Boot with virtual == physical to get closer to native Linux.
1) This allows us to get alot closer to booting bzImages.
2) It means we don't have to know page_offset.
3) The Guest needs to modify the boot pagetables to create the
PAGE_OFFSET mapping before jumping to C code.
4) guest_pa() walks the page tables rather than using page_offset.
5) We don't use page_offset to figure out whether to emulate: it was
always kinda quesationable, and won't work for instructions done
before remapping (bzImage unpacking in particular).
6) We still want the kernel address for tlb flushing: have the initial
hypercall give us that, too.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
diff --git a/arch/x86/lguest/boot.c b/arch/x86/lguest/boot.c
index 3a06b51..090f30c 100644
--- a/arch/x86/lguest/boot.c
+++ b/arch/x86/lguest/boot.c
@@ -86,6 +86,7 @@
.hcall_status = { [0 ... LHCALL_RING_SIZE-1] = 0xFF },
.noirq_start = (u32)lguest_noirq_start,
.noirq_end = (u32)lguest_noirq_end,
+ .kernel_address = PAGE_OFFSET,
.blocked_interrupts = { 1 }, /* Block timer interrupts */
.syscall_vec = SYSCALL_VECTOR,
};
@@ -1033,11 +1034,7 @@
/*G:070 Now we've seen all the paravirt_ops, we return to
* lguest_init() where the rest of the fairly chaotic boot setup
- * occurs.
- *
- * The Host expects our first hypercall to tell it where our "struct
- * lguest_data" is, so we do that first. */
- hcall(LHCALL_LGUEST_INIT, __pa(&lguest_data), 0, 0);
+ * occurs. */
/* The native boot code sets up initial page tables immediately after
* the kernel itself, and sets init_pg_tables_end so they're not