| /* |
| * Page table handling routines for radix page table. |
| * |
| * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| #include <linux/sched/mm.h> |
| #include <linux/memblock.h> |
| #include <linux/of_fdt.h> |
| #include <linux/mm.h> |
| |
| #include <asm/pgtable.h> |
| #include <asm/pgalloc.h> |
| #include <asm/dma.h> |
| #include <asm/machdep.h> |
| #include <asm/mmu.h> |
| #include <asm/firmware.h> |
| #include <asm/powernv.h> |
| #include <asm/sections.h> |
| #include <asm/trace.h> |
| |
| #include <trace/events/thp.h> |
| |
| static int native_register_process_table(unsigned long base, unsigned long pg_sz, |
| unsigned long table_size) |
| { |
| unsigned long patb1 = base | table_size | PATB_GR; |
| |
| partition_tb->patb1 = cpu_to_be64(patb1); |
| return 0; |
| } |
| |
| static __ref void *early_alloc_pgtable(unsigned long size) |
| { |
| void *pt; |
| |
| pt = __va(memblock_alloc_base(size, size, MEMBLOCK_ALLOC_ANYWHERE)); |
| memset(pt, 0, size); |
| |
| return pt; |
| } |
| |
| int radix__map_kernel_page(unsigned long ea, unsigned long pa, |
| pgprot_t flags, |
| unsigned int map_page_size) |
| { |
| pgd_t *pgdp; |
| pud_t *pudp; |
| pmd_t *pmdp; |
| pte_t *ptep; |
| /* |
| * Make sure task size is correct as per the max adddr |
| */ |
| BUILD_BUG_ON(TASK_SIZE_USER64 > RADIX_PGTABLE_RANGE); |
| if (slab_is_available()) { |
| pgdp = pgd_offset_k(ea); |
| pudp = pud_alloc(&init_mm, pgdp, ea); |
| if (!pudp) |
| return -ENOMEM; |
| if (map_page_size == PUD_SIZE) { |
| ptep = (pte_t *)pudp; |
| goto set_the_pte; |
| } |
| pmdp = pmd_alloc(&init_mm, pudp, ea); |
| if (!pmdp) |
| return -ENOMEM; |
| if (map_page_size == PMD_SIZE) { |
| ptep = pmdp_ptep(pmdp); |
| goto set_the_pte; |
| } |
| ptep = pte_alloc_kernel(pmdp, ea); |
| if (!ptep) |
| return -ENOMEM; |
| } else { |
| pgdp = pgd_offset_k(ea); |
| if (pgd_none(*pgdp)) { |
| pudp = early_alloc_pgtable(PUD_TABLE_SIZE); |
| BUG_ON(pudp == NULL); |
| pgd_populate(&init_mm, pgdp, pudp); |
| } |
| pudp = pud_offset(pgdp, ea); |
| if (map_page_size == PUD_SIZE) { |
| ptep = (pte_t *)pudp; |
| goto set_the_pte; |
| } |
| if (pud_none(*pudp)) { |
| pmdp = early_alloc_pgtable(PMD_TABLE_SIZE); |
| BUG_ON(pmdp == NULL); |
| pud_populate(&init_mm, pudp, pmdp); |
| } |
| pmdp = pmd_offset(pudp, ea); |
| if (map_page_size == PMD_SIZE) { |
| ptep = pmdp_ptep(pmdp); |
| goto set_the_pte; |
| } |
| if (!pmd_present(*pmdp)) { |
| ptep = early_alloc_pgtable(PAGE_SIZE); |
| BUG_ON(ptep == NULL); |
| pmd_populate_kernel(&init_mm, pmdp, ptep); |
| } |
| ptep = pte_offset_kernel(pmdp, ea); |
| } |
| |
| set_the_pte: |
| set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT, flags)); |
| smp_wmb(); |
| return 0; |
| } |
| |
| #ifdef CONFIG_STRICT_KERNEL_RWX |
| void radix__change_memory_range(unsigned long start, unsigned long end, |
| unsigned long clear) |
| { |
| unsigned long idx; |
| pgd_t *pgdp; |
| pud_t *pudp; |
| pmd_t *pmdp; |
| pte_t *ptep; |
| |
| start = ALIGN_DOWN(start, PAGE_SIZE); |
| end = PAGE_ALIGN(end); // aligns up |
| |
| pr_debug("Changing flags on range %lx-%lx removing 0x%lx\n", |
| start, end, clear); |
| |
| for (idx = start; idx < end; idx += PAGE_SIZE) { |
| pgdp = pgd_offset_k(idx); |
| pudp = pud_alloc(&init_mm, pgdp, idx); |
| if (!pudp) |
| continue; |
| if (pud_huge(*pudp)) { |
| ptep = (pte_t *)pudp; |
| goto update_the_pte; |
| } |
| pmdp = pmd_alloc(&init_mm, pudp, idx); |
| if (!pmdp) |
| continue; |
| if (pmd_huge(*pmdp)) { |
| ptep = pmdp_ptep(pmdp); |
| goto update_the_pte; |
| } |
| ptep = pte_alloc_kernel(pmdp, idx); |
| if (!ptep) |
| continue; |
| update_the_pte: |
| radix__pte_update(&init_mm, idx, ptep, clear, 0, 0); |
| } |
| |
| radix__flush_tlb_kernel_range(start, end); |
| } |
| |
| void radix__mark_rodata_ro(void) |
| { |
| unsigned long start, end; |
| |
| start = (unsigned long)_stext; |
| end = (unsigned long)__init_begin; |
| |
| radix__change_memory_range(start, end, _PAGE_WRITE); |
| } |
| |
| void radix__mark_initmem_nx(void) |
| { |
| unsigned long start = (unsigned long)__init_begin; |
| unsigned long end = (unsigned long)__init_end; |
| |
| radix__change_memory_range(start, end, _PAGE_EXEC); |
| } |
| #endif /* CONFIG_STRICT_KERNEL_RWX */ |
| |
| static inline void __meminit print_mapping(unsigned long start, |
| unsigned long end, |
| unsigned long size) |
| { |
| if (end <= start) |
| return; |
| |
| pr_info("Mapped range 0x%lx - 0x%lx with 0x%lx\n", start, end, size); |
| } |
| |
| static int __meminit create_physical_mapping(unsigned long start, |
| unsigned long end) |
| { |
| unsigned long vaddr, addr, mapping_size = 0; |
| pgprot_t prot; |
| unsigned long max_mapping_size; |
| #ifdef CONFIG_STRICT_KERNEL_RWX |
| int split_text_mapping = 1; |
| #else |
| int split_text_mapping = 0; |
| #endif |
| |
| start = _ALIGN_UP(start, PAGE_SIZE); |
| for (addr = start; addr < end; addr += mapping_size) { |
| unsigned long gap, previous_size; |
| int rc; |
| |
| gap = end - addr; |
| previous_size = mapping_size; |
| max_mapping_size = PUD_SIZE; |
| |
| retry: |
| if (IS_ALIGNED(addr, PUD_SIZE) && gap >= PUD_SIZE && |
| mmu_psize_defs[MMU_PAGE_1G].shift && |
| PUD_SIZE <= max_mapping_size) |
| mapping_size = PUD_SIZE; |
| else if (IS_ALIGNED(addr, PMD_SIZE) && gap >= PMD_SIZE && |
| mmu_psize_defs[MMU_PAGE_2M].shift) |
| mapping_size = PMD_SIZE; |
| else |
| mapping_size = PAGE_SIZE; |
| |
| if (split_text_mapping && (mapping_size == PUD_SIZE) && |
| (addr <= __pa_symbol(__init_begin)) && |
| (addr + mapping_size) >= __pa_symbol(_stext)) { |
| max_mapping_size = PMD_SIZE; |
| goto retry; |
| } |
| |
| if (split_text_mapping && (mapping_size == PMD_SIZE) && |
| (addr <= __pa_symbol(__init_begin)) && |
| (addr + mapping_size) >= __pa_symbol(_stext)) |
| mapping_size = PAGE_SIZE; |
| |
| if (mapping_size != previous_size) { |
| print_mapping(start, addr, previous_size); |
| start = addr; |
| } |
| |
| vaddr = (unsigned long)__va(addr); |
| |
| if (overlaps_kernel_text(vaddr, vaddr + mapping_size) || |
| overlaps_interrupt_vector_text(vaddr, vaddr + mapping_size)) |
| prot = PAGE_KERNEL_X; |
| else |
| prot = PAGE_KERNEL; |
| |
| rc = radix__map_kernel_page(vaddr, addr, prot, mapping_size); |
| if (rc) |
| return rc; |
| } |
| |
| print_mapping(start, addr, mapping_size); |
| return 0; |
| } |
| |
| static void __init radix_init_pgtable(void) |
| { |
| unsigned long rts_field; |
| struct memblock_region *reg; |
| |
| /* We don't support slb for radix */ |
| mmu_slb_size = 0; |
| /* |
| * Create the linear mapping, using standard page size for now |
| */ |
| for_each_memblock(memory, reg) |
| WARN_ON(create_physical_mapping(reg->base, |
| reg->base + reg->size)); |
| /* |
| * Allocate Partition table and process table for the |
| * host. |
| */ |
| BUILD_BUG_ON_MSG((PRTB_SIZE_SHIFT > 36), "Process table size too large."); |
| process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT); |
| /* |
| * Fill in the process table. |
| */ |
| rts_field = radix__get_tree_size(); |
| process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE); |
| /* |
| * Fill in the partition table. We are suppose to use effective address |
| * of process table here. But our linear mapping also enable us to use |
| * physical address here. |
| */ |
| register_process_table(__pa(process_tb), 0, PRTB_SIZE_SHIFT - 12); |
| pr_info("Process table %p and radix root for kernel: %p\n", process_tb, init_mm.pgd); |
| asm volatile("ptesync" : : : "memory"); |
| asm volatile(PPC_TLBIE_5(%0,%1,2,1,1) : : |
| "r" (TLBIEL_INVAL_SET_LPID), "r" (0)); |
| asm volatile("eieio; tlbsync; ptesync" : : : "memory"); |
| trace_tlbie(0, 0, TLBIEL_INVAL_SET_LPID, 0, 2, 1, 1); |
| } |
| |
| static void __init radix_init_partition_table(void) |
| { |
| unsigned long rts_field, dw0; |
| |
| mmu_partition_table_init(); |
| rts_field = radix__get_tree_size(); |
| dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR; |
| mmu_partition_table_set_entry(0, dw0, 0); |
| |
| pr_info("Initializing Radix MMU\n"); |
| pr_info("Partition table %p\n", partition_tb); |
| } |
| |
| void __init radix_init_native(void) |
| { |
| register_process_table = native_register_process_table; |
| } |
| |
| static int __init get_idx_from_shift(unsigned int shift) |
| { |
| int idx = -1; |
| |
| switch (shift) { |
| case 0xc: |
| idx = MMU_PAGE_4K; |
| break; |
| case 0x10: |
| idx = MMU_PAGE_64K; |
| break; |
| case 0x15: |
| idx = MMU_PAGE_2M; |
| break; |
| case 0x1e: |
| idx = MMU_PAGE_1G; |
| break; |
| } |
| return idx; |
| } |
| |
| static int __init radix_dt_scan_page_sizes(unsigned long node, |
| const char *uname, int depth, |
| void *data) |
| { |
| int size = 0; |
| int shift, idx; |
| unsigned int ap; |
| const __be32 *prop; |
| const char *type = of_get_flat_dt_prop(node, "device_type", NULL); |
| |
| /* We are scanning "cpu" nodes only */ |
| if (type == NULL || strcmp(type, "cpu") != 0) |
| return 0; |
| |
| prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size); |
| if (!prop) |
| return 0; |
| |
| pr_info("Page sizes from device-tree:\n"); |
| for (; size >= 4; size -= 4, ++prop) { |
| |
| struct mmu_psize_def *def; |
| |
| /* top 3 bit is AP encoding */ |
| shift = be32_to_cpu(prop[0]) & ~(0xe << 28); |
| ap = be32_to_cpu(prop[0]) >> 29; |
| pr_info("Page size shift = %d AP=0x%x\n", shift, ap); |
| |
| idx = get_idx_from_shift(shift); |
| if (idx < 0) |
| continue; |
| |
| def = &mmu_psize_defs[idx]; |
| def->shift = shift; |
| def->ap = ap; |
| } |
| |
| /* needed ? */ |
| cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B; |
| return 1; |
| } |
| |
| void __init radix__early_init_devtree(void) |
| { |
| int rc; |
| |
| /* |
| * Try to find the available page sizes in the device-tree |
| */ |
| rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL); |
| if (rc != 0) /* Found */ |
| goto found; |
| /* |
| * let's assume we have page 4k and 64k support |
| */ |
| mmu_psize_defs[MMU_PAGE_4K].shift = 12; |
| mmu_psize_defs[MMU_PAGE_4K].ap = 0x0; |
| |
| mmu_psize_defs[MMU_PAGE_64K].shift = 16; |
| mmu_psize_defs[MMU_PAGE_64K].ap = 0x5; |
| found: |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| if (mmu_psize_defs[MMU_PAGE_2M].shift) { |
| /* |
| * map vmemmap using 2M if available |
| */ |
| mmu_vmemmap_psize = MMU_PAGE_2M; |
| } |
| #endif /* CONFIG_SPARSEMEM_VMEMMAP */ |
| return; |
| } |
| |
| static void update_hid_for_radix(void) |
| { |
| unsigned long hid0; |
| unsigned long rb = 3UL << PPC_BITLSHIFT(53); /* IS = 3 */ |
| |
| asm volatile("ptesync": : :"memory"); |
| /* prs = 0, ric = 2, rs = 0, r = 1 is = 3 */ |
| asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1) |
| : : "r"(rb), "i"(1), "i"(0), "i"(2), "r"(0) : "memory"); |
| /* prs = 1, ric = 2, rs = 0, r = 1 is = 3 */ |
| asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1) |
| : : "r"(rb), "i"(1), "i"(1), "i"(2), "r"(0) : "memory"); |
| asm volatile("eieio; tlbsync; ptesync; isync; slbia": : :"memory"); |
| trace_tlbie(0, 0, rb, 0, 2, 0, 1); |
| trace_tlbie(0, 0, rb, 0, 2, 1, 1); |
| |
| /* |
| * now switch the HID |
| */ |
| hid0 = mfspr(SPRN_HID0); |
| hid0 |= HID0_POWER9_RADIX; |
| mtspr(SPRN_HID0, hid0); |
| asm volatile("isync": : :"memory"); |
| |
| /* Wait for it to happen */ |
| while (!(mfspr(SPRN_HID0) & HID0_POWER9_RADIX)) |
| cpu_relax(); |
| } |
| |
| static void radix_init_amor(void) |
| { |
| /* |
| * In HV mode, we init AMOR (Authority Mask Override Register) so that |
| * the hypervisor and guest can setup IAMR (Instruction Authority Mask |
| * Register), enable key 0 and set it to 1. |
| * |
| * AMOR = 0b1100 .... 0000 (Mask for key 0 is 11) |
| */ |
| mtspr(SPRN_AMOR, (3ul << 62)); |
| } |
| |
| static void radix_init_iamr(void) |
| { |
| unsigned long iamr; |
| |
| /* |
| * The IAMR should set to 0 on DD1. |
| */ |
| if (cpu_has_feature(CPU_FTR_POWER9_DD1)) |
| iamr = 0; |
| else |
| iamr = (1ul << 62); |
| |
| /* |
| * Radix always uses key0 of the IAMR to determine if an access is |
| * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction |
| * fetch. |
| */ |
| mtspr(SPRN_IAMR, iamr); |
| } |
| |
| void __init radix__early_init_mmu(void) |
| { |
| unsigned long lpcr; |
| |
| #ifdef CONFIG_PPC_64K_PAGES |
| /* PAGE_SIZE mappings */ |
| mmu_virtual_psize = MMU_PAGE_64K; |
| #else |
| mmu_virtual_psize = MMU_PAGE_4K; |
| #endif |
| |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| /* vmemmap mapping */ |
| mmu_vmemmap_psize = mmu_virtual_psize; |
| #endif |
| /* |
| * initialize page table size |
| */ |
| __pte_index_size = RADIX_PTE_INDEX_SIZE; |
| __pmd_index_size = RADIX_PMD_INDEX_SIZE; |
| __pud_index_size = RADIX_PUD_INDEX_SIZE; |
| __pgd_index_size = RADIX_PGD_INDEX_SIZE; |
| __pmd_cache_index = RADIX_PMD_INDEX_SIZE; |
| __pte_table_size = RADIX_PTE_TABLE_SIZE; |
| __pmd_table_size = RADIX_PMD_TABLE_SIZE; |
| __pud_table_size = RADIX_PUD_TABLE_SIZE; |
| __pgd_table_size = RADIX_PGD_TABLE_SIZE; |
| |
| __pmd_val_bits = RADIX_PMD_VAL_BITS; |
| __pud_val_bits = RADIX_PUD_VAL_BITS; |
| __pgd_val_bits = RADIX_PGD_VAL_BITS; |
| |
| __kernel_virt_start = RADIX_KERN_VIRT_START; |
| __kernel_virt_size = RADIX_KERN_VIRT_SIZE; |
| __vmalloc_start = RADIX_VMALLOC_START; |
| __vmalloc_end = RADIX_VMALLOC_END; |
| vmemmap = (struct page *)RADIX_VMEMMAP_BASE; |
| ioremap_bot = IOREMAP_BASE; |
| |
| #ifdef CONFIG_PCI |
| pci_io_base = ISA_IO_BASE; |
| #endif |
| |
| /* |
| * For now radix also use the same frag size |
| */ |
| __pte_frag_nr = H_PTE_FRAG_NR; |
| __pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT; |
| |
| if (!firmware_has_feature(FW_FEATURE_LPAR)) { |
| radix_init_native(); |
| if (cpu_has_feature(CPU_FTR_POWER9_DD1)) |
| update_hid_for_radix(); |
| lpcr = mfspr(SPRN_LPCR); |
| mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR); |
| radix_init_partition_table(); |
| radix_init_amor(); |
| } else { |
| radix_init_pseries(); |
| } |
| |
| memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE); |
| |
| radix_init_iamr(); |
| radix_init_pgtable(); |
| } |
| |
| void radix__early_init_mmu_secondary(void) |
| { |
| unsigned long lpcr; |
| /* |
| * update partition table control register and UPRT |
| */ |
| if (!firmware_has_feature(FW_FEATURE_LPAR)) { |
| |
| if (cpu_has_feature(CPU_FTR_POWER9_DD1)) |
| update_hid_for_radix(); |
| |
| lpcr = mfspr(SPRN_LPCR); |
| mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR); |
| |
| mtspr(SPRN_PTCR, |
| __pa(partition_tb) | (PATB_SIZE_SHIFT - 12)); |
| radix_init_amor(); |
| } |
| radix_init_iamr(); |
| } |
| |
| void radix__mmu_cleanup_all(void) |
| { |
| unsigned long lpcr; |
| |
| if (!firmware_has_feature(FW_FEATURE_LPAR)) { |
| lpcr = mfspr(SPRN_LPCR); |
| mtspr(SPRN_LPCR, lpcr & ~LPCR_UPRT); |
| mtspr(SPRN_PTCR, 0); |
| powernv_set_nmmu_ptcr(0); |
| radix__flush_tlb_all(); |
| } |
| } |
| |
| void radix__setup_initial_memory_limit(phys_addr_t first_memblock_base, |
| phys_addr_t first_memblock_size) |
| { |
| /* We don't currently support the first MEMBLOCK not mapping 0 |
| * physical on those processors |
| */ |
| BUG_ON(first_memblock_base != 0); |
| /* |
| * We limit the allocation that depend on ppc64_rma_size |
| * to first_memblock_size. We also clamp it to 1GB to |
| * avoid some funky things such as RTAS bugs. |
| * |
| * On radix config we really don't have a limitation |
| * on real mode access. But keeping it as above works |
| * well enough. |
| */ |
| ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000); |
| /* |
| * Finally limit subsequent allocations. We really don't want |
| * to limit the memblock allocations to rma_size. FIXME!! should |
| * we even limit at all ? |
| */ |
| memblock_set_current_limit(first_memblock_base + first_memblock_size); |
| } |
| |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| static void free_pte_table(pte_t *pte_start, pmd_t *pmd) |
| { |
| pte_t *pte; |
| int i; |
| |
| for (i = 0; i < PTRS_PER_PTE; i++) { |
| pte = pte_start + i; |
| if (!pte_none(*pte)) |
| return; |
| } |
| |
| pte_free_kernel(&init_mm, pte_start); |
| pmd_clear(pmd); |
| } |
| |
| static void free_pmd_table(pmd_t *pmd_start, pud_t *pud) |
| { |
| pmd_t *pmd; |
| int i; |
| |
| for (i = 0; i < PTRS_PER_PMD; i++) { |
| pmd = pmd_start + i; |
| if (!pmd_none(*pmd)) |
| return; |
| } |
| |
| pmd_free(&init_mm, pmd_start); |
| pud_clear(pud); |
| } |
| |
| static void remove_pte_table(pte_t *pte_start, unsigned long addr, |
| unsigned long end) |
| { |
| unsigned long next; |
| pte_t *pte; |
| |
| pte = pte_start + pte_index(addr); |
| for (; addr < end; addr = next, pte++) { |
| next = (addr + PAGE_SIZE) & PAGE_MASK; |
| if (next > end) |
| next = end; |
| |
| if (!pte_present(*pte)) |
| continue; |
| |
| if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(next)) { |
| /* |
| * The vmemmap_free() and remove_section_mapping() |
| * codepaths call us with aligned addresses. |
| */ |
| WARN_ONCE(1, "%s: unaligned range\n", __func__); |
| continue; |
| } |
| |
| pte_clear(&init_mm, addr, pte); |
| } |
| } |
| |
| static void remove_pmd_table(pmd_t *pmd_start, unsigned long addr, |
| unsigned long end) |
| { |
| unsigned long next; |
| pte_t *pte_base; |
| pmd_t *pmd; |
| |
| pmd = pmd_start + pmd_index(addr); |
| for (; addr < end; addr = next, pmd++) { |
| next = pmd_addr_end(addr, end); |
| |
| if (!pmd_present(*pmd)) |
| continue; |
| |
| if (pmd_huge(*pmd)) { |
| if (!IS_ALIGNED(addr, PMD_SIZE) || |
| !IS_ALIGNED(next, PMD_SIZE)) { |
| WARN_ONCE(1, "%s: unaligned range\n", __func__); |
| continue; |
| } |
| |
| pte_clear(&init_mm, addr, (pte_t *)pmd); |
| continue; |
| } |
| |
| pte_base = (pte_t *)pmd_page_vaddr(*pmd); |
| remove_pte_table(pte_base, addr, next); |
| free_pte_table(pte_base, pmd); |
| } |
| } |
| |
| static void remove_pud_table(pud_t *pud_start, unsigned long addr, |
| unsigned long end) |
| { |
| unsigned long next; |
| pmd_t *pmd_base; |
| pud_t *pud; |
| |
| pud = pud_start + pud_index(addr); |
| for (; addr < end; addr = next, pud++) { |
| next = pud_addr_end(addr, end); |
| |
| if (!pud_present(*pud)) |
| continue; |
| |
| if (pud_huge(*pud)) { |
| if (!IS_ALIGNED(addr, PUD_SIZE) || |
| !IS_ALIGNED(next, PUD_SIZE)) { |
| WARN_ONCE(1, "%s: unaligned range\n", __func__); |
| continue; |
| } |
| |
| pte_clear(&init_mm, addr, (pte_t *)pud); |
| continue; |
| } |
| |
| pmd_base = (pmd_t *)pud_page_vaddr(*pud); |
| remove_pmd_table(pmd_base, addr, next); |
| free_pmd_table(pmd_base, pud); |
| } |
| } |
| |
| static void remove_pagetable(unsigned long start, unsigned long end) |
| { |
| unsigned long addr, next; |
| pud_t *pud_base; |
| pgd_t *pgd; |
| |
| spin_lock(&init_mm.page_table_lock); |
| |
| for (addr = start; addr < end; addr = next) { |
| next = pgd_addr_end(addr, end); |
| |
| pgd = pgd_offset_k(addr); |
| if (!pgd_present(*pgd)) |
| continue; |
| |
| if (pgd_huge(*pgd)) { |
| if (!IS_ALIGNED(addr, PGDIR_SIZE) || |
| !IS_ALIGNED(next, PGDIR_SIZE)) { |
| WARN_ONCE(1, "%s: unaligned range\n", __func__); |
| continue; |
| } |
| |
| pte_clear(&init_mm, addr, (pte_t *)pgd); |
| continue; |
| } |
| |
| pud_base = (pud_t *)pgd_page_vaddr(*pgd); |
| remove_pud_table(pud_base, addr, next); |
| } |
| |
| spin_unlock(&init_mm.page_table_lock); |
| radix__flush_tlb_kernel_range(start, end); |
| } |
| |
| int __ref radix__create_section_mapping(unsigned long start, unsigned long end) |
| { |
| return create_physical_mapping(start, end); |
| } |
| |
| int radix__remove_section_mapping(unsigned long start, unsigned long end) |
| { |
| remove_pagetable(start, end); |
| return 0; |
| } |
| #endif /* CONFIG_MEMORY_HOTPLUG */ |
| |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| int __meminit radix__vmemmap_create_mapping(unsigned long start, |
| unsigned long page_size, |
| unsigned long phys) |
| { |
| /* Create a PTE encoding */ |
| unsigned long flags = _PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_KERNEL_RW; |
| |
| BUG_ON(radix__map_kernel_page(start, phys, __pgprot(flags), page_size)); |
| return 0; |
| } |
| |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| void radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size) |
| { |
| remove_pagetable(start, start + page_size); |
| } |
| #endif |
| #endif |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| |
| unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, |
| pmd_t *pmdp, unsigned long clr, |
| unsigned long set) |
| { |
| unsigned long old; |
| |
| #ifdef CONFIG_DEBUG_VM |
| WARN_ON(!radix__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp)); |
| assert_spin_locked(&mm->page_table_lock); |
| #endif |
| |
| old = radix__pte_update(mm, addr, (pte_t *)pmdp, clr, set, 1); |
| trace_hugepage_update(addr, old, clr, set); |
| |
| return old; |
| } |
| |
| pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address, |
| pmd_t *pmdp) |
| |
| { |
| pmd_t pmd; |
| |
| VM_BUG_ON(address & ~HPAGE_PMD_MASK); |
| VM_BUG_ON(radix__pmd_trans_huge(*pmdp)); |
| VM_BUG_ON(pmd_devmap(*pmdp)); |
| /* |
| * khugepaged calls this for normal pmd |
| */ |
| pmd = *pmdp; |
| pmd_clear(pmdp); |
| /*FIXME!! Verify whether we need this kick below */ |
| kick_all_cpus_sync(); |
| flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE); |
| return pmd; |
| } |
| |
| /* |
| * For us pgtable_t is pte_t *. Inorder to save the deposisted |
| * page table, we consider the allocated page table as a list |
| * head. On withdraw we need to make sure we zero out the used |
| * list_head memory area. |
| */ |
| void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, |
| pgtable_t pgtable) |
| { |
| struct list_head *lh = (struct list_head *) pgtable; |
| |
| assert_spin_locked(pmd_lockptr(mm, pmdp)); |
| |
| /* FIFO */ |
| if (!pmd_huge_pte(mm, pmdp)) |
| INIT_LIST_HEAD(lh); |
| else |
| list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp)); |
| pmd_huge_pte(mm, pmdp) = pgtable; |
| } |
| |
| pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp) |
| { |
| pte_t *ptep; |
| pgtable_t pgtable; |
| struct list_head *lh; |
| |
| assert_spin_locked(pmd_lockptr(mm, pmdp)); |
| |
| /* FIFO */ |
| pgtable = pmd_huge_pte(mm, pmdp); |
| lh = (struct list_head *) pgtable; |
| if (list_empty(lh)) |
| pmd_huge_pte(mm, pmdp) = NULL; |
| else { |
| pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next; |
| list_del(lh); |
| } |
| ptep = (pte_t *) pgtable; |
| *ptep = __pte(0); |
| ptep++; |
| *ptep = __pte(0); |
| return pgtable; |
| } |
| |
| |
| pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm, |
| unsigned long addr, pmd_t *pmdp) |
| { |
| pmd_t old_pmd; |
| unsigned long old; |
| |
| old = radix__pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0); |
| old_pmd = __pmd(old); |
| /* |
| * Serialize against find_linux_pte_or_hugepte which does lock-less |
| * lookup in page tables with local interrupts disabled. For huge pages |
| * it casts pmd_t to pte_t. Since format of pte_t is different from |
| * pmd_t we want to prevent transit from pmd pointing to page table |
| * to pmd pointing to huge page (and back) while interrupts are disabled. |
| * We clear pmd to possibly replace it with page table pointer in |
| * different code paths. So make sure we wait for the parallel |
| * find_linux_pte_or_hugepage to finish. |
| */ |
| kick_all_cpus_sync(); |
| return old_pmd; |
| } |
| |
| int radix__has_transparent_hugepage(void) |
| { |
| /* For radix 2M at PMD level means thp */ |
| if (mmu_psize_defs[MMU_PAGE_2M].shift == PMD_SHIFT) |
| return 1; |
| return 0; |
| } |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |