| /* |
| * linux/fs/jbd2/revoke.c |
| * |
| * Written by Stephen C. Tweedie <sct@redhat.com>, 2000 |
| * |
| * Copyright 2000 Red Hat corp --- All Rights Reserved |
| * |
| * This file is part of the Linux kernel and is made available under |
| * the terms of the GNU General Public License, version 2, or at your |
| * option, any later version, incorporated herein by reference. |
| * |
| * Journal revoke routines for the generic filesystem journaling code; |
| * part of the ext2fs journaling system. |
| * |
| * Revoke is the mechanism used to prevent old log records for deleted |
| * metadata from being replayed on top of newer data using the same |
| * blocks. The revoke mechanism is used in two separate places: |
| * |
| * + Commit: during commit we write the entire list of the current |
| * transaction's revoked blocks to the journal |
| * |
| * + Recovery: during recovery we record the transaction ID of all |
| * revoked blocks. If there are multiple revoke records in the log |
| * for a single block, only the last one counts, and if there is a log |
| * entry for a block beyond the last revoke, then that log entry still |
| * gets replayed. |
| * |
| * We can get interactions between revokes and new log data within a |
| * single transaction: |
| * |
| * Block is revoked and then journaled: |
| * The desired end result is the journaling of the new block, so we |
| * cancel the revoke before the transaction commits. |
| * |
| * Block is journaled and then revoked: |
| * The revoke must take precedence over the write of the block, so we |
| * need either to cancel the journal entry or to write the revoke |
| * later in the log than the log block. In this case, we choose the |
| * latter: journaling a block cancels any revoke record for that block |
| * in the current transaction, so any revoke for that block in the |
| * transaction must have happened after the block was journaled and so |
| * the revoke must take precedence. |
| * |
| * Block is revoked and then written as data: |
| * The data write is allowed to succeed, but the revoke is _not_ |
| * cancelled. We still need to prevent old log records from |
| * overwriting the new data. We don't even need to clear the revoke |
| * bit here. |
| * |
| * We cache revoke status of a buffer in the current transaction in b_states |
| * bits. As the name says, revokevalid flag indicates that the cached revoke |
| * status of a buffer is valid and we can rely on the cached status. |
| * |
| * Revoke information on buffers is a tri-state value: |
| * |
| * RevokeValid clear: no cached revoke status, need to look it up |
| * RevokeValid set, Revoked clear: |
| * buffer has not been revoked, and cancel_revoke |
| * need do nothing. |
| * RevokeValid set, Revoked set: |
| * buffer has been revoked. |
| * |
| * Locking rules: |
| * We keep two hash tables of revoke records. One hashtable belongs to the |
| * running transaction (is pointed to by journal->j_revoke), the other one |
| * belongs to the committing transaction. Accesses to the second hash table |
| * happen only from the kjournald and no other thread touches this table. Also |
| * journal_switch_revoke_table() which switches which hashtable belongs to the |
| * running and which to the committing transaction is called only from |
| * kjournald. Therefore we need no locks when accessing the hashtable belonging |
| * to the committing transaction. |
| * |
| * All users operating on the hash table belonging to the running transaction |
| * have a handle to the transaction. Therefore they are safe from kjournald |
| * switching hash tables under them. For operations on the lists of entries in |
| * the hash table j_revoke_lock is used. |
| * |
| * Finally, also replay code uses the hash tables but at this moment no one else |
| * can touch them (filesystem isn't mounted yet) and hence no locking is |
| * needed. |
| */ |
| |
| #ifndef __KERNEL__ |
| #include "jfs_user.h" |
| #else |
| #include <linux/time.h> |
| #include <linux/fs.h> |
| #include <linux/jbd2.h> |
| #include <linux/errno.h> |
| #include <linux/slab.h> |
| #include <linux/list.h> |
| #include <linux/init.h> |
| #include <linux/bio.h> |
| #endif |
| #include <linux/log2.h> |
| |
| static struct kmem_cache *jbd2_revoke_record_cache; |
| static struct kmem_cache *jbd2_revoke_table_cache; |
| |
| /* Each revoke record represents one single revoked block. During |
| journal replay, this involves recording the transaction ID of the |
| last transaction to revoke this block. */ |
| |
| struct jbd2_revoke_record_s |
| { |
| struct list_head hash; |
| tid_t sequence; /* Used for recovery only */ |
| unsigned long long blocknr; |
| }; |
| |
| |
| /* The revoke table is just a simple hash table of revoke records. */ |
| struct jbd2_revoke_table_s |
| { |
| /* It is conceivable that we might want a larger hash table |
| * for recovery. Must be a power of two. */ |
| int hash_size; |
| int hash_shift; |
| struct list_head *hash_table; |
| }; |
| |
| |
| #ifdef __KERNEL__ |
| static void write_one_revoke_record(journal_t *, transaction_t *, |
| struct journal_head **, int *, |
| struct jbd2_revoke_record_s *, int); |
| static void flush_descriptor(journal_t *, struct journal_head *, int, int); |
| #endif |
| |
| /* Utility functions to maintain the revoke table */ |
| |
| /* Borrowed from buffer.c: this is a tried and tested block hash function */ |
| static inline int hash(journal_t *journal, unsigned long long block) |
| { |
| struct jbd2_revoke_table_s *table = journal->j_revoke; |
| int hash_shift = table->hash_shift; |
| int hash = (int)block ^ (int)((block >> 31) >> 1); |
| |
| return ((hash << (hash_shift - 6)) ^ |
| (hash >> 13) ^ |
| (hash << (hash_shift - 12))) & (table->hash_size - 1); |
| } |
| |
| static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr, |
| tid_t seq) |
| { |
| struct list_head *hash_list; |
| struct jbd2_revoke_record_s *record; |
| |
| repeat: |
| record = kmem_cache_alloc(jbd2_revoke_record_cache, GFP_NOFS); |
| if (!record) |
| goto oom; |
| |
| record->sequence = seq; |
| record->blocknr = blocknr; |
| hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)]; |
| spin_lock(&journal->j_revoke_lock); |
| list_add(&record->hash, hash_list); |
| spin_unlock(&journal->j_revoke_lock); |
| return 0; |
| |
| oom: |
| if (!journal_oom_retry) |
| return -ENOMEM; |
| jbd_debug(1, "ENOMEM in %s, retrying\n", __func__); |
| yield(); |
| goto repeat; |
| } |
| |
| /* Find a revoke record in the journal's hash table. */ |
| |
| static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal, |
| unsigned long long blocknr) |
| { |
| struct list_head *hash_list; |
| struct jbd2_revoke_record_s *record; |
| |
| hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)]; |
| |
| spin_lock(&journal->j_revoke_lock); |
| record = (struct jbd2_revoke_record_s *) hash_list->next; |
| while (&(record->hash) != hash_list) { |
| if (record->blocknr == blocknr) { |
| spin_unlock(&journal->j_revoke_lock); |
| return record; |
| } |
| record = (struct jbd2_revoke_record_s *) record->hash.next; |
| } |
| spin_unlock(&journal->j_revoke_lock); |
| return NULL; |
| } |
| |
| void jbd2_journal_destroy_revoke_caches(void) |
| { |
| if (jbd2_revoke_record_cache) { |
| kmem_cache_destroy(jbd2_revoke_record_cache); |
| jbd2_revoke_record_cache = NULL; |
| } |
| if (jbd2_revoke_table_cache) { |
| kmem_cache_destroy(jbd2_revoke_table_cache); |
| jbd2_revoke_table_cache = NULL; |
| } |
| } |
| |
| int __init jbd2_journal_init_revoke_caches(void) |
| { |
| J_ASSERT(!jbd2_revoke_record_cache); |
| J_ASSERT(!jbd2_revoke_table_cache); |
| |
| jbd2_revoke_record_cache = kmem_cache_create("jbd2_revoke_record", |
| sizeof(struct jbd2_revoke_record_s), |
| 0, |
| SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY, |
| NULL); |
| if (!jbd2_revoke_record_cache) |
| goto record_cache_failure; |
| |
| jbd2_revoke_table_cache = kmem_cache_create("jbd2_revoke_table", |
| sizeof(struct jbd2_revoke_table_s), |
| 0, SLAB_TEMPORARY, NULL); |
| if (!jbd2_revoke_table_cache) |
| goto table_cache_failure; |
| return 0; |
| table_cache_failure: |
| jbd2_journal_destroy_revoke_caches(); |
| record_cache_failure: |
| return -ENOMEM; |
| } |
| |
| static struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size) |
| { |
| int shift = 0; |
| int tmp = hash_size; |
| struct jbd2_revoke_table_s *table; |
| |
| table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL); |
| if (!table) |
| goto out; |
| |
| while((tmp >>= 1UL) != 0UL) |
| shift++; |
| |
| table->hash_size = hash_size; |
| table->hash_shift = shift; |
| table->hash_table = |
| kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL); |
| if (!table->hash_table) { |
| kmem_cache_free(jbd2_revoke_table_cache, table); |
| table = NULL; |
| goto out; |
| } |
| |
| for (tmp = 0; tmp < hash_size; tmp++) |
| INIT_LIST_HEAD(&table->hash_table[tmp]); |
| |
| out: |
| return table; |
| } |
| |
| static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table) |
| { |
| int i; |
| struct list_head *hash_list; |
| |
| for (i = 0; i < table->hash_size; i++) { |
| hash_list = &table->hash_table[i]; |
| J_ASSERT(list_empty(hash_list)); |
| } |
| |
| kfree(table->hash_table); |
| kmem_cache_free(jbd2_revoke_table_cache, table); |
| } |
| |
| /* Initialise the revoke table for a given journal to a given size. */ |
| int jbd2_journal_init_revoke(journal_t *journal, int hash_size) |
| { |
| J_ASSERT(journal->j_revoke_table[0] == NULL); |
| J_ASSERT(is_power_of_2(hash_size)); |
| |
| journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size); |
| if (!journal->j_revoke_table[0]) |
| goto fail0; |
| |
| journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size); |
| if (!journal->j_revoke_table[1]) |
| goto fail1; |
| |
| journal->j_revoke = journal->j_revoke_table[1]; |
| |
| spin_lock_init(&journal->j_revoke_lock); |
| |
| return 0; |
| |
| fail1: |
| jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]); |
| fail0: |
| return -ENOMEM; |
| } |
| |
| /* Destroy a journal's revoke table. The table must already be empty! */ |
| void jbd2_journal_destroy_revoke(journal_t *journal) |
| { |
| journal->j_revoke = NULL; |
| if (journal->j_revoke_table[0]) |
| jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]); |
| if (journal->j_revoke_table[1]) |
| jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]); |
| } |
| |
| |
| #ifdef __KERNEL__ |
| |
| /* |
| * jbd2_journal_revoke: revoke a given buffer_head from the journal. This |
| * prevents the block from being replayed during recovery if we take a |
| * crash after this current transaction commits. Any subsequent |
| * metadata writes of the buffer in this transaction cancel the |
| * revoke. |
| * |
| * Note that this call may block --- it is up to the caller to make |
| * sure that there are no further calls to journal_write_metadata |
| * before the revoke is complete. In ext3, this implies calling the |
| * revoke before clearing the block bitmap when we are deleting |
| * metadata. |
| * |
| * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a |
| * parameter, but does _not_ forget the buffer_head if the bh was only |
| * found implicitly. |
| * |
| * bh_in may not be a journalled buffer - it may have come off |
| * the hash tables without an attached journal_head. |
| * |
| * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count |
| * by one. |
| */ |
| |
| int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr, |
| struct buffer_head *bh_in) |
| { |
| struct buffer_head *bh = NULL; |
| journal_t *journal; |
| struct block_device *bdev; |
| int err; |
| |
| might_sleep(); |
| if (bh_in) |
| BUFFER_TRACE(bh_in, "enter"); |
| |
| journal = handle->h_transaction->t_journal; |
| if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){ |
| J_ASSERT (!"Cannot set revoke feature!"); |
| return -EINVAL; |
| } |
| |
| bdev = journal->j_fs_dev; |
| bh = bh_in; |
| |
| if (!bh) { |
| bh = __find_get_block(bdev, blocknr, journal->j_blocksize); |
| if (bh) |
| BUFFER_TRACE(bh, "found on hash"); |
| } |
| #ifdef JBD2_EXPENSIVE_CHECKING |
| else { |
| struct buffer_head *bh2; |
| |
| /* If there is a different buffer_head lying around in |
| * memory anywhere... */ |
| bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize); |
| if (bh2) { |
| /* ... and it has RevokeValid status... */ |
| if (bh2 != bh && buffer_revokevalid(bh2)) |
| /* ...then it better be revoked too, |
| * since it's illegal to create a revoke |
| * record against a buffer_head which is |
| * not marked revoked --- that would |
| * risk missing a subsequent revoke |
| * cancel. */ |
| J_ASSERT_BH(bh2, buffer_revoked(bh2)); |
| put_bh(bh2); |
| } |
| } |
| #endif |
| |
| /* We really ought not ever to revoke twice in a row without |
| first having the revoke cancelled: it's illegal to free a |
| block twice without allocating it in between! */ |
| if (bh) { |
| if (!J_EXPECT_BH(bh, !buffer_revoked(bh), |
| "inconsistent data on disk")) { |
| if (!bh_in) |
| brelse(bh); |
| return -EIO; |
| } |
| set_buffer_revoked(bh); |
| set_buffer_revokevalid(bh); |
| if (bh_in) { |
| BUFFER_TRACE(bh_in, "call jbd2_journal_forget"); |
| jbd2_journal_forget(handle, bh_in); |
| } else { |
| BUFFER_TRACE(bh, "call brelse"); |
| __brelse(bh); |
| } |
| } |
| |
| jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in); |
| err = insert_revoke_hash(journal, blocknr, |
| handle->h_transaction->t_tid); |
| BUFFER_TRACE(bh_in, "exit"); |
| return err; |
| } |
| |
| /* |
| * Cancel an outstanding revoke. For use only internally by the |
| * journaling code (called from jbd2_journal_get_write_access). |
| * |
| * We trust buffer_revoked() on the buffer if the buffer is already |
| * being journaled: if there is no revoke pending on the buffer, then we |
| * don't do anything here. |
| * |
| * This would break if it were possible for a buffer to be revoked and |
| * discarded, and then reallocated within the same transaction. In such |
| * a case we would have lost the revoked bit, but when we arrived here |
| * the second time we would still have a pending revoke to cancel. So, |
| * do not trust the Revoked bit on buffers unless RevokeValid is also |
| * set. |
| */ |
| int jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh) |
| { |
| struct jbd2_revoke_record_s *record; |
| journal_t *journal = handle->h_transaction->t_journal; |
| int need_cancel; |
| int did_revoke = 0; /* akpm: debug */ |
| struct buffer_head *bh = jh2bh(jh); |
| |
| jbd_debug(4, "journal_head %p, cancelling revoke\n", jh); |
| |
| /* Is the existing Revoke bit valid? If so, we trust it, and |
| * only perform the full cancel if the revoke bit is set. If |
| * not, we can't trust the revoke bit, and we need to do the |
| * full search for a revoke record. */ |
| if (test_set_buffer_revokevalid(bh)) { |
| need_cancel = test_clear_buffer_revoked(bh); |
| } else { |
| need_cancel = 1; |
| clear_buffer_revoked(bh); |
| } |
| |
| if (need_cancel) { |
| record = find_revoke_record(journal, bh->b_blocknr); |
| if (record) { |
| jbd_debug(4, "cancelled existing revoke on " |
| "blocknr %llu\n", (unsigned long long)bh->b_blocknr); |
| spin_lock(&journal->j_revoke_lock); |
| list_del(&record->hash); |
| spin_unlock(&journal->j_revoke_lock); |
| kmem_cache_free(jbd2_revoke_record_cache, record); |
| did_revoke = 1; |
| } |
| } |
| |
| #ifdef JBD2_EXPENSIVE_CHECKING |
| /* There better not be one left behind by now! */ |
| record = find_revoke_record(journal, bh->b_blocknr); |
| J_ASSERT_JH(jh, record == NULL); |
| #endif |
| |
| /* Finally, have we just cleared revoke on an unhashed |
| * buffer_head? If so, we'd better make sure we clear the |
| * revoked status on any hashed alias too, otherwise the revoke |
| * state machine will get very upset later on. */ |
| if (need_cancel) { |
| struct buffer_head *bh2; |
| bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size); |
| if (bh2) { |
| if (bh2 != bh) |
| clear_buffer_revoked(bh2); |
| __brelse(bh2); |
| } |
| } |
| return did_revoke; |
| } |
| |
| /* |
| * journal_clear_revoked_flag clears revoked flag of buffers in |
| * revoke table to reflect there is no revoked buffers in the next |
| * transaction which is going to be started. |
| */ |
| void jbd2_clear_buffer_revoked_flags(journal_t *journal) |
| { |
| struct jbd2_revoke_table_s *revoke = journal->j_revoke; |
| int i = 0; |
| |
| for (i = 0; i < revoke->hash_size; i++) { |
| struct list_head *hash_list; |
| struct list_head *list_entry; |
| hash_list = &revoke->hash_table[i]; |
| |
| list_for_each(list_entry, hash_list) { |
| struct jbd2_revoke_record_s *record; |
| struct buffer_head *bh; |
| record = (struct jbd2_revoke_record_s *)list_entry; |
| bh = __find_get_block(journal->j_fs_dev, |
| record->blocknr, |
| journal->j_blocksize); |
| if (bh) { |
| clear_buffer_revoked(bh); |
| __brelse(bh); |
| } |
| } |
| } |
| } |
| |
| /* journal_switch_revoke table select j_revoke for next transaction |
| * we do not want to suspend any processing until all revokes are |
| * written -bzzz |
| */ |
| void jbd2_journal_switch_revoke_table(journal_t *journal) |
| { |
| int i; |
| |
| if (journal->j_revoke == journal->j_revoke_table[0]) |
| journal->j_revoke = journal->j_revoke_table[1]; |
| else |
| journal->j_revoke = journal->j_revoke_table[0]; |
| |
| for (i = 0; i < journal->j_revoke->hash_size; i++) |
| INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]); |
| } |
| |
| /* |
| * Write revoke records to the journal for all entries in the current |
| * revoke hash, deleting the entries as we go. |
| */ |
| void jbd2_journal_write_revoke_records(journal_t *journal, |
| transaction_t *transaction, |
| int write_op) |
| { |
| struct journal_head *descriptor; |
| struct jbd2_revoke_record_s *record; |
| struct jbd2_revoke_table_s *revoke; |
| struct list_head *hash_list; |
| int i, offset, count; |
| |
| descriptor = NULL; |
| offset = 0; |
| count = 0; |
| |
| /* select revoke table for committing transaction */ |
| revoke = journal->j_revoke == journal->j_revoke_table[0] ? |
| journal->j_revoke_table[1] : journal->j_revoke_table[0]; |
| |
| for (i = 0; i < revoke->hash_size; i++) { |
| hash_list = &revoke->hash_table[i]; |
| |
| while (!list_empty(hash_list)) { |
| record = (struct jbd2_revoke_record_s *) |
| hash_list->next; |
| write_one_revoke_record(journal, transaction, |
| &descriptor, &offset, |
| record, write_op); |
| count++; |
| list_del(&record->hash); |
| kmem_cache_free(jbd2_revoke_record_cache, record); |
| } |
| } |
| if (descriptor) |
| flush_descriptor(journal, descriptor, offset, write_op); |
| jbd_debug(1, "Wrote %d revoke records\n", count); |
| } |
| |
| /* |
| * Write out one revoke record. We need to create a new descriptor |
| * block if the old one is full or if we have not already created one. |
| */ |
| |
| static void write_one_revoke_record(journal_t *journal, |
| transaction_t *transaction, |
| struct journal_head **descriptorp, |
| int *offsetp, |
| struct jbd2_revoke_record_s *record, |
| int write_op) |
| { |
| struct journal_head *descriptor; |
| int offset; |
| journal_header_t *header; |
| |
| /* If we are already aborting, this all becomes a noop. We |
| still need to go round the loop in |
| jbd2_journal_write_revoke_records in order to free all of the |
| revoke records: only the IO to the journal is omitted. */ |
| if (is_journal_aborted(journal)) |
| return; |
| |
| descriptor = *descriptorp; |
| offset = *offsetp; |
| |
| /* Make sure we have a descriptor with space left for the record */ |
| if (descriptor) { |
| if (offset == journal->j_blocksize) { |
| flush_descriptor(journal, descriptor, offset, write_op); |
| descriptor = NULL; |
| } |
| } |
| |
| if (!descriptor) { |
| descriptor = jbd2_journal_get_descriptor_buffer(journal); |
| if (!descriptor) |
| return; |
| header = (journal_header_t *) &jh2bh(descriptor)->b_data[0]; |
| header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER); |
| header->h_blocktype = cpu_to_be32(JBD2_REVOKE_BLOCK); |
| header->h_sequence = cpu_to_be32(transaction->t_tid); |
| |
| /* Record it so that we can wait for IO completion later */ |
| JBUFFER_TRACE(descriptor, "file as BJ_LogCtl"); |
| jbd2_journal_file_buffer(descriptor, transaction, BJ_LogCtl); |
| |
| offset = sizeof(jbd2_journal_revoke_header_t); |
| *descriptorp = descriptor; |
| } |
| |
| if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT)) { |
| * ((__be64 *)(&jh2bh(descriptor)->b_data[offset])) = |
| cpu_to_be64(record->blocknr); |
| offset += 8; |
| |
| } else { |
| * ((__be32 *)(&jh2bh(descriptor)->b_data[offset])) = |
| cpu_to_be32(record->blocknr); |
| offset += 4; |
| } |
| |
| *offsetp = offset; |
| } |
| |
| /* |
| * Flush a revoke descriptor out to the journal. If we are aborting, |
| * this is a noop; otherwise we are generating a buffer which needs to |
| * be waited for during commit, so it has to go onto the appropriate |
| * journal buffer list. |
| */ |
| |
| static void flush_descriptor(journal_t *journal, |
| struct journal_head *descriptor, |
| int offset, int write_op) |
| { |
| jbd2_journal_revoke_header_t *header; |
| struct buffer_head *bh = jh2bh(descriptor); |
| |
| if (is_journal_aborted(journal)) { |
| put_bh(bh); |
| return; |
| } |
| |
| header = (jbd2_journal_revoke_header_t *) jh2bh(descriptor)->b_data; |
| header->r_count = cpu_to_be32(offset); |
| set_buffer_jwrite(bh); |
| BUFFER_TRACE(bh, "write"); |
| set_buffer_dirty(bh); |
| write_dirty_buffer(bh, write_op); |
| } |
| #endif |
| |
| /* |
| * Revoke support for recovery. |
| * |
| * Recovery needs to be able to: |
| * |
| * record all revoke records, including the tid of the latest instance |
| * of each revoke in the journal |
| * |
| * check whether a given block in a given transaction should be replayed |
| * (ie. has not been revoked by a revoke record in that or a subsequent |
| * transaction) |
| * |
| * empty the revoke table after recovery. |
| */ |
| |
| /* |
| * First, setting revoke records. We create a new revoke record for |
| * every block ever revoked in the log as we scan it for recovery, and |
| * we update the existing records if we find multiple revokes for a |
| * single block. |
| */ |
| |
| int jbd2_journal_set_revoke(journal_t *journal, |
| unsigned long long blocknr, |
| tid_t sequence) |
| { |
| struct jbd2_revoke_record_s *record; |
| |
| record = find_revoke_record(journal, blocknr); |
| if (record) { |
| /* If we have multiple occurrences, only record the |
| * latest sequence number in the hashed record */ |
| if (tid_gt(sequence, record->sequence)) |
| record->sequence = sequence; |
| return 0; |
| } |
| return insert_revoke_hash(journal, blocknr, sequence); |
| } |
| |
| /* |
| * Test revoke records. For a given block referenced in the log, has |
| * that block been revoked? A revoke record with a given transaction |
| * sequence number revokes all blocks in that transaction and earlier |
| * ones, but later transactions still need replayed. |
| */ |
| |
| int jbd2_journal_test_revoke(journal_t *journal, |
| unsigned long long blocknr, |
| tid_t sequence) |
| { |
| struct jbd2_revoke_record_s *record; |
| |
| record = find_revoke_record(journal, blocknr); |
| if (!record) |
| return 0; |
| if (tid_gt(sequence, record->sequence)) |
| return 0; |
| return 1; |
| } |
| |
| /* |
| * Finally, once recovery is over, we need to clear the revoke table so |
| * that it can be reused by the running filesystem. |
| */ |
| |
| void jbd2_journal_clear_revoke(journal_t *journal) |
| { |
| int i; |
| struct list_head *hash_list; |
| struct jbd2_revoke_record_s *record; |
| struct jbd2_revoke_table_s *revoke; |
| |
| revoke = journal->j_revoke; |
| |
| for (i = 0; i < revoke->hash_size; i++) { |
| hash_list = &revoke->hash_table[i]; |
| while (!list_empty(hash_list)) { |
| record = (struct jbd2_revoke_record_s*) hash_list->next; |
| list_del(&record->hash); |
| kmem_cache_free(jbd2_revoke_record_cache, record); |
| } |
| } |
| } |