Coefficients for vertical up-sampling */
static const u32 coef_vup[8] = {
0x00000000,
0x0000FF00,
0x0000FEFF,
0x0000FBFE,
0x000000F7,
0x0000FEFB,
0x0000FFFE,
0x000000FF,
};
/* Coefficients for vertical down-sampling */
static const u32 coef_vdown[8] = {
0x00000000,
0x000004FE,
0x000008FB,
0x00000CF9,
0x0000F711,
0x0000F90C,
0x0000FB08,
0x0000FE04,
};
const u32 *h_coef;
const u32 *hv_coef;
const u32 *hv_coef_mod;
const u32 *v_coef;
int i;
if (hscaleup)
h_coef = coef_hup;
else
h_coef = coef_hdown;
if (vscaleup) {
hv_coef = coef_hvup[five_taps];
v_coef = coef_vup;
if (hscaleup)
hv_coef_mod = NULL;
else
hv_coef_mod = coef_hvdown[five_taps];
} else {
hv_coef = coef_hvdown[five_taps];
v_coef = coef_vdown;
if (hscaleup)
hv_coef_mod = coef_hvup[five_taps];
else
hv_coef_mod = NULL;
}
for (i = 0; i < 8; i++) {
u32 h, hv;
h = h_coef[i];
hv = hv_coef[i];
if (hv_coef_mod) {
hv &= 0xffffff00;
hv |= (hv_coef_mod[i] & 0xff);
}
_dispc_write_firh_reg(plane, i, h);
_dispc_write_firhv_reg(plane, i, hv);
}
if (!five_taps)
return;
for (i = 0; i < 8; i++) {
u32 v;
v = v_coef[i];
_dispc_write_firv_reg(plane, i, v);
}
}
static void _dispc_setup_color_conv_coef(void)
{
const struct color_conv_coef {
int ry, rcr, rcb, gy, gcr, gcb, by, bcr, bcb;
int full_range;
} ctbl_bt601_5 = {
298, 409, 0, 298, -208, -100, 298, 0, 517, 0,
};
const struct color_conv_coef *ct;
#define CVAL(x, y) (FLD_VAL(x, 26, 16) | FLD_VAL(y, 10, 0))
ct = &ctbl_bt601_5;
dispc_write_reg(DISPC_VID_CONV_COEF(0, 0), CVAL(ct->rcr, ct->ry));
dispc_write_reg(DISPC_VID_CONV_COEF(0, 1), CVAL(ct->gy, ct->rcb));
dispc_write_reg(DISPC_VID_CONV_COEF(0, 2), CVAL(ct->gcb, ct->gcr));
dispc_write_reg(DISPC_VID_CONV_COEF(0, 3), CVAL(ct->bcr, ct->by));
dispc_write_reg(DISPC_VID_CONV_COEF(0, 4), CVAL(0, ct->bcb));
dispc_write_reg(DISPC_VID_CONV_COEF(1, 0), CVAL(ct->rcr, ct->ry));
dispc_write_reg(DISPC_VID_CONV_COEF(1, 1), CVAL(ct->gy, ct->rcb));
dispc_write_reg(DISPC_VID_CONV_COEF(1, 2), CVAL(ct->gcb, ct->gcr));
dispc_write_reg(DISPC_VID_CONV_COEF(1, 3), CVAL(ct->bcr, ct->by));
dispc_write_reg(DISPC_VID_CONV_COEF(1, 4), CVAL(0, ct->bcb));
#undef CVAL
REG_FLD_MOD(DISPC_VID_ATTRIBUTES(0), ct->full_range, 11, 11);
REG_FLD_MOD(DISPC_VID_ATTRIBUTES(1), ct->full_range, 11, 11);
}
static void _dispc_set_plane_ba0(enum omap_plane plane, u32 paddr)
{
const struct dispc_reg ba0_reg[] = { DISPC_GFX_BA0,
DISPC_VID_BA0(0),
DISPC_VID_BA0(1) };
dispc_write_reg(ba0_reg[plane], paddr);
}
static void _dispc_set_plane_ba1(enum omap_plane plane, u32 paddr)
{
const struct dispc_reg ba1_reg[] = { DISPC_GFX_BA1,
DISPC_VID_BA1(0),
DISPC_VID_BA1(1) };
dispc_write_reg(ba1_reg[plane], paddr);
}
static void _dispc_set_plane_pos(enum omap_plane plane, int x, int y)
{
const struct dispc_reg pos_reg[] = { DISPC_GFX_POSITION,
DISPC_VID_POSITION(0),
DISPC_VID_POSITION(1) };
u32 val = FLD_VAL(y, 26, 16) | FLD_VAL(x, 10, 0);
dispc_write_reg(pos_reg[plane], val);
}
static void _dispc_set_pic_size(enum omap_plane plane, int width, int height)
{
const struct dispc_reg siz_reg[] = { DISPC_GFX_SIZE,
DISPC_VID_PICTURE_SIZE(0),
DISPC_VID_PICTURE_SIZE(1) };
u32 val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
dispc_write_reg(siz_reg[plane], val);
}
static void _dispc_set_vid_size(enum omap_plane plane, int width, int height)
{
u32 val;
const struct dispc_reg vsi_reg[] = { DISPC_VID_SIZE(0),
DISPC_VID_SIZE(1) };
BUG_ON(plane == OMAP_DSS_GFX);
val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
dispc_write_reg(vsi_reg[plane-1], val);
}
static void _dispc_setup_global_alpha(enum omap_plane plane, u8 global_alpha)
{
BUG_ON(plane == OMAP_DSS_VIDEO1);
if (cpu_is_omap24xx())
return;
if (plane == OMAP_DSS_GFX)
REG_FLD_MOD(DISPC_GLOBAL_ALPHA, global_alpha, 7, 0);
else if (plane == OMAP_DSS_VIDEO2)
REG_FLD_MOD(DISPC_GLOBAL_ALPHA, global_alpha, 23, 16);
}
static void _dispc_set_pix_inc(enum omap_plane plane, s32 inc)
{
const struct dispc_reg ri_reg[] = { DISPC_GFX_PIXEL_INC,
DISPC_VID_PIXEL_INC(0),
DISPC_VID_PIXEL_INC(1) };
dispc_write_reg(ri_reg[plane], inc);
}
static void _dispc_set_row_inc(enum omap_plane plane, s32 inc)
{
const struct dispc_reg ri_reg[] = { DISPC_GFX_ROW_INC,
DISPC_VID_ROW_INC(0),
DISPC_VID_ROW_INC(1) };
dispc_write_reg(ri_reg[plane], inc);
}
static void _dispc_set_color_mode(enum omap_plane plane,
enum omap_color_mode color_mode)
{
u32 m = 0;
switch (color_mode) {
case OMAP_DSS_COLOR_CLUT1:
m = 0x0; break;
case OMAP_DSS_COLOR_CLUT2:
m = 0x1; break;
case OMAP_DSS_COLOR_CLUT4:
m = 0x2; break;
case OMAP_DSS_COLOR_CLUT8:
m = 0x3; break;
case OMAP_DSS_COLOR_RGB12U:
m = 0x4; break;
case OMAP_DSS_COLOR_ARGB16:
m = 0x5; break;
case OMAP_DSS_COLOR_RGB16:
m = 0x6; break;
case OMAP_DSS_COLOR_RGB24U:
m = 0x8; break;
case OMAP_DSS_COLOR_RGB24P:
m = 0x9; break;
case OMAP_DSS_COLOR_YUV2:
m = 0xa; break;
case OMAP_DSS_COLOR_UYVY:
m = 0xb; break;
case OMAP_DSS_COLOR_ARGB32:
m = 0xc; break;
case OMAP_DSS_COLOR_RGBA32:
m = 0xd; break;
case OMAP_DSS_COLOR_RGBX32:
m = 0xe; break;
default:
BUG(); break;
}
REG_FLD_MOD(dispc_reg_att[plane], m, 4, 1);
}
static void _dispc_set_channel_out(enum omap_plane plane,
enum omap_channel channel)
{
int shift;
u32 val;
switch (plane) {
case OMAP_DSS_GFX:
shift = 8;
break;
case OMAP_DSS_VIDEO1:
case OMAP_DSS_VIDEO2:
shift = 16;
break;
default:
BUG();
return;
}
val = dispc_read_reg(dispc_reg_att[plane]);
val = FLD_MOD(val, channel, shift, shift);
dispc_write_reg(dispc_reg_att[plane], val);
}
void dispc_set_burst_size(enum omap_plane plane,
enum omap_burst_size burst_size)
{
int shift;
u32 val;
enable_clocks(1);
switch (plane) {
case OMAP_DSS_GFX:
shift = 6;
break;
case OMAP_DSS_VIDEO1:
case OMAP_DSS_VIDEO2:
shift = 14;
break;
default:
BUG();
return;
}
val = dispc_read_reg(dispc_reg_att[plane]);
val = FLD_MOD(val, burst_size, shift+1, shift);
dispc_write_reg(dispc_reg_att[plane], val);
enable_clocks(0);
}
static void _dispc_set_vid_color_conv(enum omap_plane plane, bool enable)
{
u32 val;
BUG_ON(plane == OMAP_DSS_GFX);
val = dispc_read_reg(dispc_reg_att[plane]);
val = FLD_MOD(val, enable, 9, 9);
dispc_write_reg(dispc_reg_att[plane], val);
}
void dispc_enable_replication(enum omap_plane plane, bool enable)
{
int bit;
if (plane == OMAP_DSS_GFX)
bit = 5;
else
bit = 10;
enable_clocks(1);
REG_FLD_MOD(dispc_reg_att[plane], enable, bit, bit);
enable_clocks(0);
}
void dispc_set_lcd_size(u16 width, u16 height)
{
u32 val;
BUG_ON((width > (1 << 11)) || (height > (1 << 11)));
val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
enable_clocks(1);
dispc_write_reg(DISPC_SIZE_LCD, val);
enable_clocks(0);
}
void dispc_set_digit_size(u16 width, u16 height)
{
u32 val;
BUG_ON((width > (1 << 11)) || (height > (1 << 11)));
val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
enable_clocks(1);
dispc_write_reg(DISPC_SIZE_DIG, val);
enable_clocks(0);
}
static void dispc_read_plane_fifo_sizes(void)
{
const struct dispc_reg fsz_reg[] = { DISPC_GFX_FIFO_SIZE_STATUS,
DISPC_VID_FIFO_SIZE_STATUS(0),
DISPC_VID_FIFO_SIZE_STATUS(1) };
u32 size;
int plane;
enable_clocks(1);
for (plane = 0; plane < ARRAY_SIZE(dispc.fifo_size); ++plane) {
if (cpu_is_omap24xx())
size = FLD_GET(dispc_read_reg(fsz_reg[plane]), 8, 0);
else if (cpu_is_omap34xx())
size = FLD_GET(dispc_read_reg(fsz_reg[plane]), 10, 0);
else
BUG();
dispc.fifo_size[plane] = size;
}
enable_clocks(0);
}
u32 dispc_get_plane_fifo_size(enum omap_plane plane)
{
return dispc.fifo_size[plane];
}
void dispc_setup_plane_fifo(enum omap_plane plane, u32 low, u32 high)
{
const struct dispc_reg ftrs_reg[] = { DISPC_GFX_FIFO_THRESHOLD,
DISPC_VID_FIFO_THRESHOLD(0),
DISPC_VID_FIFO_THRESHOLD(1) };
enable_clocks(1);
DSSDBG("fifo(%d) low/high old %u/%u, new %u/%u\n",
plane,
REG_GET(ftrs_reg[plane], 11, 0),
REG_GET(ftrs_reg[plane], 27, 16),
low, high);
if (cpu_is_omap24xx())
dispc_write_reg(ftrs_reg[plane],
FLD_VAL(high, 24, 16) | FLD_VAL(low, 8, 0));
else
dispc_write_reg(ftrs_reg[plane],
FLD_VAL(high, 27, 16) | FLD_VAL(low, 11, 0));
enable_clocks(0);
}
void dispc_enable_fifomerge(bool enable)
{
enable_clocks(1);
DSSDBG("FIFO merge %s\n", enable ? "enabled" : "disabled");
REG_FLD_MOD(DISPC_CONFIG, enable ? 1 : 0, 14, 14);
enable_clocks(0);
}
static void _dispc_set_fir(enum omap_plane plane, int hinc, int vinc)
{
u32 val;
const struct dispc_reg fir_reg[] = { DISPC_VID_FIR(0),
DISPC_VID_FIR(1) };
BUG_ON(plane == OMAP_DSS_GFX);
if (cpu_is_omap24xx())
val = FLD_VAL(vinc, 27, 16) | FLD_VAL(hinc, 11, 0);
else
val = FLD_VAL(vinc, 28, 16) | FLD_VAL(hinc, 12, 0);
dispc_write_reg(fir_reg[plane-1], val);
}
static void _dispc_set_vid_accu0(enum omap_plane plane, int haccu, int vaccu)
{
u32 val;
const struct dispc_reg ac0_reg[] = { DISPC_VID_ACCU0(0),
DISPC_VID_ACCU0(1) };
BUG_ON(plane == OMAP_DSS_GFX);
val = FLD_VAL(vaccu, 25, 16) | FLD_VAL(haccu, 9, 0);
dispc_write_reg(ac0_reg[plane-1], val);
}
static void _dispc_set_vid_accu1(enum omap_plane plane, int haccu, int vaccu)
{
u32 val;
const struct dispc_reg ac1_reg[] = { DISPC_VID_ACCU1(0),
DISPC_VID_ACCU1(1) };
BUG_ON(plane == OMAP_DSS_GFX);
val = FLD_VAL(vaccu, 25, 16) | FLD_VAL(haccu, 9, 0);
dispc_write_reg(ac1_reg[plane-1], val);
}
static void _dispc_set_scaling(enum omap_plane plane,
u16 orig_width, u16 orig_height,
u16 out_width, u16 out_height,
bool ilace, bool five_taps,
bool fieldmode)
{
int fir_hinc;
int fir_vinc;
int hscaleup, vscaleup;
int accu0 = 0;
int accu1 = 0;
u32 l;
BUG_ON(plane == OMAP_DSS_GFX);
hscaleup = orig_width <= out_width;
vscaleup = orig_height <= out_height;
_dispc_set_scale_coef(plane, hscaleup, vscaleup, five_taps);
if (!orig_width || orig_width == out_width)
fir_hinc = 0;
else
fir_hinc = 1024 * orig_width / out_width;
if (!orig_height || orig_height == out_height)
fir_vinc = 0;
else
fir_vinc = 1024 * orig_height / out_height;
_dispc_set_fir(plane, fir_hinc, fir_vinc);
l = dispc_read_reg(dispc_reg_att[plane]);
l &= ~((0x0f << 5) | (0x3 << 21));
l |= fir_hinc ? (1 << 5) : 0;
l |= fir_vinc ? (1 << 6) : 0;
l |= hscaleup ? 0 : (1 << 7);
l |= vscaleup ? 0 : (1 << 8);
l |= five_taps ? (1 << 21) : 0;
l |= five_taps ? (1 << 22) : 0;
dispc_write_reg(dispc_reg_att[plane], l);
/*
* field 0 = even field = bottom field
* field 1 = odd field = top field
*/
if (ilace && !fieldmode) {
accu1 = 0;
accu0 = (fir_vinc / 2) & 0x3ff;
if (accu0 >= 1024/2) {
accu1 = 1024/2;
accu0 -= accu1;
}
}
_dispc_set_vid_accu0(plane, 0, accu0);
_dispc_set_vid_accu1(plane, 0, accu1);
}
static void _dispc_set_rotation_attrs(enum omap_plane plane, u8 rotation,
bool mirroring, enum omap_color_mode color_mode)
{
if (color_mode == OMAP_DSS_COLOR_YUV2 ||
color_mode == OMAP_DSS_COLOR_UYVY) {
int vidrot = 0;
if (mirroring) {
switch (rotation) {
case OMAP_DSS_ROT_0:
vidrot = 2;
break;
case OMAP_DSS_ROT_90:
vidrot = 1;
break;
case OMAP_DSS_ROT_180:
vidrot = 0;
break;
case OMAP_DSS_ROT_270:
vidrot = 3;
break;
}
} else {
switch (rotation) {
case OMAP_DSS_ROT_0:
vidrot = 0;
break;
case OMAP_DSS_ROT_90:
vidrot = 1;
break;
case OMAP_DSS_ROT_180:
vidrot = 2;
break;
case OMAP_DSS_ROT_270:
vidrot = 3;
break;
}
}
REG_FLD_MOD(dispc_reg_att[plane], vidrot, 13, 12);
if (rotation == OMAP_DSS_ROT_90 || rotation == OMAP_DSS_ROT_270)
REG_FLD_MOD(dispc_reg_att[plane], 0x1, 18, 18);
else
REG_FLD_MOD(dispc_reg_att[plane], 0x0, 18, 18);
} else {
REG_FLD_MOD(dispc_reg_att[plane], 0, 13, 12);
REG_FLD_MOD(dispc_reg_att[plane], 0, 18, 18);
}
}
static int color_mode_to_bpp(enum omap_color_mode color_mode)
{
switch (color_mode) {
case OMAP_DSS_COLOR_CLUT1:
return 1;
case OMAP_DSS_COLOR_CLUT2:
return 2;
case OMAP_DSS_COLOR_CLUT4:
return 4;
case OMAP_DSS_COLOR_CLUT8:
return 8;
case OMAP_DSS_COLOR_RGB12U:
case OMAP_DSS_COLOR_RGB16:
case OMAP_DSS_COLOR_ARGB16:
case OMAP_DSS_COLOR_YUV2:
case OMAP_DSS_COLOR_UYVY:
return 16;
case OMAP_DSS_COLOR_RGB24P:
return 24;
case OMAP_DSS_COLOR_RGB24U:
case OMAP_DSS_COLOR_ARGB32:
case OMAP_DSS_COLOR_RGBA32:
case OMAP_DSS_COLOR_RGBX32:
return 32;
default:
BUG();
}
}
static s32 pixinc(int pixels, u8 ps)
{
if (pixels == 1)
return 1;
else if (pixels > 1)
return 1 + (pixels - 1) * ps;
else if (pixels < 0)
return 1 - (-pixels + 1) * ps;
else
BUG();
}
static void calc_vrfb_rotation_offset(u8 rotation, bool mirror,
u16 screen_width,
u16 width, u16 height,
enum omap_color_mode color_mode, bool fieldmode,
unsigned int field_offset,
unsigned *offset0, unsigned *offset1,
s32 *row_inc, s32 *pix_inc)
{
u8 ps;
/* FIXME CLUT formats */
switch (color_mode) {
case OMAP_DSS_COLOR_CLUT1:
case OMAP_DSS_COLOR_CLUT2:
case OMAP_DSS_COLOR_CLUT4:
case OMAP_DSS_COLOR_CLUT8:
BUG();
return;
case OMAP_DSS_COLOR_YUV2:
case OMAP_DSS_COLOR_UYVY:
ps = 4;
break;
default:
ps = color_mode_to_bpp(color_mode) / 8;
break;
}
DSSDBG("calc_rot(%d): scrw %d, %dx%d\n", rotation, screen_width,
width, height);
/*
* field 0 = even field = bottom field
* field 1 = odd field = top field
*/
switch (rotation + mirror * 4) {
case OMAP_DSS_ROT_0:
case OMAP_DSS_ROT_180:
/*
* If the pixel format is YUV or UYVY divide the width
* of the image by 2 for 0 and 180 degree rotation.
*/
if (color_mode == OMAP_DSS_COLOR_YUV2 ||
color_mode == OMAP_DSS_COLOR_UYVY)
width = width >> 1;
case OMAP_DSS_ROT_90:
case OMAP_DSS_ROT_270:
*offset1 = 0;
if (field_offset)
*offset0 = field_offset * screen_width * ps;
else
*offset0 = 0;
*row_inc = pixinc(1 + (screen_width - width) +
(fieldmode ? screen_width : 0),
ps);
*pix_inc = pixinc(1, ps);
break;
case OMAP_DSS_ROT_0 + 4:
case OMAP_DSS_ROT_180 + 4:
/* If the pixel format is YUV or UYVY divide the width
* of the image by 2 for 0 degree and 180 degree
*/
if (color_mode == OMAP_DSS_COLOR_YUV2 ||
color_mode == OMAP_DSS_COLOR_UYVY)
width = width >> 1;
case OMAP_DSS_ROT_90 + 4:
case OMAP_DSS_ROT_270 + 4:
*offset1 = 0;
if (field_offset)
*offset0 = field_offset * screen_width * ps;
else
*offset0 = 0;
*row_inc = pixinc(1 - (screen_width + width) -
(fieldmode ? screen_width : 0),
ps);
*pix_inc = pixinc(1, ps);
break;
default:
BUG();
}
}
static void calc_dma_rotation_offset(u8 rotation, bool mirror,
u16 screen_width,
u16 width, u16 height,
enum omap_color_mode color_mode, bool fieldmode,
unsigned int field_offset,
unsigned *offset0, unsigned *offset1,
s32 *row_inc, s32 *pix_inc)
{
u8 ps;
u16 fbw, fbh;
/* FIXME CLUT formats */
switch (color_mode) {
case OMAP_DSS_COLOR_CLUT1:
case OMAP_DSS_COLOR_CLUT2:
case OMAP_DSS_COLOR_CLUT4:
case OMAP_DSS_COLOR_CLUT8:
BUG();
return;
default:
ps = color_mode_to_bpp(color_mode) / 8;
break;
}
DSSDBG("calc_rot(%d): scrw %d, %dx%d\n", rotation, screen_width,
width, height);
/* width & height are overlay sizes, convert to fb sizes */
if (rotation == OMAP_DSS_ROT_0 || rotation == OMAP_DSS_ROT_180) {
fbw = width;
fbh = height;
} else {
fbw = height;
fbh = width;
}
/*
* field 0 = even field = bottom field
* field 1 = odd field = top field
*/
switch (rotation + mirror * 4) {
case OMAP_DSS_ROT_0:
*offset1 = 0;
if (field_offset)
*offset0 = *offset1 + field_offset * screen_width * ps;
else
*offset0 = *offset1;
*row_inc = pixinc(1 + (screen_width - fbw) +
(fieldmode ? screen_width : 0),
ps);
*pix_inc = pixinc(1, ps);
break;
case OMAP_DSS_ROT_90:
*offset1 = screen_width * (fbh - 1) * ps;
if (field_offset)
*offset0 = *offset1 + field_offset * ps;
else
*offset0 = *offset1;
*row_inc = pixinc(screen_width * (fbh - 1) + 1 +
(fieldmode ? 1 : 0), ps);
*pix_inc = pixinc(-screen_width, ps);
break;
case OMAP_DSS_ROT_180:
*offset1 = (screen_width * (fbh - 1) + fbw - 1) * ps;
if (field_offset)
*offset0 = *offset1 - field_offset * screen_width * ps;
else
*offset0 = *offset1;
*row_inc = pixinc(-1 -
(screen_width - fbw) -
(fieldmode ? screen_width : 0),
ps);
*pix_inc = pixinc(-1, ps);
break;
case OMAP_DSS_ROT_270:
*offset1 = (fbw - 1) * ps;
if (field_offset)
*offset0 = *offset1 - field_offset * ps;
else
*offset0 = *offset1;
*row_inc = pixinc(-screen_width * (fbh - 1) - 1 -
(fieldmode ? 1 : 0), ps);
*pix_inc = pixinc(screen_width, ps);
break;
/* mirroring */
case OMAP_DSS_ROT_0 + 4:
*offset1 = (fbw - 1) * ps;
if (field_offset)
*offset0 = *offset1 + field_offset * screen_width * ps;
else
*offset0 = *offset1;
*row_inc = pixinc(screen_width * 2 - 1 +
(fieldmode ? screen_width : 0),
ps);
*pix_inc = pixinc(-1, ps);
break;
case OMAP_DSS_ROT_90 + 4:
*offset1 = 0;
if (field_offset)
*offset0 = *offset1 + field_offset * ps;
else
*offset0 = *offset1;
*row_inc = pixinc(-screen_width * (fbh - 1) + 1 +
(fieldmode ? 1 : 0),
ps);
*pix_inc = pixinc(screen_width, ps);
break;
case OMAP_DSS_ROT_180 + 4:
*offset1 = screen_width * (fbh - 1) * ps;
if (field_offset)
*offset0 = *offset1 - field_offset * screen_width * ps;
else
*offset0 = *offset1;
*row_inc = pixinc(1 - screen_width * 2 -
(fieldmode ? screen_width : 0),
ps);
*pix_inc = pixinc(1, ps);
break;
case OMAP_DSS_ROT_270 + 4:
*offset1 = (screen_width * (fbh - 1) + fbw - 1) * ps;
if (field_offset)
*offset0 = *offset1 - field_offset * ps;
else
*offset0 = *offset1;
*row_inc = pixinc(screen_width * (fbh - 1) - 1 -
(fieldmode ? 1 : 0),
ps);
*pix_inc = pixinc(-screen_width, ps);
break;
default:
BUG();
}
}
static unsigned long calc_fclk_five_taps(u16 width, u16 height,
u16 out_width, u16 out_height, enum omap_color_mode color_mode)
{
u32 fclk = 0;
/* FIXME venc pclk? */
u64 tmp, pclk = dispc_pclk_rate();
if (height > out_height) {
/* FIXME get real display PPL */
unsigned int ppl = 800;
tmp = pclk * height * out_width;
do_div(tmp, 2 * out_height * ppl);
fclk = tmp;
if (height > 2 * out_height && ppl != out_width) {
tmp = pclk * (height - 2 * out_height) * out_width;
do_div(tmp, 2 * out_height * (ppl - out_width));
fclk = max(fclk, (u32) tmp);
}
}
if (width > out_width) {
tmp = pclk * width;
do_div(tmp, out_width);
fclk = max(fclk, (u32) tmp);
if (color_mode == OMAP_DSS_COLOR_RGB24U)
fclk <<= 1;
}
return fclk;
}
static unsigned long calc_fclk(u16 width, u16 height,
u16 out_width, u16 out_height)
{
unsigned int hf, vf;
/*
* FIXME how to determine the 'A' factor
* for the no downscaling case ?
*/
if (width > 3 * out_width)
hf = 4;
else if (width > 2 * out_width)
hf = 3;
else if (width > out_width)
hf = 2;
else
hf = 1;
if (height > out_height)
vf = 2;
else
vf = 1;
/* FIXME venc pclk? */
return dispc_pclk_rate() * vf * hf;
}
void dispc_set_channel_out(enum omap_plane plane, enum omap_channel channel_out)
{
enable_clocks(1);
_dispc_set_channel_out(plane, channel_out);
enable_clocks(0);
}
static int _dispc_setup_plane(enum omap_plane plane,
u32 paddr, u16 screen_width,
u16 pos_x, u16 pos_y,
u16 width, u16 height,
u16 out_width, u16 out_height,
enum omap_color_mode color_mode,
bool ilace,
enum omap_dss_rotation_type rotation_type,
u8 rotation, int mirror,
u8 global_alpha)
{
const int maxdownscale = cpu_is_omap34xx() ? 4 : 2;
bool five_taps = 0;
bool fieldmode = 0;
int cconv = 0;
unsigned offset0, offset1;
s32 row_inc;
s32 pix_inc;
u16 frame_height = height;
unsigned int field_offset = 0;
if (paddr == 0)
return -EINVAL;
if (ilace && height == out_height)
fieldmode = 1;
if (ilace) {
if (fieldmode)
height /= 2;
pos_y /= 2;
out_height /= 2;
DSSDBG("adjusting for ilace: height %d, pos_y %d, "
"out_height %d\n",
height, pos_y, out_height);
}
if (plane == OMAP_DSS_GFX) {
if (width != out_width || height != out_height)
return -EINVAL;
switch (color_mode) {
case OMAP_DSS_COLOR_ARGB16:
case OMAP_DSS_COLOR_ARGB32:
case OMAP_DSS_COLOR_RGBA32:
case OMAP_DSS_COLOR_RGBX32:
if (cpu_is_omap24xx())
return -EINVAL;
/* fall through */
case OMAP_DSS_COLOR_RGB12U:
case OMAP_DSS_COLOR_RGB16:
case OMAP_DSS_COLOR_RGB24P:
case OMAP_DSS_COLOR_RGB24U:
break;
default:
return -EINVAL;
}
} else {
/* video plane */
unsigned long fclk = 0;
if (out_width < width / maxdownscale ||
out_width > width * 8)
return -EINVAL;
if (out_height < height / maxdownscale ||
out_height > height * 8)
return -EINVAL;
switch (color_mode) {
case OMAP_DSS_COLOR_RGBX32:
case OMAP_DSS_COLOR_RGB12U:
if (cpu_is_omap24xx())
return -EINVAL;
/* fall through */
case OMAP_DSS_COLOR_RGB16:
case OMAP_DSS_COLOR_RGB24P:
case OMAP_DSS_COLOR_RGB24U:
break;
case OMAP_DSS_COLOR_ARGB16:
case OMAP_DSS_COLOR_ARGB32:
case OMAP_DSS_COLOR_RGBA32:
if (cpu_is_omap24xx())
return -EINVAL;
if (plane == OMAP_DSS_VIDEO1)
return -EINVAL;
break;
case OMAP_DSS_COLOR_YUV2:
case OMAP_DSS_COLOR_UYVY:
cconv = 1;
break;
default:
return -EINVAL;
}
/* Must use 5-tap filter? */
five_taps = height > out_height * 2;
if (!five_taps) {
fclk = calc_fclk(width, height,
out_width, out_height);
/* Try 5-tap filter if 3-tap fclk is too high */
if (cpu_is_omap34xx() && height > out_height &&
fclk > dispc_fclk_rate())
five_taps = true;
}
if (width > (2048 >> five_taps)) {
DSSERR("failed to set up scaling, fclk too low\n");
return -EINVAL;
}
if (five_taps)
fclk = calc_fclk_five_taps(width, height,
out_width, out_height, color_mode);
DSSDBG("required fclk rate = %lu Hz\n", fclk);
DSSDBG("current fclk rate = %lu Hz\n", dispc_fclk_rate());
if (fclk > dispc_fclk_rate()) {
DSSERR("failed to set up scaling, "
"required fclk rate = %lu Hz, "
"current fclk rate = %lu Hz\n",
fclk, dispc_fclk_rate());
return -EINVAL;
}
}
if (ilace && !fieldmode) {
/*
* when downscaling the bottom field may have to start several
* source lines below the top field. Unfortunately ACCUI
* registers will only hold the fractional part of the offset
* so the integer part must be added to the base address of the
* bottom field.
*/
if (!height || height == out_height)
field_offset = 0;
else
field_offset = height / out_height / 2;
}
/* Fields are independent but interleaved in memory. */
if (fieldmode)
field_offset = 1;
if (rotation_type == OMAP_DSS_ROT_DMA)
calc_dma_rotation_offset(rotation, mirror,
screen_width, width, frame_height, color_mode,
fieldmode, field_offset,
&offset0, &offset1, &row_inc, &pix_inc);
else
calc_vrfb_rotation_offset(rotation, mirror,
screen_width, width, frame_height, color_mode,
fieldmode, field_offset,
&offset0, &offset1, &row_inc, &pix_inc);
DSSDBG("offset0 %u, offset1 %u, row_inc %d, pix_inc %d\n",
offset0, offset1, row_inc, pix_inc);
_dispc_set_color_mode(plane, color_mode);
_dispc_set_plane_ba0(plane, paddr + offset0);
_dispc_set_plane_ba1(plane, paddr + offset1);
_dispc_set_row_inc(plane, row_inc);
_dispc_set_pix_inc(plane, pix_inc);
DSSDBG("%d,%d %dx%d -> %dx%d\n", pos_x, pos_y, width, height,
out_width, out_height);
_dispc_set_plane_pos(plane, pos_x, pos_y);
_dispc_set_pic_size(plane, width, height);
if (plane != OMAP_DSS_GFX) {
_dispc_set_scaling(plane, width, height,
out_width, out_height,
ilace, five_taps, fieldmode);
_dispc_set_vid_size(plane, out_width, out_height);
_dispc_set_vid_color_conv(plane, cconv);
}
_dispc_set_rotation_attrs(plane, rotation, mirror, color_mode);
if (plane != OMAP_DSS_VIDEO1)
_dispc_setup_global_alpha(plane, global_alpha);
return 0;
}
static void _dispc_enable_plane(enum omap_plane plane, bool enable)
{
REG_FLD_MOD(dispc_reg_att[plane], enable ? 1 : 0, 0, 0);
}
static void dispc_disable_isr(void *data, u32 mask)
{
struct completion *compl = data;
complete(compl);
}
static void _enable_lcd_out(bool enable)
{
REG_FLD_MOD(DISPC_CONTROL, enable ? 1 : 0, 0, 0);
}
void dispc_enable_lcd_out(bool enable)
{
struct completion frame_done_completion;
bool is_on;
int r;
enable_clocks(1);
/* When we disable LCD output, we need to wait until frame is done.
* Otherwise the DSS is still working, and turning off the clocks
* prevents DSS from going to OFF mode */
is_on = REG_GET(DISPC_CONTROL, 0, 0);
if (!enable && is_on) {
init_completion(&frame_done_completion);
r = omap_dispc_register_isr(dispc_disable_isr,
&frame_done_completion,
DISPC_IRQ_FRAMEDONE);
if (r)
DSSERR("failed to register FRAMEDONE isr\n");
}
_enable_lcd_out(enable);
if (!enable && is_on) {
if (!wait_for_completion_timeout(&frame_done_completion,
msecs_to_jiffies(100)))
DSSERR("timeout waiting for FRAME DONE\n");
r = omap_dispc_unregister_isr(dispc_disable_isr,
&frame_done_completion,
DISPC_IRQ_FRAMEDONE);
if (r)
DSSERR("failed to unregister FRAMEDONE isr\n");
}
enable_clocks(0);
}
static void _enable_digit_out(bool enable)
{
REG_FLD_MOD(DISPC_CONTROL, enable ? 1 : 0, 1, 1);
}
void dispc_enable_digit_out(bool enable)
{
struct completion frame_done_completion;
int r;
enable_clocks(1);
if (REG_GET(DISPC_CONTROL, 1, 1) == enable) {
enable_clocks(0);
return;
}
if (enable) {
unsigned long flags;
/* When we enable digit output, we'll get an extra digit
* sync lost interrupt, that we need to ignore */
spin_lock_irqsave(&dispc.irq_lock, flags);
dispc.irq_error_mask &= ~DISPC_IRQ_SYNC_LOST_DIGIT;
_omap_dispc_set_irqs();
spin_unlock_irqrestore(&dispc.irq_lock, flags);
}
/* When we disable digit output, we need to wait until fields are done.
* Otherwise the DSS is still working, and turning off the clocks
* prevents DSS from going to OFF mode. And when enabling, we need to
* wait for the extra sync losts */
init_completion(&frame_done_completion);
r = omap_dispc_register_isr(dispc_disable_isr, &frame_done_completion,
DISPC_IRQ_EVSYNC_EVEN | DISPC_IRQ_EVSYNC_ODD);
if (r)
DSSERR("failed to register EVSYNC isr\n");
_enable_digit_out(enable);
/* XXX I understand from TRM that we should only wait for the
* current field to complete. But it seems we have to wait
* for both fields */
if (!wait_for_completion_timeout(&frame_done_completion,
msecs_to_jiffies(100)))
DSSERR("timeout waiting for EVSYNC\n");
if (!wait_for_completion_timeout(&frame_done_completion,
msecs_to_jiffies(100)))
DSSERR("timeout waiting for EVSYNC\n");
r = omap_dispc_unregister_isr(dispc_disable_isr,
&frame_done_completion,
DISPC_IRQ_EVSYNC_EVEN | DISPC_IRQ_EVSYNC_ODD);
if (r)
DSSERR("failed to unregister EVSYNC isr\n");
if (enable) {
unsigned long flags;
spin_lock_irqsave(&dispc.irq_lock, flags);
dispc.irq_error_mask = DISPC_IRQ_MASK_ERROR;
dispc_write_reg(DISPC_IRQSTATUS, DISPC_IRQ_SYNC_LOST_DIGIT);
_omap_dispc_set_irqs();
spin_unlock_irqrestore(&dispc.irq_lock, flags);
}
enable_clocks(0);
}
void dispc_lcd_enable_signal_polarity(bool act_high)
{
enable_clocks(1);
REG_FLD_MOD(DISPC_CONTROL, act_high ? 1 : 0, 29, 29);
enable_clocks(0);
}
void dispc_lcd_enable_signal(bool enable)
{
enable_clocks(1);
REG_FLD_MOD(DISPC_CONTROL, enable ? 1 : 0, 28, 28);
enable_clocks(0);
}
void dispc_pck_free_enable(bool enable)
{
enable_clocks(1);
REG_FLD_MOD(DISPC_CONTROL, enable ? 1 : 0, 27, 27);
enable_clocks(0);
}
void dispc_enable_fifohandcheck(bool enable)
{
enable_clocks(1);
REG_FLD_MOD(DISPC_CONFIG, enable ? 1 : 0, 16, 16);
enable_clocks(0);
}
void dispc_set_lcd_display_type(enum omap_lcd_display_type type)
{
int mode;
switch (type) {
case OMAP_DSS_LCD_DISPLAY_STN:
mode = 0;
break;
case OMAP_DSS_LCD_DISPLAY_TFT:
mode = 1;
break;
default:
BUG();
return;
}
enable_clocks(1);
REG_FLD_MOD(DISPC_CONTROL, mode, 3, 3);
enable_clocks(0);
}
void dispc_set_loadmode(enum omap_dss_load_mode mode)
{
enable_clocks(1);
REG_FLD_MOD(DISPC_CONFIG, mode, 2, 1);
enable_clocks(0);
}
void dispc_set_default_color(enum omap_channel channel, u32 color)
{
const struct dispc_reg def_reg[] = { DISPC_DEFAULT_COLOR0,
DISPC_DEFAULT_COLOR1 };
enable_clocks(1);
dispc_write_reg(def_reg[channel], color);
enable_clocks(0);
}
u32 dispc_get_default_color(enum omap_channel channel)
{
const struct dispc_reg def_reg[] = { DISPC_DEFAULT_COLOR0,
DISPC_DEFAULT_COLOR1 };
u32 l;
BUG_ON(channel != OMAP_DSS_CHANNEL_DIGIT &&
channel != OMAP_DSS_CHANNEL_LCD);
enable_clocks(1);
l = dispc_read_reg(def_reg[channel]);
enable_clocks(0);
return l;
}
void dispc_set_trans_key(enum omap_channel ch,
enum omap_dss_trans_key_type type,
u32 trans_key)
{
const struct dispc_reg tr_reg[] = {
DISPC_TRANS_COLOR0, DISPC_TRANS_COLOR1 };
enable_clocks(1);
if (ch == OMAP_DSS_CHANNEL_LCD)
REG_FLD_MOD(DISPC_CONFIG, type, 11, 11);
else /* OMAP_DSS_CHANNEL_DIGIT */
REG_FLD_MOD(DISPC_CONFIG, type, 13, 13);
dispc_write_reg(tr_reg[ch], trans_key);
enable_clocks(0);
}
void dispc_get_trans_key(enum omap_channel ch,
enum omap_dss_trans_key_type *type,
u32 *trans_key)
{
const struct dispc_reg tr_reg[] = {
DISPC_TRANS_COLOR0, DISPC_TRANS_COLOR1 };
enable_clocks(1);
if (type) {
if (ch == OMAP_DSS_CHANNEL_LCD)
*type = REG_GET(DISPC_CONFIG, 11, 11);
else if (ch == OMAP_DSS_CHANNEL_DIGIT)
*type = REG_GET(DISPC_CONFIG, 13, 13);
else
BUG();
}
if (trans_key)
*trans_key = dispc_read_reg(tr_reg[ch]);
enable_clocks(0);
}
void dispc_enable_trans_key(enum omap_channel ch, bool enable)
{
enable_clocks(1);
if (ch == OMAP_DSS_CHANNEL_LCD)
REG_FLD_MOD(DISPC_CONFIG, enable, 10, 10);
else /* OMAP_DSS_CHANNEL_DIGIT */
REG_FLD_MOD(DISPC_CONFIG, enable, 12, 12);
enable_clocks(0);
}
void dispc_enable_alpha_blending(enum omap_channel ch, bool enable)
{
if (cpu_is_omap24xx())
return;
enable_clocks(1);
if (ch == OMAP_DSS_CHANNEL_LCD)
REG_FLD_MOD(DISPC_CONFIG, enable, 18, 18);
else /* OMAP_DSS_CHANNEL_DIGIT */
REG_FLD_MOD(DISPC_CONFIG, enable, 19, 19);
enable_clocks(0);
}
bool dispc_alpha_blending_enabled(enum omap_channel ch)
{
bool enabled;
if (cpu_is_omap24xx())
return false;
enable_clocks(1);
if (ch == OMAP_DSS_CHANNEL_LCD)
enabled = REG_GET(DISPC_CONFIG, 18, 18);
else if (ch == OMAP_DSS_CHANNEL_DIGIT)
enabled = REG_GET(DISPC_CONFIG, 18, 18);
else
BUG();
enable_clocks(0);
return enabled;
}
bool dispc_trans_key_enabled(enum omap_channel ch)
{
bool enabled;
enable_clocks(1);
if (ch == OMAP_DSS_CHANNEL_LCD)
enabled = REG_GET(DISPC_CONFIG, 10, 10);
else if (ch == OMAP_DSS_CHANNEL_DIGIT)
enabled = REG_GET(DISPC_CONFIG, 12, 12);
else
BUG();
enable_clocks(0);
return enabled;
}
void dispc_set_tft_data_lines(u8 data_lines)
{
int code;
switch (data_lines) {
case 12:
code = 0;
break;
case 16:
code = 1;
break;
case 18:
code = 2;
break;
case 24:
code = 3;
break;
default:
BUG();
return;
}
enable_clocks(1);
REG_FLD_MOD(DISPC_CONTROL, code, 9, 8);
enable_clocks(0);
}
void dispc_set_parallel_interface_mode(enum omap_parallel_interface_mode mode)
{
u32 l;
int stallmode;
int gpout0 = 1;
int gpout1;
switch (mode) {
case OMAP_DSS_PARALLELMODE_BYPASS:
stallmode = 0;
gpout1 = 1;
break;
case OMAP_DSS_PARALLELMODE_RFBI:
stallmode = 1;
gpout1 = 0;
break;
case OMAP_DSS_PARALLELMODE_DSI:
stallmode = 1;
gpout1 = 1;
break;
default:
BUG();
return;
}
enable_clocks(1);
l = dispc_read_reg(DISPC_CONTROL);
l = FLD_MOD(l, stallmode, 11, 11);
l = FLD_MOD(l, gpout0, 15, 15);
l = FLD_MOD(l, gpout1, 16, 16);
dispc_write_reg(DISPC_CONTROL, l);
enable_clocks(0);
}
static bool _dispc_lcd_timings_ok(int hsw, int hfp, int hbp,
int vsw, int vfp, int vbp)
{
if (cpu_is_omap24xx() || omap_rev() < OMAP3430_REV_ES3_0) {
if (hsw < 1 || hsw > 64 ||
hfp < 1 || hfp > 256 ||
hbp < 1 || hbp > 256 ||
vsw < 1 || vsw > 64 ||
vfp < 0 || vfp > 255 ||
vbp < 0 || vbp > 255)
return false;
} else {
if (hsw < 1 || hsw > 256 ||
hfp < 1 || hfp > 4096 ||
hbp < 1 || hbp > 4096 ||
vsw < 1 || vsw > 256 ||
vfp < 0 || vfp > 4095 ||
vbp < 0 || vbp > 4095)
return false;
}
return true;
}
bool dispc_lcd_timings_ok(struct omap_video_timings *timings)
{
return _dispc_lcd_timings_ok(timings->hsw, timings->hfp,
timings->hbp, timings->vsw,
timings->vfp, timings->vbp);
}
static void _dispc_set_lcd_timings(int hsw, int hfp, int hbp,
int vsw, int vfp, int vbp)
{
u32 timing_h, timing_v;
if (cpu_is_omap24xx() || omap_rev() < OMAP3430_REV_ES3_0) {
timing_h = FLD_VAL(hsw-1, 5, 0) | FLD_VAL(hfp-1, 15, 8) |
FLD_VAL(hbp-1, 27, 20);
timing_v = FLD_VAL(vsw-1, 5, 0) | FLD_VAL(vfp, 15, 8) |
FLD_VAL(vbp, 27, 20);
} else {
timing_h = FLD_VAL(hsw-1, 7, 0) | FLD_VAL(hfp-1, 19, 8) |
FLD_VAL(hbp-1, 31, 20);
timing_v = FLD_VAL(vsw-1, 7, 0) | FLD_VAL(vfp, 19, 8) |
FLD_VAL(vbp, 31, 20);
}
enable_clocks(1);
dispc_write_reg(DISPC_TIMING_H, timing_h);
dispc_write_reg(DISPC_TIMING_V, timing_v);
enable_clocks(0);
}
/* change name to mode? */
void dispc_set_lcd_timings(struct omap_video_timings *timings)
{
unsigned xtot, ytot;
unsigned long ht, vt;
if (!_dispc_lcd_timings_ok(timings->hsw, timings->hfp,
timings->hbp, timings->vsw,
timings->vfp, timings->vbp))
BUG();
_dispc_set_lcd_timings(timings->hsw, timings->hfp, timings->hbp,
timings->vsw, timings->vfp, timings->vbp);
dispc_set_lcd_size(timings->x_res, timings->y_res);
xtot = timings->x_res + timings->hfp + timings->hsw + timings->hbp;
ytot = timings->y_res + timings->vfp + timings->vsw + timings->vbp;
ht = (timings->pixel_clock * 1000) / xtot;
vt = (timings->pixel_clock * 1000) / xtot / ytot;
DSSDBG("xres %u yres %u\n", timings->x_res, timings->y_res);
DSSDBG("pck %u\n", timings->pixel_clock);
DSSDBG("hsw %d hfp %d hbp %d vsw %d vfp %d vbp %d\n",
timings->hsw, timings->hfp, timings->hbp,
timings->vsw, timings->vfp, timings->vbp);
DSSDBG("hsync %luHz, vsync %luHz\n", ht, vt);
}
static void dispc_set_lcd_divisor(u16 lck_div, u16 pck_div)
{
BUG_ON(lck_div < 1);
BUG_ON(pck_div < 2);
enable_clocks(1);
dispc_write_reg(DISPC_DIVISOR,
FLD_VAL(lck_div, 23, 16) | FLD_VAL(pck_div, 7, 0));
enable_clocks(0);
}
static void dispc_get_lcd_divisor(int *lck_div, int *pck_div)
{
u32 l;
l = dispc_read_reg(DISPC_DIVISOR);
*lck_div = FLD_GET(l, 23, 16);
*pck_div = FLD_GET(l, 7, 0);
}
unsigned long dispc_fclk_rate(void)
{
unsigned long r = 0;
if (dss_get_dispc_clk_source() == 0)
r = dss_clk_get_rate(DSS_CLK_FCK1);
else
#ifdef CONFIG_OMAP2_DSS_DSI
r = dsi_get_dsi1_pll_rate();
#else
BUG();
#endif
return r;
}
unsigned long dispc_lclk_rate(void)
{
int lcd;
unsigned long r;
u32 l;
l = dispc_read_reg(DISPC_DIVISOR);
lcd = FLD_GET(l, 23, 16);
r = dispc_fclk_rate();
return r / lcd;
}
unsigned long dispc_pclk_rate(void)
{
int lcd, pcd;
unsigned long r;
u32 l;
l = dispc_read_reg(DISPC_DIVISOR);
lcd = FLD_GET(l, 23, 16);
pcd = FLD_GET(l, 7, 0);
r = dispc_fclk_rate();
return r / lcd / pcd;
}
void dispc_dump_clocks(struct seq_file *s)
{
int lcd, pcd;
enable_clocks(1);
dispc_get_lcd_divisor(&lcd, &pcd);
seq_printf(s, "- DISPC -\n");
seq_printf(s, "dispc fclk source = %s\n",
dss_get_dispc_clk_source() == 0 ?
"dss1_alwon_fclk" : "dsi1_pll_fclk");
seq_printf(s, "fck\t\t%-16lu\n", dispc_fclk_rate());
seq_printf(s, "lck\t\t%-16lulck div\t%u\n", dispc_lclk_rate(), lcd);
seq_printf(s, "pck\t\t%-16lupck div\t%u\n", dispc_pclk_rate(), pcd);
enable_clocks(0);
}
void dispc_dump_regs(struct seq_file *s)
{
#define DUMPREG(r) seq_printf(s, "%-35s %08x\n", #r, dispc_read_reg(r))
dss_clk_enable(DSS_CLK_ICK | DSS_CLK_FCK1);
DUMPREG(DISPC_REVISION);
DUMPREG(DISPC_SYSCONFIG);
DUMPREG(DISPC_SYSSTATUS);
DUMPREG(DISPC_IRQSTATUS);
DUMPREG(DISPC_IRQENABLE);
DUMPREG(DISPC_CONTROL);
DUMPREG(DISPC_CONFIG);
DUMPREG(DISPC_CAPABLE);
DUMPREG(DISPC_DEFAULT_COLOR0);
DUMPREG(DISPC_DEFAULT_COLOR1);
DUMPREG(DISPC_TRANS_COLOR0);
DUMPREG(DISPC_TRANS_COLOR1);
DUMPREG(DISPC_LINE_STATUS);
DUMPREG(DISPC_LINE_NUMBER);
DUMPREG(DISPC_TIMING_H);
DUMPREG(DISPC_TIMING_V);
DUMPREG(DISPC_POL_FREQ);
DUMPREG(DISPC_DIVISOR);
DUMPREG(DISPC_GLOBAL_ALPHA);
DUMPREG(DISPC_SIZE_DIG);
DUMPREG(DISPC_SIZE_LCD);
DUMPREG(DISPC_GFX_BA0);
DUMPREG(DISPC_GFX_BA1);
DUMPREG(DISPC_GFX_POSITION);
DUMPREG(DISPC_GFX_SIZE);
DUMPREG(DISPC_GFX_ATTRIBUTES);
DUMPREG(DISPC_GFX_FIFO_THRESHOLD);
DUMPREG(DISPC_GFX_FIFO_SIZE_STATUS);
DUMPREG(DISPC_GFX_ROW_INC);
DUMPREG(DISPC_GFX_PIXEL_INC);
DUMPREG(DISPC_GFX_WINDOW_SKIP);
DUMPREG(DISPC_GFX_TABLE_BA);
DUMPREG(DISPC_DATA_CYCLE1);
DUMPREG(DISPC_DATA_CYCLE2);
DUMPREG(DISPC_DATA_CYCLE3);
DUMPREG(DISPC_CPR_COEF_R);
DUMPREG(DISPC_CPR_COEF_G);
DUMPREG(DISPC_CPR_COEF_B);
DUMPREG(DISPC_GFX_PRELOAD);
DUMPREG(DISPC_VID_BA0(0));
DUMPREG(DISPC_VID_BA1(0));
DUMPREG(DISPC_VID_POSITION(0));
DUMPREG(DISPC_VID_SIZE(0));
DUMPREG(DISPC_VID_ATTRIBUTES(0));
DUMPREG(DISPC_VID_FIFO_THRESHOLD(0));
DUMPREG(DISPC_VID_FIFO_SIZE_STATUS(0));
DUMPREG(DISPC_VID_ROW_INC(0));
DUMPREG(DISPC_VID_PIXEL_INC(0));
DUMPREG(DISPC_VID_FIR(0));
DUMPREG(DISPC_VID_PICTURE_SIZE(0));
DUMPREG(DISPC_VID_ACCU0(0));
DUMPREG(DISPC_VID_ACCU1(0));
DUMPREG(DISPC_VID_BA0(1));
DUMPREG(DISPC_VID_BA1(1));
DUMPREG(DISPC_VID_POSITION(1));
DUMPREG(DISPC_VID_SIZE(1));
DUMPREG(DISPC_VID_ATTRIBUTES(1));
DUMPREG(DISPC_VID_FIFO_THRESHOLD(1));
DUMPREG(DISPC_VID_FIFO_SIZE_STATUS(1));
DUMPREG(DISPC_VID_ROW_INC(1));
DUMPREG(DISPC_VID_PIXEL_INC(1));
DUMPREG(DISPC_VID_FIR(1));
DUMPREG(DISPC_VID_PICTURE_SIZE(1));
DUMPREG(DISPC_VID_ACCU0(1));
DUMPREG(DISPC_VID_ACCU1(1));
DUMPREG(DISPC_VID_FIR_COEF_H(0, 0));
DUMPREG(DISPC_VID_FIR_COEF_H(0, 1));
DUMPREG(DISPC_VID_FIR_COEF_H(0, 2));
DUMPREG(DISPC_VID_FIR_COEF_H(0, 3));
DUMPREG(DISPC_VID_FIR_COEF_H(0, 4));
DUMPREG(DISPC_VID_FIR_COEF_H(0, 5));
DUMPREG(DISPC_VID_FIR_COEF_H(0, 6));
DUMPREG(DISPC_VID_FIR_COEF_H(0, 7));
DUMPREG(DISPC_VID_FIR_COEF_HV(0, 0));
DUMPREG(DISPC_VID_FIR_COEF_HV(0, 1));
DUMPREG(DISPC_VID_FIR_COEF_HV(0, 2));
DUMPREG(DISPC_VID_FIR_COEF_HV(0, 3));
DUMPREG(DISPC_VID_FIR_COEF_HV(0, 4));
DUMPREG(DISPC_VID_FIR_COEF_HV(0, 5));
DUMPREG(DISPC_VID_FIR_COEF_HV(0, 6));
DUMPREG(DISPC_VID_FIR_COEF_HV(0, 7));
DUMPREG(DISPC_VID_CONV_COEF(0, 0));
DUMPREG(DISPC_VID_CONV_COEF(0, 1));
DUMPREG(DISPC_VID_CONV_COEF(0, 2));
DUMPREG(DISPC_VID_CONV_COEF(0, 3));
DUMPREG(DISPC_VID_CONV_COEF(0, 4));
DUMPREG(DISPC_VID_FIR_COEF_V(0, 0));
DUMPREG(DISPC_VID_FIR_COEF_V(0, 1));
DUMPREG(DISPC_VID_FIR_COEF_V(0, 2));
DUMPREG(DISPC_VID_FIR_COEF_V(0, 3));
DUMPREG(DISPC_VID_FIR_COEF_V(0, 4));
DUMPREG(DISPC_VID_FIR_COEF_V(0, 5));
DUMPREG(DISPC_VID_FIR_COEF_V(0, 6));
DUMPREG(DISPC_VID_FIR_COEF_V(0, 7));
DUMPREG(DISPC_VID_FIR_COEF_H(1, 0));
DUMPREG(DISPC_VID_FIR_COEF_H(1, 1));
DUMPREG(DISPC_VID_FIR_COEF_H(1, 2));
DUMPREG(DISPC_VID_FIR_COEF_H(1, 3));
DUMPREG(DISPC_VID_FIR_COEF_H(1, 4));
DUMPREG(DISPC_VID_FIR_COEF_H(1, 5));
DUMPREG(DISPC_VID_FIR_COEF_H(1, 6));
DUMPREG(DISPC_VID_FIR_COEF_H(1, 7));
DUMPREG(DISPC_VID_FIR_COEF_HV(1, 0));
DUMPREG(DISPC_VID_FIR_COEF_HV(1, 1));
DUMPREG(DISPC_VID_FIR_COEF_HV(1, 2));
DUMPREG(DISPC_VID_FIR_COEF_HV(1, 3));
DUMPREG(DISPC_VID_FIR_COEF_HV(1, 4));
DUMPREG(DISPC_VID_FIR_COEF_HV(1, 5));
DUMPREG(DISPC_VID_FIR_COEF_HV(1, 6));
DUMPREG(DISPC_VID_FIR_COEF_HV(1, 7));
DUMPREG(DISPC_VID_CONV_COEF(1, 0));
DUMPREG(DISPC_VID_CONV_COEF(1, 1));
DUMPREG(DISPC_VID_CONV_COEF(1, 2));
DUMPREG(DISPC_VID_CONV_COEF(1, 3));
DUMPREG(DISPC_VID_CONV_COEF(1, 4));
DUMPREG(DISPC_VID_FIR_COEF_V(1, 0));
DUMPREG(DISPC_VID_FIR_COEF_V(1, 1));
DUMPREG(DISPC_VID_FIR_COEF_V(1, 2));
DUMPREG(DISPC_VID_FIR_COEF_V(1, 3));
DUMPREG(DISPC_VID_FIR_COEF_V(1, 4));
DUMPREG(DISPC_VID_FIR_COEF_V(1, 5));
DUMPREG(DISPC_VID_FIR_COEF_V(1, 6));
DUMPREG(DISPC_VID_FIR_COEF_V(1, 7));
DUMPREG(DISPC_VID_PRELOAD(0));
DUMPREG(DISPC_VID_PRELOAD(1));
dss_clk_disable(DSS_CLK_ICK | DSS_CLK_FCK1);
#undef DUMPREG
}
static void _dispc_set_pol_freq(bool onoff, bool rf, bool ieo, bool ipc,
bool ihs, bool ivs, u8 acbi, u8 acb)
{
u32 l = 0;
DSSDBG("onoff %d rf %d ieo %d ipc %d ihs %d ivs %d acbi %d acb %d\n",
onoff, rf, ieo, ipc, ihs, ivs, acbi, acb);
l |= FLD_VAL(onoff, 17, 17);
l |= FLD_VAL(rf, 16, 16);
l |= FLD_VAL(ieo, 15, 15);
l |= FLD_VAL(ipc, 14, 14);
l |= FLD_VAL(ihs, 13, 13);
l |= FLD_VAL(ivs, 12, 12);
l |= FLD_VAL(acbi, 11, 8);
l |= FLD_VAL(acb, 7, 0);
enable_clocks(1);
dispc_write_reg(DISPC_POL_FREQ, l);
enable_clocks(0);
}
void dispc_set_pol_freq(enum omap_panel_config config, u8 acbi, u8 acb)
{
_dispc_set_pol_freq((config & OMAP_DSS_LCD_ONOFF) != 0,
(config & OMAP_DSS_LCD_RF) != 0,
(config & OMAP_DSS_LCD_IEO) != 0,
(config & OMAP_DSS_LCD_IPC) != 0,
(config & OMAP_DSS_LCD_IHS) != 0,
(config & OMAP_DSS_LCD_IVS) != 0,
acbi, acb);
}
/* with fck as input clock rate, find dispc dividers that produce req_pck */
void dispc_find_clk_divs(bool is_tft, unsigned long req_pck, unsigned long fck,
struct dispc_clock_info *cinfo)
{
u16 pcd_min = is_tft ? 2 : 3;
unsigned long best_pck;
u16 best_ld, cur_ld;
u16 best_pd, cur_pd;
best_pck = 0;
best_ld = 0;
best_pd = 0;
for (cur_ld = 1; cur_ld <= 255; ++cur_ld) {
unsigned long lck = fck / cur_ld;
for (cur_pd = pcd_min; cur_pd <= 255; ++cur_pd) {
unsigned long pck = lck / cur_pd;
long old_delta = abs(best_pck - req_pck);
long new_delta = abs(pck - req_pck);
if (best_pck == 0 || new_delta < old_delta) {
best_pck = pck;
best_ld = cur_ld;
best_pd = cur_pd;
if (pck == req_pck)
goto found;
}
if (pck < req_pck)
break;
}
if (lck / pcd_min < req_pck)
break;
}
found:
cinfo->lck_div = best_ld;
cinfo->pck_div = best_pd;
cinfo->lck = fck / cinfo->lck_div;
cinfo->pck = cinfo->lck / cinfo->pck_div;
}
/* calculate clock rates using dividers in cinfo */
int dispc_calc_clock_rates(unsigned long dispc_fclk_rate,
struct dispc_clock_info *cinfo)
{
if (cinfo->lck_div > 255 || cinfo->lck_div == 0)
return -EINVAL;
if (cinfo->pck_div < 2 || cinfo->pck_div > 255)
return -EINVAL;
cinfo->lck = dispc_fclk_rate / cinfo->lck_div;
cinfo->pck = cinfo->lck / cinfo->pck_div;
return 0;
}
int dispc_set_clock_div(struct dispc_clock_info *cinfo)
{
DSSDBG("lck = %lu (%u)\n", cinfo->lck, cinfo->lck_div);
DSSDBG("pck = %lu (%u)\n", cinfo->pck, cinfo->pck_div);
dispc_set_lcd_divisor(cinfo->lck_div, cinfo->pck_div);
return 0;
}
int dispc_get_clock_div(struct dispc_clock_info *cinfo)
{
unsigned long fck;
fck = dispc_fclk_rate();
cinfo->lck_div = REG_GET(DISPC_DIVISOR, 23, 16);
cinfo->pck_div = REG_GET(DISPC_DIVISOR, 7, 0);
cinfo->lck = fck / cinfo->lck_div;
cinfo->pck = cinfo->lck / cinfo->pck_div;
return 0;
}
/* dispc.irq_lock has to be locked by the caller */
static void _omap_dispc_set_irqs(void)
{
u32 mask;
u32 old_mask;
int i;
struct omap_dispc_isr_data *isr_data;
mask = dispc.irq_error_mask;
for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
isr_data = &dispc.registered_isr[i];
if (isr_data->isr == NULL)
continue;
mask |= isr_data->mask;
}
enable_clocks(1);
old_mask = dispc_read_reg(DISPC_IRQENABLE);
/* clear the irqstatus for newly enabled irqs */
dispc_write_reg(DISPC_IRQSTATUS, (mask ^ old_mask) & mask);
dispc_write_reg(DISPC_IRQENABLE, mask);
enable_clocks(0);
}
int omap_dispc_register_isr(omap_dispc_isr_t isr, void *arg, u32 mask)
{
int i;
int ret;
unsigned long flags;
struct omap_dispc_isr_data *isr_data;
if (isr == NULL)
return -EINVAL;
spin_lock_irqsave(&dispc.irq_lock, flags);
/* check for duplicate entry */
for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
isr_data = &dispc.registered_isr[i];
if (isr_data->isr == isr && isr_data->arg == arg &&
isr_data->mask == mask) {
ret = -EINVAL;
goto err;
}
}
isr_data = NULL;
ret = -EBUSY;
for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
isr_data = &dispc.registered_isr[i];
if (isr_data->isr != NULL)
continue;
isr_data->isr = isr;
isr_data->arg = arg;
isr_data->mask = mask;
ret = 0;
break;
}
_omap_dispc_set_irqs();
spin_unlock_irqrestore(&dispc.irq_lock, flags);
return 0;
err:
spin_unlock_irqrestore(&dispc.irq_lock, flags);
return ret;
}
EXPORT_SYMBOL(omap_dispc_register_isr);
int omap_dispc_unregister_isr(omap_dispc_isr_t isr, void *arg, u32 mask)
{
int i;
unsigned long flags;
int ret = -EINVAL;
struct omap_dispc_isr_data *isr_data;
spin_lock_irqsave(&dispc.irq_lock, flags);
for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
isr_data = &dispc.registered_isr[i];
if (isr_data->isr != isr || isr_data->arg != arg ||
isr_data->mask != mask)
continue;
/* found the correct isr */
isr_data->isr = NULL;
isr_data->arg = NULL;
isr_data->mask = 0;
ret = 0;
break;
}
if (ret == 0)
_omap_dispc_set_irqs();
spin_unlock_irqrestore(&dispc.irq_lock, flags);
return ret;
}
EXPORT_SYMBOL(omap_dispc_unregister_isr);
#ifdef DEBUG
static void print_irq_status(u32 status)
{
if ((status & dispc.irq_error_mask) == 0)
return;
printk(KERN_DEBUG "DISPC IRQ: 0x%x: ", status);
#define PIS(x) \
if (status & DISPC_IRQ_##x) \
printk(#x " ");
PIS(GFX_FIFO_UNDERFLOW);
PIS(OCP_ERR);
PIS(VID1_FIFO_UNDERFLOW);
PIS(VID2_FIFO_UNDERFLOW);
PIS(SYNC_LOST);
PIS(SYNC_LOST_DIGIT);
#undef PIS
printk("\n");
}
#endif
/* Called from dss.c. Note that we don't touch clocks here,
* but we presume they are on because we got an IRQ. However,
* an irq handler may turn the clocks off, so we may not have
* clock later in the function. */
void dispc_irq_handler(void)
{
int i;
u32 irqstatus;
u32 handledirqs = 0;
u32 unhandled_errors;
struct omap_dispc_isr_data *isr_data;
struct omap_dispc_isr_data registered_isr[DISPC_MAX_NR_ISRS];
spin_lock(&dispc.irq_lock);
irqstatus = dispc_read_reg(DISPC_IRQSTATUS);
#ifdef DEBUG
if (dss_debug)
print_irq_status(irqstatus);
#endif
/* Ack the interrupt. Do it here before clocks are possibly turned
* off */
dispc_write_reg(DISPC_IRQSTATUS, irqstatus);
/* flush posted write */
dispc_read_reg(DISPC_IRQSTATUS);
/* make a copy and unlock, so that isrs can unregister
* themselves */
memcpy(registered_isr, dispc.registered_isr,
sizeof(registered_isr));
spin_unlock(&dispc.irq_lock);
for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
isr_data = &registered_isr[i];
if (!isr_data->isr)
continue;
if (isr_data->mask & irqstatus) {
isr_data->isr(isr_data->arg, irqstatus);
handledirqs |= isr_data->mask;
}
}
spin_lock(&dispc.irq_lock);
unhandled_errors = irqstatus & ~handledirqs & dispc.irq_error_mask;
if (unhandled_errors) {
dispc.error_irqs |= unhandled_errors;
dispc.irq_error_mask &= ~unhandled_errors;
_omap_dispc_set_irqs();
schedule_work(&dispc.error_work);
}
spin_unlock(&dispc.irq_lock);
}
static void dispc_error_worker(struct work_struct *work)
{
int i;
u32 errors;
unsigned long flags;
spin_lock_irqsave(&dispc.irq_lock, flags);
errors = dispc.error_irqs;
dispc.error_irqs = 0;
spin_unlock_irqrestore(&dispc.irq_lock, flags);
if (errors & DISPC_IRQ_GFX_FIFO_UNDERFLOW) {
DSSERR("GFX_FIFO_UNDERFLOW, disabling GFX\n");
for (i = 0; i < omap_dss_get_num_overlays(); ++i) {
struct omap_overlay *ovl;
ovl = omap_dss_get_overlay(i);
if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC))
continue;
if (ovl->id == 0) {
dispc_enable_plane(ovl->id, 0);
dispc_go(ovl->manager->id);
mdelay(50);
break;
}
}
}
if (errors & DISPC_IRQ_VID1_FIFO_UNDERFLOW) {
DSSERR("VID1_FIFO_UNDERFLOW, disabling VID1\n");
for (i = 0; i < omap_dss_get_num_overlays(); ++i) {
struct omap_overlay *ovl;
ovl = omap_dss_get_overlay(i);
if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC))
continue;
if (ovl->id == 1) {
dispc_enable_plane(ovl->id, 0);
dispc_go(ovl->manager->id);
mdelay(50);
break;
}
}
}
if (errors & DISPC_IRQ_VID2_FIFO_UNDERFLOW) {
DSSERR("VID2_FIFO_UNDERFLOW, disabling VID2\n");
for (i = 0; i < omap_dss_get_num_overlays(); ++i) {
struct omap_overlay *ovl;
ovl = omap_dss_get_overlay(i);
if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC))
continue;
if (ovl->id == 2) {
dispc_enable_plane(ovl->id, 0);
dispc_go(ovl->manager->id);
mdelay(50);
break;
}
}
}
if (errors & DISPC_IRQ_SYNC_LOST) {
struct omap_overlay_manager *manager = NULL;
bool enable = false;
DSSERR("SYNC_LOST, disabling LCD\n");
for (i = 0; i < omap_dss_get_num_overlay_managers(); ++i) {
struct omap_overlay_manager *mgr;
mgr = omap_dss_get_overlay_manager(i);
if (mgr->id == OMAP_DSS_CHANNEL_LCD) {
manager = mgr;
enable = mgr->device->state ==
OMAP_DSS_DISPLAY_ACTIVE;
mgr->device->disable(mgr->device);
break;
}
}
if (manager) {
for (i = 0; i < omap_dss_get_num_overlays(); ++i) {
struct omap_overlay *ovl;
ovl = omap_dss_get_overlay(i);
if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC))
continue;
if (ovl->id != 0 && ovl->manager == manager)
dispc_enable_plane(ovl->id, 0);
}
dispc_go(manager->id);
mdelay(50);
if (enable)
manager->device->enable(manager->device);
}
}
if (errors & DISPC_IRQ_SYNC_LOST_DIGIT) {
struct omap_overlay_manager *manager = NULL;
bool enable = false;
DSSERR("SYNC_LOST_DIGIT, disabling TV\n");
for (i = 0; i < omap_dss_get_num_overlay_managers(); ++i) {
struct omap_overlay_manager *mgr;
mgr = omap_dss_get_overlay_manager(i);
if (mgr->id == OMAP_DSS_CHANNEL_DIGIT) {
manager = mgr;
enable = mgr->device->state ==
OMAP_DSS_DISPLAY_ACTIVE;
mgr->device->disable(mgr->device);
break;
}
}
if (manager) {
for (i = 0; i < omap_dss_get_num_overlays(); ++i) {
struct omap_overlay *ovl;
ovl = omap_dss_get_overlay(i);
if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC))
continue;
if (ovl->id != 0 && ovl->manager == manager)
dispc_enable_plane(ovl->id, 0);
}
dispc_go(manager->id);
mdelay(50);
if (enable)
manager->device->enable(manager->device);
}
}
if (errors & DISPC_IRQ_OCP_ERR) {
DSSERR("OCP_ERR\n");
for (i = 0; i < omap_dss_get_num_overlay_managers(); ++i) {
struct omap_overlay_manager *mgr;
mgr = omap_dss_get_overlay_manager(i);
if (mgr->caps & OMAP_DSS_OVL_CAP_DISPC)
mgr->device->disable(mgr->device);
}
}
spin_lock_irqsave(&dispc.irq_lock, flags);
dispc.irq_error_mask |= errors;
_omap_dispc_set_irqs();
spin_unlock_irqrestore(&dispc.irq_lock, flags);
}
int omap_dispc_wait_for_irq_timeout(u32 irqmask, unsigned long timeout)
{
void dispc_irq_wait_handler(void *data, u32 mask)
{
complete((struct completion *)data);
}
int r;
DECLARE_COMPLETION_ONSTACK(completion);
r = omap_dispc_register_isr(dispc_irq_wait_handler, &completion,
irqmask);
if (r)
return r;
timeout = wait_for_completion_timeout(&completion, timeout);
omap_dispc_unregister_isr(dispc_irq_wait_handler, &completion, irqmask);
if (timeout == 0)
return -ETIMEDOUT;
if (timeout == -ERESTARTSYS)
return -ERESTARTSYS;
return 0;
}
int omap_dispc_wait_for_irq_interruptible_timeout(u32 irqmask,
unsigned long timeout)
{
void dispc_irq_wait_handler(void *data, u32 mask)
{
complete((struct completion *)data);
}
int r;
DECLARE_COMPLETION_ONSTACK(completion);
r = omap_dispc_register_isr(dispc_irq_wait_handler, &completion,
irqmask);
if (r)
return r;
timeout = wait_for_completion_interruptible_timeout(&completion,
timeout);
omap_dispc_unregister_isr(dispc_irq_wait_handler, &completion, irqmask);
if (timeout == 0)
return -ETIMEDOUT;
if (timeout == -ERESTARTSYS)
return -ERESTARTSYS;
return 0;
}
#ifdef CONFIG_OMAP2_DSS_FAKE_VSYNC
void dispc_fake_vsync_irq(void)
{
u32 irqstatus = DISPC_IRQ_VSYNC;
int i;
local_irq_disable();
for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
struct omap_dispc_isr_data *isr_data;
isr_data = &dispc.registered_isr[i];
if (!isr_data->isr)
continue;
if (isr_data->mask & irqstatus)
isr_data->isr(isr_data->arg, irqstatus);
}
local_irq_enable();
}
#endif
static void _omap_dispc_initialize_irq(void)
{
unsigned long flags;
spin_lock_irqsave(&dispc.irq_lock, flags);
memset(dispc.registered_isr, 0, sizeof(dispc.registered_isr));
dispc.irq_error_mask = DISPC_IRQ_MASK_ERROR;
/* there's SYNC_LOST_DIGIT waiting after enabling the DSS,
* so clear it */
dispc_write_reg(DISPC_IRQSTATUS, dispc_read_reg(DISPC_IRQSTATUS));
_omap_dispc_set_irqs();
spin_unlock_irqrestore(&dispc.irq_lock, flags);
}
void dispc_enable_sidle(void)
{
REG_FLD_MOD(DISPC_SYSCONFIG, 2, 4, 3); /* SIDLEMODE: smart idle */
}
void dispc_disable_sidle(void)
{
REG_FLD_MOD(DISPC_SYSCONFIG, 1, 4, 3); /* SIDLEMODE: no idle */
}
static void _omap_dispc_initial_config(void)
{
u32 l;
l = dispc_read_reg(DISPC_SYSCONFIG);
l = FLD_MOD(l, 2, 13, 12); /* MIDLEMODE: smart standby */
l = FLD_MOD(l, 2, 4, 3); /* SIDLEMODE: smart idle */
l = FLD_MOD(l, 1, 2, 2); /* ENWAKEUP */
l = FLD_MOD(l, 1, 0, 0); /* AUTOIDLE */
dispc_write_reg(DISPC_SYSCONFIG, l);
/* FUNCGATED */
REG_FLD_MOD(DISPC_CONFIG, 1, 9, 9);
/* L3 firewall setting: enable access to OCM RAM */
/* XXX this should be somewhere in plat-omap */
if (cpu_is_omap24xx())
__raw_writel(0x402000b0, OMAP2_L3_IO_ADDRESS(0x680050a0));
_dispc_setup_color_conv_coef();
dispc_set_loadmode(OMAP_DSS_LOAD_FRAME_ONLY);
dispc_read_plane_fifo_sizes();
}
int dispc_init(void)
{
u32 rev;
spin_lock_init(&dispc.irq_lock);
INIT_WORK(&dispc.error_work, dispc_error_worker);
dispc.base = ioremap(DISPC_BASE, DISPC_SZ_REGS);
if (!dispc.base) {
DSSERR("can't ioremap DISPC\n");
return -ENOMEM;
}
enable_clocks(1);
_omap_dispc_initial_config();
_omap_dispc_initialize_irq();
dispc_save_context();
rev = dispc_read_reg(DISPC_REVISION);
printk(KERN_INFO "OMAP DISPC rev %d.%d\n",
FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0));
enable_clocks(0);
return 0;
}
void dispc_exit(void)
{
iounmap(dispc.base);
}
int dispc_enable_plane(enum omap_plane plane, bool enable)
{
DSSDBG("dispc_enable_plane %d, %d\n", plane, enable);
enable_clocks(1);
_dispc_enable_plane(plane, enable);
enable_clocks(0);
return 0;
}
int dispc_setup_plane(enum omap_plane plane,
u32 paddr, u16 screen_width,
u16 pos_x, u16 pos_y,
u16 width, u16 height,
u16 out_width, u16 out_height,
enum omap_color_mode color_mode,
bool ilace,
enum omap_dss_rotation_type rotation_type,
u8 rotation, bool mirror, u8 global_alpha)
{
int r = 0;
DSSDBG("dispc_setup_plane %d, pa %x, sw %d, %d,%d, %dx%d -> "
"%dx%d, ilace %d, cmode %x, rot %d, mir %d\n",
plane, paddr, screen_width, pos_x, pos_y,
width, height,
out_width, out_height,
ilace, color_mode,
rotation, mirror);
enable_clocks(1);
r = _dispc_setup_plane(plane,
paddr, screen_width,
pos_x, pos_y,
width, height,
out_width, out_height,
color_mode, ilace,
rotation_type,
rotation, mirror,
global_alpha);
enable_clocks(0);
return r;
}