x86, vdso: Revamp vclock_gettime.c

This intermediate patch revamps the vclock_gettime.c by moving some functions
around. It is only for spliting purpose, to make whole the 32 bit vdso timer
patch easier to review.

Reviewed-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Stefani Seibold <stefani@seibold.net>
Link: http://lkml.kernel.org/r/1395094933-14252-4-git-send-email-stefani@seibold.net
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
diff --git a/arch/x86/vdso/vclock_gettime.c b/arch/x86/vdso/vclock_gettime.c
index eb5d7a5..bbc8065 100644
--- a/arch/x86/vdso/vclock_gettime.c
+++ b/arch/x86/vdso/vclock_gettime.c
@@ -26,43 +26,28 @@
 
 #define gtod (&VVAR(vsyscall_gtod_data))
 
-notrace static cycle_t vread_tsc(void)
-{
-	cycle_t ret;
-	u64 last;
-
-	/*
-	 * Empirically, a fence (of type that depends on the CPU)
-	 * before rdtsc is enough to ensure that rdtsc is ordered
-	 * with respect to loads.  The various CPU manuals are unclear
-	 * as to whether rdtsc can be reordered with later loads,
-	 * but no one has ever seen it happen.
-	 */
-	rdtsc_barrier();
-	ret = (cycle_t)vget_cycles();
-
-	last = VVAR(vsyscall_gtod_data).clock.cycle_last;
-
-	if (likely(ret >= last))
-		return ret;
-
-	/*
-	 * GCC likes to generate cmov here, but this branch is extremely
-	 * predictable (it's just a funciton of time and the likely is
-	 * very likely) and there's a data dependence, so force GCC
-	 * to generate a branch instead.  I don't barrier() because
-	 * we don't actually need a barrier, and if this function
-	 * ever gets inlined it will generate worse code.
-	 */
-	asm volatile ("");
-	return last;
-}
-
 static notrace cycle_t vread_hpet(void)
 {
 	return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + HPET_COUNTER);
 }
 
+notrace static long vdso_fallback_gettime(long clock, struct timespec *ts)
+{
+	long ret;
+	asm("syscall" : "=a" (ret) :
+	    "0" (__NR_clock_gettime), "D" (clock), "S" (ts) : "memory");
+	return ret;
+}
+
+notrace static long vdso_fallback_gtod(struct timeval *tv, struct timezone *tz)
+{
+	long ret;
+
+	asm("syscall" : "=a" (ret) :
+	    "0" (__NR_gettimeofday), "D" (tv), "S" (tz) : "memory");
+	return ret;
+}
+
 #ifdef CONFIG_PARAVIRT_CLOCK
 
 static notrace const struct pvclock_vsyscall_time_info *get_pvti(int cpu)
@@ -133,24 +118,38 @@
 }
 #endif
 
-notrace static long vdso_fallback_gettime(long clock, struct timespec *ts)
+notrace static cycle_t vread_tsc(void)
 {
-	long ret;
-	asm("syscall" : "=a" (ret) :
-	    "0" (__NR_clock_gettime),"D" (clock), "S" (ts) : "memory");
-	return ret;
+	cycle_t ret;
+	u64 last;
+
+	/*
+	 * Empirically, a fence (of type that depends on the CPU)
+	 * before rdtsc is enough to ensure that rdtsc is ordered
+	 * with respect to loads.  The various CPU manuals are unclear
+	 * as to whether rdtsc can be reordered with later loads,
+	 * but no one has ever seen it happen.
+	 */
+	rdtsc_barrier();
+	ret = (cycle_t)vget_cycles();
+
+	last = VVAR(vsyscall_gtod_data).clock.cycle_last;
+
+	if (likely(ret >= last))
+		return ret;
+
+	/*
+	 * GCC likes to generate cmov here, but this branch is extremely
+	 * predictable (it's just a funciton of time and the likely is
+	 * very likely) and there's a data dependence, so force GCC
+	 * to generate a branch instead.  I don't barrier() because
+	 * we don't actually need a barrier, and if this function
+	 * ever gets inlined it will generate worse code.
+	 */
+	asm volatile ("");
+	return last;
 }
 
-notrace static long vdso_fallback_gtod(struct timeval *tv, struct timezone *tz)
-{
-	long ret;
-
-	asm("syscall" : "=a" (ret) :
-	    "0" (__NR_gettimeofday), "D" (tv), "S" (tz) : "memory");
-	return ret;
-}
-
-
 notrace static inline u64 vgetsns(int *mode)
 {
 	long v;